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Abstract

High-throughput methods for detecting protein-protein

interactions (PPI) have given researchers an initial global

picture of protein interactions on a genomic scale. The use-

fulness of this understanding is, however, typically compro-

mised by noisy data. The effective way of integrating and

using these non-congruent data sets has received little at-

tention to date. This paper proposes a model to integrate

different data sets. We construct this model using our prior

knowledge of data set reliability. Based on this model, we

propose a topological measurement to select reliable inter-

actions and to quantify the similarity between two proteins’

interaction profiles. Our measurement exploits the small-

world network topological properties of protein interaction

network. Meanwhile, we discovered some additional prop-

erties of the network. We show that our measurement can

be used to find reliable interactions with improved perfor-

mance and to find protein pairs with higher function homo-

geneity.

Key Words: Protein-protein interaction, protein interac-
tion network, data integration, weighted graph model, small
world network, topological measurement

1 Introduction

Proteins seldom act alone; rather, they must interact with
other biomolecular units to execute their function. An ex-
amination of these interactions is essential to discovering
the biological context of protein functions and the molecu-
lar mechanisms of underlying biological processes.

These protein-protein interactions have typically been
examined via intensive small-scale investigations of a small
set of proteins of interest, yielding a limited number of
protein-protein interaction data. Though fairly reliable,
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such data sets are severely limited by its coverage because
each experiment observes only a few interactions.

Newer approaches involve genome-wide detection of
protein interactions. Studies using yeast two-hybrid sys-

tem (Y2H) [12, 24, 9] and mass spectrometric analysis (MS)

[8, 11, 23] have generated large amounts of interaction data.
Comparing with the accumulated interactions of decades of
small-scale experiments, these larger data sets, however, are
much less reliable, and data quality varies greatly from one
data set to another [25, 22]. Also, there are very small over-
laps among different experiments [25, 2].

A protein interaction network (PIN) [7] can be generated
from existing protein-protein interaction data by connect-
ing each pair of vertices (proteins) involved in an interac-
tion. The PIN is normally represented as an unweighted
graph. However, given the various reliability of interac-
tions, this unweighted graph is far from optimal in repre-
senting the data. More effective analysis would be achieved
by a weighted PIN graph in which each edge (e.g., interac-
tion) is associated with a weight representing the probability
of that interaction.

Based on a weighted graph model of protein interaction
network, our objective here is to define a topology mea-
surement with clear biological meaning and reflecting our
knowledge of small world network properties. We expect
our topological measurement to be capable of finding reli-
able interactions and predicting protein function. We begin
by a description of related work, followed by defining our
weighted model of protein interaction network, construct-
ing this model from noisy data sets and proposing a novel
measurement. Several properties of our measurement are
investigated and advantages of our new measurement are
shown in the experiment section. Finally, we conclude the
paper and propose some future work.

2 Related Work

Several topological measurements have been proposed
to identify reliable interactions in noisy data sets. In [18],



interaction generality (IG1) is proposed to detect the false
positive interactions created by some ’sticky’ proteins that
seem to interact with many other proteins. However, this
is a local measurement which considers only one protein’s
direct neighbors. In [19], local network topology is cap-
tured by several network motifs. Then an SVD transforma-
tion combines the enrichment of these motifs into one mea-
surement (IG2). However, the selection and combination
of these motifs do not have very clear meanings. In [10],
two proteins are considered more likely to interact if they
have a lot of shared interacting neighbors. Four versions of
a measurement named mutual clustering coefficient are pro-
posed to capture the small world network properties of the
network. However, their mutual clustering coefficient mea-
surement is also limited to only the direct interacting neigh-
bors of two proteins without considering more complex net-
work topologies. In [3], the Interaction Reliability by Alter-
native Path (IRAP) is proposed to measure the reliability of
an interaction as the strength of the alternative path. How-
ever, their measurement only considers the strongest non-
reducible alternative path connecting two proteins which is
neither precise nor robust considering the noisy data sets.

