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A TOPOLOGICAL METHOD FOR BOUNDED SOLUTIONS
OF NONAUTONOMOUS ORDINARY DIFFERENTIAL EQUATIONS

JAMES R. WARD, JR.

Abstract. The existence of bounded solutions to nonlinear nonautonomous
ordinary differential equations is studied. This is done by associating the given
equation to nonlinear autonomous ones by means of a family of skew-product
flows related by homotopy. The existence of a bounded solution to the original
differential equation is then related to the nontriviality of a certain Conley
index associated with the autonomous differential equations. The existence
of nontrivial bounded solutions is also considered. The differential equations
studied are perturbations of homogeneous ones.

The purpose of this paper is the further development and application of an
approach introduced in [W] for the study of nonautonomous ordinary differ-
ential equations. The key idea is to apply the index theory of Conley [C] to
compact isolated invariant sets in the skew product flows associated with such
equations, and to then form conclusions concerning the existence, multiplicity,
and stability properties of bounded solutions of the original differential equa-
tion.

Many ordinary differential equations in RN may be viewed as perturbations
of homogeneous problems, and these are the type of problems this paper is
devoted to. We will thus consider ordinary differential equations which may be
written in the form

(0.1) x' = f(x, t) + g(x,t),        (x' = dx/dt)
where f(Ax, t) = Apf(x, t), for all k > 0 and some p > 1, and g(x, /) is
of lower order in x at infinity. We usually assume / and g are uniformly
almost periodic in t.

Our interest in using the Conley index theory lies in the fact that the index
is, under suitable conditions, a homotopy invariant which carries both existence
and stability information on compact isolated invariant sets. We introduce skew
product flows into the problem because the index is defined only for (local)
dynamical systems, so that time invariance is essential.

In order to study (0.1 ) we introduce a skew product flow associated with (0.1 )
on the product space RN x //(/) x H(g) where //(/) denotes the hull of the
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710 J. R. WARD, JR.

function 11-> f(x, t). We then imbed this flow, it, into a homotopy of flows
with the idea of showing it to be equivalent on a given isolating neighborhood
to a simpler flow on E^ x //(/) x H(g). The approach sometimes taken is
to homotopy it to a product flow where one factor of the product is defined
on RN by an autonomous ordinary differential equation and the other factor
is defined in a simple way on H(f) x H(g). The index of the product flow
is then calculated with the smash product of the indices of the factors. This
approach raises the question of which skew-product flows may be homotopically
equivalent on compact isolating neighborhoods to product flows, an interesting
question we will not answer here. Related results appear in [Me-W] and [W.l].

In this paper we will relate the flow defined by (0.1) to the flows defined by
(0.2) x' = r(x,0)
where /* € H(f). That is, we "freeze" coefficients, an idea used also by
Muhamadiev [M] in connection with a degree theoretic approach to obtain
existence for periodic solutions of (0.2) ; these results are presented in [K-Z].

In § 1 we prove a lemma regarding index products of the type occurring in
this paper; in §2 we state some of our main results; §3 concerns linearization
and nontrivial solutions; and §4 has two examples.

The reader is assumed conversant with the Conley index theory which is
described in [C] (or see [R] or [Sm]), with skew product flows (see, e.g. [Se]),
and with uniformly almost periodic functions (see, e.g., [F]).

1. A LEMMA ON THE INDEX OF PRODUCTS

Let it i and n2 be (local) flows defined on locally compact metric spaces X\
and X2, respectively. If K¡ c X¡ for i = 1,2 are compact isolated invariant
sets then K\ xK2 is a compact isolated invariant set for the product flow it\xit2
on X\ x X2 and the Conley index of K\ x K2 in the flow it\ x it2, which we
denote by h(it\ x n2, K\ x K2), is equal to the smash product h(itx, K\) A
h(it2, K2). That is, the (Conley) index of a product is the smash product of the
indices of the factors; see [C] or [R]. The following lemma from [Me-W] gives
a sufficient condition for the index of a product to be nonzero. It is useful to
us because many of our invariant sets will be product sets with the properties
of those in the lemma. The proof is included for the convenience of the reader.
Lemma 1.1. Let it¡, X,■, í = 1,2, be as above and suppose X2 is a compact
space. Let K\ cli be a compact isolated invariant set for it\, so that K\ x X2
is a compact invariant set for it\xn2. If h(it\, K\) ^ 0 then h(it\xit2, KyxX2)

