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Abstract

In many biological systems, the network of interactions between the elements can only be

inferred from experimental measurements. In neuroscience, non-invasive imaging tools are

extensively used to derive either structural or functional brain networks in-vivo. As a result of

the inference process, we obtain a matrix of values corresponding to a fully connected and

weighted network. To turn this into a useful sparse network, thresholding is typically adopted

to cancel a percentage of the weakest connections. The structural properties of the resulting

network depend on howmuch of the inferred connectivity is eventually retained. However,

how to objectively fix this threshold is still an open issue. We introduce a criterion, the effi-

ciency cost optimization (ECO), to select a threshold based on the optimization of the trade-

off between the efficiency of a network and its wiring cost. We prove analytically and we con-

firm through numerical simulations that the connection density maximizing this trade-off

emphasizes the intrinsic properties of a given network, while preserving its sparsity. More-

over, this density threshold can be determined a-priori, since the number of connections to

filter only depends on the network size according to a power-law. We validate this result on

several brain networks, from micro- to macro-scales, obtained with different imaging modali-

ties. Finally, we test the potential of ECO in discriminating brain states with respect to alter-

native filtering methods. ECO advances our ability to analyze and compare biological

networks, inferred from experimental data, in a fast and principled way.

Author Summary

Complex brain networks are mainly estimated from empirical measurements. As a result,

we obtain networks where everything is connected to everything else through different

strengths of interaction. Filtering procedures are typically adopted to prune weakest con-

nections. However, network properties strongly depend on the number of remaining

links and how to objectively fix such threshold is still an open issue. Here, we propose a

criterion (ECO) to filter connectivity based on the optimization of fundamental properties

of complex systems, i.e., efficiency and economy. Using ECO, investigators can analyze

and compare connectomes in a fast and principled way, capturing network properties of
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different brain states to eventually quantify (re)organizational mechanisms underlying

cognition and disease. Given its generality, we anticipate that ECO can also facilitate the

study of networks in other fields, such as system biology.

This is a PLOS Computational BiologyMethods paper.

Introduction

Network science has provided a breakthrough in the analysis and modeling of biological sys-

tems with the aim to unlock molecular mechanisms behind human disease [1–3] and quantify

brain (re)organization underlying behavior, cognition and mental disorders [4–6].

In part, this has been made possible by the increasing availability of tools that indirectly

infer the structure of those networks from empirical measurements, thus bypassing the current

lack of accurate and complete interaction maps [3, 7]. In system biology, functional links are

estimated from transcriptional or phenotypic profiling, and genetic interactions by using mea-

sures such as Pearson correlation [8] or Granger causality [9].

In neuroscience, imaging tools such as magnetic resonance imaging (MRI) and electro/

magnetoencephalography (E/MEG), are extensively used to map connections and/or interac-

tions between different brain sites, i.e., the connectome [7, 10]. Brain connectivity methods are

typically used to estimate the links between the nodes. While structural connectivity (SC) mea-

sures the probability to find axonal pathways between brain areas, typically from diffusion

MRI, functional connectivity (FC) rather calculates the temporal dependence between remote

neural processes as recorded, for instance, by functional MRI, EEG or MEG [4, 7].

At this stage, the resulting networks correspond to maximally dense graphs whose weighted

links code for the strength of the connections between different nodes. Common courses in

brain network analysis use thresholding procedures to filter information in these raw networks

by retaining and binarizing a certain percentage of the strongest links (S1 Fig). Despite the

consequent information loss, these procedures are often adopted to mitigate the incertainty of

the weakest links, reduce the false positives, and facilitate the interpretation of the inferred net-

work topology [3, 11].

At present, there’s no objective way to fix the value of such threshold. Because network

properties significantly depend on the number of remaining links, scientists are obliged to

explore brain network properties across a wide range of different candidate thresholds and

eventually select one representative a-posteriori [12]. Concurrently, alternative approaches can

be adopted to cancel spurious links emerging from third-party interactions [13–15], or statisti-

cally validate the estimated connections [7, 16, 17]. However, these procedures lack of precise

rationale, are subject to arbitrariness (e.g., the choice of the statistical significance) and make

difficult the comparison of network properties between many individuals or samples [11, 18].

Furthermore, these become extremely time-consuming when considering several large con-

nectomes due to the computational complexity of graph quantities based on paths between

nodes or on communities detection [19].

To circumvent these issues, we propose a topological criterion for selecting a threshold

which captures the essential structure of a network while preserving its sparsity. Based on the

optimal trade-off between two desirable but incompatible features—namely high global and
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local integration between nodes, and low connection density—this method is inherently moti-

vated by the principle of efficiency and economy observed in many complex systems [20],

including the brain [21].