In [20], the similarity between two proteins are defined
based on the neighbor-sharing of two proteins. This similar-
ity definition is very closely related to the mutual clustering
coefficient defined in [10].

Meanwhile, in all these methods, no consideration is
given to the difference of reliability for interactions col-
lected from different experiments. Therefore, the initial
input into their algorithm is an unweighted model of pro-
tein interaction network, treating each edge (interaction)
equally. Though this is a valid assumption for protein inter-
action network constructed from one single data set, when
we integrate multiple data sets, this oversimplifies the prob-
lem and disregards the fact that the data from large-scale
experiments are far less reliable than those from traditional
small-scale methods.

To sum up, we observed the following properties of the
protein interaction data and protein interaction network:
Firstly, each data set has only limited coverage of the whole
interaction space and, therefore, integrating multiple data
sets will help to construct a more realistic view of protein
interaction network. Secondly, different data sets have quite
different reliabilities and thus one effective choice of mod-
elling the protein interaction network would be a weighted
graph with each edge being associated with a weight rep-
resenting the reliability of the interaction. Thirdly, small
world network properties of protein interaction network can
be utilized to define a meaningful topological measurement
and complex network topologies should be considered.
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Figure 1. Weighted protein interaction net-
work model.

3 Method

In this section, we will first describe our model of pro-
tein interaction network for effectively combining multiple
diverse data sets. Then we will describe the process to con-
struct the model. Based on this model, we propose a novel
topological measurement utilizing the small world network
properties of protein interaction network.

3.1 Weighted Graph Model of Protein Interaction
Network

We define a weighted protein interaction network as fol-
lows:

Definition 1: A weighted protein interaction network
is a weighted undirected graph G = (P, I, W ), where P
is a set of vertices, I is a set of edges between the vertices
(I ⊆ {(u, v)|u, v ∈ P}) and W is a function from I to
a real value in the range of [0..1]. Each vertex v ∈ P in
the graph represents a protein. Each edge (u, v) ∈ I repre-
sents an interaction between proteins u and v. For each edge
(u, v), w(u, v) is the weight of (u, v) which represents the
probability of this interaction being a true positive. Figure
1 shows our weighted protein interaction network model.

In this paper, we use the following additional terminolo-
gies in graph theory: Vertices joined by an edge are said to
be adjacent. A neighbor of a vertex v is a vertex adjacent
to v. We denote N(v) the set of all neighbors of vertex v
(called the neighborhood of v). A shared neighbor of two
vertices u and v is a vertex adjacent to both u and v. The de-
gree of a vertex v, denoted as D(v), is the sum of weights of
the edges connecting v: D(v) =

∑
(u,v)∈I w(u, v). A walk

is an alternating sequence of vertices and edges, with each
edge being incident to the vertices immediately preceding
and succeeding it in the sequence. A path is a walk with no
repeated vertices.



To use this weighted graph model, we need, in the first
place, to estimate the probability of each interaction.

3.2 Constructing Weighted Protein Interaction
Network

Generally, there are two approaches to give a probability
estimate for each interaction: We can use either the proba-
bility estimates of single interactions or the reliability esti-
mates of interaction data sets.

Reliability estimates for single interactions are often
achieved by incorporating known protein properties. These
properties include paralogs (PVM) [5], protein domain in-
formation (DPV) [29], and the Bayesian integration of sev-
eral information [13]. The probability estimate for any spe-
cific protein interaction is directly based on the domain
knowledge of the proteins involved and therefore, is in-
trinsically biased towards those proteins that we know well
about.

Reliability of an interaction data set can be estimated
by comparing the data set with reliable interaction data
sets (usually those from small-scale experiments) [25, 2] or
comparing the statistics of the data set with those of known
reliable interaction data sets. The statistics include gene ex-
pression profile [5] and protein annotation [22]. Compara-
tively, as the reliability in this approach is estimated using
the global statistics of the data set instead of any specific
proteins, it is less biased towards any specific interactions
in the data set. Therefore, we choose this approach for our
initial estimate of probabilities.

