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A TOPOLOGICAL PROOF
OF THE EQLWARIANT DEHN LEMMA

ALLAN L. EDMONDS

Abstract. An elementary topological proof is given for a completely general version
of the Equivariant Dehn Lemma, in the spirit of the original proof of the nonequiv-
ariant version due to C. D. Papakyriakopolous in 1957.

1. Introduction. The proof by W. H. Meeks III and S.-T. Yau [1981] of the
Equivariant Dehn Lemma and the related Equivariant Sphere and Loop Theorems,
using techniques from the theory of minimal surfaces, was a major breakthrough for
the study of group actions in 3-manifolds. In particular it provided a key ingredient
for the proof of the Classical Smith Conjecture (cf. H. Bass and J. W. Morgan
[1984]), as well as for other more recent results.

In this paper we present a purely topological proof of the Equivariant Dehn
Lemma, using a tower argument in the spirit of Papakyriakopolous [1957]. Using our
relatively naive approach we have been unable to prove equivariant versions of the
Loop and Sphere Theorems. Recently, however, M. J. Dunwoody [1984] and W.
Jaco and H. Rubinstein have announced combinatorial proofs of these results,
motivated by minimal surface considerations.

Our purpose in writing this paper is to provide as simple a proof as possible of the
main result, in the greatest possible generality, making the theorem more accessible
to geometric topologists. It should be emphasized that the minimal surface approach
provides a more powerful guiding hand in many problems (only the details are
formidable!). The results of M. H. Freedman and Yau [1983] and Meeks and G. P.
Scott [1983], for example, still seem inaccessible from the present point of view.

The main result of this paper was announced at the Conference on Combinatorial
Methods in Topology and Algebraic Geometry, Rochester, N. Y., 1982, and a
simplified version of the proof for the group Zp has appeared in the proceedings of
that conference (Edmonds [1985]). The reader may find that paper to be a useful
introduction to the present version.

The following is the statement we shall prove. Note in particular that there are
neither compactness nor orientability assumptions in the statement of the result. All
manifolds, subspaces, and mappings are understood to be piecewise linear unless it
is explicitly indicated otherwise. The exceptional set for a group action is the set of
points with nontrivial isotropy group.
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606 A. L. EDMONDS

Theorem. Let G be a finite group of homeomorphisms of a 3-manifold M. Let
C c dM be a simple closed curve such that (i) C - 0 in M, (ii) for all g e G either
g(C) = C or g(C) n C = 0, and (iii) C is transverse to the exceptional set E of the
group action. Then there is an embedded 2-disk D c M such that (iv) 9/) = C, (v) for
all g e G either g(D) = D or g(D) n D = 0, and (vi) D is transverse to E.

Easy examples show that if hypothesis (iii) fails, then no disk satisfying conclu-
sions (iv) and (v) need exist. (For an example, consider the involution on S2 X I
with fixed point set Sx X /, and C = Sx X {0}.)

In dimensions at least 5 the analogue of the ordinary Dehn Lemma is trivial, by
general position. On the other hand, the obvious analogue of the Equivariant Dehn
Lemma in all higher dimensions is easily seen to be false. This fact is surely
motivation for thinking that the three-dimensional theorem might be false! For an
explicit example take M = D2 X S", zz > 2, with Z acting by rotation by 2tt/p on
D2 and by the identity on the S" factor. Let C be a perturbation of Sx X {x0} in
Sx X S" so that, by general position, C is embedded and T\C)nC = 0 for
1 < i < p — 1. Intersection numbers show that any disk which C bounds musts
intersect the fixed point set (0} X 5"".

2. Overall strategy of the proof. Suppose that a finite group G acts on a 3-manifold
M. Let E(G, M) (or just E(G) or even E, if no confusion results) denote the
exceptional set (x e Af: Gx + {e}}. A map <p: D -» M will be called a Dehn disk
for the curve C c dM if tp is an immersion, <p|9Z) parametrizes C homeomorphi-
cally, <p is transverse to the exceptional set for the G action on M (written
<p fp E(G)), and <p-x(E(G))nI,(cp)= 0, where 2(<p) = (x e D: <p-x<p(x)* {x}}
is the singularity set of <p. A subset X of M will be said to be G-equivariant provided
that either g(X) = X or g(X) n X = 0 for g e G; it is G-invariant if g(A) = A"
for all g e G. A map /: M -* N of G-spaces is G-equivariant, or a G-map, if
/<*(*)) = g(/(*)) for all x e M and g e G. Let Gc = (g e G: g(C) = C}.

