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A Topological Investigation of Power Flow
Hale Cetinay, Fernando A. Kuipers, and Piet Van Mieghem

Abstract—This paper combines the fundamentals of an electri-
cal grid, such as flow allocation according to Kirchhoff’s laws and
the effect of transmission line reactances, with spectral graph the-
ory, and expresses the linearised power flow behaviour in slack-
bus independent weighted graph matrices to assess the relation
between the topological structure and the physical behaviour
of a power grid. Based on the pseudo-inverse of the weighted
network Laplacian, the paper further analytically calculates the
effective resistance (Thevenin) matrix and the sensitivities of
active power flows to the changes in network topology by means
of transmission line removal and addition. Numerical results for
the IEEE-118 bus power system are demonstrated to identify
the critical components to cascading failures, node isolation and
Braess’ paradox in a power grid.

Index Terms—Complex networks, load flow, sensitivity analy-
sis, network topology, power grids.

I. INTRODUCTION

THE unavailability of electrical power can severely disrupt

daily life and result in substantial economic and social

costs [1]. This key importance of electrical power supply

encourages a robust design and a careful operation of the

electrical grid [2]. Electrical grid operators need to assess

power system security in order to find and analyse the system’s

critical components during regular operations, but also in the

event of component failure or when planning to add new

components.

The topology of power grids is a complex network [3], [4].

This observation has opened the door to a new direction

in studying power system vulnerabilities, namely, a complex

networks perspective [5], [6]. A significant part of such

complex network studies investigate the relationship between

the topology and specific performance metrics for power grids

[5], [7], [8]. Various metrics [9] are proposed to assess the

vulnerability of the power grid [5], [10], [11], and to identify

its critical network elements [12], [13]. Most of these studies

are based on classical topology metrics (such as nodal degree,

clustering coefficient [10], [11]), which ignore the electrical

properties, such as flow allocation according to Kirchhoff’s

laws or the impedance values of transmissions lines in the

grid.

Two different aspects are important in the distribution

of power flows, and consequent system vulnerability, in an

electrical grid: the operating state, including the generator and

load dispatches of the system, and the topology of the network

formed by electrical buses and their interconnection. Accord-

ingly, some studies propose extended topological metrics (such

as effective graph resistance and net-ability [8], [12], [14])
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that reflect some of the electrical properties of grids, and

some studies introduce combined topological and operational

algorithms to identify critical lines [15]. Through empirical

studies, those metrics, based on effective resistance, have

shown to perform better in assessing the vulnerability of power

grids than purely topological approaches. Motivated by this

fact and results from empirical studies with extended graph

metrics, this paper presents an analytical approach to the

distribution of flows in power grids that directly captures the

impact of the topological structure on those flows. A slack-

bus independent representation, in full-rank topology matri-

ces, of power flow behaviour is introduced. Additionally, a

closed-form expression for the effective resistance (Thevenin)

matrix that represents the topology as well as the power

flow allocation behaviour, is derived. Those formulae allow

the computation of the redistribution of power flows under

network topology changes, and they provide a more fine-

grained analysis of the critical elements in power grids.

The work presented here only makes one approximation:

the linearisation of the power flow equations resulting in

the so-called DC flow equations [16], which facilitates the

use of enhanced linear algebra and graph theory leading to

expressions that may simplify the design of robust power grids.

In particular, the contributions of this paper are: (i) A slack-bus

independent expression for the linearised power flow. (ii) An

analytical derivation of the effective resistance (Thevenin)

matrix of a power grid. (iii) Expressions for the pseudo-inverse

of the network Laplacian and the redistribution of the power

flow under link removal/addition.

The remainder of this paper is organized as follows: Sec-

tion II provides a spectral graph perspective [17] to the

linearised power flow equations and calculates the effective

resistance matrix [18] in power grids. Section III develops

expressions for the pseudo-inverse of the weighted Lapla-

cian and the sensitivities of active power flows under link

removal/addition. Section IV illustrates the proposed formula-

tions and Section V concludes the paper.

II. SPECTRAL DECOMPOSITION IN POWER FLOW

EQUATIONS

This section introduces a spectral graph perspective [17] to

the linearised power flow equations and applies the concept of

the effective resistance [18] to power grids.

