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Abstract

In this paper, we take a topological view of unsupervised learn-
ing. From this point of view, clustering may be interpreted as trying
to find the number of connected components of an underlying geo-
metrically structured probability distribution in a certain sense that
we will make precise. We construct a geometrically structured prob-
ability distribution that seems appropriate for modeling data in very
high dimensions. A special case of our construction is the mixture of
Gaussians where there is Gaussian noise concentrated around a finite
set of points (the means). More generally we consider Gaussian noise
concentrated around a low dimensional manifold and discuss how
to recover the homology of this underlying geometric core from data
that does not lie on it. We show that if the variance of the Gaussian
noise is small in a certain sense, then the homology can be learned
with high confidence by an algorithm that has a weak (linear) de-
pendence on the ambient dimension. Our algorithm has a natural
interpretation as a spectral learning algorithm using a combinatorial
laplacian of a suitable data-derived simplicial complex.
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1 Introduction

An unusual and arguably ubiquituous characteristic of modern data anal-
ysis is the high dimensionality of the data points. One can think of many
examples from image processing and computer vision, acoustics and sig-
nal processing, bioinformatics, neuroscience, finance and so on where this
is the case. The strong intuition of researchers has always been that natu-
rally occuring data cannot possibly “fill up” the high dimensional space
uniformly, rather it must concentrate around lower dimensional struc-
tures. A goal of exploratory data analysis or unsupervised learning is to
extract this kind of low dimensional structure with the hope that this will
facilitate further processing or interpretation.

For example, principal components analysis is a widely used method-
ological tool to project the high dimensional data linearly into a lower di-
mensional subspace along the directions of maximal variation in a certain
sense. This serves the role of smoothing the data and reducing its essential
dimensions before further processing. Another canonical unsupervised
technique is clustering which has also received considerable attention in
statistics and computer science. In this paper, we wish to develop the
point of view that clustering is a kind of topological question one is ask-
ing about the data and the probability distribution underlying it: in some
sense one is trying to partition the underlying space into some natural con-
nected components. Following this line of thinking leads one to ask whether
more general topological properties may be inferred from data. As we
shall see, from this the homology learning question follows naturally.

As a first example, consider Fig. 1 which consists of a cloud of points in
IR?>. The viewer immediately sees three clusters of points. This picture
motivates a conceptualization of clustering as data arising from a mixture
of distributions, each of which may be suitably modeled as a Gaussian
distribution around its centroid. This is a fairly classical view of clustering
that has received a lot of attention in statistics over the years and more
recently in computer science as well. In contrast, consider Fig. 2.

Here one sees three clusters again. But these are hardly like Gaussian
blobs! In fact, one notices immediately that two of the clusters are like
circles while one is like a Gaussian blob. This picture motivates a differ-
ent conceptualization of clustering as trying to find the connected compo-
nents of the data set at hand — this has led to the recent surge of interest in
spectral clustering and related algorithms (see [8] and references therein).
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Figure 1: A random data set that is consistent with a mixture of Gaussians.
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Figure 2: A random data set in IR? that is not obviously consistent with a
mixture of a small number of Gaussians. Yet it seems to the viewer that
there are clearly three groups of data.



Now if one were interested in simply learning the “number of clusters”,
a natural spectral algorithm would proceed by building a suitable near-
est neighbor graph with vertices identified with data points, connecting
nearby data points to each other, and finding the number of connected
components in this data derived graph. But if one wanted to learn further
structure, then one needs to do more. Building on the notion that the num-
ber of connected components is related to the zeroth homology and is one
of the simplest topological invariants of the space, we see that it is natural
to ask if one could learn higher order homologies as well.

More generally, one may ask

1. What are flexible, nonparametric models of probability distributions
in high dimensional spaces?

2. What sorts of structural information about these distributions can be
estimated from random data? In particular, can one avoid the curse
of dimensionality in the associated inference problems.

In this paper, we explore these two questions in a certain setting. We fol-
low the intuition that in high dimensional spaces, the underlying proba-
bility distribution is far from uniform and must in fact concentrate around
lower dimensional structures. These lower dimensional structures need
not be linear and so as a first step, we consider them to be submanifolds
of the ambient space. The data then concentrates around this submanifold
M though it does not lie exactly on it. This allows us to define a family of
geometrically structured probability distributions in a high dimensional
space where the distribution p has support on all of R” though it concen-
trates around a low dimensional submanifold. This includes as a special
case the mixture of Gaussians, a classical and much studied family of prob-
ability distributions. We introduce this geometrically structured family in
the next section.