Results

Filtering information as a network optimization problem

Global- and local-efficiency have revealed to be important graph quantities to characterize the

structure of complex systems in terms of integration and segregation of information [22, 23].

Both structural and functional brain networks tend to exhibit relatively high values of

global- and local-efficiency. At the same time they also tend to minimize, for economical rea-

sons, the number of their links leading to sparse networks [21].

Thus, we propose to determine a density threshold that filters out the weakest links and

maximizes the ratio between the overall efficiency of a network and its wiring cost. Notice that

the definition of cost can have different connotations, e.g., the spatial distance between con-

nected nodes [21]. Here, the cost in terms of number of links is a more general definition

which also applies to non-spatially embedded networks (e.g., molecular interaction networks).

We formally introduce a criterion to filter information in a given network by finding the con-

nection density ρ that maximizes the quality function:

J ¼
Eg þ El

r
ð1Þ

where Eg and El represent respectively the global- and local-efficiency of a network. By defini-

tion, the three quantities Eg, El and ρ are normalized in the range [0, 1], and both Eg and El are

non-decreasing functions of ρ. More details about the formulation of J can be found in the

Material and Methods.

For both regular lattices and random networks, we proved analytically that the optimal den-

sity that maximizes J follows a power-law ρ = c/(n − 1), where c is a constant and n is the net-

work size, i.e., the number of nodes in the network. More specifically, c = 3.414 for lattices and

c = e = 2.718 for random networks, so that we have approximately ρ ’ 3/(n − 1). Hence, to

maximize J, these networks have to be sparse with an average node degree k ’ 3 or, equiva-

lently, with a total number of links m that scales as m ’ 3

2
n (S1 Appendix).

We confirmed this result (S2a and S2b Fig) through extensive numerical simulations

(Materials and Methods), showing that it held true also in more realistic network models, such

as in small-world networks [24] (Fig 1a) and in scale-free networks [25] (Fig 1b). For these sim-

ulated networks the fitted values varied progressively from c = 3.265, in lattices, to c = 2.966, in

random networks, thus falling within the theoretical range found analytically (S1 Table).

Notably, the optimal density values maximizing J emphasized the intrinsic properties (ran-

dom or regular) of all the implemented synthetic networks in terms of global- and local-effi-

ciency (Fig 1d and 1e and S2d and S2e Fig).

Density threshold in networks inferred from neuroimaging data

We computed the quality function J in both micro- and macro-scale brain networks and we

evaluated how the density maximizing J scaled as a function of the network size. We consid-

ered connectomes used in previously published studies that were obtained with different

imaging modalities, from calcium imaging to EEG, and constructed with disparate brain con-

nectivity methods (Table 1).

Filtering Information in Brain Networks
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For each connectome we applied a standard density-based thresholding. We started with

the empty network by removing all the links (ρ = 0). Then, we reinserted and binarized one

link at time, from the strongest to the weakest, until we obtained the maximally dense network

(ρ = 1). At each step we computed J and we recorded its profile as a function of ρ. The pooled

density values, as returned by the maximization of the healthy group-averaged J profile in each

modality (see Fig 1f for one representative), followed a power law comparable to the one that

we reported for synthetic networks (Fig 1c). In particular, the fit ρ = c/(n − 1) to the data gave

c = 3.06 with an adjusted r-square R2 = 0.994. Notably, we obtained a similar scaling (c = 2.87

adjusted R2 = 0.946, S2c Fig) when considering individual J profiles (S2f Fig). These results

confirm that also for brain networks we can assume that the optimal density threshold maxi-

mizing J only depends on the network size according to the same rule ρ ’ 3/(n − 1).

In conclusion, we introduced a criterion, named efficiency cost optimization (ECO), to

select a threshold leading to sparse, yet informative brain networks. Such a threshold is rela-

tively independent of the connectome’s construction and invariant to the underlying network

topology so that it can be selected a-priori once the number of nodes is known.

Fig 1. Density threshold in synthetic networks and in brain networks. (a–b) Blue curves show the trends of the connection density threshold ρ for
one-hundred generated small-world pws = 0.1 and scale-freemba = 9 networks along different sizes n. Blue squares spot out the average ρ values returned
by the maximization of J. The black line shows the fit ρ = c/(n − 1) to the data, with c = 3.258 for small-world networks and c = 3.215 for scale-free networks
(S1 Table). The background color codes for the average value of the quality function J. Insets indicate that the optimal average node degree,
corresponding to the density that maximizes J, converges to k = 3 for large network sizes (n = 16834). (c) Optimal density values maximizing group-
averaged J profiles for different brain networks. Imaging connectomes come from previously published studies (Table 1). The fit ρ = c/(n − 1) to the pooled
data gives c = 3.06 (adjustedR2 = 0.994). The inset shows a sharp distribution for the corresponding average node degree, with a mode k = 3. (d–e)
Average J profile (black curves) for simulated small-world and scale-free networks as a function of the network size (n) and of the density (ρ). J values are
represented in normalized units (n.u.), having scaled them by the global maximum obtained for n = 1024. Blue and red curves show respectively the
profiles of global- (Eg) and local-efficiency (El). (f) Group-averaged J profile for fMRI connectomes (Table 1). The grey dashed line indicates the actual
density maximizing J, i.e., ρ = 0.035, corresponding to an average node degree k = 3.115. The graph illustrates the brain network of a representative
healthy subject (lateral view, frontal lobe on the left Lx).