A. Solution of Power Flow Equations

A power grid with N buses, and L transmission lines and

transformers is a complex network, whose underlying topology

can be represented by a graph G(N ,L), where N denotes the

set of N nodes and L denotes the set of L links. The N ×
N adjacency matrix A specifies the interconnection pattern
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of the graph G(N ,L): aik = 1 only if the pair of nodes i

and k are connected by a link; otherwise aik = 0. The non-

linear power flow dynamics can be approximated by a set of

linear equations (38) given in the Appendix assuming DC load

flow [16], [19]. Consequently, the DC flow equations of the

electrical network can be written in terms of the adjacency

matrix of G(N ,L):

pi =
N
∑

k=1

aikbik(θi − θk) = θi

N
∑

k=1

aikbik −
N
∑

k=1

aikbikθk (1)

where bik is the reciprocal of the transmission line reactance

between the buses i and k, pi is the active power injected at

bus i, and θi and θk are the voltage phase angles at bus i and

bus k, respectively1.

The effects of transmission line reactances are represented

by the weighted adjacency matrix W, where each element

wik = aikbik is the weight of the link between nodes2 i and

k:

pi = θi

N
∑

k=1

wik −
N
∑

k=1

wikθk (2)

Since (2) holds for every bus i in the electrical network, the

corresponding matrix representation is

P =

{

diag

(

N
∑

k=1

wik

)

−W

}

Θ

= (D−W)Θ (3)

where P = [p1 . . . pN ]T is the vector of net active power

injection at the nodes3, D is the weighted degree diagonal

matrix, and Θ = [θ1 . . . θN ]T is the vector of voltage phase

angles. Finally, introducing the weighted Laplacian Q̃ = D−
W into (3) yields

P = Q̃Θ (4)

where the weighted Laplacian is a symmetric, positive semi-

definite matrix that possesses non-negative eigenvalues apart

from the smallest eigenvalue, which is zero [17].

The solution to the DC power flow equation requires finding

unknown voltage phase angles at each node in the network

for the given generation and load profiles. Due to the zero

eigenvalue of Q̃, the matrix equation in (4) cannot be inverted.

However, using spectral decomposition [17], any real and

symmetric matrix can be written as Q̃ = XΛXT, where Λ =
diag(µj)1≤j≤N

and X = [x1 . . .xN] is an orthogonal matrix

formed by the eigenvectors x1, . . . ,xN of Q̃ corresponding

to the eigenvalues µ1 ≥ µ2 ≥ . . . ≥ µN = 0. The eigenvector

xj is normalised as xj
Txj = 1. Then, expanding Q̃

Q̃ =

N
∑

j=1

µjxjx
T
j =

N−1
∑

j=1

µjxjx
T
j +

µN

N
uuT =

N−1
∑

j=1

µjxjx
T
j

(5)

where u is the all-one vector, shows that the last equation

corresponding to µN = 0 can be omitted. Proceeding with

1Matrices are written in bold and their components are in lower case.
2Parallel links connecting the same pair of nodes are replaced by a single

link with equivalent reactance calculated from Ohm’s law.
3A balanced DC power flow is assumed, i.e. uT

P = 0.

the symmetric N ×N matrix Q̂ = X̂diag(µk)X̂
T, where the

N × (N − 1) matrix X̂ consists of all the eigenvectors of Q̃

except the eigenvector u belonging to µN = 0, and where

the (N − 1)× (N − 1) diagonal matrix diag(µk) contains the

positive eigenvalues of Q̃, the inverse of Q̂ can be found as

Q̂−1 = (

N−1
∑

k=1

µkxkx
T
k )

−1 =

N−1
∑

k=1

1

µk

xkx
T
k = Q̃+ (6)

where the N×N matrix Q̃+ = X̂diag(µ−1
k )X̂T is the pseudo-

inverse of the Laplacian obeying

Q̃+Q̃ =

N−1
∑

k=1

1

µk

xkx
T
k

N−1
∑

j=1

µjxjx
T
j

=

N−1
∑

k=1

N−1
∑

j=1

µj

1

µk

xk(x
T
k xj)x

T
j = I−

1

N
J (7)

where I is the identity matrix and J the all-one matrix.

Using Q̃+, the pseudo-inversion of (4) gives

Θ = Q̃+P (8)

Equation (8) physically means that only the differences

of voltage phase angles between the network buses matter

for the power flow. Additionally, an average value of 0 has

been chosen as reference for the node voltage phase angles

and, consequently, the concept of slack-bus [20] becomes

redundant, as a reference is already included in the graph

matrix representation.

