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A Topologically Valid Definition of Depth
for Functional Data
Alicia Nieto-Reyes and Heather Battey

Abstract. The main focus of this work is on providing a formal definition of
statistical depth for functional data on the basis of six properties, recognising
topological features such as continuity, smoothness and contiguity. Amongst
our depth defining properties is one that addresses the delicate challenge of
inherent partial observability of functional data, with fulfillment giving rise
to a minimal guarantee on the performance of the empirical depth beyond the
idealised and practically infeasible case of full observability. As an incidental
product, functional depths satisfying our definition achieve a robustness that
is commonly ascribed to depth, despite the absence of a formal guarantee in
the multivariate definition of depth. We demonstrate the fulfillment or other-
wise of our properties for six widely used functional depth proposals, thereby
providing a systematic basis for selection of a depth function.

Key words and phrases: Functional data, multivariate statistics, partial ob-
servability, robustness, statistical depth.

1. INTRODUCTION

This work intersects the areas of functional data
analysis (FDA) and statistical depth. FDA provides an
alternative way of studying traditional data objects,
recognising that it is sometimes more natural and more
fruitful to view a collection of measurements as par-
tially observed realisations of random functions. Pro-
totypical examples of functional data objects include
growth trajectories, handwriting data and brain imag-
ing data. On the other hand, statistical depth (hence-
forth referred to as depth) is a powerful data analytic
and inferential tool, able to reveal diverse features of
the underlying distribution such as spread, shape and
symmetry (Liu, Parelius and Singh, 1999). The ability
of depth to reveal distributional features has been ex-
ploited in novel ways to define, inter alia, depth-based
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classifiers (e.g., Li, Cuesta-Albertos and Liu, 2012;
Paindaveine and Van Bever, 2015).

The main focus of this work is on providing a formal
definition of depth for functional data, justified on the
basis of several properties. The definition fills an im-
portant void in the existing literature because naïve ex-
tensions of multivariate depth constructions, designed
to satisfy the properties deemed suitable in multivari-
ate space, neglect the topological features of functional
data and often give rise to absurd depth computations
(Dutta, Ghosh and Chaudhuri, 2011; Chakraborty and
Chaudhuri, 2014b). The need for such a definition was
first pointed out in the conference proceedings Nieto-
Reyes (2011), where a crude first attempt to address
the problem was made. Undesirable behaviour is also
evident for specific constructions of functional depth
examples that have been proposed without suitable re-
flection on the properties sought (López-Pintado and
Jornsten, 2007).

The properties that constitute our definition not only
provide a sophisticated extension of those defining
the multivariate depth, recognising topological features
such as continuity, contiguity and smoothness, but also
implicitly address several common or inherent diffi-
culties associated with functional data. Amongst our
six depth defining properties is one that tackles the
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delicate challenge of inherent partial observability of
functional data, providing a minimal guarantee on the
performance of the empirical depth beyond the ide-
alised and practically infeasible case of full observ-
ability. Robustness to the presence of outliers is often
cited as one of the defining features of empirical depth
(López-Pintado and Jornsten, 2007). Our definition of
functional depth automatically yields a robust estima-
tor of the population depth in the sense of qualitative
robustness (Hampel, 1971). As we elucidate in Sec-
tion 3.1, none of the properties constituting the mul-
tivariate definition of depth (Zuo and Serfling, 2000b;
Liu, 1990) give rise to this property, thus a further con-
tribution of our work is the insight that the existing
definition for the multivariate framework is insufficient
to guarantee robustness of the multivariate empirical
depth. A further challenge, automatically addressed (if
present) by our definition, pertains to functional data
exhibiting little variability over a subset of the domain
and significantly overlapping one another on this set.
Intuitively, functional observations over such a domain
ought to play a reduced role in the assignment of depth
(Claeskens et al., 2014), especially in light of the par-
tial observability and the convention to preprocess the
partial observations.

We demonstrate the fulflilment or otherwise of our
depth defining properties for six widely used func-
tional depth functions, from which we conclude that
the h-depth (Cuevas, Febrero and Fraiman, 2007) is the
most well-reasoned in terms of number of properties
satisfied.

The remainder of this paper is organised as follows.
Section 2 provides an explanation of the notion of
depth at the heuristic level, tracking its chronological
development, before providing the formal definition
of depth in R

p , p ≥ 1, as set forth in Zuo and Ser-
fling (2000b), Liu (1990). Section 2 also formalises the
functional data setting and defines the notation used
in the paper. A formal definition of depth in function
space appears in Section 3, together with a justification
of the properties upon which it is based and a thorough
discussion of their implications. Section 4 analyses ex-
isting constructions of functional depth, establishing
the fulfillment or otherwise of each property appear-
ing in the definition of functional depth. All the proofs
appear in Section 5.

2. BACKGROUND AND NOTATION

2.1 Historical Development and a Heuristic

Explanation of Depth

Unlike the univariate case in which there is no am-
biguity in the definition of order, when data provide

coordinates in a higher dimensional space the notion
of order is ill-defined; for instance, in R

2 it is not clear
whether (3,6) is larger or smaller than (5,4). This fact
led to a body of work in the 1970s, proposing new
exploratory data analysis tools for assigning ranks to
points in a data set. The method of convex hull peeling,
credited to J. W. Tukey (Huber, 1972; Barnett, 1976)
is a particularly intuitive example. A pedagogical de-
scription of the procedure for the bivariate case is pro-
vided in Green (1981), where readers are encouraged
to envisage the data points as pins on a board. A large
elastic band is looped around the pins forming the con-
vex hull of the data points. The data points touching
the elastic band are the extremes of the empirical dis-
tribution and are assigned rank one and discarded. The
procedure is repeated to identify the next most extreme
points, which are assigned rank two, and so on. Clearly,
in this example, the empirical distribution plays an im-
portant role in the assignment of rank, where, roughly
speaking, data points closer to the centre of the empir-
ical distribution receive higher rank(s), giving rise to a
centre-outward ordering.

J. W. Tukey coined the term depth in Tukey (1975)
as the collection of exploratory procedures for assign-
ing ranks to points in a data set. There, he proposed
the celebrated halfspace depth, or Tukey depth, of a
data point in R

p with respect to (henceforth w.r.t.) a
multidimensional sample. Rousseeuw and Ruts (1999)
later defined the halfspace depth w.r.t. a generic mea-
sure as opposed to the empirical measure, broadening
the purely data analytic perspective. Thus, modern us-
age of the term depth refers to a much more general
class of objects. The underlying mathematical idea be-
hind these depth constructions and others is that a prob-
ability measure maps events in the Borel σ -algebra to
[0,1], a space on which the assignment of order poses
no concern.