Remark 1.1. Here and throughout this paper we will use the notation [Y*, z]
to denote the homotopy type of a compact pointed space of the form 7* =
yu{z} where Y is compact z £ Y is the distinguished point, and U denotes
disjoint union. Thus [Y*, z] will always be a disconnected homotopy type. The
notation (Y, z) will be used for compact pointed space Y with distinguished
point z, and [Y, z] for the homotopy type of (Y, z). We will also generally
use A ~ B between pointed spaces A , B to denote homotopic equivalence.
Proof of Lemma 1.1. Since h(it\ x it2, K\ x X2) = h(it\, K\) A h(it2, X2) and
h(n2, X2) = [Xj , z], if the lemma is false then we must have h(it\, K\) A
[X;,z] = Ö.
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NONAUTONOMOUS ORDINARY DIFFERENTIAL EQUATIONS 711

If (A, p) is any representative in h(it\, K\) then h(it\ x it2, K\ x X2) =
[W, w0] where W = Ax X}/(A x{z}U{p}x X¡), w0 = [Ax {z} U {/?} x X*],

and X\ = X2 U {z}. We have obviously

(W, wo) = ((A x (X2 U z))/(^ x {z} U {/>} x (X2 U {z})), «;<,)
~((AxX2)/({p}xX2),w*)

where w* = [{p} x X2].
Now suppose [W, wq] = 0. Then, letting W\ = (AxX2)/({p}xX2), we have

\W\, w*] = 0 and hence there is a homotopy Gß , 0 < /z < 1, on (W^ , w*),
with Gi = 1, the identity, and G0(z) = w* for all zelf,. Let P: (ITi , w*) -»
^ be defined by /'(a, b) = a if (a,b) ^ w* (i.e., (a, 6) 0 {p} x X2) and
P(w*) — p; then P is a continuous mapping with the quotient topology on
(Wx,w*) into (A,p). Now fix b* e X2 and define Q: A -» (W, w*) by
0(a) = (a, ¿7*) if a ^ p and Q(p) = w* ; ß is continuous. The homotopy
//u = PoGftoQ on (y4, p) shows (A, p) ~0, contrary to our hypothesis. This
proves the lemma.

2. Perturbed homogeneous problems and freezing coefficients

Let N > 1 and f, g :RN xR^>RN continuous functions. It will always be
assumed that both / and g are bounded and uniformly continuous on all sets
of the form KxR where K is a compact subset of RN . It will also be assumed
that both / and g are locally Lipschitz in their first variables, uniformly in
their second variables. That is, for each xeR" there is a number ô > 0 and
a number L > 0 such that \f(x, t) - f(y, t)\ < L\x - y\ for all \x - y\ < ô
and (el, and similarly for g.

For x e R and w : RN x R -► E^ we let wT(x, t) = w(x, x + t) for
(x, t) € RN x R. The hull of w , H(w), is defined by

H(w) = cl{u;T : x e E}

where the closure is taken in the topology of uniform convergence on compact
subsets of l"xl. The space of continuous functions on 1'xl into E"
with the topology of uniform convergence on compact sets will be denoted by
Cc(Rk x E, E"), or just Cc if there is no chance of confusion. The space Cc
is metrizable. The assumptions made above concerning / and g imply that
//(/), H(g), are compact in Q(RN x E, RN) and H(f, g) is compact in
QCR^xE, R2N). Let [/, g] be the mapping (x, t) ►-+ (f(x, t), g(x, t)) from
EN x E into EN x E^ . If h* e //([/, g]) then there are unique f* e H(f) and
g* e H(g) with Ä*(x, i) - (/* (x, 0> £*(■*. 0) fora11 O, 0 € R* x R. The
natural injection //([/, g]) >-* H(f) x H(g) given by h* ■-> (/*, g*) allows
us to identify h* with (/*, g*). That is, [/, g] with (/, g) so that we may
think of //([/, g]) as a subset of H(f) x H(g), and we will write H(f, g)
for H([f, g]). In general H(f, g) is a proper subset of //(/) x H(g) but
sometimes these sets are equal, and this will be important in the sequel.