To examine the situation described here, we will take
several protein interaction data sets S = {S1, S2, ..., Sn}
as input, where each set Si includes many interactions. We
use Scombined as the union of these data sets:

Scombined = S1 ∪ S2... ∪ Sn.

Now we need to generate probability estimate for each
interaction (u, v) ∈ Scombined.

In this paper, we will simply use the above mentioned
methods to estimate reliabilities for interaction data sets.
For each interaction (u, v) that appears only in one data set
Si, we set its probability as the reliability of this data set:

w(u, v) = rk for each (u, v) ∈ Sk,

where rk is the estimated reliability of the protein interac-
tion data set Sk. Meanwhile, an interaction (u, v) may oc-
cur in multiple data sets, i.e.,

(u, v) ∈ Suv1 ∩ Suv2... ∩ Suvm,

where Suv1, Suv2, ..., Suvm ∈ S and m > 1. In this case,
its probability is set to:

w(u, v) = 1 − (1 − ruv1) ∗ (1 − ruv2)... ∗ (1 − ruvm).

where ruvi is the estimated reliability of Suvi. This formula
reflects the fact that interactions detected in multiple exper-
iments are generally more reliable than those detected by
only one experiment are [25, 2].

Estimating the prior probability for each interaction in
this manner produces a weighted graph of protein interac-
tion network in which vertices are proteins, edges are inter-
actions, and weights represent our prior knowledge of the
probabilities of interactions.

3.3 New Topological Measurement

In [28], Watts and Strogatz have explored networks be-
tween a completely regular network (lattice) and a com-
pletely random network by a random rewiring procedure.
They define characteristic path length as the number of
edges in the shortest path between two vertices, averaged
over all pairs of vertices. Clustering coefficient is defined
as the edge density around a vertex’s neighbors. They show
that the rewired network can be highly clustered, like reg-
ular lattices, yet have small characteristic path lengths, like
random graphs. They call it a small-world network. In [26],
Wagner has observed that a protein interaction network is
also a small-world network. This vertex-centered neigh-
borhood cohesiveness is extended to edge-centered neigh-
borhood cohesiveness in [10]. In this paper, we extend the
idea of neighborhood sharing from direct neighbors to in-
direct neighbors, i.e., we define neighborhood cohesiveness
as the significance of the connections between two vertices
via more complex topology.

Figure 2 illustrates the various situations of connections
between two proteins by paths of various lengths. Besides
the direct connection between two vertices A and B, we
focus on other paths connecting the two vertices. The thick
lines represent edges in these paths. In (a), vertices A and B
are connected by two paths of length 2 (< A, C,B > and <
A,D,B >). In (b), vertices A and B are connected by three
paths of length 3 (< A, C, D, B >, < A, E, F, B > and
< A, C, F, B >). In (c), vertices A and B are connected by
several paths of length 4, e.g., < A, C, D, E, B >.

In a small world protein interaction network, high clus-
tering coefficient property predicates that proteins are likely
to form dense clusters by interactions. Therefore, true pos-
itive interactions in protein complexes and tightly coupled
networks demonstrate dense interconnections. In [27], Wal-
hout and colleagues also observed that contiguous inter-
action connections that form closed loops are likely to in-
crease the likelihood of biological relevance for the corre-
sponding interactions. Also considering the fact that these
loops might be created by false positives in the noisy data
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Figure 2. Various connections between two
proteins.

set, we choose to measure the significance of two proteins’
co-existing in a dense network as an indication of interac-
tion reliability. In this paper, we consider all length k paths
between two vertices and try to evaluate the significance of
the paths. Then we combine the significance measurements
for all different ks into our final topological measurement.

We start with defining the strength of paths between two
vertices.