Since Tukey’s seminal work, many alternative ex-
amples of depth have been proposed. It was, however,
the simplicial depth (Liu, 1990) that sparked a resur-
gence of research on the topic throughout the 1990s
and 2000s. Simplicial depth is shown in Liu (1990)
to possess several desirable properties, on the basis of
which the definition of depth is formalised in Zuo and
Serfling (2000b), reproduced in Definition 2.1 for ease
of reference. In Definition 2.1, P denotes the class of
distributions on the Borel sets of Rp , and P = PX de-
notes the distribution of a general random vector X; the
subscript X is suppressed when there is no need to be
explicit.
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DEFINITION 2.1 (Zuo and Serfling, 2000b; Liu,
1990). The bounded and non-negative mapping
D(·, ·) : Rp × P −→ R is called a statistical depth

function if it satisfies the following properties:

1. Affine invariance. D(Ax + b,PAX+b) = D(x,PX)

holds for any R
p-valued random vector X, any p ×

p nonsingular matrix A and any b ∈ R
p .

2. Maximality at centre. D(θ,P ) = supx∈Rp D(x,P )

holds for any P ∈ P having a unique centre of sym-
metry θ w.r.t. some notion of symmetry.

3. Monotonicity relative to the deepest point. For any
P ∈ P having deepest point θ , D(x,P ) ≤
D(θ + α(x − θ),P ) holds for all α ∈ [0,1].

4. Vanishing at infinity. D(x,P ) → 0 as ‖x‖ → ∞,
for each P ∈ P , where ‖ · ‖ is the Euclidean norm.

For a discussion of centre of symmetry in R
p , see

Zuo and Serfling (2000b); a more general discus-
sion, applicable to function spaces, is provided in Sec-
tion 3.1.2. Four further properties purported in Serfling
(2006) as desirable but not necessary are reproduced in
(i)–(iv) below:

(i) Symmetry. If P is symmetric about θ in some
sense, then so is D(x,P ).

(ii) Continuity of D(x,P ) as a function of x. Or
merely upper semi-continuity.

(iii) Continuity of D(x,P ) as a function of P .

(iv) Quasi-concavity as a function of x. The set {x :
D(x,P ) ≥ c} is convex for each real c.

Upper semicontinuity is a weaker requirement than
continuity. In R

d , it is natural to obligate the depth
function to preserve the upper semicontinuity prop-
erty of the distribution function. This statement has a
straightforward extension to function spaces, which is
addressed in Section 3. (iii), although not required to
provide an order, is indispensable in view of the fact
that statisticians do not have access to the true P but
rather an empirical counterpart, which converges al-
most surely to P uniformly over the Borel sets of the
domain on which P is defined. It has yet further impor-
tant implications, explained in Section 3.1.6. Suitable
modifications of properties 1–4, as well as (ii) and (iii),
are thus amongst our defining properties of functional
depth and are thoroughly justified and discussed in the
functional framework in Section 3.1. No further atten-
tion is dedicated to properties (i) and (iv), which are not
deemed necessary, neither in the multivariate nor func-
tional framework. The designation of D as a bounded
and non-negative mapping is also unnecessary to pro-
vide an order, and thus does not appear in our definition
of functional depth in Section 3.

2.2 The FDA Framework

To formalise the FDA framework, a data point is
thought of as a realisation of the random function
{X(v) : v ∈ V}, where V is a compact subset of Rd for
d ≥ 1. Letting � denote the underlying sample space,
{X(v) : v ∈ V} := {X(ω,v) : ω ∈ �,v ∈ V} is the map
X : � → F, where F is a function space, whilst for a
fixed ω ∈ �, X(ω, ·) maps from V to a vector space F.
There is a rich body of work concerning F = L2(V, λ),
the space of Lebesgue square integrable functions from
V to F = R (here and henceforth, λ denotes Lebesgue
measure on V). Nonstandard choices of F will un-
doubtedly become more prevalent in the FDA litera-
ture, which currently accommodates functional mani-
folds (Chen and Müller, 2012) and multivariate func-
tional spaces F =

⊗K
k=1 L2(Vk, λ) (Chiou and Müller,

2014) as well as a variety of smoothness classes em-
bedded in L2(V, λ). In the interest of generality, for
the definition of functional depth, we do not restrict F
beyond the assumption that there exists a metric d on
F such that (F, d) is a separable metric space.

A further distinguishing feature of functional data is
that they are inherently partially observed. Although
theoretically infinite dimensional data objects, due to
the limitations of the data collection instruments or
the experimental design, each functional data object
is only ever recorded at a finite set of discretisation
points, which we denote by V ′ ⊂ V .

The following notation is henceforth used through-
out. (F, d) is a separable metric space and A is the
σ -algebra on F generated by the open d metric balls.
Separability of (F, d) guarantees that A coincides with
the Borel σ -algebra on F (see, e.g., van der Vaart and
Wellner, 1996, Chapter 1.7). (F,A,P ) is a probability
space with P ∈ P , the space of all probability mea-
sures on the Borel sets of A. Particular instances of F
to which reference is made are as follows: H(V), an in-
finite dimensional Hilbert space on V ; C(V), the space
of continuous functions on V ; Lp(V, λ), the space of
Lebesgue p-integrable functions on V , where 1 ≤ p <

∞; L∞(V), the space of uniformly bounded functions
on V ; and Wk,p(V, λ), the Sobolev space of Lebesgue
p-integrable functions on V whose weak derivatives up
to order k ≥ 1 are Lebesgue p-integrable on V , where
1 ≤ p < ∞. To avoid excessive notation, unless oth-
erwise stated, the argument(s) V and λ (if applicable)
are tacit when we write C, H, Lp , L∞ and Wk,p . Sim-
ilarly, ‖x‖Lp(V,λ) = (

∫
V

x(v)pλ(dv))1/p is henceforth
referred to in the more compact form ‖x‖Lp

. In normed
spaces, the metric d will most naturally be a norm;
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in this case d = ‖ · ‖Lp
is used to mean d(x, y) =

‖x − y‖Lp
. H is most naturally endowed with its in-

ner product norm ‖x − y‖L2 =
√

〈x − y, x − y〉 for
x, y ∈ H, whilst L∞ is most naturally endowed with
the supremum norm ‖x − y‖∞ = supv∈V |x(v)− y(v)|
for x, y ∈ L∞. Recall from the above introduction to
the FDA framework that for any ω ∈ �, X(ω, ·) : V →
F, where F is a vector space; unless otherwise stated,
‖ · ‖ will be used to denote an arbitrary norm on F. For
any x ∈ F, x(H) := {x(v) : v ∈ H ⊆ V}, whilst x(V)

is tacitly implied by x. Finally, a sample X1, . . . ,Xn

of random draws from P gives rise to the empirical
measure Pn, a collection of 1

n
-weighted point masses

at X1, . . . ,Xn. P̃n is used to denote the empirical mea-
sure of X̃1, . . . , X̃n, which is a sample of reconstructed
functional data objects based on the random sample
{Xi(V

′
i) : i = 1, . . . , n} of partially observed functional

data objects, where V ′
i ⊂ V is a finite set that may be

different for every i ∈ {1, . . . , n}.