doi:10.1371/journal.pcbi.1005305.g001
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ECO discriminated network properties of different brain states

To illustrate the methodology, we considered connectomes from four different imaging

modalities, namely EEG, MEG, fMRI, and DTI (Table 1). Because we do not know the true

structure for these connectomes, we evaluated the ability of ECO to discriminate network

properties of different brain states, i.e., healthy versus diseased, at individual level.

We characterized brain networks by calculating graph quantities at different topological

scales, i.e., large (global- and local-efficiency, Eg and El), intermediate (community partition, P;

and modularity, Q), and small (node degree, ki; and betwenness, bi) (Materials and Methods).

To assess network differences between brain states, we measured distances between the values

of the graph quantities obtained in the healthy group and those in the diseased group. We

adopted the Mirkin index (MI) to measure distances between community partitions, and the

divergent coefficient (D) for other graph quantities (Materials and Methods).

We explored a wide range of density thresholds and, as expected, the value of the threshold

affected the ability to separate network properties of different brain states (Kruskalwallis tests

P < 0.01, S2 Table). Notably, the choice ρ = 3/(n − 1) resulted among the best candidates in

producing larger distances regardless of the graph quantity (Tukey-Kramer post hoc tests

P < 0.05, Fig 2 and S3 Fig). This outcome was not associated to the possible presence of dis-

connected components. In all the filtered brain networks the size of the largest component

(> 50% of the nodes) did not differ between groups for any threshold value (Wilcoxon rank-

sum tests P � 0.01, Fig 3). Furthermore, ECO overall outperformed alternative methods, such

as the minimum spanning tree (MST) and the planar maximally filtered graph (PMFG) [26],

in giving larger distances (Tukey-Kramer post hoc tests P < 0.05, Fig 4, S4b Fig, S2 and S3

Tables). Notably, we reported good performance with respect to a hybrid method, named

MST+ECO, where we added the remaining strongest links to the backbone obtained with

Table 1. Experimental details and network characteristics of imaging connectomes.

Imaging
modality

Group(s) Species Samples x
Group

Condition Nodes Connectivity
method

Domain Links Ref.

Ca+S Healthy Zebrafish 5 Spontaneuous [9,21] Granger causality Time Directed [58]

eEEG Healthy Rodent 1 Evoked
potential

15 Partial directed
coherence

Time/Freq. (8 ms/
14–29 Hz)

Directed [59]

Ca+M - Culture 2 Spontaneous [19,32] Time delay Time Directed [60]

fNIRS Healthy Human 2 Resting state 46 Pearson’s
correlation

Time Undirected [61]

fMRIS Healthy Primate 3 Resting state 56 Pearson’s
correlation

Time Undirected [62]

EEG Healthy,
Stroke

Human 20 Motor imagery 61 Imaginary coherence Frequency (14–29
Hz)

Undirected [63]

fMRI Healthy,
Coma

Human 17 Resting state 90 Wavelet correlation Time Undirected [64]

MEG Healthy,
Epilepsy

Human 5 Resting state 149 Spectral coherence Frequency (5–14
Hz)

Undirected [65]

DTI Healthy,
Epilepsy

Human 19 - 164 Fractional anisotropy - Undirected [66]

fMRIL Healthy,
Coma

Human 17 Resting state 417 Wavelet correlation Time Undirected [64]

Ca+L - Culture 6 Spontaneous [562,1107] Time delay Time Directed [60]

EEGL Healthy Human 5 Motor
execution

4094 Imaginary
Coherence

Frequency (13–30
Hz)

Undirected [67]

doi:10.1371/journal.pcbi.1005305.t001
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MST, in order to reach the same average node degree as ECO, i.e. k = 3 (Tukey-Kramer post

hoc tests P < 0.05, S3 Table).

Finally, brain networks filtered with ECO were more efficient (Fig 5a) and exhibited J values

that better separated different brain states (Fig 5b) as compared to the other filtering methods

(Tukey-Kramer post hoc tests P < 0.05, S3 Table).