The active power flow fik over the link between nodes i

and k can be calculated using the DC load flow assumptions

given in the Appendix:

fik = bik(θi − θk) (9)

As (9) holds for every link, the corresponding matrix

equation is

F = B̃TΘ (10)

where the L × 1 vector F = [f1 . . . fL]
T is the active power

flow over the network links and B̃ is the N × L weighted

incidence matrix of the graph with the elements

b̃il =











wik if link el = i → k,

−wik if link el = i ← k,

0 otherwise.

(11)

Combining (8) and (10) results in the final equation for the

active power flows over the graph links:

F = B̃TQ̃+P (12)

The above equation represents, assuming that the DC load

flow equation is sufficiently accurate, the relation between

the active power flows over the network links for the given

generation and load profile P, and the graph-related matrices

B̃ and Q̃.
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B. Calculation of the Effective Resistance Matrix

In graph theory, the resistance distance between a pair of

nodes is the potential difference between those two nodes in

an electrical network, when a unit current is injected at one

node and leaves the network at the other node [18], [21].

In a power grid, there are generator and load buses and,

under DC load flow assumptions, active power flows over the

network lines resulting in voltage phase angle differences. This

analogy enables the introduction of the concept of the effective

resistance matrix Ω with the elements ωab to capture the

relation between the voltage phase angle and injected active

power:

θa − θb = ωab pab (13)

where a is a source node (generator bus), b is a sink node

(load bus), pab is the active power injected into the network at

node a and leaving from node b, and θa and θb are the voltage

phase angles at nodes a and b, respectively.

Introducing equation (8) into (13) gives

(ea − eb)
T
Θ = (ea − eb)

T
Q̃+pab(ea − eb) (14)

where ek is the basic vector with the mth component equal to

1 if m = k, else 0, and the effective resistance or Thevenin

resistance ωab between nodes a and b can be expressed as

ωab = (ea − eb)
T
Q̃+(ea − eb) (15)

Multiplying out the right hand side of (15) yields

ωab = (Q̃+)aa + (Q̃+)bb − 2(Q̃+)ab (16)

from which the symmetric effective resistance matrix Ω of the

electrical power network can be calculated as

Ω = zuT + uzT − 2Q̃+ (17)

where the vector z = [(Q̃+)11 (Q̃+)22 . . . (Q̃+)NN )]T.

The effective resistance matrix allows to introduce the con-

cept of electrical flow distance rather than physical distances

or link weights in the graph. A strong electrical connection be-

tween a pair of nodes results in a low effective resistance [12].

III. IMPACT OF TOPOLOGY ON POWER FLOWS

As shown so far, the electrical flow depends on the network

topology as well as on the power input. In this section, effec-

tive resistances will be used to capture the flow distribution

under the changes in network topology.

A. Link Removal

An electrical grid is expected to tolerate the loss of any

single component at any time (which is called the N − 1
criterion [2]). Due to the loss of a network component, the

power in the electrical grid will be redistributed, and the

resulting situation can lead to an increase or a decrease in

power flow over a particular network link. The link removal

that causes intolerable increases in the power flow needs to be

carefully studied and necessary measures should be taken to

avoid cascading failures [12].

Existing flow-based studies require the solution of system

equations for each contingency under each loading scenario.

Thus, computationally effective alternatives are needed, and

power transfer (PTDF) and line outage (LODF) distribution

factors are often used [22]-[24]. These metrics capture the

relative change in power flow over a particular link, after a

change in injection and corresponding withdrawal at a pair

of nodes (PTDF) or after link outages (LODF). LODF is

calculated once for each link removal by solving the flow

equations for an arbitrary power input, and can be used for

each loading scenario using linearity. These direct calculations

decrease the computation time, yet it is not possible to reflect

the drivers of flow behaviour as the formulations are result-

oriented and based on reduced matrices in the absence of the

slack-bus(es). On the contrary, in this section, link removals in

a power grid are analysed topologically in order to investigate

the influence of effective resistances and link weights.