3. FORMAL DEFINITION OF FUNCTIONAL DEPTH

The definition of functional depth provided in this
section refers to the concept of centre of symmetry,
which is elucidated in Section 3.1.2, and relies on the
following preliminary definition.

DEFINITION 3.1. Let (F,A,P ) be a probability
space as in Section 2.2. Define E to be the smallest set
in the σ -algebra A such that P(E) = P(F). Then the
convex hull of F with respect to P is defined as

C(F,P ) :=
{
x ∈ F : x(v) = αL(v) + (1 − α)U(v) :

v ∈ V, α ∈ [0,1]
}
,

where

U :=
{
sup
x∈E

x(v) : v ∈ V
}

and

L :=
{

inf
x∈E

x(v) : v ∈ V
}
.

DEFINITION 3.2. Let (F,A,P ) be a probability
space as in Section 2.2. Let P be the space of all proba-
bility measures on F. The mapping D(·, ·) : F×P −→
R is a statistical functional depth if it satisfies proper-
ties P-1 to P-6, below.

P-1. Distance invariance. D(f (x),Pf (X)) = D(x,

PX) for any x ∈ F and f : F → F such that for any
y ∈ F, d(f (x), f (y)) = af ·d(x, y), with af ∈R\ {0}.

P-2. Maximality at centre. For any P ∈ P possess-
ing a unique centre of symmetry θ ∈ F w.r.t. some no-
tion of functional symmetry, D(θ,P ) = supx∈F D(x,

P ).

P-3. Strictly decreasing with respect to the deep-

est point. For any P ∈ P such that D(z,P ) =
maxx∈F D(x,P ) exists, D(x,P ) < D(y,P ) < D(z,

P ) holds for any x, y ∈ F such that min{d(y, z),

d(y, x)} > 0 and max{d(y, z), d(y, x)} < d(x, z).

P-4. Upper semi-continuity in x. D(x,P ) is upper
semi-continuous as a function of x, that is, for all x ∈ F

and for all ε > 0, there exists a δ > 0 such that

sup
y:d(x,y)<δ

D(y,P ) ≤ D(x,P ) + ε.(3.1)

P-5. Receptivity to convex hull width across the

domain. D(x,PX) < D(f (x),Pf (X)) for any x ∈
C(F,P ) with D(x,P ) < supy∈F D(y,P ) and f : F →
F such that f (y(v)) = α(v)y(v) with α(v) ∈ (0,1) for
all v ∈ Lδ and α(v) = 1 for all v ∈ Lc

δ :

Lδ := argsup
H⊆V

{
sup

x,y∈C(F,P )

d
(
x(H), y(H)

)
≤ δ

}

for any δ ∈ [infv∈V d(L(v),U(v)), d(L,U)) such that
λ(Lδ) > 0 and λ(Lc

δ) > 0.

P-6. Continuity in P . For all x ∈ F, for all P ∈ P

and for every ε > 0, there exists a δ(ε) > 0 such
that |D(x,Q) − D(x,P )| < ε P -almost surely for all
Q ∈ P with dP(Q,P ) < δ P -almost surely, where dP
metricises the topology of weak convergence.

3.1 Discussion of the Functional Depth Defining

Properties

3.1.1 Discussion of P-1, distance invariance. prop-
erty P-1 is the generalisation from R

d to F of prop-
erty 1 of Zuo and Serfling (2000b), also considered
in Theorem 3 of Liu (1990). It states that any map-
ping from F to F that preserves, up to a scaling factor,
the relative distances between elements in the d metric
also preserves the depth in the transformed space. As
an example, consider (F, d) = (L2,‖ · ‖L2 ) and sup-
pose μ := E(X) =

∫
xP (dx) is known. Then prop-

erty P-1 ensures that the depth is unaffected by recen-
tring around the zero function because ‖x − y‖L2 =
‖(x − μ) − (y − μ)‖L2 for all x, y ∈ L2.

3.1.2 Discussion of P-2, maximality at centre. P-2
is the most logically contentious of the properties
listed. The reason is that, even for distributions on R

d ,
there is no unique notion of symmetry, a fact that is
a fortiori true in function spaces. Indeed, since depth
itself was originally conceived as a way to give mean-
ing to the concept of centre of symmetry, the deepest
element is no less valid as a centre of symmetry than
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any other definition, giving rise to the somewhat para-
doxical conclusion that P-2 is always achieved with θ

equal to the deepest point, as long as supx∈F D(x,P ) =
maxx∈F D(x,P ). It is more meaningful to consider the
behaviour of D for a particular P for which many no-
tions of centre of symmetry coincide at θ . In R such
a P is the Gaussian distribution, for which the median
is equal to the mean and is a centre of symmetry with
respect to many notions of symmetry including central
symmetry and halfspace symmetry (e.g., Zuo and Ser-
fling, 2000a). In the setting of F = H, the analogue of
the Gaussian distribution is the Gaussian process. With
this in mind, verification of the following property is
insightful:

P-2G. Maximality at Gaussian process mean. For
P a zero-mean, stationary, almost surely continuous
Gaussian process on V , D(θ,P ) = supx∈F D(x,P ) �=
infx∈F D(x,P ), where θ is the zero mean function.

REMARK 3.3. Existence of EX is guaranteed
when X ∼ P with P a Gaussian process.

The zero function of property P2-G is the cen-
tre of symmetry of the mean zero Gaussian process
with respect to all notions of functional symmetry that
have been tacitly introduced via existing depth con-
structions, for instance, pointwise angular symmetry
in Fraiman and Muniz (2001) and López-Pintado and
Romo (2009), and pointwise halfspace symmetry in
Claeskens et al. (2014). If a distribution PX on F is
pointwise halfspace symmetric about z, then for every
v ∈ V , the corresponding distribution of X(v) is halfs-
pace symmetric around z(v).

Property P-2, in partnership with P-3, leads to the
centre-outward ordering for which depth was origi-
nally conceived. Outward orderings from local centres
of symmetry are also possible (see Paindaveine and
Van Bever, 2013), and are induced by constructions
that attach greater importance to probabilities P(A)

for Borel sets A to which the evaluation points x have
close proximity, where proximity is measured by a suit-
able metric. The relative weighting depends on the fea-
tures of P that one would like to detect through the use
of the local depth function. As the weighting rule be-
comes close to uniform, the local features are blurred,
resulting in global behaviour of any local depth con-
struction. Local centre-outward orderings are not in-
duced by our definition.

3.1.3 Discussion of P-3, strictly decreasing with re-

spect to the deepest point. For some function spaces F,
there is more than one natural metric d . For instance,

if F = L∞ ∩ Wk,2, (F, d) is separable with respect to
the supremum norm, the standard Sobolev inner prod-
uct norm (Adams, 1975) or its slight generalisation,
as employed in Silverman (1996). With this example
in mind, setting d = ‖ · ‖∞ and V ⊂ R, property P-3
ensures that the depth prescribes successively lower
depths to functions that only belong to successively
larger envelopes around the deepest point z. However,
when d is the standard Sobolev inner product norm, the
depth prescribes successively lower depths to functions
which lie in successively larger Sobolev balls around z,
that is, its prescription takes account of the distance of
x from z in derivative space as well as in L2 norm, as-
signing low depth to functions much rougher than z.