Definition 2: The PathStrength of a path p, denoted as
PS(p), is the product of the weights of all the edges on the
path, i.e.,

PS(p) =
l∏

i=1

w(vi−1, vi),

for path p =< v0, v1, ..., vl >.
The k-length PathStrength between two vertices A

and B, denoted as PSk(A,B), is the sum of the Path-
Strength of all k-length paths between vertices A and B,
i.e.,

PSk(A, B) =
∑

p=<v0=A,v1,...,vk=B>

PS(p).

The PathStrength of a path captures the probability that
a walk on the path can reach its ending vertex. By summing
upon all these paths, the k-length PathStrength between two
vertices captures the strength of connections between these
two vertices by a k-step walk.

We calculate k-length PathStrength between two vertices
for different values of k separately because paths of differ-
ent lengths should have different impact on the connection
between two vertices. The larger k value indicates more

choices of paths and therefore less significance for the same
PSk value. To normalize the PathStrength values for paths
of different lengths, we define MaxPathStrength as:

Definition 3: The k-length MaxPathStrength between
two vertices A and B, denoted as MaxPSk(A,B), is de-
fined as:
MaxPSk(A, B) =



√
D(A) ∗ D(B) if k = 2

D(A) ∗ D(B) if k = 3∑
Pi∈N(A),Pj∈N(B) MaxPSk−2(Pi, Pj) if k > 3

MaxPathStrength measures the maximum possible Path-
Strength between two vertices. As we consider only
PSk(A,B) for k > 1, we define MaxPSk(A,B) only
for k > 1 case. By dividing the PathStrength by this max-
imum possible value, we get the significance measurement
of k-length paths.

Definition 4: The k-length PathRatio between two ver-
tices A and B, denoted as PRk(A,B), is the ratio of the
k-length PathStrength to the k-length MaxPathStrength be-
tween two vertices A and B, i.e.,

PRk(A,B) =
PSk(A,B)

MaxPSk(A,B)
.

We sum this measurement on all different lengths and
get our final topological measurement:

Definition 5: The PathRatio between two vertices A
and B, denoted as PR(A,B), is the sum of k-length
PathRatios between A and B for all possible k > 1, i.e.,

PR(A,B) =
|P |−2∑
k=2

PRk(A,B),

where |P | is the number of vertices in the graph.
As we expect to use our PathRatio measurement to

identify reliable edges, we choose to make the measure-
ment independent of w(A,B). Therefore, when calculating
PR(A,B), we hide the prior probability of (A,B) by re-
placing the connection between A and B with a w(A, B) =
1 edge.

As our PathRatio is composed of PRk for different k
values, we can regard each PRk as a component of our
measurement. The signal in PathRatio is captured as the
sum of the signals from each of these components. When
we look at the components of the measurement, we can find
some interesting properties:

(1). The first PathRatio component, PR2(A,B), is a
generalized form of the square root of the geometric ver-
sion of mutual clustering coefficient. In fact, if we do not
have any prior reliability information about the edges, and
accordingly, treat each edge equally, i.e., w(u, v) = 1 for
any (u, v) ∈ I , then PS2(A,B) is the number of shared



neighbors of A and B. The degrees of A and B are the
number of neighbors of A and B, respectively. Thus we
have

PR2(A,B) =
|N(A) ∩ N(B)|√|N(A)| ∗ |N(B)| .

This is exactly the square root of the geometric version of
mutual clustering coefficient measurement in [10]. There-
fore, the mutual clustering coefficient measurement is in-
corporated into our PathRatio.

(2). The second PathRatio component, PR3(A,B),
measures the ratio of direct connections between vertices
A and B’s neighbors. If each vertex in N(A) is connected
with each vertex in N(B) with a weight = 1 edge, the
maximum value of PS3(A,B) is achieved and in this case

PS3(A,B) = D(A) ∗ D(B).

Therefore, the second component of our PathRatio mea-
sures the the significance of observing length 3 paths given
the degrees of A and B.