We are interested in the existence of bounded solutions (and associated in-
dices) to perturbed problems such as

(2.1) x' = f(x, t) + g(x,t)
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712 J. R. WARD, JR.

and

(2.1)* x' = r(x,t) + g*(x,t),        (/*, g*) G H(f) x H(g).
We will do this by relating (2.1) (and (2.1)*) not just to the nonautonomous

system x' - f(x, t) but by relating (2.1) to the family of autonomous equations

(2.2) x' = f*(x,0),        /* G//(/).
Note that /*(• ,0) is a function in the closure of the set {g G CC(RN, RN) :

g = /T(-, 0) for some x G E}. If /* € H(f) is a translate of / then
f*(x, 0) = f(x, x*) for some fixed x* G E; hence we say that we are "freez-
ing" coefficients in x' = f(x, t) to obtain (2.2). Define a (local) flow ß on
RN xH(f) by ß(v,f*,t) = (x(t;v,f*(-,0)),f*) where x(t; v, /*(-, 0))
is the solution to (2.2) with x(0; v , f*(- ,0)) = v.

Theorem 2.1. Let f and g be functions as described above i.e., bounded and
uniformly continuous on all sets of the form K x R, K compact, and locally
Lipschitz in their first variable uniformly with respect to their second variable.
Assume also:

(HI) There is a number p > 1 such that f(Ax, t) = kpf(x, t) for all A> 0
and (x, t) G E" x E.

(H2) For each f* e H(f) equation (2.2) has no nonzero bounded solutions.
(H3) Let h\ denote the Conley index of {0} x //(/) for the flow ß ; so

hl=h(ß,{0}xH(f)).
(H4) lim^i^oo g(x, t)/\x\p - 0 uniformly in t G R.
Then if h{ ^0 there is (/*, g*) e H(f) x H(g) such that (2.1)* has a

solution u* = u*(t) defined and bounded on E.
Proof. We will divide the proof into six steps.

Step 1: Defining a homotopy of flows. Let (f*, g*) e H(f) x H(g) and p. G
[0, 1 ]. We will consider the family of equations

(2.3„) x' = r(x,fit) + fig*(x,pt).
For (ß,f*,g*) G [0, 1] x H(f) x H(g) let <S>(/i, /*, g*) e CC(RN x E, R")
be defined by

0(p, f*, g*)(x ,t)=T(x, pt) + pg*(x, pt).
Then <S>(p, /*, g*) is locally Lipschitz in x , uniformly in t ; it is also bounded
and uniformly continuous on sets of the form K x R for K compact in E^ .
We define for each // 6 [0, 1] a skew-product flow on RN x H(f) x H(g) as
follows. For (v , f*, g*) G RN x H(f) x H(g) let J(v , p., /*, g") denote the
maximal interval of existence for the solution to the initial value problem

(2.4) x' = ®(n,r,g*)(x,t),
(2.5) x(0) = v.

We now let

D(p) = {(v ,f*,g*,t)eRN x H(f) x H(g) xR:teJ(v,p,r, g*)}
and define

it, : D(p) -l"x //(/) x H(g)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



NONAUTONOMOUS ORDINARY DIFFERENTIAL EQUATIONS 713

by
(2.6) itß(v ,f\g\t) = (x(t;v,p,f*,g*), f*ßt» *;<)■

By x(t ;v,p,f*, g*) is meant the value at / G J(v , p, /*, g*) of the
solution to (2.4), (2.5).