Proposition 2.1. Let G be a finite group of orientation preserving homeomorphisms
of an orientable 3-manifold M, and let C c dM be a G-equivariant simple closed curve.
Suppose that there is a G—equivariant Dehn disk <p: D —> M for C which meets the
exceptional set E(G) in at most one point, lying in E(GC). Then there is a G-equi-
variant embedded Dehn disk for C.

Proof. First consider the case when Gc = [e], that is G freely permutes the
translates of C. Then the hypothesis implies that C is nullhomotopic in the
G-manifold M0 = M - E(G). Therefore, in the orbit space M0* the image C* of C
is also nullhomotopic. By the ordinary Dehn Lemma, C * bounds an embedded disk
D* in A/0*. The component D of the preimage of D* in M which contains C is the
required G-equivariant embedded Dehn disk for C.

Now consider the case when Gc # [e). The hypotheses imply that tp: D -» M is
a Gc-equivariant map (for a suitable action of Gc on D by rotations) which is an
immersion and meets E(G) transversely in a single point which is fixed by Gc. We
may suppose that Gc fixes the origin 0 in D. Excise the interior of a small invariant

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



A TOPOLOGICAL PROOF OF THE EQUIVARIANT DEHN LEMMA 607

regular neighborhood N of E(G) in M to obtain a manifold M0 on which G acts
freely. Then C c 9M0 is homotopic in M0 to a G-equivariant simple closed curve
C0 c 9M0 - 9Af which links the fixed point set of Gc. Passing to G orbit spaces we
find that C* and C0* are simple closed curves in 9 Af0* and that C* = C£ in Af0*.
Now one may apply the Shapiro-Whitehead [1958] version of the Dehn Lemma for
planar domains, or the version of the Dehn Lemma proved in Hempel [1976], to
obtain a properly embedded annulus A* c M* with dA* = C* U C*. Let A be the
component of the preimage of A* in M which contains C. Filling in a meridian disk
for dA — C i nN provides the required G-equivariant embedded Dehn disk for C.
D

Thus the strategy for the proof of the Equivariant Dehn Lemma in the orientable
case is to systematically reduce the intersection of an arbitrary Dehn disk with the
exceptional set of the action. This will be accomplished in several steps by lifting
pieces of the action to universal coverings in a tower construction similar to that
pioneered by Papakyriakopolous. First in §3 we show that the general case can be
reduced to the case of an orientation preserving action with only cyclic isotropy
groups. Then in §4 we describe the process of lifting group actions. Next in §5 we
describe the general equivariant tower construction. In §6 the main result is further
reduced to the case of a G-invariant simple closed curve (so that G is cyclic) by a
tower argument. In §7 the case of a cyclic group of prime order is then handled by
another tower argument. The case of an arbitrary cyclic group is then dealt with
using a tower and inductive argument in §8.

3. Reduction to the orientable case. In this section we prove first that one may
assume that M is connected, second that one may as well assume M is orientable,
and third that one may further assume that the action of G on M preserves
orientation and has an exceptional set which is a 1-manifold (equivalently, all
isotropy groups are cyclic).

LEMMA 3.1. If the Equivariant Dehn Lemma is true for connected manifolds, then it
is true in general.

Proof. In the general case let M' be the component of M containing C and let
G' be the maximal subgroup of G leaving M' invariant. Any G'-equivariant Dehn
disk for C in Af' is automatically a G-equivariant Dehn disk for C in Af.    D

Proposition 3.2. // the Equivariant Dehn Lemma is true for orientable manifolds,
then it is true in general.

Proof. Suppose that G acts on the connected, nonorientable manifold Af and
that C c 9Af is a G-equivariant simple closed curve which is nullhomotopic in Af.
Let p: M° -» M be the orientable double covering. Let C° be one of the two loops
in p~x(C). Then C° is nullhomotopic in Af °. Let G° be the group of all lifts of all
elements of G to M°. Then C° is G°-equivariant. Assuming that the Equivariant
Dehn Lemma is true for orientable manifolds, there is a G°-equivariant embedded
Dehn disk D° for C° in Af °. Then p(D°) is the required G-equivariant embedded
Dehn disk for C in M.   D
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Proposition 3.3. If the Equivariant Dehn Lemma is true for orientation preserving
actions on orientable manifolds with all isotropy groups cyclic, then it is true for
arbitrary actions on orientable manifolds.