When an arbitrary transmission link lij in an electrical grid

is removed, the network topology is changed. Following the

definition of weighted adjacency matrix in Section II-A, the

removal of the link between the nodes i and j zeroes the

entries wij and wji in the new weighted adjacency matrix,

whereas the other elements remain unchanged. As a result, the

Laplacian of the network will be affected in the ith and jth

rows by the weight of the removed link on the diagonal entry

and jth and ith columns, respectively. The relation between

the two Laplacians is essentially a rank-one update:

Q̃′ = Q̃− wij (ei − ej)(ei − ej)
T (18)

where Q̃ is the initial Laplacian of the network, Q̃′ is the

Laplacian of the network after the removal of link lij , and

wij is the weight of the link. Introducing Meyer’s relation

[25] between the pseudo-inverses denoted by +,

(A+ cdT)+ = A+ − (1 + dTA+c)
−1

A+cdTA+ (19)

allows to express the pseudo-inverse Q̂′
+

of the new Laplacian

in (18) in terms of the initial pseudo-inverse Q̂+ and effective

resistances in (15) as

Q̃′
+
= (Q̃+ (−wij)(ei − ej)(ei − ej)

T)+

= Q̂+ +
wij

1− wijωij

Q̂+(ei − ej)(ei − ej)
TQ̂+ (20)

where ωij is the effective resistance between nodes i and j.

When link lij is removed, the active power flow fij over

the link before removal is redistributed over alternative paths

between nodes i and j. Under the DC flow approximation,

which results in (12) being linear, the redistribution can be

perceived as an additional injection of active power fij at node

i and leaving node j in the new network, provided that the

load and generation profiles of the grid P remain unchanged.

Hence, the final active power flow over an arbitrary link lab can

be written as the sum of the previous state of the system, i.e.

the previous flow over the link between nodes a and b when

link lij is present, and the flow resulting from the change of

the state due to link removal. Consequently, the change of the

active power flow over the observed link lab can be calculated

using (12) as

∆fab = wab × (ea − eb)
TQ̃′

+
(ei − ej)× fij (21)
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where ∆fab is the change in the active power flow over link

lab due to removal of link lij , and wab is the weight of link

lab. Inserting (20) into (21) results in

∆fab = fij × wab(ea − eb)
TQ̃′

+
(ei − ej)

= fij × wab(1 +
ωijwij

1− wijωij

)(ea − eb)
TQ̂+(ei − ej)

(22)

Since (ea − eb)
TQ̂+(ei − ej) =

1
2 (ωaj − ωai + ωbi − ωbj)

according to (16), we have

∆fab = fij × wab ×
ωaj − ωai + ωbi − ωbj

2(1− wijωij)

or

∆fab

fij
= wab ×

ωaj − ωai + ωbi − ωbj

2(1− wijωij)
(23)

Equation (23) shows that, due to the removal of link lij ,

the resultant change in the active power over a remaining link

lab is determined by the network topology via the effective

resistances between the node pairs, and the previous flow

fij over the removed link. Several observations follow from

equation (23):

• The resulting change ∆fab in active power flow over a

link lab depends on and is limited by the magnitude of

the previous flow fij over the removed link lij . Indeed,

since the active power is redistributed over the network,

it holds that
∣

∣

∆fab

fij

∣

∣ ≤ 1, which forces the right-hand side

of equation (23) to be between -1 and 1.

• If the directions of the links are defined to be the same as

the direction of the initial flow over the links, a positive

(negative) number in the right hand side of (23) indicates

an increase (decrease) in the active power flow over the

remaining link in that direction.

• From a robustness point of view, the network links whose

removal sharply increases the active power flow over

the remaining links are critical. In addition, the network

links that are severely affected by different link removal

scenarios are also critical.

• For the network links whose active power flows are not

affected by the removal, the right-hand side of equation

(23) must be 0, meaning the equality ωaj + ωbi =
ωai+ωbj between the effective resistances of node pairs is

satisfied. This equality is satisfied for the links that are in

branches4 of the network and for Wheatstone bridges [26]

if they are present in the network.

• The denominator (1 − wijωij) of (23) is zero when the

electrical distance between the nodes of the link is equal

to the inverse of the link weight, i.e. line reactance. It

shows that there is no alternative parallel (back-up) path

in the network for the removed link. Therefore, when

this link is removed, some nodes in the network will

be isolated and the power flow cannot be redistributed

4Here, branches of a network refer to the network links that are connected
radially to the meshed part of the network.

without the change of generation and load profiles. In

such a case, (23) can be rewritten as

∆fab

fij
=

{

Network islanded (N.I.) if wij × ωij = 1,

wab ×
ωaj−ωai+ωbi−ωbj

2(1−wijωij)
otherwise.