P-3 has two further implications. The first is that

lim
x:d(x,z)→∞

D(x,P ) = inf
x∈F

D(x,P ),(3.2)

where z is such that D(z,P ) = maxx∈F D(x,P ) ex-
ists and where the convention in current literature is to
construct D(·,P ) such that infx∈F D(x,P ) = 0 for any
P ∈ P . Equation (3.2) itself leads to the conclusion of
Lemma 3.4.

LEMMA 3.4. Let (F, d) be a functional metric

space such that d = ‖ · ‖Lp
, then for each P ∈ P , (3.2)

implies that D(x,P ) → infx∈F D(x,P ) as ‖x(v)‖ →
∞ for Lebesgue almost every v ∈ V , where ‖ · ‖ is a

norm on F (cf. Section 2.2).

Requiring that D(x,P ) → infx∈F D(x,P ) as
‖x(v)‖ → ∞ for Lebesgue almost every v ∈ V is one
natural analogue of property 4 of Zuo and Serfling
(2000b), Liu (1990) and was suggested in Nieto-Reyes
(2011), but we view property P-3 as more suitable in
view of the arguments already set forth in this discus-
sion. The second implication of P-3 is Lemma 3.5.

LEMMA 3.5. Let D(·, ·) : F×P →R satisfy prop-

erty P-3 and let z be as in P-3. Then

z = argmax
x∈F

D(x,P ).

The direct analogue of property 3 of Zuo and Ser-
fling (2000b), Liu (1990) is to relax the strict inequal-
ity in property P-3. The strict inequality in P-3 yields
fewer ties in depth computations, which enables us to
better differentiate amongst the different elements of F.
Moreover, strict inequality in P-3 automatically im-
plies nondegeneracy of functional depth because it pre-
vents all the points in F having the same depth. Degen-
erate behaviour of several depth constructions is ob-
served in Chakraborty and Chaudhuri (2014b). They
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show that, inter alia, the band depth and half-region
depth constructions result in zero depth of every func-
tion in F with probability one for common distributions
such as continuous Gaussian processes.

3.1.4 Discussion of P-4, upper semi-continuity in x.
In R, there is a clear correspondence between the defi-
nition of depth and the cumulative distribution function
F(x) = P(X ≤ x). The two natural ways of defining
the depth at a point x ∈ R are D(x,P ) = P(X ≤ x) ·
P(X ≥ x) and D(x,P ) = min{P(X ≤ x),P (X ≥ x)},
thus, from the càdlàg property of the cumulative dis-
tribution function, it is clear that, in R, the depth is
upper semicontinuous in the distance from the deep-
est point. The point we wish to make here is that, in
order for the depth to reveal the features of the under-
lying distribution, it should, as a minimal requirement,
satisfy the same properties as a cumulative distribu-
tion function, namely, being nondecreasing (P-3) and
upper-semicontinuous (P-4).

3.1.5 Discussion of P-5, receptivity to convex hull

width across the domain. Many functional data sets
encountered in practice contain functional data points
that exhibit little variability over a particular subset of
the domain L ⊂ V , and significantly overlap with one
another on L. The phenomenon described arises, in-
ter alia, in functional microarray data sets (Amaratunga
and Cabrera, 2003) and in chemometric data sets (see,
e.g., the yarn data set in the R package pls Swierenga
et al., 1999). Although the instinct is to draw parallels
with the notion of heteroskedasticity in linear regres-
sion, this is in fact an entirely different phenomenon,
as it is usually still appropriate to view functional data
as i.i.d. copies of a random function X; X simply pos-
sesses a variance function that is close to zero over L

and a correlation function close to one over L × L.
P-5 obligates the depth to take heed of the values of
x ∈ C(F,P ) over V \ L to a greater extent than over
L. Heuristically, the order of the curves does not mat-
ter much over L. Property P-5 is particularly impor-
tant in view of the discussion of P-6 because, over L,
small measurement error can conceivably lead to re-
constructed functions that overlap in a drastically dif-
ferent way to the same functions observed without
measurement error. A simple solution available for in-
tegrated depth constructions is to integrate the point-
wise depths over a weight function depending on the
convex hull of the data. This solution, proposed in
Claeskens et al. (2014), effectively reduces the influ-
ence of regions over which all functions nearly coin-
cide.

3.1.6 Discussion of P-6, continuity in P . Examples
of dP(·, ·) are the Prohorov and bounded Lipschitz
metrics, which both metricise the topology of weak
convergence in the sense that dP(Q,P ) → 0 P -almost
surely is equivalent to Q → P P -almost surely (e.g.,
Dudley, 2002, Theorem 11.3.3).

Almost sure convergence of empirical depth to pop-

ulation depth. The importance of property P-6 is evi-
dent when replacing Q with Pn. In this case, fulfillment
of P-6 implies that the depth based on the empirical
distribution converges almost surely to its population
counterpart, that is, the estimator D(·,Pn) → D(·,P )

P -almost surely. This is particularly important when
the depth is to be used for statistical inference. In this
case, the objective is to gain understanding of popula-
tion truths based on a random sample from that popula-
tion. By contrast, in data analysis problems, the statis-
tician typically has access to the whole population.
Functional data analysis is, however, slightly different
in view of the inherent partial observability of func-
tional data.

Partial observability of functional data. A second
fundamental observation pertaining to P-6 is that it tac-
itly addresses the inherent partial observability prob-
lem of functional data analysis. The latter gives rise
to the delicate challenge of Pn being inaccessible in
its entirety. More specifically, whilst Pn is a collection
of weighted point masses at X1, . . . ,Xn, each valued
in F, the practitioner only has access to P ′

n, a collection
of weighted point masses on {Xi(V

′
i) : i = 1, . . . , n},

where V ′
i ⊂ V is a finite set that may be different

for every i ∈ {1, . . . , n}. The issue of partial observ-
ability of functional data is usually addressed through
a preliminary interpolation or smoothing step to ob-
tain an approximate reconstruction of the functional
data object. Let X̃1, . . . , X̃n be a sample of recon-
structed functional data objects obtained from the ran-
dom sample {Xi(V

′
i) : i = 1, . . . , n} of partially ob-

served functional data objects or even from {X∗
i (V

′
i) :

i = 1, . . . , n}, where X∗
i (V

′
i) = {Xi(v) + εi, v ∈ V ′

i}
with {εi : i = 1, . . . , n} independent mean zero noise
variables. Let P̃n be the empirical probability measure
over X̃1, . . . , X̃n. Then provided the reconstruction is
such that P̃n → P P -almost surely, property P-6 deliv-
ers the desired convergence of the functional depth.