Fig 2. Statistical comparison of brain network distances across thresholds. (a–d) Top panels show group-averaged connectomes filtered with ECO
for the healthy (blue links) and diseased (red links) group, in three representative imaging modalities, i.e., EEG, fMRI, MEG and DTI (Table 1). Lower
panels show distances between individual brain network properties across different thresholds for global-efficiency Eg, community partition P, and node
degree vector K = [k1, . . ., kn]. Thresholds are given by the average node degree k, which corresponds to a connection density ρ = k/(n − 1). Circle sizes
are proportional to the median of the graph quantity values; horizontal grey lines correspond to lower and upper quartiles; bar colors shade after quartiles.
Overall, the distance significantly depends on the threshold value (Kruskalwallis tests, P < 0.01, S2 Table). Grey circles represent distances corresponding
to the threshold k = 3. White circles denote threshold values for which distances are not significantly different from k = 3 (Tukey-Kramer post-hoc tests,
P� 0.01). Transparent circles denote threshold values for which distances are significantly lower than k = 3 (Tukey-Kramer post-hoc test, P < 0.01). Insets
show the P-values resulting from the Tukey-Kramer post-hoc comparison of distances between all the threshold values.

doi:10.1371/journal.pcbi.1005305.g002

Fig 3. Size of the largest component in brain networks filtered with ECO and statistical comparison between groups. The size of the largest
component is given as a percentage of total nodes. Blue lines stand for median values of the healthy group; red lines are median values of the diseased
group. Vertical bars denote lower and upper quartiles. The dashed gray line shows the expected size for the giant component in a Erdos-Renyi random
graph with p = 1/n). No statistical between-group differences for any threshold value were reported (Wilcoxon ranks-sum tests, P� 0.01).

doi:10.1371/journal.pcbi.1005305.g003
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Discussion

We introduced ECO to filter information in networks whose links are predictions, and not

direct measures, of connectivity between biological components, such as brain regions. Con-

ventional approaches evaluate brain network properties across a large and arbitrary number of

thresholds [27]. Eventually, they select a representative threshold a-posteriori that maximizes

the separation between different brain states [11]. ECO allows to select an objective threshold

a-priori, thus reducing the computational burden associated with typical iterative approaches.

Other methods, similar in purpose to ECO, impose unnatural constraints on the filtered

network. The minimum spanning tree (MST), for instance, leads to brain networks with a null

clustering coefficient [28]. The planar maximally filtered graph (PMFG) tries to alleviate this

Fig 4. Statistical comparison of brain network distances across filteringmethods. Bar plots show the
medians of distance between brain network properties of samples in the healthy and diseased group. Vertical
bars denote lower and upper quartiles. Medians and quartiles are in normalized units (n.u.) for the sake of
representation. Overall, the choice of the filtering method significantly affects distances between samples
(Kruskalwallis tests, P < 0.01, S3 Table). For all graph quantities, ECO tends to give significantly larger
distances as compared to other methods (Tukey-Kramer post hoc tests, P < 0.05); in some isolated cases, no
significant improvements are reported (S4 Table). By construction, MST gives null distances for local-
efficiency as there are no triangles in tree-like networks.

doi:10.1371/journal.pcbi.1005305.g004
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bias by allowing closed loops, but still forces planarity [26]. Conversely, ECO does not impose

structural constraints, apart from favoring sparsity, and lets the intrinsic structure to emerge

as illustrated in synthetic networks with known topological organization (Fig 1d and 1e, S2d

and S2e Fig). This appears an important feature as different brain states (e.g., diseased versus

healthy) are often characterized by networks with different topological orders (more random

or more regular) depending on the underlying physiopathological neural mechanism [6].

Overall, results obtained with ECO improved the separation of all the considered network

properties between different brain states as compared to other thresholds or filtering methods.

In general, this does not necessarily imply a significant group difference for each graph quan-

tity. Instead, it means that if there are underlying network differences, then ECO would be

able to point them out.

Maximizing global- and local-efficiency with respect to connection density can be seen as a

way to emphasize the integration and segregation properties of a connectome [29] while keep-

ing a biologically plausible wiring cost. This rationale dovetails with current evidence showing

that advantageous topological properties, such as economic small-world architectures [21],

tend to be maximized in brain networks, and that, in general, sparsity increases robustness of

complex systems [30].