(24)

Equation (24) captures the final network status, i.e. islanded

or not, as well as the effect of link removal on the distribution

of flows over the remaining network links, when the network

is not partitioned. The calculation is based on the initial graph-

related matrices, and the computation of new topological

matrices is avoided. Consequently, by spectral decomposition,

once the effective resistance matrix is calculated, the effect of

any link removal can be calculated from (24) for any loading

scenario.

B. Link Addition

The overloads in the transmission lines of a power grid

can be solved by generation/load shifting in the short term.

However, a long-term investment (such as addition of new

transmission lines) needs to be planned in the case of persistent

overloads or to satisfy the N − 1 criterion [2].

Determining the right location of a new link is challenging.

It is desirable that the added link increases the robustness

of the power grid by decreasing the critical flows over the

network links. In flow-based studies, the computational com-

plexity is high, thus alternatives which decrease the calculation

time and determine the right investment for the system are

sought [8], as provided in this section.

It is assumed that a new link can be added between any

arbitrary two nodes (connected or unconnected) i and j in

the electrical grid. Similar to Section III-A, the redistribution

of flows due to link addition can be perceived in the initial

network as an additional injection of the active power fij over

the new link at node j and leaving from node i, i.e. in the

opposite direction of the new flow. The change in the power

flow ∆fab over an arbitrary network link lab under the DC

power flow approximation is calculated as

∆fab = wab(ea − eb)
TQ̃+(ei − ej)× (−fij)

and, using (16), as

∆fab

fij
=

wab(ωai − ωaj + ωbj − ωbi)

2
(25)

where the flow fij over the new link is calculated by using

the new pseudo-inverse Q̃′
+

of the Laplacian and the power

input P of the network:

fij = wij(ei − ej)
TQ̃′

+
P (26)

The addition of the link changes the Laplacian of the

network and the relation between the new Q̃′
+

and the old

Laplacian Q̃+ becomes

Q̃′ = Q̃+ (wij) (ei − ej)(ei − ej)
T (27)
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Relation (19) shows that the new pseudo-inverse can be

represented as

Q̃′
+
= (Q̃+ (wij)(ei − ej)(ei − ej)

T)+

= Q̂+ −
wij

1 + wijωij

Q̂+(ei − ej)(ei − ej)
TQ̂+ (28)

Using the above derivation (28) of the new pseudo-inverse

Q̃′
+

, (26) can be rewritten as

fij =
wij

1 + wijωij

× θij (29)

Equation (29) shows that the new flow fij over the added

link lij is related to the previous network conditions, i.e. the

difference between the voltage phase angles at nodes i and j,

and inversely related to the effective resistance between these

nodes. As θij and ωij are fixed by the initial network topology,

the maximum flow over the added link,
|θij |
ωij

, is achieved

when the link weight wij tends to infinity, meaning that the

reactance of the transmission line is close to zero, a short

circuit of the nodes. Conversely, the flow over the new link is

minimum, 0, when wij approaches zero, meaning connecting

an infinite reactance between the nodes (an open circuit).

Then, by adjusting the link weight wij through reconducting or

replacing the conductors, it is theoretically possible to adjust

the magnitude of the flow over the added link.

The term
wij

1+wijωij
in the right-hand side of equation (29)

is strictly positive for passive network elements. Thus, the

direction of the active power flow over the new link is

determined only by the difference between the phase angles

of voltage θij in the initial network. A positive difference in

voltage phase angles θij results in an active power flow from

node i to node j, when the nodes are connected by a link,

whereas the opposite results in a flow from node j to node i.

If the voltage phase angle difference θij is zero, there will be

no power flow over the link when these nodes are connected

by a link (Wheatstone bridge [26]).

Inserting the result (29) of the flow over the new link into

(25), the change in the active power flow over the observed

link lab due to link addition can be calculated as

∆fab =
wabwij(ωai − ωaj + ωbj − ωbi)

2(1 + wijωij)
× θij (30)

Equation (30) shows that the change ∆fab in the flow

over the network links is determined by the network topology

via the effective resistances and initial network conditions,

whereas the relative change to the flow fij over the new link

in (25) depends only on the network topology. Observations

from (25) and (30) are as follows:

• The change in the active power flow over network links

depends linearly on the flow over the added link and the

changes in active power flows over the initial network

links are bounded by this value. When the right-hand

side of (25) is 1 or -1, it means that the flow over the

observed link is directly affected by the link addition.

• The numerator of equation (25) is zero when the equality

between the effective resistances ωai − ωaj = ωbi − ωbj

is satisfied, meaning the added link has no effect on the

active power flow over the observed network link. This is

possible for the observed/added links that are in branches.