Proof. Observe that the set X of points x in M with isotropy group Gx
containing either (i) a noncyclic orientation preserving subgroup or (ii) an orienta-
tion reversing element having x as an isolated fixed point is a discrete G-invariant
set in the interior of Af. Then C is nullhomotopic in M - X by general position.
Therefore we may as well assume that X = 0.

Let G0 c G be the normal subgroup of orientation preserving elements, which we
may assume has index 2. Then all G0 isotropy groups are cyclic, and the exceptional
set E(G0) is a 1-manifold. The G-equivariant loop C may be assumed to bound a
G0-equivariant embedded Dehn disk D.

First consider the case that D n E(G0) = 0, so that G0 freely permutes the
G0-translates of D. Since G0 is normal in G, E(GQ) is G-invariant and may (and
shall) be assumed to be empty. The force of this assumption is that E(G) is now a
(possibly empty) surface whose various components are the fixed point sets for the
orientation reversing elements of order 2 in G.

Perturb the inclusion <p: D -> Af to be transverse to E(G). Then <p~x(E(G))
consists of a number of pairwise disjoint simple closed curves. We show how to alter
the Dehn disk <p for C to reduce the number of these simple closed curves (after the
first stage of the process, cp may no longer be an embedding). Let y be an innermost
curve of <p~x(E(G)) in D. Assume y is fixed by g g G - {e}. Let A be the 2-disk
that y bounds in D. Define tp': D -* M to be <p outside A and to be g ° <p on A.
Since y was innermost on D, neither tp(intA) nor g°<p(intA) meet E(G). Now
Im(<p') lies to one side of E(G) near <p'(9A), so a small perturbation cp" of <p' has
fewer curves of intersection with E(G). Continuing in this way one eventually
obtains a Dehn disk for C which misses E(G) completely. Now one may construct
the required embedded G-equivariant Dehn disk for C by applying the ordinary
Dehn Lemma in the orbit space of the free part of the action, as before.

Now consider the case when the G0-equivariant embedded Dehn disk <p: D -* M
meets E(G0) in one point. Let Gc = {g ^ G: g(C)= C}. There will be two
subcases to consider: (i) Gc cyclic of order n and (ii) Gc dihedral of order 2zz. In
either case we may assume <p rp E(G).

In the first subcase (px(E(G)) consists of the isolated point 0 (fixed by Gc) and a
collection of simple closed curves. An innermost curve of <p~x(E(G)) which does not
contain 0 may be eliminated just as above. If the only innermost curve of cp'x(E(G))
contains 0, the same interchange, followed by a small perturbation, still eliminates a
curve of intersection and maintains a single isolated point of intersection with
E(G0). One gets down to the situation where tp~x(E(G)) is a single isolated point of
E(G0). Thus C is homotopic in the free part of the action to a small linking circle to
E(G), which can be assumed to be G-equivariant. Now the proof is completed just
as in the reduction of the orientable case.

In the last subcase, where Gc is dihedral of order 2zz, C intersects E(G)
transversely in 2zz points. Near the point given by E(G0) n <p(D), E(G) n <p(D) is
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the cone on 2zz points. In D - <p~x(E(G0)) the set tp~x(E(G)) is a 1-manifold.
Consideration of the reflections in G along the surfaces in E(G) shows that
<p~x(E(G)) is homeomorphic to a cone on 2zz points plus, perhaps, some simple
closed curves. One may eliminate an innermost simple closed curve by the inter-
change procedure above (actually one eliminates n such at once). Thus one may
assume that we have a G0-immersion tp: D -* M with <p rp E(G) and <p_1(£(G))
the cone on 2zz points. One may arrange that <p is Gc-equivariant on a neighborhood
of <p~x(E(G)). Let A be a small invariant regular neighborhood of E(G) U 9Af in
M whose preimage in D is a regular neighborhood U of cp~x(E(G)) U 9D in D.
Excising the interior of N from Af and the interior of U from D, one may apply
Proposition 2.1 to the 2zz freely permuted loops d(D - intU) -* 9(Af - intN), to
obtain the required G-equivariant Dehn disk for C as the union of <p(t/) and the 2zz
Dehn disks for d(D - int U).   D

4. A lifting lemma. In this section we shall describe a way of lifting group actions
in universal coverings. This is basically well known (compare Bredon [1972, §1.9],
for example), but we need a slightly more general result than appears elsewhere.