Qualitative robustness. Importantly, fulfillment of
P-6 produces an embodiment of the empirical depth
with the quintessential feature of robustness (cf. The-
orem 3.7 below). The following definition of qualita-
tive robustness is a restatement of Definition (A) in
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Hampel (1971) in the more specific terms of the em-
pirical depth. Here, we subscript the empirical depth
by P and Q to emphasise that Pn and Qn are random
draws from P and Q respectively. With this notation,
L(DP (·,Pn)) is the probability measure on R induced
by the mapping DP (·,Pn). The theorem and definition
are stated in terms of Pn, but it applies analogously
when Pn is replaced by P̃n.

DEFINITION 3.6 (Qualitative robustness). Let Pn

and Qn be the empirical measures corresponding to
the n random draws from P and Q respectively. For
any x ∈ F, DP (x,Pn) is robust at P ∈ P if and only
if for all ε > 0 there exists a δ > 0 such that for
any Q ∈ P satisfying dP(Q,P ) < δ, dP(L(DP (x,

Pn)),L(DQ(x,Qn))) < ε for all n.

THEOREM 3.7 (An application of Hampel et al.
(1986), Section 2.2, Theorem 2). If DP satisfies

property P-6, then DP (·,Pn) is robust at P for any

P ∈P .

Qualitative robustness of the empirical depth is a de-
sirable feature, as it ensures that conclusions are not
inordinately affected by outliers.

3.2 Implications for Applications

In this section we emphasise the roles played by P-1
to P-6 for different kinds of applications.

Regarding P-1, in many applications, one would like
the conclusions of statistical analysis or inference to
be invariant to changes in the units of measurement.
Nevertheless, for applications in which the ranking
amongst the functions is the object of interest rather
than the precise value of the depth, a weaker require-
ment may be sought: invariance of the ordering rather
than invariance of the depth values. This requirement
would be suitable for constructing trimmed sample
statistics by discarding the most extreme order statis-
tics. There are applications in which the value of the
depths themselves are of interest, and thus invariance
in the precise sense of P-1 is important. For instance,
in certain model systems, systemic stability is related
to diversity of a population and distance of the popu-
lation centre of symmetry from a point, p, that is in-
dependent of the population. This situation arises in
the model of the financial system considered by Beale
et al. (2011), where P = Pn, that is, the whole popula-
tion is available. One may construct a measure, R, of
systemic risk from d(z,p) and

∑n
i=1 D(Xi,P ), where

z = argmaxx∈F D(x,P ), P = Pn and Xi is the rele-
vant functional observation on individual i. The sys-
temic risk contribution of individual i is then Ri =

D(Xi,P )/R. This hints at the possibility of regulatory
mechanisms designed to incentivise high systemic risk
individuals towards a more systemically stable config-
uration in F space. P-3 ensures the diversity informa-
tion is captured in the prescribed depths whilst P-3 and
P-4 together ensure that the depth is not simply a rank-
ing but captures the relative proximities of each indi-
vidual to the centre of symmetry.

The centre-outward ordering induced by P-2 and P-3
and the information on relative proximities induced by
P-3 and P-4 are qualities that enhance the ability of
functional DD classifiers (Li, Cuesta-Albertos and Liu,
2012) to differentiate between samples drawn from two
different distributions. Moreover, the centre-outward
ordering guaranteed by P-3 provides the necessary and
sufficient conditions for defining nearest neighbours
(Paindaveine and Van Bever, 2015). Depth-based near-
est neighbours have been effectively exploited (in the
same reference) to define new classifiers, but they also
offer prospects for nearest neighbour-based nonpara-
metric regression (e.g., Devroye, Györfi and Lugosi,
1996).

Property P-5 is also important for functional clas-
sification. If curves are from two different popula-
tions, both possessing covariance function close to zero
over a subset L ⊂ V , a functional DD plot classifier
based on a depth violating P-5, ceteris paribus, has less
power to discriminate between the two samples than
one based on a depth satisfying P-5. Since classifica-
tion is an inference (supervised learning) problem, P-6
is important for ensuring that the sample depths of each
x ∈ F converge to the corresponding population depths
as n → ∞. This assumption underpins the success of
the DD classifier.

Regardless of the precise nature of the application,
P-6 is important for all of them, with its precise role
depending on whether the application concerns infer-
ence or data analysis. For inference problems, the re-
quirement is that the empirical depth converges to the
population depth. Moreover, we require that the empir-
ical depth based on the discretised functional data con-
verges to the population depth. For data analysis prob-
lems, the aim is for the empirical depth based on the
discretised functional data to converge to the empirical
depth.

4. A COMPARATIVE STUDY OF EXISTING

FUNCTIONAL DEPTH PROPOSALS

In this section we explore several popular construc-
tions that have been proposed as functional depths in
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the literature. As we will see in due course, there is
no single construction that satisfies all six properties
in our definition of functional depth, which empha-
sises the necessity for further work in the area. Only
functional depth constructions that have been proposed
at the population level rather than simply at the sam-
ple level are explored, which rules out the construction
based on distances that appears in Nieto-Reyes (2011)
and the one based on tilting that appears in Genton and
Hall (2015).

4.1 Existing Functional Depth Constructions

In each of the depth constructions outlined below, X

is a functional random variable defined on the proba-
bility space (F,A,P ) (cf. Section 2.2) and, where rel-
evant, expectation E is taken with respect to P unless
otherwise stated. Sample analogues are obtained by re-
placing P by Pn for the idealised case and by P̃n for
the practically relevant case in which functional data
objects are only observed at a finite set of evaluation
points (cf. Section 3.1.6). For completeness, the sam-
ple versions of each depth construction in the idealised
case are included after their population counterparts.
The nonidealised sample versions, D(·, P̃n), are ob-
tained by replacing {X1, . . . ,Xn} by {X̃1, . . . , X̃n}, in
D(·,Pn). The constructions below need not uniquely
prescribe a choice of metric d; however, in most cases,
there is a natural choice of d with which to assess the
fulfillment of properties P-1 to P-6 in Definition 3.2.
In each construction, (F, d) is as stated, A is the
Borel sigma algebra (also the d-ball σ -algebra; cf. Sec-
tion 2.2), and P is a probability measure on the Borel
sets of A.

4.1.1 The h-depth. Let (F, d) = (H,‖ · ‖L2). The
h-depth (Cuevas, Febrero and Fraiman, 2007) at x ∈ H

w.r.t. P is defined as

Dh(x,P ) := EKh

(
‖x − X‖L2

)
,(4.1)

where, for fixed h > 0, Kh(·) = (1/h)K(·/h), with
K(·) the Gaussian kernel. The sample analogue of (4.1)
is Dh(x,Pn) := 1

n

∑n
i=1 Kh(‖x − Xi‖L2). The h-depth

is the only example we consider that can be described
as local (cf. Section 3.1.2), a feature that is dispelled
when the parameter h is sufficiently large.