Using ECO, networks will have a total number of links m that scales with the number of

nodes as m = cn, with c’ 3/2. Put differently, the resulting connection density follows a fractal

scaling regardless of the network size according to the power-law ρ’ 3n−1. Fractal scaling of

Fig 5. Statistical comparison of J values and distances across different thresholdingmethods. Panel a) White squares show the medians of
the J values of all the subjects in the two groups. Vertical bars denote the 5th and 95th percentiles. Panel b) Grey bars show the medians of the
distances between samples (individuals) of different brain states. Vertical bars denote lower and upper quartiles. The choice of the filtering method
significantly affects the J values and the respective distances between samples (Kruskalwallis tests, P < 0.01 for both J values and related
distances, S3 Table). Overall, ECO gives significantly larger values as compared to the other methods (Tukey-Kramer post hoc tests, P < 0.05); in
some isolated cases no significant improvements are reported (S4 Table).

doi:10.1371/journal.pcbi.1005305.g005
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size and density in self-organized systems has been recently reported and advocated as an

important organizational principle to ensure optimal network functioning [31]. Although

beyond the scope of this methodological study, we speculate that such characteristic scaling

could result, at least for neuronal systems, from a natural optimization of the network effi-

ciency and cost [21].

ECOmakes use of density thresholds. Hence, networks having same number of nodes, will

have, after pruning, the same number of links. On the one hand, this ensures that differences

between network properties are not merely due to differences in the connection density [18].

On the other hand, ECO does not allow a direct evaluation of neural processes altering the

number of links; however it does inform on the possible (re)organizational mechanisms.

Finally, it is important to notice that while ECO exhibits several advantageous features, it

also has some limitations as described in the following section.

Methodological considerations

ECO is based on a graph theoretic approach and cannot filter out possible false positives (i.e.,

spurious links) resulting from biased brain connectivity estimates [7, 11]. Our criterion admits

that the weighted links of the raw networks had been previously validated, either maintained

or canceled. Some inference methods [32, 33] and group-based approaches [34] naturally pro-

duce sparse brain networks. In these cases, ECO would still apply as long as there is enough

information to filter, i.e., a number of links m � 3

2
n.

By construction, brain networks filtered with ECO (k ’ 3) are less sparse than networks fil-

tered with MST (k � 2). However, differently fromMST and PMFG, ECO does not guarantee

the connectedness of the pruned networks, which can be indeed fragmented (S5 Fig). Whether

this condition leads to a more realistic representation of connectomes, especially for large n,

we cannot say. Current literature tends to focus on thresholded brain networks which are

slightly denser than ECO, with 0.05� ρ � 0.3 [35]. However, little is known on how this range

depends on the number of brain nodes and future studies will have to ascertain if and how the

choice of a specific threshold can give more accurate results. Here, we showed that the size of

the largest components contained in average more than the 50% of the nodes (Fig 3). There-

fore, caution should be used in the evaluation of the resulting network properties and, when-

ever possible, using graph quantities that can handle networks with disconnected nodes (e.g.,

the harmonic mean of the shortest path lengths [36]) appears more appropriate.

Finally, other combinations could have been considered when conceiving the quality func-

tion J. For example, in [37] authors introduced the cost-efficiency Eg − ρ, which, however, did

not include the clustering counterpart. This quality function, as well as other ones that we

investigated, did not exhibit meaningful analytic solutions and was therefore excluded as a

possible alternative (S2 Appendix). A more general formulation would include a scaling factor

in the numerator, like for example 2[αEg + (1 − α)El] where α is a control parameter ranging

from 0 to 1. We proved analytically that, for both regular lattices and random graphs, the opti-

mal density that maximizes the corresponding quality function remained r ’ 3

n�1
regardless of

the α value (S3 Appendix). We confirmed this result through numerical simulations also in

small-world and scale-free networks (S4 Fig) where the optimal density maximizing J corre-

sponded to an average node degree k ’ 3, except when α ! 1 in lattices and α ! 0 in random

networks.

Taken together, these findings indicate that the density threshold given by ECO is relatively

invariant to the specific value we assigned to the parameter α. The advantage of considering
our quality function is that i) it did not depend on external parameters, ii) we could derive ana-

lytically the optimal ρ values for lattices and random networks, and iii) the density values

Filtering Information in Brain Networks
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obtained by maximizing J in real brain networks fitted the power-law that we found analyti-

cally and were able to separate different brain states. Despite these advantages, we notice that

ECO could not be the definitive solution to the problem of thresholding in imaging connec-

tomics. Other methods, possibly inspired by biology, are likely to be developed in the future

and validation benchmarks will be crucial to evaluate their potential.

Future directions

ECO is founded on asymptotic results in unweighted network models. Its natural application

implies binarization after thresholding, a procedure widely adopted to mitigate the uncertainty

carried by the weights estimated from neuroimaging data [4, 11]. Further work is needed to

clarify how ECO can be extended to weighted networks, where the asymptotic expression of

topological properties is less straightforward.

Interactions between biological components are not constant and need to dynamically vary

to accomplish internal regulation and external function [38–40]. In neuroscience, functional

brain connectivity exhibits rich temporal dynamics that are fundamental for human cognition

and complex behavior [41–44]. Further studies should aim to elucidate if and how brain net-

work differences highlighted by ECO change over time.

Conclusion

We introduced ECO as a possible method for filtering information in imaging connectomes.