At p = 1 (2.6) defines the usual skew-product flow associated with (2.1),
while at p = 0 we "almost" have a product flow defined by "attaching" to each
(f*, g*) G H(f) x H(g) the autonomous flow in R* defined by x' = f*(x,0).

Step 2:  itß is a flow for 0 < p < 1. Three conditions must hold
(i) itß(v,f*,g*,0) = (v,f*,g*).
Obvious
(ii) itß(v ,f*,g*,t + s) = 1tß(ltß(V , /*, g*,t),s)

for appropriate t,  s.   This is easily verified for 0 < p < 1 just as in the
standard p = 1 case.

(iii) nß is continuous on D(p).
This follows by the continuity of <P and standard results on existence and
continuity of solutions with respect to parameters.

Step 3: itß is continuous in p G [0, 1]. By this is meant that if

{(Pn,v„, (/„*, g*),tn):n= 1,2,...}

is a sequence in [0, l]xRNxH(f)xH(g)xR convergent to (p, v , (f*, g*), t)
G D(p) then (pn , vn ; (/„* ,g*), tn) G D(pn) for all large n and

Kpn(Vn , fn . gn > (n) ~* Mv >/*>£*> 0
as « -> oo. Suppose we have such a sequence. Now

nß(v ,f*,g*,t) = (x(t; v,<p(p,f*, g*)), f; , g¡).
By continuity of <I> we have <S>(p„, f¿ , g¡¡) —> ®(p, f*, g*) as n -> co, and
by the basic theory of ordinary differential equations

x(tn ;vn,pn, f*, g*) = x(t„ ; vn , 0(//„, /„*, g*))

is defined for all large n and converges to x(t; v , p, <I>Cu, /*, g*)) as « —>
oc . Since (/„*, g*)^^ -» (/*, g*)^, = (/;(, ^t) with convergence in Cc, the
continuity of itß follows.

Step 4: The index at p — 0. At p = 0 we have the flow given by

n0(v ,r,g*,t) = (x(t; v , /*(•, 0)), /*, g*)
where x(t; v, /*(•, 0)) is the solution to (2.2) with x(0) — v. This flow
has {0} x H(f) x H(g) as a compact isolated invariant set. Its index may be
computed as follows. We may view the flow it0 as a product of the flow ß and
the flow ñ(g*, t) = g*. Thus we have

h(it0, {0} x H(f) x H(g)) = h(ßxn, {0} x H(f) x H(g))
= h(ß, {0} x H(f)) A h(n, H(g)) = hx A [H(g)*, z] / 0

by Lemma 1.1.

Step 5. The index for 0 < p < 1, and existence for (2.1)*. Suppose there were
a nonempty compact set iVcl^x H(f) x H(g) with {0} x H(f) x H(g) c
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714 J. R. WARD, JR.

N and N were an isolating neighborhood for each itß, 0 < p < 1. Then
if I(p) were the largest invariant set in N for the flow itß we would have
h(itß, I(p)) = h(it0, 1(0)) = h(it0, {0} x H(f) x H(g)) ¿ 0 and thus I(p) + 0
for /i€[0, 1]. This in turn would imply the existence of a bounded solution
to (2.1)* for some (/*, g*) G H(f) x H(g). In order to show the existence of
such a compact isolating neighborhood N it suffices to show that there is an a
priori bound on the norms of all possible bounded solutions to

(2.7) x' = f*(x,pt) + pg*(x,pt).

The bound must be independent of p G [0, 1] and (/*, g*) G H(f) x H(g).
Suppose there are sequences {(/„ , g„)} C H(f) x H(g), {p„} c [0, 1], and

{xn} c C'(E, RN) such that each x„(t) is bounded on E with

sup|x„(i)| = ||x„|| —> OC

as n —» oo, and

(2.8) x'n = f„(xri,pnt) + png(xn,pnt)

for n G N and t G R.
We may choose xn G E so that |x„(t„)| > ¿\\xn\\. Let yn(t) be defined by

yn(t) = Xn^Wx^-" + Xn)/\\xn\\.