• If the direction of the link is defined as the direction of

the initial flow over that link, then a positive (negative)

number in the right-hand side of (30) corresponds to

an increase (decrease) in the active power flow over the

observed link in that direction. Clearly, a decrease in the

flow over all network lines is desired.

Finally, equations (23) and (25) show that the effective

resistances between the node pairs of the observed and the

removed/added links determine the effect on the flow over

the observed link. This aligns with the empirical studies that

capture the relation between the effective graph resistance

value [18] and the robustness of the power grid against

cascading failures [8], [12]. Additionally, the weight of the

observed link wab is found to be influential in both link

removal and addition calculations, whereas the weight of the

added link wij does not affect the flow over the observed link

relative to the flow over the added link.

From the graph-related matrices, the changes (23) and (25)

in the active power flow over the network links relative to flow

over the removed/added link can be represented. However, for

the magnitude of the change, initial conditions, the generation

and load profiles of the network, must be known. The direction

of the change in the flow over the observed link, i.e. decrease

or increase in magnitude, is also determined by both the

network topology and the power input of the electrical network

as it depends on the existing flow and its direction. However,

in electrical grids with limited generation and load variations,

such as directed distribution networks, it is possible to know

the flow directions in advance. Therefore, from the effective

resistances, the relative effect on the magnitude can be found.

For the meshed networks with various generation and load

dispatches, such as high-voltage transmission networks, the

flow directions may be unknown. Therefore, initial network

conditions, the voltage phase angles, or the power input of

the network must be used in the calculations regarding the

direction.

IV. NUMERICAL ANALYSIS

This section demonstrates the results derived in Section III.

For ease of inspection, first a quantitative analysis is performed

for a small test network. Later, the analysis is demonstrated

for the IEEE 118-bus power system5.

A. Synthetic Example

The network in Fig. 1a contains 6 nodes and 7 links. For

simplicity, the link weights, i.e. the reciprocal of transmission

line reactances, are set to unity. The direction of the existing

flows over the links is defined to be always from lower

to higher node index. The effective resistance matrix Ω is

calculated according to (17) and the effective resistances are

shown in Fig. 1b. The minimum effective resistance is between

nodes 2 and 4, whereas the largest is between nodes 1 and 6.

5IEEE 118-Bus Power Flow Test Case, available at:
http://www.ee.washington.edu/research/pstca/
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The definition of electrical distance in (13) shows that the

highest difference in the voltage phase angles of the network

nodes occurs when the electrical power is transferred between

those nodes, leading to larger flows over the network links

from equation (9). Conversely, the minimum difference in the

angles of the voltage phasors of the network nodes occurs for

the same amount of electrical power when it is transferred

between nodes 2 and 4, leading to smaller flows over the

network links.

Next, the effect of link removal on the active power flows

over the remaining network links is calculated using (23).

Fig. 2a illustrates how the flows over the network links are

affected by a particular link removal, as compared to the

previous flow over the removed link. As an example, when

link 6 is removed from the network, due to the redistribution

of power flow, the flows over links 4 and 7 increase by the

amount of the previous flow over the removed link 6. Indeed,

this makes the removal of link 6 critical. In order to avoid

cascading failures, it must be checked whether the excess

capacity of links 4 and 7 can handle the redistributed flow. For

the network links 2, 3 and 5, the removal of link 6 decreases

the flow over them, thus there is no possibility of cascading

failure due to these links.

Lastly, from (25), the effect of link additions is calculated

and Fig. 2b displays some examples of the changes in the

flows over the network links in case of a link addition, as

compared to the flow over the added link. As expected, a link

addition to the network mostly decreases the flows over the

network links. For instance, when a new link is added between

nodes 2 and 6, the flows over all network links decrease except

for link 1, which is connected to the network as a branch.

In addition, depending on the purpose of the new investment

(link addition), Fig. 2b can be used to identify the place of

the added link. For example, if the aim is to decrease the flow

over link 5 between nodes 3 and 4, three choices are effective:

A new link parallel to link 5, a new link between nodes 3 and

5, or a new link between nodes 3 and 6 significantly decrease

the flow, whereas the addition of a new link between nodes 1

and 5 has a relatively small effect on the observed link for the

same amount of new flow. In some cases, the addition of new

links can lead to an increase in the flow over a particular link.