4.1.2 The random Tukey depth. Let (F, d) = (H,

‖ · ‖L2). Defining U := {u1, . . . , uk}, where uj j =
1, . . . , k are realisations of Uj j = 1, . . . , k, each

drawn independently from a nondegenerate probabil-
ity measure μ on H, the random Tukey depth (Cuesta-
Albertos and Nieto-Reyes, 2008) at x ∈H w.r.t. P is

DRT(x,P ) = DU(x,P )
(4.2)

:= min
u∈U

D1
(
〈u,x〉,Pu

)
,

where, for any probability measure Q on the Borel
sets of R, D1(t,Q) = min{Q(−∞, t],Q[t,−∞)}, Pu

is the marginal of P on {〈u,x〉 : x ∈ H}. μ is taken as a
nondegenerate stationary Gaussian measure on H. For
a discussion of the choice of k, see Cuesta-Albertos
and Nieto-Reyes (2008). The sample analogue of (4.2)
is simply obtained by replacing P with Pn.

4.1.3 The band depth. Let (F, d) = (C,‖ · ‖∞) and
let V ⊂ R. For j ≥ 2, introduce the random j -simplex
in F, Sj (P ) = {y ∈ F : y(v) = α1X1(v) + · · · +
αjXj (v) : (αk)

j
k=1 ∈ 
j ∀v ∈ V, (Xk)

j
k=1 ∼ P }, where


j ⊂ R
j−1 is the unit j -simplex. The band depth

(López-Pintado and Romo, 2009) at x ∈ F is defined as

DJ (x,P ) =
J∑

j=2

PSj

(
x ∈ Sj (P )

)
,(4.3)

where PSj
is the probability measure over the ran-

dom simplices constructed from the random j -tuple
X1, . . . ,Xj .

When P is replaced by Pn, there are n choose
j distinct sets in the set of all random j -simplices
on F giving rise to the sample analogue of equation
(4.3), DJ (x,Pn) =

∑J
j=2

(n
j

)−1∑
1≤i1<···<ij≤n 1{x ∈

Bij }, where Bij := {y ∈ F : y(v) = α1Xi1(v) + · · · +
αjXij (v) : (αk)

j
k=1 ∈ 
j ∀v ∈ V} and {(i1, . . . , ij ) :

i = 1, . . . , n} defines the set of all possible j -tuples
from X1, . . . ,Xn.

4.1.4 The modified band depth. Let (F, d) = (C,

‖ · ‖∞) and let V ⊂ R. For j ≥ 2, define a random
j -simplex in R to be of the form Sj (v,P ) = {y(v) ∈
R : y(v) = α1X1(v) + · · · + αjXj (v) : (αk)

j
k=1 ∈


j , (Xk)
j
k=1 ∼ P }, where 
j ⊂ R

j−1 is the unit
j -simplex. The modified band depth (López-Pintado
and Romo, 2009) at x ∈ F is

DMJ(x,P )
(4.4)

=
J∑

j=2

E
[
λ
{
v ∈ V : x ∈ Sj (v,P )

}]
/λ(V),

where expectation is with respect to the measure PSj
,

as defined above in the definition of the band depth.
In Section 5 it will sometimes be convenient to re-
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fer to Sj (v,P ) = [Lj (v),Uj (v)], where Lj (v) :=
miny∈Xj

y(v) and Uj (v) := maxy∈Xj
y(v), where

Xj = (X1, . . . ,Xj ) and X1, . . . ,Xj ∼ P .
When P is replaced by Pn, there are n choose j dis-

tinct sets in the set of all random j -simplices on F giv-
ing rise to the sample analogue of equation (4.4),

DMJ(x,Pn)

:=
J∑

j=2

(
n

j

)−1

·
∑

1≤i1<···<ij≤n

λ
{
v ∈ V : x(v) ∈ Bi,j (v)

}
/λ(V),

where Bij (v) := {y(v) ∈ R : y(v) = α1Xi1(v) + · · · +
αjXij (v) : (αk)

j
k=1 ∈ 
j } and {(i1, . . . , ij ) : i = 1,

. . . , n} defines the set of all possible j -tuples from
X1, . . . ,Xn.

4.1.5 The half-region depth. In the same setting
as for the band depth, the half-region depth (López-
Pintado and Romo, 2011) w.r.t. P at x ∈ F is

DHR(x,P ) := min
{
P(X ∈ Hx),P (X ∈ Ex)

}
,(4.5)

where Hx is the hypograph of x, that is, Hx := {y ∈ F :
y(v) ≤ x(v) v ∈ V}, and Ex is the epigraph of x, that
is, Ex := {y ∈ F : y(v) ≥ x(v) v ∈ V}. Thus, the halfs-
pace depth is the minimum between the proportion of
curves in the epigraph and hypograph of x. The sample
analogue of (4.5) is obtained by replacing P(X ∈ Hx)

in (4.5) by 1
n

∑n
i=1 1{Xi ∈ Hx} and analogously for

P(X ∈ Ex).

4.1.6 The modified half-region depth. In the same
setting as for the band depth, the half-region depth
(López-Pintado and Romo, 2011) w.r.t. P at x ∈ F is

DMHR(x,P )

= min
{
E
[
λ
{
v ∈ V : X(v) ≤ x(v)

}]
,

E
[
λ
{
v ∈ V : X(v) ≥ x(v)

}]}
/λ(V),

with sample analogue

DMHR(x,Pn)

= min

{
1

n

n∑

i=1

λ
{
v ∈ V : Xi(v) ≤ x(v)

}
,

1

n

n∑

i=1

λ
{
v ∈ V : Xi(v) ≥ x(v)

}
}/

λ(V).

In Table 1, we summarise the depth constructions pre-
sented in detail above.

4.1.7 Other existing functional depth proposals. In
addition to the six functional depth proposals exposed
above, there are several other constructions that have
appeared in the literature. The integrated depth is pro-
posed in Fraiman and Muniz (2001) as the first depth
for functional data. It is defined by integrating over
the continuum of one-dimensional pointwise depths
at each point x(v), v ∈ V . As noted in Claeskens
et al. (2014), the integrated depth is related to the
modified band depth of López-Pintado and Romo
(2009). More specifically, the modified band depth
with J = 2, the recommended value in López-Pintado
and Romo (2009), coincides with the integrated depth
when computed w.r.t. a probability distribution with
absolutely continuous marginals. This correspondence
is due to the use of the simplicial depth for the one-
dimensional pointwise depth, as initially proposed in
Fraiman and Muniz (2001). Other one-dimensional
pointwise depths are equally valid, but do not give rise
to this same link with the modified band depth. The
multivariate functional halfspace depth of Claeskens
et al. (2014) generalises the integrated depth, allow-
ing multivariate functions through the use of the mul-
tidimensional pointwise Tukey depth, and through the
inclusion of a weight function to downweight the influ-
ence of the pointwise depth values over regions where