(3). The MaxPSk(A,B) for k > 3 is defined recur-
sively. Our definition of MaxPSk(A,B) ensures that its
value is generally larger for larger k, i.e., longer paths. In
addition, for higher k value, it is much more difficult for
PSk(A,B) to achieve MaxPSk(A, B) value in a real pro-
tein interaction network. E.g., the MaxPS4(A,B) is de-
fined as the sum of MaxPS2 for each A’s neighbor and B’s
neighbor. To achieve this maximum value, (a) each of A’s
neighbors and each of B’s neighbors should be connected
by MaxPS2 paths; (b) each of A’s neighbors should be
connected to A by a weight = 1 edge and each of B’s
neighbors should be connected to B by a weight = 1 edge.
These are very strong requirements and therefore, guaran-
tee that the impact of PRk(A,B) generally decreases with
the increase of k.

One potential problem of this definition is that we have
to enumerate k-length paths between two vertices for all ks.
The complexity is exponential on the value of k. For large
k, this calculation would be computational prohibitive. As
from our definition, the impact of PRk(A,B) generally de-
creases with the increase of k, the first few components are
quite enough to capture most signals in PathRatio. There-
fore, we can choose a simplified approximation by limiting
our calculation to the first several components.

4 Experiments and Results

In this section, we compile several data sets and con-
struct our weighted model of protein interaction network.
Then we analyze the network and find some interesting
properties. Upon these observations, we present a method
to simplify our definition of PathRatio and to speed up the

calculation. Then we show that our measurement corre-
sponds well with the reliability of interactions. Also, we
compare our method with IRAP for detecting reliable inter-
actions. Next we show that our PathRatio measurement is
capable of finding additional high confidence interactions
that mutual clustering coefficient would miss. Then we use
the PathRatio value for any two proteins in the network as a
definition of similarity in interaction pattern and compare
our result with the previous measurements using mutual
clustering coefficient and IRAP.

4.1 Data Sets and Initial Weighted Graph Con-
struction

We compiled four data sets of yeast protein interactions
with various reliabilities:

Table 1. Data sets of protein-protein interac-
tions.

Data Set Interactions Proteins Reliability
Ito 4392 3275 0.17
DIPS 3008 1586 0.85
Uetz 1458 1352 0.47
MIPS4 788 469 0.50
Combined 9049 4325 0.47

Table 1 includes the four data sets we used for our exper-
iments: Ito data set is the “full” data set by Ito et al. [12],
DIPS data set is the set of yeast interactions in DIP [29]
database that are generated from small-scale experiments,
Uetz data set includes published interactions in [24] and un-
published interactions on their website[1], and MIPS4 data
set includes four data sets [23, 17, 6, 7] deposited in MIPS
[16]. We put these four data sets together because each in-
dividual data set is too small to give a reliability estimate
with acceptable accuracy. The combined data set is the data
set that includes all interactions mentioned above.

Reliability of each data set is estimated by EPR (Expres-

sion Profile Reliability) index [5]. For the reliable interac-
tion set used in EPR, we use the subset of DIP interactions
that are discovered by small-scale experiment and discov-
ered for multiple times (denoted as “S” and “M” in DIP).
We use Spellman gene expression data [21] for EPR esti-
mate.

From Table 1, we can see that the reliabilities of different
data sets range from 0.17 for Ito data set to 0.85 for small
scale experiments in DIP database. This justifies the use of
weights for combining different data sets.

Since it is known that two interacting proteins are very
likely to share the same localization, same function and to
co-express in a gene microarray experiment, we used the lo-



calization homogeneity, function homogeneity and gene ex-
pression distance to validate reliability of interactions. The
localization (function) homogeneity measurement for a set
of interactions is calculated by dividing the number of inter-
actions with co-localized (co-functioned) protein pairs by
the total number of annotated interacting protein pairs in
the set [22]. We use “subcellular localization” and “cellu-
lar role” annotations in YPD [4] as protein localization and
protein function annotations, respectively. We consider two
proteins as co-localized (co-functioned) as long as there is
at least one of localizations (functions) shared. The gene
expression distance is obtained from Spellman gene expres-
sion data [21].