For instance, when a new link is added between nodes 3 and

6, the flow over link 2 increases considerably, which is the

so-called Braess’ paradox in power systems [27]. Therefore,

such cases should be avoided or carefully investigated before

realization.

B. IEEE 118-Bus Power System

In this section, the realistic IEEE 118-bus power system

is considered. Fig. 3 shows the graph representation of the

network, containing in total 118 nodes and 179 links. The

direction of existing flows over the links is defined according

to initial conditions.

The histogram of effective resistances between all node

pairs is shown in Fig. 4a and between the observed set in Fig.

4b, respectively. The effective resistances in the observed set

are relatively small, which indeed suggests a strong electrical
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Fig. 2. Effect of link removal and addition,
∆fab

fij

connection, whereas the larger values of effective resistances

in Fig. 4a suggest the opposite, indicating the points with less

back-up paths in the network.

The effect of each link removal on each remaining network

link is calculated using (24) resulting in 179 link removal

cases, each with 178 observed links. The histogram of the

calculated effects of link removals relative to the flow over

the removed link is shown in Fig. 5a. Approximately 95% of

the calculated effects have magnitude smaller than 0.2, which

is a sign of a meshed network with alternative paths. However,

in 3.8% of the calculated effects, equation (23) results in 0,

which refers to network links which are connected as branches

to the meshed part of the network.

Fig. 3. Graph representation of the IEEE 118 buses power system. The
thicknesses of the links represent the link weights, i.e. inverse of transmission
line reactances. The average degree in the graph is 3.034, whereas the average
weighted degree is 59.759. The network diameter is 14 and the average path
length is 6.309. The links connected to node 69, an important generator bus
serving 12% of the total demand, and their node pairs are chosen to be the
observed set (a, b).
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Fig. 4. Effective resistances in the IEEE 118-bus system

In Fig. 5a, 0.17% of the effects of the link removals have

the value 1, meaning that the previous flow of the removed

element is transferred to a single alternative path. From a

robustness point of view, the less frequent this is, the more

robust is the network against overloads due to link removals.

Therefore, these cases should be analysed in reliability assess-

ments. Additionally, the removal of 9 links leads to isolation of

one or more nodes in the network, which is again undesirable

in a robust network.

In Fig. 5b, the effect of link removals in the observed set is

shown. When link 76, 82 or 115 is removed from the network,

more than half of the redistributed flow goes through link

110 between nodes 68 and 69, which makes link 110 critical.

As a remark, when a link is removed in the observed set,

the magnitude of the changes in the flows over remaining

links must sum up to the previous flow over the removed link

according to Kirchhoff’s law, therefore the row sums in Fig. 5b

are all 1.

From (25), the effect of link addition between each node pair

in the network is calculated, resulting in 118×117
2 = 6903 link

addition cases, each with 179 observed links. The histogram

of the effects of all possible link additions relative to the

flow over the added link is presented in Fig. 6a. 92% of

the calculated effects have magnitude smaller than 0.2, which

again follows from the meshed structure and the existence

of alternative paths for the redistributed power. Due to the

meshed structure, a link addition to the network can increase

the flows over the network links. However, the probability

of an increase in magnitude is less than compared to the

probability of a decrease, which can be observed from the

asymmetrical distribution in Fig. 6a.

In Fig. 6b, the effect of link addition in the observed set is

shown. Similar to the link removal case, when a link connected

to node 69 is added, the observed relative changes in the

magnitudes must sum up to 1. The magnitude of the flow over

link 110 increases in 3 out of the 7 illustrated link additions,

which urges detailed assessments before realization of these

link additions in order to avoid Braess’ paradox.

V. CONCLUSION

This paper has provided an extended graph approach to

analyse the physical operation and the vulnerability of an

electrical grid from a topological point of view. Contrary

to the representation in electrical engineering, the linearised

power flow behaviour was expressed in terms of slack-bus
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Fig. 5. Effect of Link Removal in the IEEE 118-bus system.In Fig. 5a, the

peak corresponding to −0.05 ≤
∆fab

fij
≤ 0.05 is 0.8327.
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Fig. 6. Effect of Link Addition in the IEEE 118-bus system. In Fig. 6a, the

peak corresponding to −0.05 ≤
∆fab

fij
≤ 0.05 is 0.7035.

independent graph related matrices. Moreover, a closed for-

mula for the effective resistance matrix, which combines the

fundamentals of an electrical power grid with the topological

structure, was proposed. The paper has further derived the

expressions for the sensitivities of active power flows in link

removal/addition cases to assess the topological vulnerability

of a power grid. Consequently, link removals that may result

in cascading failures or node isolation and link additions that

decrease the critical flows or result in Braess’ paradox in the

power grid were identified.