We next consider the task of estimating the homology of the underly-
ing manifold from noisy data obtained from the geometrically structured
probability distribution concentrated around this manifold. Our main re-
sult is that a two stage variant of the algorithmic framework proposed
in Niyogi, Smale, and Weinberger (2006; henceforth NSW) is robust to
Gaussian noise provided the noise is low. These algorithms may be in-
terpreted as a kind of generalized spectral clustering using the combina-
torial laplacian of a suitable data derived simplicial complex. In particu-
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lar, the complexity of the algorithm depends exponentially on the dimen-
sion of the manifold but depends very weakly on the ambient dimension
in this setting. In this sense our results are analogous to the findings of
Dasgupta (2000) and later ([1, 27] among others) which show that poly-
nomial time algorithms for estimating mixtures of Gaussians may be ob-
tained provided the variance of the Gaussians in question is small in re-
lation to the distance between their centers'. Our results are also a con-
tribution to the ongoing work in geometrically motivated algorithms for
data analysis and PAC style guarantees for computational topology. (see
[14,19,2,3,4,5,6,9, 25,10, 11]).

2 Problem Formulation and Results

In this section we describe a geometrically structured model of a probabil-
ity distribution in a high dimensional space. We then describe our main
result that asserts that it is possible to learn structural aspects of this prob-
ability distribution without encountering the curse of dimensionality.

2.1 Models of Probability Distribution and Noise

The manifold M is conceptualized as a platonic ideal: the geometric core
of a probability distribution centered on it. Data is drawn from this distri-
bution and thus we receive a noisy, point cloud in a high dimensional space.
We formalize this as follows.

Let M be compact, smooth submanifold of R" without boundary. For any
p € M, denote the tangent space at p by 7, and the normal space by N, =
T;-. Since M is a submanifold, we have p € M C R" and 7, and T;- may
be identified with affine subspaces of dimension d and N — d respectively.
With this identification there are canonical maps (respectively) from the
tangent bundle 7 M and the normal bundle N M to R".

Now consider a probability density function P on NM. Then for any
(x,y) € NM (wherez € M and y € T

P(x,y) = P(x)P(y|z)

!In the case of mixture of Gaussians, substantial progress has been made since the
algorithmic insights of Dasgupta, 2000 so that the requirements on the noise have been
weakened.



The marginal P(x) is supported intrinsically on the manifold M while the
conditional P(y|z) is the noise in the normal direction. This probability
distribution can be pushed down to IR" by the canonical map from NM
to RY. This is the probability distribution defined on IR" according to
which data is assumed to be drawn.

One may ask whether the homology of M can be inferred from examples
drawn according to P and what the complexity of this inference problem
is. We investigate this under the strong variance condition. This amounts to
two separate assumptions:

1. 0<a<P(z)<bforallz € M.

2. P(y|x) is normally distributed with mean 0 and covariance matrix
oI where Lis the (D — d) x (D — d) identity matrix.

2.1.1 Mixture of Gaussians

The most obvious special case of our framework is the mixture of Gaus-
sians. Consider a probability distribution P on IR" given by

k
P(x) = Zwi/\/($§ui, %)
i=1

where N (z; 11;, ;) is the density function for the Normal distribution with
mean /i; and covariance matrix ¥;. The weights of the mixture w; > 0 sum
tol,i.e., Zle w; = 1. This is a standard workhorse for density modeling
and is widely used in a variety of applications.