We construct our weighted graph of protein interaction
network as described in the previous section using these
data sets and reliability estimates.

4.2 Statistics of the Data

Our definition of PathRatio ensures that generally the
value of the k-th component will drop with the increase of
k if paths of all lengths exist, and therefore, we can approx-
imate our measurement by the first few components. How-
ever, we still need to investigate the shortest path length we
should consider for one edge. Apparently, if two vertices do
not share any neighbors but their neighbors are connected,
the first non-zero component to be considered is PR4.

Definition 6: An alternative path between two vertices
A and B for (A,B) ∈ I is a path from A to B with length
greater than 1. Shortest alternative path (SAP) of an edge
(A,B) is defined as the shortest path between A and B after
we delete the edge (A,B).

As now we are interested in finding reliable interactions,
we consider only those protein pairs with experimental ev-
idence of interactions. We calculate the distribution of the
length of the shortest alternative path for all edges and list
the result in Table 2.

Table 2. Shortest alternative path length.
SAP edges percentage

2 3075 33.9817
3 1824 20.1569
4 1461 16.1454
5 807 8.91811
6 221 2.44226
7 37 0.408885
8 11 0.12156

≥ 9 0 0
No alternative path 1613 17.8252

From Table 2, we can see that only less than 20% edges
do not have alternative paths, i.e., are not in a cycle. No
edges have shortest alternative path length greater than 8.

Most edges have very short alternative path length. Only
less than 5% edges have shortest alternative path length
greater than 5. Upon this observation, we approximate
PathRatio measurement by its first four components:

PR(A,B) =
5∑

k=2

PRk(A,B).

The computational complexity is O(|P | ∗m5) where |P |
is the total number of vertices in the graph while m is the
average number of a protein’s neighbors. Considering the
following properties of our protein interaction network, this
time complexity is still acceptable: Firstly, most proteins
are connected by only a few other proteins. Therefore, m
is small. Secondly, most highly connected proteins are con-
nected with low connection proteins (the many-few prop-
erty) [15]. Therefore, the extreme cases that every vertex
on a path has lots of neighbors rarely happen. In our experi-
ments, it only takes a few minutes to calculate our PathRatio
using C++ on a Pentium-4 Xeon 2.8GHz machine with 1GB
memory.

In addition, comparing with known short characteristic
path length property, we find another interesting short al-

ternative path property:
Shortest alternative path between two vertices of an

edge, if exists, is always short.

As a result of this property, even if the direct connection
between two vertices is disrupted, it is very likely that there
is still another short path to connect the two vertices. Intu-
itively, this may be the result of the two known properties of
small world network. According to high clustering coeffi-

cient property, vertices are likely to form clusters in a small
world network and, therefore, the disruption of one edge
normally will not strongly change the topological property
of the network. Thus the two vertices are still expected to
have small characteristic path length. Therefore, this prop-
erty is expected. This short alternative path property brings
redundancy, stability and robustness to the network. All
these properties are observed in biological systems.

4.3 Effectiveness of PathRatio Measurement in
Assessing Reliability of Interactions

To validate that our PathRatio measurement can be used
to assess interaction reliability, we rank interactions accord-
ing to their PathRatio values. Then we select interactions
with the highest PathRatio values. As quality measurements
for the set of selected interaction, we use average proba-
bility, function homogeneity, localization homogeneity and
average gene expression distance. The average probability
is calculated as the average value of the initial probabili-
ties on the interactions. It reflects the composition of inter-
actions from interaction data sets with various reliabilities.



High average probability means there are high percentage
of reliable interactions. In case of tied ranks, we averaged
quality measurements among interactions within the rank.

