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Abstract

Internet worms have repeatedly revealed the susceptibil-
ity of network hosts to malicious intrusions. Recent studies
have proposed to employ the underlying principles of worm
propagation to disseminate security-critical information in
a network. Wireless sensor networks can benefit from a
thorough understanding of worm propagation over sensor
networks to defend from worms and to efficiently dissemi-
nate security-critical information. In this paper, we develop
a topologically-aware worm propagation model(TWPM)
for wireless sensor networks. In addition to simultaneously
capturing both time and space propagation dynamics, the
TWPM also incorporates physical, MAC and network layer
considerations of practical sensor networks. Simulation re-
sults show that the proposed model follows actual propaga-
tion dynamics quite closely.

1. Introduction

Computer worms have recently emerged as one of the
most imminent and effective threats against information
confidentiality, integrity and service availability. Internet
worms have repeatedly revealed the susceptibility of Inter-
net hosts to malicious intrusions by compromising millions
of vulnerable hosts at an extremely fast pace [1]–[3]. Some
recent studies (see for example [3]) have shown thatanti-
worms (also referred to asgood worms) can serve as an
effective counterattack tool by spreading disinfection and
immunization information in the same way as malicious
worms. The anti-worms can hence be employed to dissem-
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inate security-critical information at a very fast pace.
An accurate propagation model is instrumental to under-

stand the automated spread of a worm [1]–[3]. Worm prop-
agation models also facilitate the design of real-time detec-
tion strategies. The battery-constrained, time-critical and
military-oriented natures of many sensor networks neces-
sitate a robust security framework. Design of secure sen-
sor networks should therefore consider real-time monitor-
ing, detection and mitigation of malicious worms1. Further,
good worms can efficiently disseminate security-critical in-
formation to the nodes in a sensor network. An accurate
model is necessary to characterize and evaluate propaga-
tion of worms over sensor networks. In this paper, we
analytically derive a novel and accurate worm propaga-
tion model for wireless sensor networks. The proposed
model, referred to as atopologically-aware2 worm prop-
agation model(TWPM), simultaneously captures the time
and space dynamics of worms spreading over a sensor net-
work.

In Section 2, we define worm propagation characteris-
tics that are specific to sensor networks. We parameter-
ize the effects of physical channel conditions, medium ac-
cess control (MAC) layer contention, network layer routing
and transport layer protocol on worm propagation in sensor
networks. Section 3 incorporates these parameters in the
TWPM which borrows its basic formulation from models of
epidemic diseases [5]. The advanced model parameters and
the mathematical treatment following the formulation are
then developed specifically for sensor networks. The basic
model formulation results in a partial differential equation
which is solved in the frequency domain to yield a closed-
form solution for the TWPM. For performance evaluation,
in Section 4 we simulate the spread of a worm over a sensor

1This fact motivated the authors’ prior work [4] which investigated the
spread of active worms over vehicular ad hoc networks.

2The termtopologically-aware scanningwas introduced by Staniford
et al. in their seminal study to refer to worms “which use information
available on a victim’s machine to select new targets” [1].



network. The simulated and TWPM-predicted worm prop-
agation dynamics are then compared to evaluate the accu-
racy of the model. We show that TWPM predicts the worm
propagation dynamics very accurately. Section 5 summa-
rizes key conclusions of this paper.

2. Sensor Network Propagation Parameters
and Assumptions

In this section, we define new worm propagation param-
eters which arise due to the inherent attributes of a sensor
network. Further, in this section we also state the assump-
tions made in this work.

2.1. System Description

We consider a network composed ofN stationary and
identical sensors which are placed on a rectangular (two-
dimensional) grid. The sensors are equipped with omni-
directional antennas which have a maximum transmission
range ofr meters. The horizontal and vertical axes are rep-
resented byξ andη, respectively. To simplify analysis, we
uniformly (and logically) sample both axes and treatξ and
η as discrete variables. Each discrete(ξ, η) position is re-
ferred to as asegment. Let l andh denote the length and
height of a segment, respectively. Here, it should be em-
phasized that this segmentation is only logical with just one
constraint: r ¿ l × h. Due to this constraint, a sensor
in segment(ξ, η) can receive traffic from sensors in seg-
ment(ξ, η) or (at maximum) from sensors in neighboring
segments of(ξ, η). The neighboring segments of segment
(ξ, η) are shown in Figure 1.