Lemma 4.1. Suppose G is a finite group of homeomorphisms of a 3-manifold N and
that X c N is a compact connected subspace invariant under G such that the inclusion
induced homomorphism 7t,(A, x0)-> 7r,(A, x0) is trivial. Let p: M -* N be the
universal covering and X' be a subspace of M which projects homeomorphically to X.
Then there is a unique action of G on M such that X' is G-invariant andp is a G-map.

Remarks. In applications, A will be either a point or a nullhomotopic invariant
simple closed curve lying in 9 A. The existence of A' is of course equivalent to the w,
hypothesis. Different wrtrivial invariant sets in N may lead to different lifted
actions in Af. This ambiguity will be important in §7.

Proof. Each element g g G can be lifted to the universal covering M in many
ways. Fix a point x' g A'. Then a lift of g is uniquely determined by the condition
that g(x') lie in A'. This prescribes an element-by-element lifting of G to Af. It
must be checked that g(h(x)) = gh(x) on M. It suffices to check this for x = x', of
course. Equivalently, it must be checked that g(x') G A' implies g(A') = A'. The
TTf hypothesis implies that the various lifts of A are all pairwise disjoint. The
conditions g(x') g A' and g(A) = A imply that g(A') is a lift of A which meets
A'. Therefore g(X') = X' as required.   G

5. The tower construction. Let the finite group G act on the 3-manifold Af, and
suppose that C c 9Afx is a G-equivariant loop. Let D -» Af, be a Dehn disk for C,
extended to an equivariant map <p: G X D -» Af,. We suppose that <p is a simplicial
map for triangulations of G X D and M, with respect to which G acts by simplicial
isomorphisms. Let Nx = A(Image(<p), M") be the G-invariant stellar neighborhood
obtained by passing to the second barycentric subdivision Af" of Af, rel Image(tp).
(That is, each simplex of Mx not contained in Image(<p ) is starred at its barycenter,
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yielding the first relative barycentric subdivision; the process is then repeated to
obtain Af". Compare Hempel [1976, p. 48].) Assume that A, is not simply
connected, and let p: M2 -» Nx be the universal covering of A,. Suppose x, G
Image(tp) is a fixed point for G. Choose a lift <p2: {e} X D -» Af2 of tp|{ e } X D, and
choose x2 G <p2({e) X D) n/z 1(jc1). By Lemma 4.1 there is a unique G action on
M2 covering the given action on A, fixing the point x2. Give M2 the triangulation
lifted from the triangulation of A,. Then G acts simplicially on Af2. Now extend <p2
to a G-map <py G X D -* M2 by equivariance. Then <p2 is simplicial, where G X D
has the same triangulation it started with. Let A2 denote the neighborhood
A(Image(<jp2), Af2" rel Image(<p)). The diagram

A2      c M2
V21 [P2

G X D   -»   Nf c Mf

will be called an elementary tower for <p.
Let T denote the fixed triangulation of G X D. Define the complexity of the

simplicial map tp: G X D -» M to be {(a, t): o, t g F; tp(a) = <p(t)}. Just as in the
standard tower arguments of Papakyriakopolous, the complexity of <p2 is less than
that of <p,. If iTf(N2) # 0, then one may iterate the construction of an elementary
tower:

A3      c Af3

fi] i Pi
GX D   -»   A2 c M2

Again the complexity is reduced. If w,(A3) + 0, one repeats the procedure. Eventu-
ally one reaches a stage q>y G X D -» Nk at which the complexity can no longer be
reduced. One concludes that Tf(Nk) = 0. The diagram

Nk
I   77

G X D       ->       Nf c Af!

where tt is a composition of inclusions and covering maps will be called a complete
tower for tp. Note that tt immerses Nk onto a regular neighborhood of Image(tp) in

Nf.
Recall from §4 that one may lift a group action to the universal covering by

specifying that some lift of an invariant 7rrtrivial subset be invariant. The tower
above was constructed by requiring that a chosen point over a fixed point be fixed.
In §8 we shall use the corresponding tower constructed by specifying that a chosen
lift of an invariant, nullhomotopic simple closed curve be invariant.

6. Reduction to the case of an invariant simple closed curve. Here we show that we
can systematically reduce the set of points where a Dehn disk for an equivariant
simple closed curve meets the exceptional set until it only meets the exceptional set
for the subgroup which leaves the simple closed curve invariant.