Concrete applications range from cognitive to clinical and computational neuroscience. Given

its generality, we anticipate that ECO can also serve to facilitate the analysis of interconnected

systems where the need of sparsity is plausible and the links are weighted estimates of connec-

tivity. This is, for example, the case of functional networks in system biology, where links are

typically derived from transcriptional or phenotypic profiling, and genetic interactions [3].

Materials and Methods

On the quality function J

The expression of J can be seen as a particular case of a general family of functions of the form

f(Eg, El, ρ). Here, we defined J as a ratio to measure the incidence of the density on the network

efficiency both at global and local scale. Indeed, we were interested in a relative measure that

could tell the network efficiency changes per unit of density. In addition, we did not weight the

global- and local-efficiency in the numerator. While, in general, a scaling factor might be nec-

essary to normalize changes between different graph quantities [45], here both Eg and El range

between 0 and 1 and are formulated in terms of the same concept, namely the efficiency (at

global and local scale) between nodes [22]. We remind to S3 Appendix and S4 Fig for more

details on the introduction of a scaling parameter.

By looking at Eq (1), we have that when ρ = 0, then both global- Eg and local-efficiency El

are null leading to an indefinite form. As density slightly increases (0< ρ < �, with � suffi-

ciently small) it can be demonstrated that J tends to 1. Indeed, in this range, the probability to

find at least three nodes connected together (a triangle) is extremely low. By definition, El = 0

in absence of at least one triangle [22] and therefore J ’ Eg/ρ. By considering the definitions of

Eg and ρ, this quantity can be rewritten as Eg=r ¼ 1=m
Pn

i6¼j 1=di;j, where m is the number of

existing links and di,j is the distance between the nodes i and j. In a generic network with m

links there are at least m pairs of nodes directly connected (i.e., di,j = 1). This means that

the sum in the latter equation is bounded from below by m in the case of isolated pairs of
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connected nodes (m = n/2) or in the trivial case of m = 1. It follows that J ! 1 when there are

relatively few links in a network.

When ρ tends to 1, it is trivial to see from Eq (1) that J ! 2, as both Eg and El tend to one.

For intermediate density ranges (� < ρ � 1 − �) the analytic estimate of J is not trivial since Eg

and El depend on the network topology which is, in general, unknown.

Numerical simulations for small-world and scale-free networks

Small-world networks were generated according to the Watts-Strogatz (WS) model [24] with a

rewiring probability pws = 0.1. Scale-free networks were generated according to the Barabasi-

Albert (BA) model [25].

In the first simulation, we considered undirected networks. We varied both the network

size and the average node degree, i.e., n = 16, 128, 1024, 16384 and k = 1, 2, 3, 4, 5. In the WS

models, k is even accounting for the number of both left and right neighbors of the nodes in

the initial lattice. To obtain small-world networks with k odd, we first generated lattices with k

even and then, for each odd node (e.g., 1, 3, . . .), we removed the link with its left farthest

neighbor. This procedure removes in total n/2 links leading to a new average node degree

k0 = k − 1, while keeping a regular structure. As for BA models, we set the number of links

in the preferential attachment mba = 3 and the initial seed was a fully connected network of

n0 = mba nodes. This setting generated scale-free networks with k = 6 − 12/n, that is k � 5

regardless of the selected network size. We then removed at random the exceeding number of

links until we reached the desired k value. This procedure had the advantage to preserve the

original scale-free structure.

In the second simulation, we considered directed networks to confirm and extend the

results we obtained for undirected WS and BA networks. We selected eight representative net-

work sizes, i.e., n = 8, 16, 32, 64, 128, 256, 512, 1024 covering the typical size of most current

imaging connectomes, and we varied the connection density. Specifically, we performed a

two-step procedure:

1. We fixed one-hundred ρ values quadratically spaced within the entire available density

interval.

2. After having identified the optimal ρ� maximizing J, we performed a refined research

among one-hundred new values linearly spaced between the density values, in step 1, before

and after ρ�.

For WS models, initial lattices had k equal to the nearest even integer equal or higher than

ρ(n − 1), with ρ 2 (0, 1). For BA models, the number of attaching links was mba = log2 n to

ensure an initial relatively high density; the seed was a fully connected network of n0 = mba

nodes. By construction r 2 0; 2mbanþm0

nðn�1Þ

� �

, where m0 = n0(n0 − 1)/2 is total number of links in

the initial seed. For both models, we then removed at random the exceeding links until we

reached the desired density value. For both simulation we generated one-hundred sample

networks.