TABLE 1
Summary of existing depth constructions

Depth (F,d) V Construction

Dh(x,P ) H, ‖ · ‖L2 V ⊂R
d , d ≥ 1 EKh(‖x − X‖L2 )

DRT(x,P ) H, ‖ · ‖L2 V ⊂R
d , d ≥ 1 min{D1(〈u,x〉,Pu) : u ∈ U}

DJ (x,P ) C, ‖ · ‖∞ V ⊂ R
∑J

j=2 PSj
(x ∈ Sj (P ))

DMJ(x,P ) C, ‖ · ‖∞ V ⊂ R
∑J

j=2 E[λ{v ∈ V : x(v) ∈ Sj (v,P )}]/λ(V)

DHR(x,P ) C, ‖ · ‖∞ V ⊂ R min{P(X ∈ Hx),P (X ∈ Ex)}
DMHR(x,P ) C, ‖ · ‖∞ V ⊂ R min{E[λ{v ∈ V : X(v) ≤ x(v)}]/λ(V),

E[λ{v ∈ V : X(v) ≥ x(v)}]/λ(V)}
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the convex hull width is small. Another approach to
generalise the integrated depth to multivariate func-
tions that was proposed in the recent literature is in
Hlubinka et al. (2015). Other functional depth pro-
posals include the integrated dual depth of Cuevas
and Fraiman (2009), proposed as the population ana-
logue of the random projection depth (Cuevas, Febrero
and Fraiman, 2007). There, the double random projec-
tion depth was also proposed as the first example of
depth suitable for multivariate functional data. Addi-
tionally, Chakraborty and Chaudhuri (2014a, 2014b)
study from a functional depth perspective the spatial
depth of Chaudhuri (1996), Vardi and Zhang (2000)
and Serfling (2002) to the functional setting, which has
proved to be a useful construction. For a generalisation
of some of these depths, see Mosler (2013).

4.2 A Property-Wise Analysis of Existing

Functional Depths

In the theoretical results that follow, Dh, DRT, DJ ,
DMJ, DHR, DMHR and their respective (F, d) are
as in Table 1, and D := {Dh,DRT,DJ ,DMJ,DHR,

DMHR}. The conclusions of the following theorems are
summarised in Table 2. We comment here on reasons
for which the different examples of depth satisfy, or fail
to satisfy, the corresponding properties. For a deeper
insight, see the proofs in Section 5.

THEOREM 4.1 (Property P-1. Distance invariance).
All elements of D satisfy property P-1 with the excep-

tion of Dh.

The part of the proof of Theorem 4.1 concerning the
h depth assumes that the same h is used in Dh(x,PX)

and Dh(f (x),Pf (X)), but the conclusion remains valid
if we allow for h to depend on f . To see it, simply ob-
serve that 1

h
exp{−‖x − X‖2/2h2} �= 1

hf
exp{−a‖x −

X‖2/2h2
f } for any h > 0, hf > 0.

Recall from our discussion of P-2 that, since there is
no unique measure of centre of symmetry, θ , in gen-

TABLE 2
Adherence of existing depth constructions to depth defining

properties

P-1 P-2G P-3 P-4 P-5 P-6

Dh ✗ � � � � �

DRT � � ✗ � ✗ �

DJ � � ✗ � ✗ �

DMJ � � ✗ � ✗ �

DHR � ✗ ✗ � ✗ �

DMHR � � ✗ � ✗ �

eral, it is more meaningful to consider the behaviour
of D for a particular case of P in which all standard
notions of centre of symmetry coincide at θ . We thus
consider here adherence to P-2G.

THEOREM 4.2 (Property P-2G, maximality at Gaus-
sian process mean). With the exception of DHR, all el-

ements of D satisfy property P-2G, where J ≥ 3 in DJ .

The intuitive explanation for DHR failing to satisfy
P2-G is that the expected number of upcrossings of a
mean zero Gaussian process above a level a is strictly
decreasing in |a|. Hence, the probability that a Gaus-
sian process is either entirely above or entirely below
a is strictly increasing in |a|. The modified version of
DHR does not suffer this drawback, as it takes account
of the duration of excursions above |a|.

For sufficiently small h, the h-depth becomes a local
depth rather than a global depth and, hence, as alluded
to in the discussion in Section 3.1.3, one would not ex-
pect a centre outward ordering from a unique centre of
symmetry, but rather an outward ordering from points
of high local depth. As such, verification of P-3 is only
achievable when h is sufficiently large for Dh to consti-
tute a global depth. We implicitly impose this assump-
tion in Lemma 4.3 below by imposing that the deepest
element (as measured by Dh) exists and coincides with
the mean.

LEMMA 4.3. Provided that EX exists and Dh(EX,

P ) = supx∈F Dh(x,P ), D = Dh satisfies P-3.

Lemma 4.3 works for any type of distribution, in-
cluding both continuous and discrete. However, the
counterexamples in the proof of Theorem 4.4 demon-
strate that noncontinuous distributions preclude adher-
ence to P-3 for elements of D\{Dh}. The constructions
of these depths are based more directly on terms of the
form P(Bx) for Bx a Borel set that depends on x ∈ F.
For noncontinuous distributions and the constructions
we consider, there exist x, y ∈ F with x �= y that yield
P(Bx) = P(By), resulting in the assignment of equal
depths to x and y.

THEOREM 4.4 (Property P-3, strictly decreasing
w.r.t. the deepest point). The elements of D \ {Dh}
do not satisfy property P-3.

Lemma 4.5, as well as being of independent interest,
is used in the proof of Theorem 4.6.

LEMMA 4.5. For any P ∈ P , Dh(x,P ) is contin-

uous in x.

THEOREM 4.6 (Property P-4, upper semi-continuity
in x). All elements of D satisfy property P-4.
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Upper semi-continuity of the elements of D arises
naturally because all depth constructions preserve the
upper semi-continuity of the distribution function in-
duced by P . A stricter requirement of continuity
would, in most cases, rule out the possibility of P with
finite support.

THEOREM 4.7 (Property P-5, receptivity to convex
hull width across the domain). Provided that EX ex-

ists, D = Dh satisfies P-5. The elements of D \ {Dh} do

not satisfy property P-5.

The intuition behind the nonadherence of the ele-
ments of D \ Dh to P-5 is that their constructions all
result in an assignment of rank, neglecting the relative
distances (as measured in some suitable metric, d , with
respect to P ) between elements of F. By contrast, the
h-depth is essentially a weighted L2(V, λ), where the
weights depend on P . As such, it is able to appropri-
ately exploit the information contained in P such that
the influence of variations in X over Lδ is commensu-
rate with δ.

THEOREM 4.8 (Property P-6, continuity in P ). All

elements of D \ {DJ ,DRT} satisfy property P-6. DRT
satisfies P-6 when the limiting distribution is continu-

ous or the sequence of distributions is the sequence of

empirical distributions. DJ satisfies P-6 when F is re-

stricted to be the space of equicontinuous functions on

V ⊂R.