We have ||j>„|| = 1 and |y„(0)| > \ for n g N. By using the p-homogeneity of
/„ , n G N, we get

y'n = fn(yn,t\\Xn\\l~P + tn) + gn(t)

where
gn(t) = gn(Xn(t\\Xn\\{-p + T„) , t\\Xn\\{-p + Xn)/\\Xn\\".

There is thus a constant C > 0 such that ||j>Á|| < C for « G N and we may
assume without loss of generality that {yn} converges in CC(E, E^) to some
bounded function y . Since |y«(0)| > \ for all n , we have y ^ 0. Since H(f)
is compact in Cc there is also no loss of generality in assuming f„(x, t + xn)
converges to some f*(x, t) in Cc. By (H4) gn —» 0 as n —* oo and we see that
y = y(t) solves y' = f*(y, 0). Since y / 0 is bounded on E, this contradicts
(H2).

Thus the a priori bound is established, and our arguments at the beginning
of this step show there is some (/*, g*) G H(f) x H(g) for which (2.1)* has
a bounded solution. This proves the theorem.

Remark 2.1. Let /* G H(f); since f*(x, 0) is homogeneous in i G 1" it
follows that (2.2) has no nonzero bounded solutions if and only if {0} is an
isolated invariant set for (2.2). Thus (H2) is really only a local assumption
for each f*. If f(x, t) = |f(x, t) for some C1 function F then under
reasonable hypotheses each f*(x, 0) is a gradient function; in this case (H2)
holds if x = 0 is, for each /*, an isolated equilibrium point. Of course, if /
is independent of t then (H2) may be easy to check. Other examples are given
in the last section.
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Remark 2.2. Instead of the flow ß consider the flow y on RN x H(f, g)
defined by y(v , (/*, g*), t) = (ß(v ,f*,t),f*, g*) for (/*, g*) g //(/, g).
If

h2 = h(y,{0}xH(f,g))¿0,
virtually the same proof implies that (2.1)* has a bounded solution for some
(/* > g*) £ H(f, g). However the calculation of h2 sometimes is more difficult
than h\ .

If h2 t¿ Ü and f, g are each uniformly almost periodic in t then one can
show that the original differential equation (2.1) has a bounded solution. The
argument for this is a standard one: By h2 ^ 0 one has a bounded solution
u = u(t) of (2.1)* for some (/*, g*) G H(f, g). Now t ~ (f(x, t), g(x, t))
is uniformly almost periodic, so (f,g) G //(/*, g*) (see [F]). Hence there
is a sequence (x„) G E such that f*n -» / and g*n —> g as n —> oo. Let
un(t) — u(t + x„) ; then u„ satisfies

K = f*n(Un(t) , t) + g;n(un(t) , t).

We have \u„(t)\ and hence \u'n(t)\ bounded on E. A subsequence of (un)
converges uniformly on compact sets to a bounded function y. It is now easy
to show that

y'(t) = f(y(t),t) + g(y(t),t).
Remark 2.3. In view of Remark 2.2 we will later make use of conditions which
imply H(f, g) = H(f) x H(g) for uniformly almost periodic / and g. In
this case h\ ^ 0 implies h2 ^ 0 and we can apply Remark 2.1 to get bounded
solutions of equation (2.1). In particular, if f(x, t) is T-periodicin /, g(x, t)
is coperiodic in T and T/a> is irrational then it is easy to show //(/, g) =
H(f) x H(G).
Remark 2.4. If each of the hulls //(/) and H(g) are equivalent homotopically
to H(f, g) then the method of Remark 2.2 is preferable. For example, if each
of f(x, t) and g(x, t) and T-periodic in t then each of H(f), H(g), and
H(f, g) are topologically equivalent to Sl, whereas //(/) x H(g) is a torus.

In this case we state the following theorem.