This probability distribution may be related to our setting as follows. Con-
sider a (zero-dimensional) manifold consisting simply of k£ points (identi-
fied with puy, pia, ..., in RY. Thus M = {uy, pto,..., ux}. Let P be a
probability distribution on M given by P(u;) = w;. This manifold consists
of k connected components and the normal fiber N, for each + € M has
co-dimension D. Thus N, is isomorphic to the Euclidean space IR” where
the origin is identified with ;. The probability distribution P(y|z) (where
y € N,)is modeled as a single Gaussian with mean 0 and variance ¥;.
Thus if one is given a collection z1,...,z, of n points sampled from a
mixture of Gaussians, one may conceptualize the data as noisy (Gaussian
noise) samples from an underlying manifold. If one were able to learn



the homology of the underlying manifold from such noisy samples, then
one would realize (through the zeroth Betti number) that the underlying
manifold has & connected components which is equal to the number of
Gaussians and the number of clusters. One would also realize (through
the higher Betti numbers) that each such connected component retracts to
a point. Thus, one would be able to distinguish the case of Fig. 2 from
Fig. 1 automatically.

2.2 Main theorem

More generally, in our case, M is a well-conditioned d-dimensional sub-
manifold of IR”. The conditioning of the manifold is characterized by the
quantity 7 introduced in NSW. 7 defined as the largest number having the
property: The open normal bundle about M of radius r is imbedded in
IRY for every r < 7. Its image Tub, is a tubular neighborhood of M with
its canonical projection map

o : Tub, — M

Note that 7 encodes both local curvature considerations as well as global
ones: If M is a union of several components 7 bounds their separation.
For example, if M is a sphere, then 7 is equal to its radius. If M is an
annulus, then 7 is the separation of its components or the smaller radius.
Our main theorem may be summarized as follows.

Theorem 2.1 (Main Theorem) Consider a probability distribution P satisfy-
ing the strong variance condition described previously in Sec. 2.1. Then as long
as the variance o satisfies the following bound:

V(D = d)o < c@r (1)

for any ¢ < 1, there exists an algorithm (exhibited) that can recover the homology
of M from random examples drawn according to P. Further, if the co-dimension
is high, in particular, if
1 1
D—-—d>A <log(a) + Kdlog(—))
-
for suitable constants A, K > 0, the sample complexity is independent of D.

Therefore the only place where the ambient dimension D enters in the computa-
tional complexity of the algorithm is in reading the data points (linear in D).
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Some further remarks are worthwhile.

1. It is worth emphasizing that the probability distribution P is sup-
ported on all of R”. Even so, the fact that it concentrates around a
low-dimensional structure (M) allows one to beat the curse of di-
mensionality if d << D and the noise ¢ is sufficiently small. A num-
ber of previous results (for example, [15, 16, 17, 26]) have shown
how learning rates depend only on d if the probability distribution
is supported on a d-manifold. It has been unclear from these prior
works whether such a low dimensional rate would still hold if the
distribution was supported on all of IR” but concentrated around
M. Our results provide an answer to this question in the context of
learning homology.

2. The condition on the noise o may be seen as analogous to a simi-
lar condition on mixture of Gaussians assumed in the breakthrough
paper by Dasgupta (2000). As discussed earlier, the mixture of Gaus-
sians corresponds to the special case in which M is a set of k points
(say i, - . ., ux € RP). In that case, 7 is simply given by

1 .
7= 5 min i — 15|
1’7‘7

So the strong variance condition amounts to stipulating that the vari-
ance of the Gaussians is small relative to the distance between their
means in a manner that is similar in spirit to the assumption of Das-
gupta (2000).

3. One complication that we potentially have to deal with is a feature of
our more general class of probability distributions and does not arise
in the case of a mixture of a finite number of Gaussians. There can be
points z € RY,z ¢ M off the manifold where the density function
blows up, i.e., the measure of a sufficiently small ball around = is
very large compared to the measure of similarly sized balls around
points on the manifold.

As an example of such hotspots, consider the simple case of a circle
S' embedded in IR? in the standard way. Let P(z) (for € M) be
the uniform density on the circle and let P(y|z) be N(0,0?) be the
one-dimensional Gaussian along the normal fibers. Now consider
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the measure ; induced on IR? by this geometrically structured distri-
bution. For a ball of radius e centered at the origin (where 1 > € > 0),
it is easy to check the following inequality;,

2¢  _0-=¢? 2e 1

W(B.(0) 2 e T > e
2ro 2mo

On the other hand, the Lebesgue measure ()\) in IR? assigns volume
A(B(0)) = me®. Clearly, %’f blows up at the origin. Thus although the
center of the circle is “infinitely likely”, it needs to be discarded to re-
cover the homology of the circle. This can only be done by choosing
with care the size of the neighborhoods for cleaning the data.