Graph analysis of brain networks

Complex networks can be analyzed by a plethora of graph quantities characterizing different

topological properties [46]. Here, we considered a subset of representative ones which have

been shown to be relevant for brain network analysis [47]. To characterize the entire brain
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network (i.e., large-scale topology), we used global- and local-efficiency, which respectively

read:

Eg ¼
2

nðn � 1Þ

X

n

i6¼j

1

dij

El ¼
1

n

X

n

i¼1

EgðiÞ

ð2Þ

where dij is the length of the shortest path between nodes i and j, and Eg(i) is the global-effi-

ciency of the ith subgraph of the network [22].

To characterize modules, or clusters, of brain regions with dense connections internally

and sparser connections between groups (i.e., mid-scale topology), we evaluated the commu-

nity structure of the brain network [4]. We extracted the partition P of the network into mod-

ules by means of the Newman’s spectral algorithm maximizing the modularity:

Q ¼
1

2m
TrðGT

MGÞ ð3Þ

whereG is the (non-square) matrix having elements Gig = 1 if node i belongs to cluster g and

zero otherwise, andM is the so-called modularity matrix [48].

To characterize individual brain areas (i.e., small-scale topology), we measured the central-

ity of the nodes in the brain network by means of the node degree and of the node betwenness,

which respectively read:

ki ¼
X

n

j 6¼i

Aij

bi ¼
X

j 6¼i6¼h

sjhðiÞ

sjh

ð4Þ

where the element of the adjacency matrix Aij = 1 if there is a link between node i and j, zero

otherwise; and where σjh is the total number of shortest paths between nodes j and h, while

σjh(i) is the number of those paths that pass through i.

These quantities represent a small subset of all the possible metrics available in the market.

Nevertheless, these are among the most adopted in network neuroscience thanks to their

interpretability in terms of connectivity at different topological levels (e.g., network, modules,

nodes) [4, 11, 27, 49–51].

Distances between samples and statistical analysis

To assess brain network differences between individuals (or samples) in the two groups, we

measured the distance between the respective values obtained for each graph quantity. We

used the Mirkin index to compute distances between two network partitions Pu and Pv:

MIðPu; PvÞ ¼ 2ðn
01
þ n

10
Þ ð5Þ

where n01 is the number of pairs of nodes in the same cluster under Pv but not under Pu; and

n10 is the number of pairs in the same cluster under Pu but not under Pv [52]. The Mirkin

index is an adjusted form of the well-known Rand index and it assumes null value for identical

clusterings and 1 for totally different clusterings [52]. It corresponds to the Hamming distance

between the binary vector representation of each partition. Although this measure can be
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sensitive to the cluster sizes, it has the advantage of being a metric on the space of the clustering

partitions [53].

For all other graph quantities, we used the divergent coefficient [54]:

DðXu;XvÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

M

X

M

m¼1

xu;m � xv;m

xu;m þ xv;m

 !2

v

u

u

t ð6Þ

where Xu = [xu,1, xu,2, . . ., xu,M] and Xv = [xv,1, xv,2, . . ., xv,M], contain the value(s) of the graph

quantity for the uth and vth sample. Notably, M = 1 for global-, local-efficiency and modularity

(i.e., Eg, El, Q). M = n for the node degree vector K = [k1, k2, . . ., kn] and the node betweenness

vector B = [b1, b2, . . ., bn]. The divergent coefficient is a L2-norm distance similar to Euclidean

distance but with a normalizing factor which is used for multidimensional scaling [55]. It

ranges between 0 (equal multidimensional distribution of the features) and 1 (totally heteroge-

neous multidimensional distribution). This coefficient is a metric in the Euclidean space when

all the values of the features are positive, as for our graph quantities [56]. Both Mirkin index

and divergent coefficient are therefore metrics normalized between 0 and 1, allowing for a

coherent analysis across different imaging modalities and threshold values.

We used Kruskal–Wallis one-way analysis of variance, with a 0.01 statistical threshold, to

evaluate the overall effect of different thresholds, or filtering methods (i.e., MST, PMFG) on

distances between individuals. A Tukey-Kramer multiple comparison post hoc test was then

used to determine specific differences between pairs of thresholds or methods [57]. Here the

statistical threshold was fixed to 0.05.

Supporting Information

S1 Appendix.

(PDF)

S2 Appendix.

(PDF)

S3 Appendix.

(PDF)

S1 Fig. From raw imaging connectomes to binary brain networks. As a result of measure-

ments, a raw imaging connectome is mathematically described by a full and weighted connec-

tivity matrixW. To obtain a sparse brain network, the raw information is filtered and binarized

by applying a threshold either on the weights (i.e., the connectivity strength) or on the percent-

age (i.e., the connection density) of strongest weights to retain in the adjacency matrix A. Data

showed here are just for illustrative purposes and not used in the rest of the paper.