Theorem 2.2. Let f and g be as in Theorem 2.1, and also suppose there exists
T > 0 such that f(x,t + T) = f(x, t) and g(x, t + T) = g(x, t) for all
(x,t)eRNxR. Again assume (H1)-(H4) of Theorem 2.1.

Then if hi ^ 0 the original equation (2.1) has a bounded solution.

Remark 2.5. Notice that here H(f, g) ^ H(f) x H(g) so that this situation is
complementary to the one discussed in Remark 2.3.

Proof. The proof is like that of Theorem 2.1, but using Remark 2.2. Notice
that since //(/) = H(g) = H(f, g) = Sl the index h2 is the same as the index
h.
Remark 2.6. In case / and g are uniformly almost periodic in / and h2 ^
0 we can conclude that (2.1)* has a bounded solution for each (/*, g*) G
H(f, g). If there is a compact set K in RN such that (2.1)* has, for each
(/* > g*) 6 H{f, g), a unique solution with values in K then these solutions
must all be almost periodic; this is due to Amerio. Given in [F] are other
interesting conditions which also imply almost periodicity of the solutions.
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Remark 2.7. Suppose (for simplicity) that g = 0 in (2.1) and that for each
/* G H(f) the zero solution of x' - f* (x, 0) is asymptotically stable. In this
case {0} x //(/) is asymptotically stable for the flow ß and the index h\ is a
disconnected homotopy type. By (H2) u = 0 is the only bounded solution to
(2.1). It follows [W, Corollary 2.8] that u = 0 is a uniformly asymptotically
stable solution of (2.1). This contrasts sharply with the linear case; there are
well-known examples of real square periodic matrix functions A(t) such that
freezing coefficients in x' = A(t)x produces asymptotically stable systems but
the original system is unstable (and has only zero for a bounded solution).

Remark 2.8. More generally than in the preceding remark we may have g / 0.
Suppose hi is not a connected homotopy type then if S — 1(1) = the largest
bounded invariant set in E^ x //(/) x H(g) for the flow iti then h(iti, S) -
hi A [H(g)*, z]. This latter index must also be disconnected since both hi and
[H(g)*, z] are. If S itself is connected topologically then S is asymptotically
stable. More precisely, by Theorem 2.7 of [W], for each open neighborhood U
of S there is an open neighborhood V of S such that if (v , f*, g*) e V then
111 (v > /* > g* > 0 e U f°r a11 t > 0. Moreover if d is the metric on RN x Cc
then d(iti (v , f*, g*, t), S) -» 0 as t —> oo .

Remark 2.9. Theorems 2.1 and 2.2 and Remarks 2.1-2.8 can be extended to
higher order systems of the form

XW = f(x,t) + g(x,t),       xeRN.
The underlying phase space must now be R" x //(/) x H(g) with q = n • N,
of course. The proof is about the same as that for Theorem 2.1, making use
of the fact that if x(t) and x(n\t) are bounded on E then so are x^(t),
1 < k<n-1 .

3. Linearization and multiplicity

Let us first consider in this section perturbed linear problems such as

(3.1) x'= A(t)x + G(x, t),
where xeR", A(t) is a continuous real JVxJV matrix, and G:RN xR-+RN
is continuous. We assume A and G are uniformly continuous and bounded
on all sets of the form K xR, K compact in E^, and G is locally Lipschitz
in its first variable, uniformly with respect to its second variable. We suppose
also that

(3.2) lim G(x,t)/\x\ =0
|x|-0

uniformly for (el.
Consider the (local) flow n{ on RN x H(A) x H(G) given by

iti (v,A*,G*,t) = (x(t ;v,A*,G*), A¡, G*)
where x(t ; v , A*, g*) is the solution to

(3.3) x' = A*(t)x + G*(x,t),        x(0) = v.
We wish to relate iti to the flow ñ(v , A*, t) = (x(t ; v , A*), A*) defined by

(3.4) x' = A*(t)x,        x(0) = v.
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Lemma 3.1. Suppose x = 0 is the only bounded solution to (3.4) for each A* e
H(A). Then S = {0} x H(A) x H(G) is a compact isolated invariant set in the
flow m and h(nx, S) = h(ñ, {0} x H (A)) A [H(G)*, z].
Proof. For p e [0, I] and (A*, G*) G H (A) x H(G) we consider the initial
value problems

(3.5) x' = A*(t)x + pG*(x,t),

(3.6) x(0) = v.
The flows itß(v,A*, G*, t) = (x(t; v , p, A*, G*), A*t , G*) defined by (3.5),

(3.6) are on E^ x H(A) x H(G), for 0 < p < 1. Of course only local existence
is assumed.