4. As we will elaborate in the later section, the homology finding algo-
rithm can itself be implemented as a spectral algorithm on simplicial
complexes. In spectral clustering, one typically constructs a graph
from the data and uses the graph Laplacian to partition the graph
and thus the data. In our case, since we are interested not just in
the number of partitions (clusters) but also the topological nature of
these clusters (e.g. circle versus point in the example figures before),
we will need to compute the higher homologies. This involves the
construction of a suitable simplicial complex from the data. The com-
binatorial Laplacian on this complex provides the higher homolo-
gies. In this sense, our algorithm may be viewed as a generalized
form of spectral learning.

Our main theorem exploits the concentration properties of the Gaussian
distribution in high dimensional spaces. More generally, one can consider
probability distributions that can be factored into a part with a geometric
core (on the manifold) and a part in the normal directions (off the mani-
fold) following Sec. 2.1. In this more general setting, one can prove

Theorem 2.2 Let M be a compact submanifold of R with condition number T
and let ;1 be a probability measure on R™ satisfying the following conditions:

1. Thereisan s > 0and a positive real number c so that i(Bs(q)) > au(Bs(p))
forany g € M and any p.

2. There is a positive real number 3 < 1 so that u(Bs(p)) < afu(Bs(q)) if
q € Mand d(p, M) > 2s.
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3. In addition, s < 7/5.
4. Thereisa C' > 0 so that (B¢ (0)) > 3.

Then it is possible to give an algorithm that computes from many p-random sam-
ples the homology (and homotopy type) of M. The probability of error can be
estimated in terms of (n, 7, s, C, a, ).

Note, of course, that the existence of a C' in (4) is automatic. However, it
is not possible to give a bound on it terms of the other parameters. Essen-
tially, it is related to the problem of “large diffuse dust clouds”: almost all
of the mass of ;1 can be concentrated on points of probability almost 0 as a
result of which it would be very hard to find the much stronger “signal” of
M. Note, too, that for very reasonable measures, condition (2) is unlikely
to hold for very small values of s because of the “hotspot” example men-
tioned above. Part of the proof of the main theorem is checking that in the
situation of Gaussian noise, for any s, controlling the variance suffices to
ensure (2).

The proof of this is rather easier than the proof of the main theorem, and
follows the same outline. Essentially, one uses the tension between (1) and
(2) to devise a test to eliminate “less likely balls” to clean the data. One
estimates, by the techniques of [NSW] and some elementary proof of the
law of large numbers, the probability of including spurious balls (e.g. ones
centered outside a 2s neighborhood of M) and that one has covered M.
When one is done, one takes the nerve of covering by balls of size 4s that
were allowed in, and, by the results of [NSW], we get a computation of
the homotopy type of M. Finally, it is worth noting that while these argu-
ments allow us to handle a more general setting than our main theorem,
unfortunately, the complexity of the algorithm for this more general case
depends exponentially on NV, the ambient dimension.

3 Basic Algorithmic Framework

The basic algorithmic framework consists of drawing a number of points
according to P, filtering these points according to a “cleaning procedure”,
and then constructing a simplicial complex according to the constructions
outlined in NSW. In other words,
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1. Draw a set of n points z = {1, ...z, } inii.d. fashion from P.

2. Construct the nearest neighbor graph with n vertices (each vertex
associated to a data point) with adjacency matrix

Wi]‘ =1 <— Hl’z—$]|| <s

Thus two points z; and x; are connected if B,/s(x;) and B, /s(x;) in-
tersect.

3. Let d; be the degree of the ith vertex (associated to x;) of the graph.
Throw away all data points whose degree is smaller than some pre-
specified threshold. Let the filtered set be z C z.

4. With the points that are left, construct the set
U = Uze: Be(x)

5. Compute the homology of U by constructing the simplicial complex
K corresponding to the nerve of U according to NSW.

In the above framework, there is a one-step cleaning procedure. Many
variants of the above framework may be considered. Conceptually, if we
are able to filter out points in a neighborhood of the medial axis, retain
sufficient points in the neighborhood of the manifold, then we should be
able to reconstruct the manifold suitably. In this paper we provide some
details as to how this might be done for reconstructing the homology of
the manifold.