As the only previous work using alternative path, IRAP
[3] is also proposed to detect reliable interactions among
a given set of interactions. It is shown that IRAP outper-
forms IG1 and IG2 measurements in selecting reliable in-
teractions. Therefore, we choose to implement the method
and compare the performance with our method. The results
are shown in Figure 3.
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Figure 3. Comparison of quality of top protein
pairs selected.

Figure 3 demonstrates that a decrease in PathRatio re-
sults in a decrease of the average probability, function ho-
mogeneity, localization homogeneity and an increase of
gene expression distance. Therefore, the proposed PathRa-
tio measurement provides a good indication of the reliabil-
ity of an interaction.

Comparing our method with IRAP in Figure 3, we ob-
serve:

• The reliable interactions found by PathRatio have
higher average probability, higher function homogene-
ity, higher localization homogeneity and lower gene
expression distance. This shows that our method out-
performs IRAP.

• The IRAP values for interactions are very coarse.
From our experiment, top 1107 interactions have the
same IRAP value of 0.974195. Therefore, it is impos-
sible to distinguish the reliability difference of these
interactions by IRAP. Then the next 295 interactions
have the same IRAP value of 0.961376. This comes
from IRAP’s using only the strongest alternative path.
In fact, many interacting protein pairs are connected
by an alternative path of length 2 and both edges on
this path have the same highest possible IG1 value in
the graph. Therefore, they all have the same high-
est possible IRAP value. As a result, IRAP is inca-
pable of distinguishing the reliability of these interac-
tions. Comparatively, our PathRatio measurement is
very fine-grained.

4.4 Finding Additional High Confidence Interac-
tions Undetectable by Mutual Clustering Co-
efficient

To compare with the method using mutual clustering co-
efficient, we test whether our new measurement can find
additional high confidence interactions.

We choose to consider only those edges whose mutual
clustering coefficient is 0, i.e., the two proteins do not have
any shared neighbors. We calculate the PathRatio between
the two proteins and select those with highest PathRatio val-
ues. We expect that these interactions are still reliable inter-
actions.

In Figure 4, we calculate the average probability of inter-
actions of these top selections. Figure 4 demonstrates that:
(a) interactions with high PathRatio are enriched by reli-
able interactions, and (b) the more interactions we choose,
thus the lower average PathRatio, the smaller the percentage
of reliable interactions is. Therefore, though the geometric
version of mutual clustering coefficient is one component of
our PathRatio, it is not the only component that is effective
in selecting reliable interactions. Our measurement can de-



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 4 8 16 32 64 128 256 512
Top selections

A
ve

ra
g

e 
P

ro
b

ab
ili

ty

Figure 4. Finding additional high confidence
interactions.

tect additional high confidence interactions that are missed
by mutual clustering coefficient.

YGR232W YKL145W

YLR421C YGL048C

YHR200W YFR010W

YBL025W

YER022W

Figure 5. An example of a high confidence
interaction.

Figure 5 gives an example of a real interaction that two
proteins do not share any neighbors but are strongly con-
nected by paths of length 3. To evaluate the reliability of the
interaction (YHR200W,YFR010W), we list all length ≤ 3
paths between the two proteins and neighborhoods of the
two proteins. The interactions (YHR200W,YGR232W),
(YHR200W,YLR421C), (YGR232W,YGL048C),
(YLR421C,YGL048C), (YGR232W, YKL145W),
(YLR421C,YKL145W), (YKL145W,YFR010W) and
(YGL048C,YFR010W) are all detected by small scale ex-
periments in DIP. The interactions (YHR200W,YBL025W)
and (YHR200W,YER022W) are detected by Ito data set
[12]. Though the proteins YHR200W and YFR010W
do not have any shared neighbors, as they are densely
connected by paths of length 3, the interaction between
them, (YHR200W,YFR010W), is still very likely to be
real. In fact, this interaction is detected by small-scale
experiments in DIP and is also detected by large-scale
experiments in Gavin protein complex data [8], confirming

our prediction. The mutual clustering coefficient in this
case, however, is 0 and therefore is unable to detect this
high confidence interaction.