If {0} x H(A) x H(G) is not an isolated invariant set for each itß with
a common isolating neighborhood then there are for each integer n > 1,
(An , G„) G H(A) x H(G), pn G [0, 1], and a function x„ on E such that

x'n = A„(t)x„ + p„G„(xn , t)

for all / G E and ||x„|| < \ and \x(xn)\ = j¡ for some i„£l.
Letting yn(t) = x„(t + t„)/||x„|| we see that

y'„ = An(t + x„)yn + pnG„(t)

where Gn(t) = G„(xn(t + x„), t + xn)/\\xn\\ .
Letting n -> oo and going to subsequences if necessary we obtain a bounded

function y / 0 which solves y' = A*(t)y for some A* G H(A). This contra-
dicts our hypothesis on A. Since there is a common (small) isolating neigh-
borhood of {0} x H(A) x H(G) we may perform the homotopy to the flow
%q = ft x it where it(G*, t) = G*, and the result follows by taking the smash
product of the indices.

Remark 3.1. The comments made in Remarks 2.2, 2.3, 2.4 may be adapted
here. That is, we may consider flows on E^ x H(A, G) instead of on E^ x
H(A) x H(G). Again, as in Remarks 2.3 and 2.4 this may be especially useful
if either H(A, G) = H(A) = H(G) or H(A, G) = H (A) x H(G) (here equal
means homotopically equivalent). This is illustrated in the following result on
nontrivial solutions.

The ideas behind Theorem 2.1 and Lemma 3.1 enable us to derive a condition
for a nontrivial bounded solution to (2.1).

Theorem 3.2. Suppose f and g are T-periodic in t, locally Lipschitz in x,
uniformly in t, satisfy (H1)-(H4) of Theorem 2.1, #(0, t) = 0, for all t el,
and:

(C.l) // A(t) = |f (0, t) then for each A* e H (A), zero is the only bounded
solution of (3.4).

(C.2) Let 8(x, t) = g(x, /) - A(t)x ; let ñ be the flow defined by (3.4) and
let hi be as in Theorem 2.1. Suppose

h(it0, {0} x H(A)) A [H(8, /)•, z] f hi A [H(A , 8 , /)*, z,].
Then (2.1) has a nontrivial bounded solution.
Remark 3.2. Notice each of H(A), H(8, f), and H(A, 8, f) is either a point
or S1.
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Proof. We consider a skew product flow determined by (2.1). For (A*, 8*, /*)
G H(A,8,f) let iti(v,A*,8*,p,t) = (x(t;v, A*, 6*, ft), A\, Q*t , ft)
where x is the solution to

(3.7) x'= A*(t)x + 8*(x,t) + f*(x,t)
(3.8) x(0) = v.

We use two homotopies essentially defined for 0 < p < 1 by

(3.9) x' = pA*(pt)x + p8*(x, pt) + f*(x, pt),
as in Theorem 2.1, and

(3.10) x' = A*(t)x + p8*(x, t) + pf*(x, 0,
as in Lemma 3.1.