3.1 Remarks and Elaborations

In Step 2, of the above algorithm, a choice has to be made for s. As we
shall see, a suitable choice is s = 4 where r is a number satisfying

V8(D —d)o < rand 9r < (V9 —V38)r

Such a number always exists by assumption on the noise in 1.
In Step 3 of the algorithm, a choice has to be made for the value of the
threshold to prune the set of data. A suitable choice here is

r/2T

)

d; > ??Ta cos?(#)vol(B?) where 6 = arcsin(
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In Step 5 of the algorithm, one constructs the nerve of U at a scale e. This e
is different from s chosen earlier (a value € = 9”% suffices but details will
be specified in subsequent developments and in the propositions stated
later). The nerve of U is a simplicial complex constructed as follows. The
j-skeleton consists of j-simplices where each j-simplex consists of j + 1
distinct points z1,..., 241 € Z such that NB.(z;) # ¢. The 1-skeleton of
this complex is therefore a graph where the vertices are identified with the

data (after cleaning) and the edges link two points which are 2e-close.

3.1.1 The Combinatorial Laplacian and its kernel

The homology of the manifold is obtained by computing the Betti numbers
of the data-derived simplicial complex. This, in turn, is obtained from the
eigenspaces of the combinatorial Laplacian defined on this complex (see
[24]). Thus, there is a natural spectral algorithm for our problem that is
a generalization of spectral clustering used in determining the number of
clusters of a data set. Let us elaborate.

1. One begins by picking an orientation for the complex as follows.
Recall that every j-simplex o € K is associated with a set of j + 1
points. If x;, 7, ..., z;; (where i;’s are in increasing order) are the
set of points associated with a particular j-simplex s, then an orien-
tation for this is picked by choosing an ordering of the vertices. A
possible choice is to simply choose the ordering given by [igis . . . 14;].
Therefore if i = [igi; .. .4;] and 7 is a permutation of {0, ..., j}, then

sign(ﬂ)u = [Z'ﬂ.(o)iﬂ(l) .. 'iﬂ(j)]-
As an example, every 1-simplex is an edge and one picks an orienta-
tion by picking an ordering of the vertices that define the edge.

2. A j chain is defined as a formal sum
o= Yo
o

where o, € IR and i € K (the set of j-simplices) is a j-simplex. Let
C; be the vector space of j-chains. This is a vector space of dimen-
sionality n; = |Kj|.
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3. The boundary operators are defined as

3j . Oj — Cj_l
in the following way. For any u € K; (corresponding to the oriented
simplex [z, ... x;,], we have 0; () = >_7_(—1)'; where ; is the ori-

ented j — l-simplex corresponding to [v;,xy, ... 2, 2y, ... 21,]. By
linearity, for any ¢ = 3  a,u, we have

0;(c) = 0, 0(p)

The boundary operators are therefore linear operators that can be
represented as n;_; x n; matrices. The adjoint is therefore defined as

8; . ijl — Cj
and can be represented as a n; x n;_; matrix.
4. The combinatorial Laplacian A; for each j is
Aj = 0;0; + 0j110;1,

Clearly N
i1C =0

5. The Betti numbers by, b, . . . are obtained as the null space of A;.

Remark. It is worth noting that with the definitions above,
AO . Co — C()

corresponds to the standard graph Laplacian where Cj is the set of func-
tions on the vertex set of the complex and C is the set of edges (1-simplices)
of the complex. This kind of a nearest neighbor graph is often constructed
in spectral applications. Indeed, the dimensionality of the nullspace of A,
gives the number of connected components of the graph (by) which in turn
is related to the number of connected components of the underlying man-
ifold. The number of connected components is usually interpreted as the
number of clusters in the spectral clustering tradition (see, for example,
Ding and Zha (2007) and references therein).
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4 Analysis of the Cleaning Procedure

We prove the following A — B lemma that is important in analyses of the
cleaning procedure generally.
Imagine we have two sets A, B C IR” such that

inf —yll=~>0
xeg}yeBHx yll =~

Let there be a probability measure y on IR” according to which points

z1,..., 2, € RP are drawn. We define (for s > 0)
o = inf u(Bi(p))
and

By = sup p(Bs(p))
peEA

Then the following is true

Lemma4.1 Let oy > o > 3 > B, and set h = 2. Then if the number of
points n is greater than 43 log(3) where