The distribution of sensors on the grid is governed by
a two-dimensional, discrete-time random process= (ξ, η).
Each constituent random variableD (ξ, η) of = (ξ, η) de-
scribes thenumber of sensorsin the (ξ, η) segment. The
random variables of= (ξ, η) are assumed to be independent
and identically distributed (IID). Thus on-average we have

E{D (ξ, η)} = E{D}
= average number of nodes per segment.

(1)

We assume that the sensors in a segment are distributed
(located) uniformly within the boundaries of the segment.

Figure 1 outlines that due to ther ¿ l × h constraint,
sensors on the edges of a segment can communicate with
sensor in parts of the neighboring segments. In essence, a
sensor in segment(ξ, η) can only communicate with sensors
inside the thick broken-line of Figure 1. For instance, the
sensor located at the corner of the(ξ, η) segment can at most
send/receive traffic to/from sensors within its transmission
range as represented by the circle in Figure 1.

Figure 1. Neighbors of segment (ξ, η).

2.2. Physical Layer Parameters

In order to simultaneously capture distance and fading
based attenuations in the wireless medium, we employ a
log-normal shadow fading model [6] to define the proba-
bility that a transmitted packet is successfully received in a
sensor network. Previous studies (see for example [7] and
[8]) have illustrated the efficacy of this channel model in
defining ad hoc network topologies. We assume that chan-
nel conditions do not change drastically during transmission
of a given infectious packet. The conditions can, however,
change for different packets.

A packet transmission between two nodesu and v at
a distanced (u, v) from each other is successful if the re-
ceived signal power,pr, is greater than or equal to a certain
threshold powerpr,th. In other words, given a receiver sen-
sitivity, pr ≥ pr,th, a packet transmission fromu to v is
successful if the signal attenuation betweenu andv is con-
strained asβ (u, v) ≤ βth, where the threshold attenuation

is βth = 10 log
(

pt

pr,th

)
dB. The probability of a successful

packet transmission between sensorsu andv in the presence
of shadow fading can then be expressed as [6]

p = Pr {β (u, v) ≤ βth}

=
1
2

+
1
2

erf

(
βth − α10 log (d (u, v))√

2σ

)
. (2)

2.3. MAC Layer Parameters

As opposed to the Internet, worms over sensor networks
will face channel contention which should in theory reduce
the overall rate of spread. Depending on the node density
and MAC layer fairness, the highest achievable probe rate



might be significantly lower than the Internet. A similar
trend has been observed for Internet worms, where after the
initial fast spread phase, worm traffic causes severe conges-
tion at routers and hence the spread rate decreases. Stani-
ford et al. [1] emphasize that future worms will employ bet-
ter scanning techniques to achieve high virulence. In view
of the added constraint of MAC contention, sensor network
worms (good or malicious) should be more bandwidth- and
contention-aware than Internet worms.

Gupta and Kumar [9] showed that a packet transmission
between nodesu andv is successful if:

1. The distance betweenu and v is not greater thanr,
d (u, v) ≤ r

2. For every other nodex simultaneously receiving,
d (u, x) > r

3. For every other nodey simultaneously transmitting,
d (y, v) > r

The above considerations are incorporated in the simula-
tions of subsequent sections. We assume that, to avoid un-
successful transmissions, the sensors employ a CSMA/CA
mechanism with handshaking. Thus, while we account for
channel contention, it is assumed that packet transmissions
are collision-free. Let there beN (ξ, η) nodes in segment
(ξ, η). ThenN ′ (ξ, η) ≤ N (ξ, η) nodes can be granted si-
multaneous channel access in the segment.

2.4. Network and Transport Layer Considerations

Most contemporary Internet worms uniformly scan the
IP address space, that is, every IP address in the232 IPv4
space has an equal probability of being probed. This re-
sults in many “missed scans” due to two reasons: (a) the un-
used IP address space; (b) many of the uniformly scanned
computers are already patched. Stanifordet al. [1] dis-
cussed strategies that can increase the virulence of an In-
ternet worm. One such strategy that has been effectively
employed by many recent worms (e.g., CodeRed v2) islo-
calized scanning. The local scanning worms after compro-
mising a host scan the nearby hosts (e.g., machines in the
same subnet) with a higher probability. This strategy has
proven to be quite effective since presence of a single vul-
nerable host implies that with high probability other hosts
on the same network will also be vulnerable. This method
increases virulence while reducing the outgoing network
traffic. Nevertheless, even localized scanning suffers from
unused IP address scans.