APPENDIX

POWER FLOW EQUATIONS

The equations are derived for the power flow in a particular

bus (node) i. The injected power Si at bus i is defined as

Si = ViI
∗
i (31)

where I∗i is the complex conjugate of the current through bus

i, and Vi is the voltage at bus i. Kirchhoff’s law expresses the

current in terms of network voltage and admittance quantities:

Si = Vi(YV)∗i = Vi

N
∑

k=1

Y ∗
ikV

∗
k (32)

where N is the number of buses in the system, V =
[V1 . . . VN ]T is the vector of bus voltages, and Y is the

admittance matrix with entries

Yik =

{

yii +
∑

i 6=k yik, if i = k

−yik, if i 6= k
(33)
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where yii is the self-admittance [20] of the bus and yik is the

equivalent admittance of all transmission adjacent lines from

bus i to k. If yii = 0 for each bus i, then an important feature

of the admittance matrix Y, that follows from the definition

(33), is that the sum of the elements of a row equals zero:

Y u = 0 (34)

where the all-one vector u = [1 · · · 1]T.

Equation (34) is a special case of an eigenvalue equation,

illustrating that the all-one vector is an eigenvector belonging

to eigenvalue zero. The latter also implies that the determinant

of the admittance matrix Y is zero and, consequently, that the

inverse of Y does not exist.

Introducing the phasor representation [20] of voltage into

equation (32), and rewriting the elements of admittance matrix

as Yik = Gik + ιBik lead to

Si =
N
∑

k=1

|Vi||Vk|(cos θik + ι sin θik)(Gik − ιBik) (35)

where θik = θi − θk. Using the definition of complex power,

Si = Pi + ιQi, yields

Pi =
N
∑

k=1

|Vi||Vk|(Gik cos θik +Bik sin θik) (36)

Qi =

N
∑

k=1

|Vi||Vk|(Gik sin θik −Bik cos θik) (37)

The equations (36) and (37), which relate voltages and

power, are called the AC power flow equations.

A. Solving the Power Flow Equations

Using (36) and (37), the aim is to calculate the unknown

electrical properties of each bus in the power system assuming

knowledge of:

1) The admittance matrix Y,

2) The magnitude |Vi| of voltage phasor of the slack-bus

and the generator buses,

3) The real power injection Pi of all buses except for the

slack-bus,

4) The reactive power injection Qi of all load buses.

Given the above information, the aim is to find:

1) The angles θi of the voltage phasors at all buses, except

for the slack-bus whose voltage phase angle is set to 0,

2) The magnitudes for the voltage phasors |Vi| at all load

buses.

There are several different methods to solve the non-linear

AC power flow equations (36) and (37). The most popular is

the Newton Raphson method [20].

B. DC Load Flow

The AC power flow equations are non-linear and the solu-

tion process is generally iterative. A linear set of equations

is more desirable whenever fast and repetitive solutions are

needed. Linearisation can be reasonably accurate when the

following conditions are met [16]:

1) The difference between the voltage phase angles of two

neighbouring buses is small so that sin θik ≃ θik and

cos θik ≃ 1.

2) Line resistances rik compared to the line reactances xik

are negligible which causes the entries of the admittance

matrix in (33) to be equal to the reciprocal of line

reactance values, bik.

3) The variations in the bus voltage magnitudes are so small

that they are assumed to be all equal to the selected

system base.

4) Reactive power flows are negligible for each bus i.

If these conditions are met, in per unit system [20], (36)

can be simplified to the so-called the DC load flow equation

Pi =

N
∑

k=1

bik(θi − θk) (38)

or, in matrix form using (33)

P = YΘ (39)

where P = [P1 . . . PN ]T and Θ = [θ1 . . . θN ]T.

Since (34) implies that Y is not invertible, (39) cannot

be directly solved as Θ = Y−1P. The common procedure

is to select a bus i as a reference bus (slack-bus), and drop

the equation corresponding to its power injection. Then, the

remaining equations of bus voltage angles can be solved

uniquely with respect to the slack-bus.

Obviously, a DC load flow solution is less accurate than an

AC load flow solution. In transmission systems, the difference

between voltage phase angles of neighbouring buses θik is

relatively small, thus the error is assumed to be negligible [16].
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