4.5 PathRatio as a Similarity Measurement Based
on Interaction Profile

Even though our main focus above is to use PathRatio
to select reliable interactions, we can easily apply this mea-
surement to any two vertices in the protein interaction net-
work. This, basically, gives a similarity measurement be-
tween two proteins in the network. This similarity mea-
surement can be used for clustering proteins based on inter-
action profile or finding potential protein interactions. As
most clustering methods need input in the format of sim-
ilarities or distances between objects, which is in differ-
ent format from the connections between objects in pro-
tein interaction data, one method to cluster proteins is to
first transform pairwise connections into pairwise similari-
ties. In [20], the mutual clustering coefficient based on an
unweighted graph is used to define the similarity between
two proteins. Another usage of extending the definition of
PathRatio to all protein pairs is to predict potential interac-
tions that are missed by current experiments [10]. Pairs of
proteins with high mutual clustering coefficient in [10] or
high PathRatio in this paper and no direct supporting ev-
idence represent predicted interactions. Here, we use our
weighted graph model and the PathRatio as the definition
of similarity and compare the performance. We expect that
our top similar protein pairs have better quality than the old
method given in [20] and [10]. Though IRAP is only pro-
posed to find reliable interactions, we naturally also expect
IRAP measurement to be capable of finding false negatives
and defining similarity between two proteins based on their
interaction profile. Therefore, we also apply their measure-
ment to all protein pairs and compare the result with our
method.

To compare the performance, we rank protein pairs
based on IRAP values, mutual clustering coefficient values
and PathRatio values in each method. Then we selected top
50, 100, 200, 400, 800, 1600, 3200, 6400, 12800, 25600 and
51200 pairs. We measure the quality of these top selected
protein pairs using localization homogeneity, function ho-
mogeneity and average gene expression distance. The re-
sults are shown in Figure 6. MCC in the figure refers to
mutual clustering coefficient method.

Figure 6 shows that, at various cutoffs, top protein pairs
selected using our method generally have the highest lo-
calization homogeneity, the highest function homogeneity
and the lowest average gene expression distance among the
three methods. Therefore, it demonstrates the effectiveness
of our method in defining similarity between proteins based
on protein interaction profile and finding potential protein
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Figure 6. Comparison of quality of top protein
pairs selected.

interactions.
Comparing with detecting reliable interactions (true pos-

itives), the weakness of IRAP in this case is more obvious.
In fact, a strikingly large number of protein pairs (10130)
have the same IRAP value of 0.974195. Therefore, it is
not an effective similarity measurement based on interac-
tion profile.

5 Discussion and Future Work

We presented a weighted graph model of protein interac-
tion network to represent protein interactions from different
data sets. Then we proposed a novel topological measure-
ment for protein pairs under this model. Our experiments
show the effectiveness of our measurement.

The measurement here is used to rank and select most
reliable interactions. As an extension, we can also use this

measurement to estimate the posterior reliability value of
an interaction upon the knowledge about its local topology.
Comparing with the method in [10], our integration of mul-
tiple data sets will allow us to compare the different dis-
tributions of PathRatio values for different data sets. This
may be exploited to estimate the posterior probability of an
interaction.

In addition, we also discovered two interesting proper-
ties of protein interaction network: (a) two vertices of an
edge are likely to have a short alternative path, and (b) two
vertices of an edge are likely to co-appear in a complex net-
work with dense connections inside. Though our experi-
mental data clearly show these properties, we plan to rig-
orously investigate whether these are general properties of
any small world networks.

Though in our experiment, the computational time for
calculating PathRatio is not prohibitively high, we are in-
vestigating a new algorithm for lowering the time complex-
ity to accommodate large networks for other organisms (e.g.
C. Elegance [14] and Drosophila melanogaster [9]) and new
data sets of protein interactions.
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