In the localized scanning context, a sensor network
worm has an invaluable resource available to it in the form
of its next-hop neighbor list. We assume that neighbor list
is maintained at each node. This can be achieved by an ad

hoc routing algorithm such as [10] and [11]. An infectious
sensor can spread the infection quite effectively by com-
municating it only to its next-hop neighbors. This strategy,
which we refer to asnext-hop scanning, will provide ef-
fective worm propagation with minimal channel contention
delays. It should be emphasized here that despite the nega-
tive meaning associated with the terminfectious(and conse-
quently the terminfected), in this paperinfectious/infected
sensorrefers to a node which has received the worm pay-
load and is actively participating in spreading the payload.
Thus, no assumption is made about the intent of thein-
fectiouspayload. Throughout this paper we assume that
the worm employs the next-hop infection strategy. Since
the worm under consideration employs (next-hop) informa-
tion from a host to infect other hosts, we refer to it as a
topologically-aware worm[1].

Recent highly virulent worms3 are employing datagram
communications due to the low protocol overhead and the
consequent lower bandwidth consumption. In this paper, we
also assume that infections are transmitted using the user
datagram protocol (UDP). We assume that the worm can-
not determine that a host is already infected. Due to lack
of such knowledge and due in part to the use of UDP, a
node can receive multiple infectious packets from different
transmitters. We assume that a node will be infected when
it receives its first infectious packet. An infected node will
send the packet to its neighbors only once and all subse-
quent duplicate packets received by the infected node will
be dropped.

2.5. Worm Properties

We focus onunknown wormswhich have also been re-
ferred to as zero-day worms and novel worms in previ-
ous literature. For the malicious worm case, we assume
that high virulence and unknown nature of the present
next-hop worm renders immunization ineffective. The un-
known/novel payload assumption is obviously true for the
good worms. Although recent Internet worms have exhib-
ited probabilistic scanning behavior, the infection process
of most known worms is still largely deterministic. This re-
sults in constant infection rates as shown in [1]. We also
assume a constant infection rate for the next-hop scanning
sensor network worm.

3. The Topologically-Aware Worm Propaga-
tion Model

Using the parameters defined in the last section, we now
describe thetopologically-aware worm propagation model
(TWPM).

3The Witty worm [2], which has the fastest spread rate among all
worms to date, had a UDP payload.



3.1. TWMP Formulation

We focus solely on propagation dynamics of unknown
worms and therefore a node can be in one of two possible
states:Susceptibleor Infected. We emphasize again that the
term infectedsimply refers to a node which has received
the worm payload, without any assumption about the (good
or bad) intent of the payload. A susceptible node becomes
infected as soon as it is contacted by an infectious node.
Immediately after getting infected, a node starts spreading
the worm. Let the total number of susceptible and infectious
nodes in segment(ξ, η) at timet be denoted byS (ξ, t) and
I (ξ, t), respectively. Usingaveragestatistics, the sum of
nodes in both states should be

S (ξ, t) + I (ξ, t) = E {D} , (3)

whereE {D} represents the average number of sensor in
a segment as defined in (1). This model is referred to as
the classical SI model of epidemic diseases [5]. The rate of
change of susceptible population with respect to time can
then be expressed as [5]

∂S (ξ, t)
∂t

= −βS (ξ, t) I (ξ, t) , (4)

where 0 < β ≤ 1 represents the constant infection
rate. We assume that the total population of initially sus-
ceptible nodes is large enough so that during the initial
stages of the worm spread, the susceptible population is
approximately constant. More specifically, an infectious
node can infectβS (ξ, t) susceptible nodes in one unit of
time. Thus,I (ξ, t) infectious nodes can create a total of
βS (ξ, t) I (ξ, t) new infections in each time unit. However,
in accordance with our discussion in Sections 2.2 and 2.3,
channel conditions and contention will reduce the virulence
of the worm. Specifically,I (ξ, t) infectious nodes will cre-
ate a total ofpβN ′ (ξ, t) I (ξ, t) new infections in each time
unit, wherep is the probability of successful packet trans-
mission, andN ′ (ξ, η) is the number of nodes in segment
(ξ, η) which can receive a packet (despite channel con-
tention) in one time unit; note thatN ′ (ξ, η) ≤ E {D} .
Let us denote the rate of infectious contacts received from
neighboring segments of(ξ, η) asφ, whereφ ≤ β since all
of the infectious contacts from a neighboring segment are
not targeted at segment(ξ, η).