3 = max ((1 + % 1og(§)), 4)

then, with probability > 1 — ¢, both (i) and (ii) below are true

(i) for all x; € A, 4 > o8

(ii) for all x; € B, -4 < *18

where d; =3 ,; 1z,eB. (1))

PROOF:Given the random variables z1,...,z,, we define an event A; as
follows. Consider the random variables y; = 1[;,eB,(2;))- Then for each
J # 1, the y;’s are 0 — 1-valued and i.i.d. with mean p(B;(x;)). Define the
event A; to be

1
Ait|o— > i — w(Bi(w:))| > h
JFi
By a simple application of Chernoft’s inequality, we have

h2(n—1)

]P[AZ] < 2e” 7 2
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By the union bound,

n h2(n—1)

PlUA)] <> TP[A] =2ne” 2

i=1

Therefore, if
h2(n—1)
2ne” 7 <0
with probability greater than 1 — 4, for all i simultaneously,
d;

n—1

| — W(Bs(z:))| < h

Therefore, if 2; € A, we have

d;
n—1

> p(Bs(z;)) —h > a—h

and if x; € B, we have

d;

n—1

< p(By(zi)) +h < B+h

Putting in the value of h, the result follows. Now it only remains to check
the bound on n. We see that as long as

n—1> 2 (log(n) + log(2/6))

12
i.e.,
2 2
n>(1+ e log(2/6)) + s log(n)

For ¢ < 3, we have that (1 + -3 1log(2/6)) > 7%, so that it is enough to find
an n satisfying
n > x + xlog(n)

where z = (1 + ;5 log(2/6)). The bound for n now follows from a straight-
forward calculation. O
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5 Analysis of Gaussian Noise off the Manifold

We apply the “A — B”-lemma to the case of manifold (condition number 7)
and the probability measure y obtained by pushing down P as described
earlier. We choose a number r that satisfies

V(D —d)o < rand 9r < (V9 —V38)r

Our data is to be cleaned by considering balls of radius s = 47 centered
at each of the points, building the associated graph and throwing away
points associated to low degree vertices.

In order to proceed, we choose (where R = 9r)

A = Tub,(M) and B = IR” \ Tubg(M)

With these choices, we now lower bound «, and upperbound ;. We will
need the following standard concentration lemma for Gaussian probabil-
ity distributions.

Lemma 5.1 Let X be a normally distributed random variable with mean 0 and
identity covariance matrix I in k-dimensions. If  is the measure (on IR*) asso-
ciated with X, then

B\ k2
vi{z € RF such that ||z||* > k + 6} = P[|| X||> > k+ 6] < (kﬁ——l—5) e70/?

For our purposes, a more convenient form can be derived as

Lemma 5.2 Let X be a normally distributed random variable with mean 0 and
covariance matrix o*I in k-dimensions. If vy, is the measure (on IR¥) associated
with X, then for any T > o>k, we have

v{x € RF such that ||z||* > T} < (eze™*)"/?

_ T
where z = 5.

PROOF:Define the random variable Y = X/o. Clearly, Y is normally dis-
tributed with mean 0 and covariance matrix /. Therefore

vi{y € IR¥ such that ||y||> > k+6} = vp{z € R” such that ||z||?> > ¢*(k+0)}
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Put T = 0%k + 025. We then have

l/k{l’ € ]Rk SUCh that ||IH2 > 0'2(k + 5)} S (m)_k/2€_6/2
02]{7 k/2 —1 T el 2
_ —1/2(%5—k) —T/(c%k)\k/2
e

51 Lower Bounding o;

Consider some = € A and p(B;s(x)) for such an z. Let p = my(z) € M. Then
since ||z — p|| < r, we clearly have

p(Bs(x)) = p(Bar(p))

In turn, we have

wBa)z [ P [ PO

For any © € M, the probability distribution P(y|z) is normally distributed
and we are in a position to apply a concentration equality for Gaussians.