(TIFF)

S2 Fig. Density threshold in synthetic networks and in brain networks. (a–b) Blue curves

show the trends of the optimal density ρ that maximizes J for one-hundred generated lattices

and random networks along different sizes n. Blue squares spot out the corresponding average

values. The black line shows the fit ρ = c/(n − 1) to the data, with c = 3.265 for lattices and

c = 2.966 for random networks (S1 Table). The background color codes for the average value

of the quality function J. Insets indicate that the average node degree corresponding to the

optimal ρmaximizing J converges to k = 3 for large network sizes (n = 16834). (c) Optimal

density maximizing individual J profiles for different brain networks. Imaging connectomes

come from previously published studies (Table 1). A larger variability can be observed with
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respect to the values we obtained when considering group-averaged J profiles Fig 1c. The inset

confirms a more uniform distribution for the average node degree corresponding the optimal

ρ that maximizes J. Nevertheless, the fit ρ = c/(n − 1) to the pooled data gives c = 2.87 (adjusted

R2 = 0.946), which is in practice very close to k = 3. (d–e) Average J profile (black curves) for

simulated lattices and random networks as a function of the network size (n) and of the density

(ρ). J values are represented in normalized units (n.u.), having scaled them by the global maxi-

mum obtained for n = 1024. Blue and red curves show respectively the profiles of the global-

(Eg) and local-efficiency (El). (f) Individual J profile for a representative fMRI connectome

(Table 1). The grey dashed line indicates the actual density maximizing J, i.e., ρ = 0.008, corre-

sponding to an average node degree k = 0.712. This value was very far from the expected k = 3.

Indeed, we noticed that for very low density values the intrinsic brain network structure could

not completely emerge and spurious peaks could appear. The graph illustrates the brain net-

work of a representative healthy subject (lateral view, frontal lobe on the left Lx).

(TIFF)

S3 Fig. Statistical comparison of brain network distances across thresholds. Results for for

local-efficiency El, modularity Q, and node betwenness vector B = [b1, . . ., bn]. Panel (a) show

distances for EEG connectomes, (b)-fMRI, (c)-DTI, (d)-MEG. Thresholds are given by the

average node degree k, which corresponds to a connection density ρ = k/(n − 1). Circle sizes

are proportional to the median of the graph quantity values; horizontal grey lines correspond

to lower and upper quartiles; bar colors shade after quartiles. Overall, the distance significantly

depends on the threshold value (Kruskalwallis tests, P < 0.01; S2 Table). Grey circles represent

distances for the threshold corresponding to k = 3. White circles denote threshold values for

which distances are not significantly different from k = 3 (Tukey-Kramer post-hoc tests,

P � 0.01). Transparent circles denote threshold values for which distances are significantly

lower than k = 3 (Tukey-Kramer post-hoc tests, P < 0.01). Insets show the P-values resulting

from the Tukey-Kramer post-hoc comparison of distances between all the threshold values.

(TIFF)

S4 Fig. Optimal density maximizing parametric quality function in synthetic networks.

Background colors code for the average values of J ¼ 2
aEgþð1�aÞEl

r
in a logarithmic scale. Syn-

thetic networks, as generated by the models described in the Materials and Methods, have

n = 512 nodes. White circles spot out the maximum as a function of the parameter α (y-axis).

The black line shows the density value ρ = 3/(n − 1) corresponding to k = 3 (x-axis).

(TIFF)

S5 Fig. Density required for connectedness of synthetic networks.Dark grey area corresponds

to density values for which random networks do not exhibit a giant component (ρ< 1/n). Light

grey area corresponds to density values for which random networks do exhibit a giant compo-

nent (ρ> 1/n). White area corresponds to density values for which random networks are con-

nected (ρ> log(n)/n). Colored symbols show the mean connection density values for which the

simulated synthetic networks become connected. Black solid line illustrates the connection den-

sity ρ = 3/n. Results show that for large n, density values returned by ECO (i.e.,’ 3/n) guarantee

the connectedness of the filtered network only if the underlying structure is regular. Indeed, the

minimum requirement for connectedness in lattices is ρ> 2/n.

(TIFF)

S1 Table. Statistics of data fitting ρ = c/(n − 1) to synthetic networks. The fit’s constant c

and the adjusted R2 coefficient are reported along different network models.

(PDF)
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S2 Table. P-values from Kruskalwallis tests on brain network distances across thresholds.

(DOC)

S3 Table. P-values from Kruskalwallis tests on brain network distances across filtering

methods. Jval stand for the actual values (not distances) of the quality function J.

(DOC)

S4 Table. P-values from Tukey-Kramer post-hoc tests on brain network distances across

filtering methods. Cross symbols denote no significant differences (P > 0.05). For local-effi-

ciency (El), tests were not performed when comparing ECO vsMST, as by construction, MST

gives null El values. Jval stand for the actual values (not distances) of the quality function J.

(DOC)
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