<Pa
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Proposition 6.1. Let G be a finite group of homeomorphisms of an orientable
3-manifold M such that the exceptional set E(G) is a nonempty 1-manifold. Let
C c 9AÍ be an equivariant simple closed curve which is nullhomotopic in M, and let
Gc = [g G G: g(C) = C). Then there is a Dehn disk <p: D -» Af for C such that
<p(D) n E(G) c E(GC).

Proof. We consider Dehn disks <p: D -» M for C and show how to reduce
<p(F>) n (E(G) - E(GC)), while perhaps increasing the size of ¡p(D) n E(GC). As
before we only consider Dehn disks tp such that tp rp E(g) and (p_1(£(G))nS(<p)
= 0. Suppose there is a point x, g <p(D) n (E(G) - E(GC)), and let g be a
nontrivial element of G such that g(x,) = x,. Since x, is not in E(GC), x, is not
fixed by any nontrivial element of Gc.

Let (g) denote the cyclic subgroup of G generated by g, and consider the
following tower in which g fixes the preimage of xy

(g)XD      -       Nf
ft

Let Ef = E n Nf, and note that g permutes the arcs in £,. It is understood that
Nk is simply connected, and so dNk consists of 2-spheres permuted by the action of
g. Further ir~x(Ef) consists of arcs, each mapped homeomorphically into Ef by it.
The main point to see here is that if A is an arc of F,, then (g)acts transitively on
the set ir~x0JjgJ(A)). (This uses the condition that <p_1(F)n2((p)= 0.)

Let Ck = <pk({e) X dD). Since dNk is a union of 2-spheres and g(Ck) n Ck — 0,
there is at least one 2-disk A c dNk such that g(A) n A = 0. Define <p' to be the
Dehn disk given by ir\A. We shall see that (i) <p' (\) E, (ii) <p'~x(E(G) - E(GC)) n
2(<p') = 0, and (iii) #<p'_1(£(G) - £(GC)) < #<p \E(G) - £(GC)). Given these
three assertions, one can perturb tp' slightly near points of E(GC) to give a map <p":
£) -» M such that

<p" rp E(G),        <p"x(E(G)) n S(<p") = 0 ,

and
#<p"_1(F(G) - E(GC)) < #<p~x(E(G) - E(GC)).

Repeating the procedure then produces the required map.
Now (i) is clear since A n ir"x(Ef).
Assertion (ii) follows from the observation that if A is an arc of £, and tt~x(A)

meets A more than once, then A c E(G). If a single arc of ir~x(A) has both end
points in A, then one can join the end points to create a 1-cycle which meets <pk(D)
exactly once, contradicting the fact that Hf(Nk) = 0. If two arcs of ir~x(A) meet A,
then some non trivial power gr maps one to the other, hence leaves A invariant; then
gr fixes A and leaves C invariant.

To check (iii), first note that for each arc A of F,, it~X(A) meets <p(D) exactly
once. This follows from the fact that <p~x(E(G)) n 2(<p) = 0. As noted in the
preceding paragraph, tt~x(A) meets A at most once if A c E(G) - E(GC). But by
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construction there is at least one arc A (the one containing the point xx) which lies
in E(G) - E(GC) and whose preimage does not meet A, since ir~x(A) is a single arc
fixed by g. Statement (iii) follows.   D

Remark. Given the result of Proposition 6.1, one can excise the Gc-invariant set
E(G) - E(GC) from Af to obtain M', say. The curve C is now nullhomotopic in
Af'. If one can find an embedded, Gc-equivariant Dehn disk for C in M' (hence in
Af ), then Proposition 2.1 applies to yield a G-equivariant embedded Dehn disk for C
in Af. In other words we have justified the following reduction in the proof of the
Equivariant Dehn Lemma:

Corollary 6.2. In order to prove the Equivariant Dehn Lemma in general, it is
sufficient to prove it in the case of a compact, connected, orientable manifold M on
which the finite group G acts by orientation preserving homeomorphisms, leaving the
simple closed curve C c 9 M invariant.   D

Since C may be assumed to be invariant, C 171 £(G), and G orientation preserv-
ing, it follows that G is a cyclic group Zm of order m. We next address the case when
G is cyclic of prime order p.

7. The case of an invariant curve and a group of prime order. In this section we
prove the following special case of the Equivariant Dehn Lemma.