A closer look at Figure 1 shows that if a sensor is located
exactly at one of the corners of the(ξ, η) segment, then at
maximum it can receive an infectious contact from a node
which is at distancer from it (shown by the circle). For in-
stance, at most infected nodes from segment(ξ − 1, η − 1)
that are withinπr2

/
4 area of the corner of(ξ, η) can spread

infection to nodes in segment(ξ, η). Since the total area of a
segment isl×h and nodes are uniformly distributed inside a
segment, a total ofφpπr2

4lh N ′ (ξ − 1, η − 1) I (ξ − 1, η − 1)

infectious contacts are received by segment(ξ, η) from
the neighboring segment(ξ − 1, η − 1). By similar
logic, infected nodes of segment(ξ, η − 1) will transmit
φp r

hN ′ (ξ, η − 1) I (ξ, η − 1) to the(ξ, η) segment. Infec-
tions from the remaining segments can be expressed simi-
larly.

Thus the rate of change in the infectious population is

∂I(ξ,η,t)
∂t = βpN ′ (ξ, η) I (ξ, η, t)

+φpπr2

4lh N ′ (ξ, η)




I (ξ − 1, η − 1, t)+
I (ξ + 1, η − 1, t)+
I (ξ − 1, η + 1, t)+
I (ξ + 1, η + 1, t)




+φp r
hN ′ (ξ, η)




I (ξ − 1, η, t)+
I (ξ + 1, η, t)+
I (ξ, η + 1, t)+
I (ξ, η − 1, t)


 .

(5)
Now that we have defined the fundamental equations,

we focus on obtaining a closed-form solution for the above
model. Previous studies of Internet worm epidemics have
outlined that the spread is exponential during the initial
stages [1], [2]. We are, therefore, particularly interested in
ascertaining the solution forI (ξ, η, t) during initial stages
of the worm outbreak. The next section derives the closed-
form solution.

3.2. Closed-Form Solution

The expression for TWPM given in (5) is somewhat con-
voluted. To simplify this expression, let us rewrite (5) as

∂I(ξ,η,t)
∂t = AI (ξ, η, t)

+B
2




I (ξ − 1, η − 1, t)+
I (ξ + 1, η − 1, t)+
I (ξ − 1, η + 1, t)+
I (ξ + 1, η + 1, t)




+C
2




I (ξ − 1, η, t)+
I (ξ + 1, η, t)+
I (ξ, η + 1, t)+
I (ξ, η − 1, t)


 ,

where A = βpN ′ (ξ, η), B = φpπr2

2lh N ′ (ξ, η) and
C = 2φp r

hN ′ (ξ, η). In order to solve this partial differen-
tial equation, we take a two-dimensional DTFT along the
ξ and η axes. UsingM (ω, θ, t) to denote the DTFT of
I (ξ, η, t), we obtain

∂M(ω,θ,t)
∂t = AM (ω, θ, t)

+B
2 M (ω, θ, t)

(
eω+θ + e−ω+θ

+eω−θ + e−ω−θ

)

+C
2 M (ω, θ, t)

(
eθ + eω + e−ω + e−θ

)
,



which can be expressed as

∂M (ω, θ, t)
∂t

=




A + C

(
cos (ω) +
cos (θ)

)

+B

(
cos (ω + θ)+
cos (ω − θ)

)


 M (ω, θ, t) .

Assuming that the infection starts with a single infec-
tious node (the initial condition), the solution for the above
differential equation is [12]

M (ω, θ, t) = exp
{

At + Ct (cos (ω) + cos (θ))
+Bt (cos (ω + θ) + cos (ω − θ))

}
.

(6)
The exponent in the above expression is mathemati-

cally cumbersome and hence we employ the Taylor series
approximation of the cosine function which is given by
cos (ω) = 1− ω2

2! + ω4

4! − ω6

6! + · · · . Using the first two terms
of the above expansion, an approximation ofM (ω, θ, t) can
be written as

M (ω, θ, t) ≈ exp





At + Ct
(
1− ω2

2 + 1− θ2

2

)
+

Bt
(
1− (ω−θ)2

2 + 1− (ω+θ)2

2

)




≈ exp





At + Ct
(
2− ω2+θ2

2

)

+Bt
(
2− 2ω2+2θ2+2ωθ−2ωθ

2

)




≈ exp
{

At + Ct
2

(
4− ω2 − θ2

)
+Bt

(
2− ω2 − θ2

)
}

≈ exp
{

t (A + 2B + 2C)
−ω2t

(
B + C

2

)− θ2t
(
B + C

2

)
}

.