We see that
[ POl =17
BP—dert

_ > 2 er (o= _ a2
T=Pllyl"r < 5= o2 e 29

Therefore, we have

u(Bay () > (1— ) / oy P 2 a1 = )el(B, ) M0

where

Since the curvature of M is bounded by the 7 constraint, we have that
vol(B,(p) N M) > cos®(#)vol(BY)
where 0 = arcsin (5-).
Thus we have
o > a(l — ) cos?(9)vol(BY)

It is worth noting that as D — d (the codimension) gets large, or as o gets
small, the quantity v decreases eventually to zero.

18



5.2 Upperbounding j;

Consider some z € B = R” \ Tubg(M). Noting that s = 47 and R = 9r,
we see

11(Bs(2)) < w(RP\ Tubg_(M)) = u(IR” \ Tubs, (M)

W2\ Tobs (M) = [ P [ Pl

By the concentration of inequality of Gaussians, we have

D—d

2567’2 Tz 2512

< () 7
/ygBmmT; (D —d)o?

Therefore, it follows

5.3 A Density Lemma

In this section, we provide a bound on how many points we need to draw
in order to obtain an suitably dense set of points in a neighborhood of M.
Begin by letting p1, ps, . . . , p; be a set of points in M such that M C U!_, B,(p;).
In NWS, an upper bound was derived on the size of the cover [ as

vol(M)
~ cos?(0)vol(B?)

where 0 = arcsin(g-).
Now we note that

(B > [ P [, Pl
2EMNB,.5(p:) ngmexl
For each z, following the usual arguments, we have

[, Pel=1-7
BP 4Nt

r/2
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where by the Gaussian concentration inequality, we have

T

r2 er? (D—d)/2 2
=Plllyl]?>—] <[ ——— T8o2
=Pl > < (g

We can now state the following lemma that guarantees that if we draw
enough points, we will get a suitably dense set of points in a neighborhood
of M.

Lemma 5.3 Let A; = B, (p;) such that U._, A; form a suitable minimal cover of
M. Let u(A;) > t. Let & = {z1,...,x,} be a collection of n data points drawn
in i.i.d. fashion according to p.

Then, if n > +(log(l) +log(2/6)), with probability greater than 1 — & /2, each A;
has at least one data point in it, i.e., Vi, A; N T # ¢.

5.4 Putting it All Together

We begin by using the following simple lemma.

Lemma 5.4 Let f(z) = (eze *)" be a function of one variable. Then for all
n > 1, we have that

2 2
> Zyn z
V222, fl2) <(0)" </
Further, forall z > z, > 1,
Zx \n
fle) < (2)
PROOF:This is simply proved by noting that f'(z) < 0 forall z > 1. O

We now see that if the co-dimension D — d is sufficiently high, then 5 <
«/2. This is stated as

Lemma 5.5 Let

1

4 1
D—d>— (log(=)+dlog(————) +1
— 196 (Og(a) + Og(cos(@)) + log(

)

we have that B, < 3 < a/2 < %
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PROOF:First consider a,. By the previous argument in section 5.1, we see
that
as > a = a(l — ) cos?(0)vol (BY)

where v < (eze~2)"2" with z = #. Since by our main assumption,
we have that r > v/80+/D — d, we see that z > 8. By lemma 5.4, we have
that v < \/g andso (1 —7v)>1-— \/g In fact, since z > 8 in this case, it
turns out that v < 1 so that

a > gcosd((‘))vol(Bf)

Now consider [3,. By the argument in section 5.2, we have that

ﬁs < ﬁ — (ezefz)(Dfd)/Q
where z = %. Again, by our main assumption, we see that z > 400 so
that

B < (e.400.e400)(P=d)/2

Therefore, for 3 to be less than «/2, it is sufficient for

(€.400.e7400)(P=d)/2 < — co5(H)vol (BY)

a
4

Taking logs, we get it is sufficient for

399 4 . 1
(D —d)/2log(e>” /400) > log(a) + dlog(cos(@)) + IOg(vol(Bﬁl))

Noting that e3%9400 > €392, we see it is sufficient for

1 4 1
Dod>— (log(3) + dlog(— ) +1
~ 196 <Og<a) + dlog(C2y) + loe

&)
vol(B2)
The result follows. U
We are now in a position to prove a central proposition.