Proposition 7.1. Let G be a finite cyclic group of prime order p acting nontrivially
by orientation preserving homeomorphisms on the orientable 3-manifold M. Suppose
that C c 9A/ is a simple closed curve which is invariant under G, misses the
exceptional set E(G), and is nullhomotopic in M. Then there exists an embedded disk
D in M with dD = C which is invariant under G.

Proof. By Proposition 2.1 it suffices to find a Dehn disk <p: D —» M for C such
that q> <J\ E(G), and <p~x(E(G)) consists of a single point. We will thus in general
show that one can reduce the size of (p_1(£(G)) when it consists of more than one
point. (Clearly <p_1(£(G)) # 0, since, otherwise, covering space theory would imply
that G moves C off itself.)

We consider Dehn disks <p: D -> Af for C which are immersions transverse to
E(G) such that in addition (p~x(E(G)) n 2(<p) = 0, where

2(qp) = {x e D: <p_1<p(x) * {x}}

is the singularity set of tp. Such Dehn disks exist since one can apply the ordinary
Dehn Lemma to choose <p to be an embedding and then perturb it to be transverse
to£(G).

Let such a Dehn disk <p: D -> M be given. We show that either we can produce
the desired Dehn disk, or at least we can find another one which satisfies the given
technical conditions for which the preimage of £(G) is smaller.

Begin by extending <p to a G-map y y G X D -» Af. Triangulate G X D and Af so
that <Pf is simplicial. Let Af[ denote M with this triangulation. Let Af" denote the
second barycentric subdivision of Ml relative to Image(tp), and let

A, = A(lmage(<p), M(')
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be the simplicial neighborhood of Image(tp) in Af". Note that £(G) n Nf consists of
arcs Aj transverse to each cp(g X D).

Suppose that by chance w^A,) = 0. Then C is a G-invariant curve lying on a
2-sphere S c 9A,. Let A be the closure of one of the complementary domains of C
in ST Then A is the required Dehn disk for C meeting £(G) exactly once.

Now suppose that tr^Nf) ± 0. We will construct a tower as described in §5. In
this case some care will be required with the choice of lifting of the group action to
the covering spaces.

Let tt: M2 -» Nx be the universal covering of Nx and let <p2: D -> M2 be a lift of
«Pi-

Lemma 7.2. Either there is a lifting of the G action to M2 such that g(<p2(9Z))) n
<p2(9D) = 0 for all nontrivial g g G, or there is a lifting of the G action to M2 such
that G(<p2(dD)) = tp2(9D) and tr~x(E(G)) n <p2(D) consists entirely of fixed points.

Proof. Let E(G) n <p(D) = {x^..., x„), and let ■7t~x(E(G)) n y2(D) =
{ylt..., y„}, where w( >>,) = x,. Consider the various actions of G on M2 lifting the
given action on Aj given by deciding that yi should be fixed, i = 1,..., zz. Suppose
that all of these actions leave <p(dD) invariant. We shall then show that all these
actions coincide and hence fix the entire set {yx,..., yn}.

For each /, <p~x(x¿) is a single point, say z¡, since tp_1(£(G)) n S(tp) = 0.
Choose a base point z0 g 9D and choose paths À,: (/,0,1) -» (D,zQ,z¡). Now
[grfX,] = [<pA,] in the set [/, 0,1; A,, C, z¡] of homotopy classes of paths from C to
z,, since we have assumed that the lifting of the G action to Af2 which fixes y2 leaves
<p2(C) invariant.

Now let ju, be a path in D running from zx to z¡. We claim that gtpju, = cpp¡ rel

{0,1}:
g<PP, = ^(«P^r1*^^,)    (since fi, = Xfx*X,)

= g'pXfX*g<pXi

= (pXf1 * T * tpX,    (for some loop t in C)

= q>Xfx*(pX¡    (since C = 0 in A,)
- W,-

Covering space theory now implies that the action fixing yx also fixes each y¡.   D
Now erect a complete tower as in §5 (where A¿ is simply connected):

It is understood that if at any stage it is possible to choose the elementary tower so
that the lifted curve over C is no longer invariant, then this is done. At the z'th stage,
let £, denote the (nonempty by construction) exceptional set for the group action on
N¡. Either <p^(9F>) is G-invariant and Ek = ir~x(Ef) or there is some smallest z'n < k
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such that (p,(9/D) is zzoz invariant for i > z0. In the latter case G freely permutes the
preimages of C in Nk, since G has prime order. We consider these two cases
separately.