In a small neighborhood of Sq = {0} x H(A, 8, f), (3.10) and arguments
like those of Lemma 3.1 show that the index of So is h(ito, {0} x H(A)) A
[H(8, f), z]. On the other hand, (3.9) and arguments similar to those of
Theorem 2.1 show that there is a largest compact invariant set Si for the flow
iti and its index is hi A [H(A, 8, /), Z\\. Since h(iti, So) ^ h(iti, Si) and
So c Si we conclude that (2.1)* must have at least one nontrivial bounded
solution y for some (A*, 8*, /*) G H (A, 8, f). But then there isa t £
R such that (A*, 8*, /*) = (Ax, 8r, fT) and u(t) = y(f - t) is a nontrivial
bounded solution of (2.1).

Remark 3.3. If only almost periodicity is assumed we must seek a solution of
(2.1) as the limit of un(t) = y(t - xn), as in Remark 2.3. But the limit function
may be the zero solution.

Remark 3.4. If no characteristic multiplier of (3.4) is in modulus equal to 1
then(C.l) holds.

4. A FEW SIMPLE examples

The conditions of Theorems 2.1 and 3.2 can in some interesting cases be
easily checked. Our examples are chosen to illustrate this.

Example 1. Let p¡(t), i = 1, 2, 3, be continuous, positive, T-periodic func-
tions. Consider the system

(4.1) x' = y-px(t)x\    y' = z+p2(t)y\     z' = x+pz(t)z\

First of all, hx = I? A [S1, z] (cf. [C]); here [Sl, z] = [Sl ¿i {z}, z]. In
notation of Theorem 3.2, A is a constant matrix, 0 = 0, and / is T-periodic.
Thus

[H(A, 8, /)*, z,] = [//(/)*, z,] = [Sl, z,],        z 0 Sl,

and
[H(8,fY,z] = [Sx,z],        z$S\

Now A has one eigenvalue with positive real part and two eigenvalues with
negative real part. Thus h(ito, {0} x H(A)) = Z1 . We have

h(it0 , {0}) x H (A)) A [H(8 , /)•, z] = I1 A [S1 , z], z 0 Sl,
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and
hiA[H(A,8,f)\zi] = I?A [S\z]A[Sl,z],        z¿SK

It is easy to show [C] that these two indices are different. Thus Theorem 3.2
implies that (4.1) has a nontrivial bounded solution.

Example 2. Let p : E —> E2 be a continuous periodic function of period T > 0
where it/T is irrational. Consider

/A -v\ (x'\      (sini     cos/ \ fx3\       ,.v
(42) Uj = (co8r   -sinJU3J+PW-

Fix t € [0, 2ïï] and consider

(4.3) x' = sin(-r)x3 + cos(x)y3,    y' = cos(t)x3 - sin(t)y3.

Let g(x, y) = 5X4 - ^y4 . Then along solutions

£g(x,y) = sin(x)(x6+y6).

Thus for x t¿ 0, n the system (4.3) is gradient-like [C, p. 13] and can have only
the isolated equilibrium (0,0) as a bounded solution. When x = 0 or it this
may be verified directly. Thus (0, 0) is an isolated invariant set for all values
of t and the homotopy index is a constant, say ho . The case x - 0 is easily
shown to have index I1 . Thus ho = E1 ^ 0. Unlike the previous example, the
flow ß for this system is not a product. Viewing (4.3) as a family of systems
parameterized by x in E2 x [0, 2it], one sees that as x changes a rotation in
the x, y axes results. As x varies from 0 to 2it, the axes rotate through an
angle of it radians. The exit sets from a neighborhood of the origin undergo
the same rotation. Identifying the end points x = 0 and x = 2it one sees that
the union of exit sets, 0 < x < 2it, corresponds to the edge of a Moebius strip.
Identification of the exit sets gives the index h(ß, {0} x //(/)) : it is the pointed
two-dimensional projective space [C, p. 11]. By Theorem 2.1 and Remark 2.3,
equation (4.2) has a bounded solution.

Remark 4.1. More generally in Example 2 one may assume that the module
Mod(p) and Mod(^) has intersection {0} (where A is the sin, cos matrix in
(4.2). That is, Z n Mod(p) = {0}. The details will be omitted here. In case p
is 271-periodic, it is already known that (4.2) has a 27r-periodic solution [K-Z,
p. 249].
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