Let 1
2F = t

(
B + C

2

)
and the above expression becomes

M (ω, θ, t) ≈ exp {t (A + 2B + 2C)} exp
{
−ω2 + θ2

2F

}
.

Taking the inverse DTFT gives

I (ξ, η, t) ≈ et(A+2B+2C)
∫ ∫

e−
ω2+θ2

2F ejξω+jηθdωdθ

≈ et(A+2B+2C)
∫

e−
ω2
2F ejξωdω

∫
e
−θ2
2F ejηθdθ.

The above expression denotes the inverse Fourier trans-
form of a Gaussian function. The forward Fourier transform
of the Gaussian functione−

ξ2

2F is given by
√

Fe−Fω2/2

[13]. By duality we obtain
√

Fe−Fξ2/2 DTFT←→ e−
ω2
2F . Us-

ing this expression for inverse DTFT we get

I (ξ, η, t) ≈ Fet(A+2B+2C)e−F ξ2

2 e−F η2

2 .

Plugging in the values ofA, B, C andF renders the final
(approximate) closed-form expression as

I (ξ, η, t) ≈ 1

tφpN ′(ξ,η)
(

πr2
lh + 2r

h

)×

exp
{

tpN ′ (ξ, η)
(
β + φπr2

lh + 4φ r
h

)}
×

exp
{

−ξ2−η2

2tpφN ′(ξ,η)
(

πr2
lh +2 r

h

)
}

.

(7)
The above expression gives a closed-form solution for

the TWPM model. The first exponential term shows that the
initial spread is an exponential function of the infection rate,
β, and the channel contention, represented byN ′ (ξ, η), in
the current segment. Theeφt terms in the first exponent em-
phasize that the number of infectious contacts,φ, received
from neighboring segments further expedite the infection
process in the current segment. The second exponent in (7)
exponentially decreases with an increase inξ or η. This
result is intuitive since nodes which are spatially far away
from the infectious concentration are much less likely to
contract infections. Thus, the number of infectious nodes in
a segmentξ is a function of its distance from the infectious
concentration.

4. Simulation Results

We developed a simulator which can abstractly simulate
worm traffic over a sensor network. Given the total number
of nodes, a two-dimensional grid size and a random dis-
tribution, the simulator placed the nodes on the grid using
the random distribution as the constituent distribution of a
two-dimensional IID process. Once transmission range of
each node is specified, the simulator calculated the next-
hop neighbors using the Euclidean distance measure. The
following parameters comprise the input of the simulator:

1. infection rate,β

2. maximum nodes in a segment that can access the chan-
nel in a given time unit,N ′ (ξ, η)

3. the threshold attenuation and the path-loss exponent

Furthermore, the MAC layer interference considerations
discussed in Section 2.3 were incorporated in the simula-
tor. At each time instance, every infected node commu-
nicated the infection toβ fraction of its neighbors. The
receiver node simulated the fading effects by generating a
Gaussian random variable. This random variable was gen-
erated by performing the Box-Muller transformation [14]
on a random variable generated using the R250 simulator
[15]–[17]. A transmitted packet was dropped or received at
the receiver on the basis of the level of (simulated) channel
attenuation. Some of the nodes received multiple infections
through different neighbors. The simulator generated worm
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Figure 2. Total number of infections given by TWPM and simulation: (left) β = 0.2, (right) β = 0.5.

propagation traces for total number of infected sensors in
the grid.

We performed many experiments with varying parame-
ters. It was observed that the model followed the simula-
tion results quite closely. As an example, in Figure 2 we
show results from a simulation on a250 × 250 m2 grid
with N = 25000 sensors. Other parameters are:r = 3m,
p = 0.95, α = 2, l = h = 10m, N ′ (ξ, η) = E {D} = 40.

Total number of infected nodes at different time in-
stances is shown for two infection rates,β = φ = 0.2 and
β = φ = 0.5 in Figure 2. The results in Figure 2 are plotted
against normalized times of the TWPM-predicted and sim-
ulated worm propagations. It can be seen that the TWPM
follows the simulation results quite accurately, especially
during the initial and the final stages of the infection. Even
during the intermediate stages, the TWPM performance is
quite close to the simulation results. Thus, we conclude that
the TWPM provides an accurate model for worm propaga-
tion in a sensor network.