Case (i). <pk(dD) is G-invariant. By construction ■n~x(El) = Ek. In particular, for
each arc A of £,, tr~x(A) is a single arc, fixed by G. Since iTf(Nk) = 0, dNk is a
union of 2-spheres. Therefore <pk(dD) is an invariant curve on an invariant 2-sphere
S on which G must be acting by rotations. Let A be the closure of one of the
complementary domains of <pk(dD) in 5. Then A n Ek = A n 7r_1(£,) is a single
point and the restricted projection map tt\: A -» Af yields an immersed Dehn disk
for C which meets £(G) transversely in a single point. Proposition 2.1 shows that
there is then a G-invariant embedded Dehn disk for C, as required.

Case (ii). <pk(dD) is mapped off of itself by the nontrivial elements of G. Since
Wf(Nk) = 0, dNk is a union of 2-spheres. Say that <pk(dD) lies in the 2-sphere
S c 9A;.. At least one of the two complementary domains of tpk(dD) in S must miss
Ek, since G maps <pk(dD) off itself. Let A be the closure of such a complementary
domain. For each arc A of £,, ■zr_1(^4) consists either of a single fixed arc or of p
arcs freely permuted by G. As in the proof of Proposition 6.1, A can meet tt~x(A) in
at most one point. By construction there is at least one arc A0 of £, such that
ir~x(A0) is a single fixed arc. Clearly A n tt~x(A0) = 0. Now the restricted
projection tt\: A -> M yields a Dehn disk for C such that w| is an immersion
transverse to £(G), (ir\yx(E(G)) n1(7T\) = 0, and 7z| meets £(G) fewer times
than the original cp did.    D

8. The case of an arbitrary invariant curve. In this section we inductively extend
the argument of §7 to complete the proof of the Equivariant Dehn Lemma.

Lemma 8.1. Let G be a finite cyclic group of orientation preserving homeomorphisms
of an orientable 3-manifold Af, and suppose that C c dM is a G-invariant simple
closed curve which is nullhomotopic in M and misses E(G). Then any Dehn disk for C
meets the fixed point set MG.

Proof. Let cp: D -» Af be a Dehn disk for C and extend by equivariance to a
G-map <p,: G X D -» M. Construct a complete tower as in §5, except that at each
stage one lifts the action of G by requiring that a lift of C to the next stage be
G-invariant (cf. the remarks in §4 about the Lifting Lemma). The result is a complete
tower

Nf c Af !

where as usual A, denotes a regular neighborhood of (pf(G X D) and Nk is simply
connected. Let Ck c Nk be (pk({e) X dD). Then Ck is a G-invariant simple closed
curve lying on a G-invariant 2-sphere S in dNk. Then S necessarily contains a fixed
point for G. It follows that A! contains a fixed point, and hence that cpx(G X D) and
the original <p(D) do also.   D

<Pa

GxD' <)i
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Proposition 8.2. Let G be a finite cyclic group of order zzz acting nontrivially by
orientation preserving homeomorphisms on the orientable 3-manifold M. Suppose that
C c 9Af is a simple closed curve that is invariant under G, misses the exceptional set
E(G), and is nullhomotopic in M. Then there exists an embedded disk D in M with
dD = C that is invariant under G.

Proof. We shall proceed by induction on the order of G. The induction is started
by Proposition 7.1, which was the case for prime order groups. Suppose now that m
is not prime, but is divisible by a prime p. Let H be a subgroup of G of index p. By
induction there is an //-invariant embedded Dehn disk D for C. Then D n £(//) is
a single point x0 fixed by H. On the other hand Lemma 8.1 shows that D contains a
fixed point of all of G. We conclude that the point x0 is fixed by G. The other points
of D n E(G) are freely permuted by H and therefore fixed by elements of order p
not in H. We conclude further that H is a split subgroup, with complement Q of
order p. Let A be a small G-invariant simplicial neighborhood of G(D) in the
second barycentric subdivision of a triangulation with respect to which G acts
simplicially. Then £(//) n A is a single arc of points fixed by the whole group G.
Apply Proposition 7.1 to find a Q-invariant embedded Dehn disk A for C lying in
the manifold A. Then, although A may not be invariant under all of G, we see that
at least A n £(G) is a single point.

Now the tower argument of Lemma 8.1 produces a G-invariant Dehn disk for C
which meets £(G) in exactly one point. Proposition 2.1 then applies to complete the
proof.   D
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