Proposition 5.1 Let ju be a probability measure on IR” satisfying the strong vari-
ance condition described in Section 1. Let & = {xy,...,x,} be n data points
drawn in i.id. fashion according to ji. Let ' C T be the data points left after
cleaning by the procedure described previously.
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Then if n > max(A, B), with probability greater than 1 — 6, &' is a set of points
that (i) is in the R-tubular neighborhood of M, i.e., ' C Tubr(M), and (ii) is
R-dense in M, i.e., M C U,ew Br(z). Here

32 4
A =4yl = 4, x);x=1 log(—=
ylog(y) where y = max(4, z);z = 1 + — o (@)ool (B7) 0g(5)
and
B 1 (log : 2?)0l(/\/l) ! )
(1— \/%)COSd(arcsin(L))vol(B;f/Q) d cos?(arcsin(r/27))vol (B2)

4T

PROOF:We show (part 1) thatif n > A, with probability greater than 1—-¢/2,
7' is such that (i) all the points in z that are in T'ub, (M) are retained in 7’
and (ii) no points of 7 that are in Ext(T'ubr(M)) are retained in 7’. We will
prove this by an application of the “A-B” lemma and a calculation of the
precise bounds.

We then show (part 2) that if n > B, with probability greater than 1—-6/2, z
is such that M C U,czurus, (m)Bar (7). We will prove this by an application
of the density lemma and a calculation of the precise bounds.

Taken together, parts 1 and 2 show that if n > max(A, B), with probability
greater than 1 — J, the following facts are true (i) z’ C Tubgr(M) (i) M C
Ugez Bay () C Uger Br(z). The proposition follows immediately.

Part 1:

By lemma 5.5, we see that 5 < a/2. Therefore, h = o — > a/2. By apply-
ing the “A-B” lemma, and choosing A = Tub,.(M) and B = Ext(Tubr(M)),
we see that if n > 4y log(y) where y = max(4, x) and

8 4
x = (1 + el log(g))
the cleaning procedure will retain all points in z N T'ub, (M) while elimi-
nating all points in # N Ext(Tubg(M)). By the calculations in sec. 5.1 and
the proof of lemma 5.5, we see that
a > gcosd((‘))vol(Bf)

Putting this in proves part 1.
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Part 2:
Here we apply lemma 5.3. Let us bound ¢ and [ of that lemma appropri-
ately. Note that by the arguments presented in sec. 5.1, we have

H(A:) = a(L = ) cos” (aresin(=) ol (BY),)

where 7 < (eze™?)P~9/2 such that z =
we have that

ﬁ > 2. Then by lemma 5.4,

w(A;) > (1— \/g)cosd(arcsin(%))UOZ(Bf/Q)

-
Similarly, for [, we have that [ < o (arcgf((f)))vol ik Therefore

log(l) <1 [ dl 1

08(l) < log(vol (M) + dlog( s + gl )
Putting these together, proves part 2. O

Thus we see that the procedure yields a set of points z that are R-dense in
M and entirely contained in an R-tube around M. At this point, we can
invoke the following proposition proved in NSW.

Proposition 5.2 Let S be a set of points in the tubular neighborhood of radius R
around M. Let U be given by

U — UIGSB€<x>

If S is R-dense in M then M is a deformation retract of U forall R < (v/9—+/8)7
and e € ((Rw)ﬂ/mﬁf (R+T)+\/m>
2 ’ 2 :

Now we can prove our main theorem by combining Propositions 5.1 and
5.2.

Theorem 5.1 Let © = {z1,...,z,} be a collection of n i.i.d. points drawn at
random from i satisfying the strong variance condition described earlier. Then,
as long as n > max(A, B) with probability greater than 1 — §, the algorithm
described earlier returns the homology of M.
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6 Conclusions

In this paper, we have taken a topological view of unsupervised learn-
ing from data in a high-dimensional space. Our approach is conditioned
on the belief that in high dimensions, “natural” probability distributions
are far from uniform and concentrate around lower dimensional struc-
tures. To model this intuition we consider a probability distribution that
concentrates around a low dimensional submanifold of the ambient space
with noise in the normal directions. With random data drawn from such a
probability distribution, we show that if the noise is sufficiently small, it is
possible to recover the homology of the manifold by a spectral algorithm
that depends very weakly on the ambient dimension. This result is a step
towards a larger understanding of when we might expect to make effec-
tive inferences in high dimensional spaces without running into the curse
of dimensionality.
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