Figure 2 also reveals that the TWPM is quite similar
to the spread of Internet worms, i.e., an exponential ini-
tial spread followed by a linear increase and finally a slow
spread. This similarity between the worm spread dynam-
ics over a two sensor network and the Internet can be ex-
plained as follows. The exponential initial spread of In-
ternet worms is due to the availability of large numbers of
vulnerable hosts. Since we are modeling an unknown (zero-
day) worm, even in the sensor network case, the initial size
of the susceptible population is quite large which results in
a fast initial increase. Similar to the Internet, as time pro-
gresses more and more susceptible sensors are infected and
therefore the curve assumes a linear increase. The slow fi-
nal spread in the Internet was attributed to the fact that only
few vulnerable hosts remain and it takes more time to search

out these vulnerable hosts. The explanation for the slow
final spread of sensor networks has precisely the same ex-
planation, that is, in the last stages of the infection almost
all sensors are surrounded by neighbors which are already
infected thereby resulting in a slow spread.

5. Conclusions

In this paper, we proposed and evaluated a novel worm
propagation model for wireless sensor networks, namely
the topologically-aware worm propagation model (TWPM).
We derived a closed-form expression for the model and ver-
ified its correctness through simulations. We demonstrated
that the TWPM provides an effective and accurate worm
propagation model for sensor networks.

6. Acknowledgments

The authors thank the National Science Foundation
(NSF) for supporting this project. The authors also thank
Wajahat Ali Syed for his helpful comments on the original
manuscript of this paper.

7. References

[1] S. Staniford, V. Paxson, and N. Weaver, “How to 0wn the
Internet in Your Spare Time,”Usenix Security Symposium,
2002.

[2] C. Shannon and D. Moore, “The Spread of the Witty Worm,”
IEEE Security & Privacy, vol. 2, no. 4, July/August 2004.

[3] F. Castaeda, E. C. Sezer, and J. Xu, “WORM vs. WORM: A
Preliminary Study of an Active Counter-attack Mechanism,”
ACM International Workshop on Rapid Malcode (WORM),
October 2004.



[4] S. A. Khayam and H. Radha, “Analyzing the Spread of
Active Worms over VANET,”ACM International Workshop
on Vehicular Ad Hoc Networks (VANET), October 2004.

[5] N. T. J. Bailey, “The Mathematical Theory of Infectious
Diseases and Its Applications,” Charles Griffin & Co. Ltd.:
London, 1975.

[6] T. S. Rappaport, “Wireless Communications: Principles and
Practice,” Prentice-Hall, 2nd ed., December 2001.

[7] C. Bettstetter and C. Hartmann, “Connectivity of Wireless
Multihop Networks in a Shadow Fading Environment,”ACM
International Workshop on Modeling, Analysis and
Simulation of Wireless and Mobile Systems (MSWiM),
September 2003.

[8] R. Hekmat and P. van Mieghem, “Study of Connectivity in
Wireless Ad-Hoc Networks with an Improved Radio Model,”
IEEE International Symposium on Modeling and
Optimization in Mobile, Ad Hoc and Wireless Networks
(WiOpt), March 2004.

[9] P. Gupta and P. R. Kumar, “The Capacity of Wireless
Networks,”IEEE Transactions on Information Theory, vol.
46, March 2000.

[10] C. E. Perkins, E. M. Royer, and S. Das, “Ad Hoc
On-Demand Distance Vector (AODV) Routing,” RFC 3561,
February 1999.

[11] J. Broch and D. B. Johnson, “The Dynamic Source Routing
Protocol for Mobile Ad Hoc Networks,” IETF Internet Draft,
July 2004.

[12] E. Kreyszig, “Advanced Engineering Mathematics,” Wiley:
New York, 1998.

[13] B. P. Lathi, “Signal Processing and Linear Systems,”
Berkeley-Cambridge Press, 1998.

[14] G. E. P. Box and M .E. Muller, “A Note on the Generation
of Random Normal Deviates,”Annals Math. Stat, vol. 29, pp.
610–611, 1958.

[15] R250 Random Number Generator Webpage,
http://www.taygeta.com/random.xml.

[16] N. Zierler and J. Brillhart, “On Primitive Trinomials (mod
2),” Information and Control, vol. 13, no. 6, pp. 541–554,
December 1968.

[17] N. Zierler and J. Brillhart, “On Primitive Trinomials (mod
2) II,” Information and Control, vol. 14, no. 6, pp. 566–569,
June 1969.