All elements of D\{DJ ,DMJ} are either constructed
from sets of the form P(Bx) for Bx a Borel set that de-
pends on x ∈ F or as an integral of a bounded Lipschitz
function with respect to P , which yields adherence to
P-6 by the well-known Portmanteau theorem for weak
convergence (cf. Section 5 for details). The construc-
tion of DJ and DMJ results in a stochastic process
whose behaviour is governed by P . As is shown in Sec-
tion 5, convergence of Q to P guarantees weak conver-
gence of the respective stochastic processes, which in
turn results in pointwise P -a.s. convergence of depths.

Amongst the six constructions we consider, the
h-depth satisfies 5 of the 6 properties we seek. This
should not be interpreted as a recommendation to
favour the h-depth. As discussed in Section 3.2, each
property has different implications for different appli-
cation areas and a depth construction should thus be
chosen with the application in mind. As the h-depth
fails to satisfy P-1, a proposal is to substitute the
proposed kernel. As a simple illustration, if the ker-
nel function resulted in Dh(x,P ) := 1√

2π
exp{−‖x −

X‖2/2h2}, property P-1 would be satisfied when al-
lowing h to depend on f , where f is defined in Defi-
nition 3.2.

5. PROOFS

PROOF OF LEMMA 3.4. For any x, z ∈ F, (d(x,

z))p ≤ (supv∈V ‖x(v) − z(v)‖)pλ(V). Fixing z, as
λ(V) is finite, d(x, z) → ∞ implies that

sup
v∈V

∥∥x(v)
∥∥→ ∞.

Thus, D(x,P ) → infx∈F D(x,F) as supv∈V ‖x(v)‖ →
∞ and, a fortiori, as ‖x(v)‖ → ∞ for Lebesgue almost
every v ∈ V . �

PROOF OF LEMMA 3.5. Suppose for a contra-
diction that there exist z1, z2 ∈ F z1 �= z2 such that
D(z1,P ) = D(z2,P ) = maxx∈F D(x,P ). As z1 �= z2
implies d(z1, z2) > 0, we may take in the statement of
P-3 x = z1 and z = z2, which yields by P-3 D(z1,P ) <

D(z2,P ), a contradiction. �

PROOF OF THEOREM 4.1 (PROPERTY P-1). h-
depth. When (F, d) = (H,‖ · ‖L2), the set of func-
tions that satisfy d(f (x), f (y)) = af · d(x, y) for any
x, y ∈ F is given by

{
f : f

(
x(v)

)
=
√

a(v)x(v), a(v) = af > 0
(5.1)

∀v ∈ V
}
.

Since Kh(a‖x − X‖) �= Kh(‖x − X‖) for all a �= 1,
there exist functions in the set (5.1) for which Dh(x,

PX) �= Dh(f (x),Pf (X)). Random Tukey depth: Let
(F, d) = (H, |〈·, ·〉|), then the set of functions that sat-
isfy d(f (x), f (y)) = af · d(x, y) for any x, y ∈ F

is given by equation (5.1). The result follows since
{y : 〈u,x − y〉 ≥ 0} = {y : 〈u,

√
ay −

√
ax〉 ≥ 0} for

all v ∈H.
For DJ , DMJ, DHR and DMHR, letting (F, d) =

(C(V),‖ · ‖∞), the set of functions satisfying d(f (x),

f (y)) = af · d(x, y) for any x, y ∈ F is given by
{
f : f

(
x(v)

)
= a(v)x(v) + b(v),

∣∣a(v)
∣∣= af > 0

∀v ∈ V
}
.

Then, D(x,PX) = D(f (x),Pf (X)) for those instances
of depth listed above by the following observations.
Band depth: the result is Theorem 3 of López-Pintado
and Romo (2009). Modified band depth: for af >

0, x(v) ∈ [Lj (v),Uj (v)] if and only if af x(v) ∈
[af Lj (v), af Uj (v)]. Half-region depth: we have
P [X(v) ≤ x(v), v ∈ V] = P [af X(v) ≤ af x(v), v ∈
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V] and analogously for P [X(v) ≥ x(t), v ∈ V]. Mod-

ified half-region depth: we have E[λ{v ∈ V : x(v) ≤
X(v)}] = E[λ{v ∈ V : af x(v) ≤ af X(v)}] and analo-
gously for E[λ{v ∈ V : x(v) ≥ X(v)}]. �

PROOF OF THEOREM 4.2 (PROPERTY P-2G). h-

depth. Suppose for a contradiction that

z := argsup
x∈F

Dh(x,P )

is such that Dh(z,PX) > Dh(E[X],PX). Since

argsup
x

Dh(x,PX)

= argsup
x

E

[
exp

{
−

‖x − X‖2

2h2

}]
(5.2)

= arginf
x

E
[
‖x − X‖2],

the previous supposition is equivalent to E[‖z−X‖2] <

E[‖E[X] − X‖2] = E[‖X‖2]. After some algebra we
obtain ‖x‖2 < 2

∫
x(v)E[X(v)]dv = 0, a contradic-

tion.
Random Tukey depth. For any u ∈ F = H, we have

that 〈u,EX〉 is the mean of Pu because E[〈X,u〉] =
E
∫

X(v)u(v) dv =
∫
EX(v)u(v) dv. Since, for P a

Gaussian process, the mean of Pu coincides with the
median of Pu, we have D1(〈u,EX〉,Pu) = 1

2 . Then, by
the definition of random Tukey depth, DRT(EX,P ) =
minu∈U

1
2 = 1

2 , the maximum attainable value for
the random Tukey depth, hence, DRT(EX,P ) =
supx∈F DRT(x,P ).

Band depth and modified band depth. By the defini-
tion of the band depth and the modified band depth,

sup
x∈F

DJ (x,P ) ≤
J∑

j=2

sup
x∈F

PSj

(
x ∈ Sj (P )

)

and

sup
x∈F

DMJ(x,P )

≤
J∑

j=2

sup
x∈F

E
[
λ
{
v ∈ V : x(v) ∈ Sj (v,P )

}
/λ(V)

]
.

Since each of X1, . . . ,XJ is a random draw from P ,
whose mean is θ = EX, and since PSj

is a contin-
uous distribution over simplices (because P is con-
tinuous), the x which maximises the probability of a
random j -simplex enveloping it is clearly x = θ , yield-
ing supx∈F DJ (x,P ) = DJ (θ,P ). Similarly, the x for
which the expected duration spent in any simplex is

largest is also x = θ , yielding supx∈F DMJ(x,P ) =
DMJ(θ,P ).

Half-region depth. By Adler (1981), Theorem 4.1.1,
the expected number of upcrossings of a level ū of a
zero-mean, stationary, almost surely continuous ran-
dom process on V is

E[Nū] =
√

−R′′(0)

R(0)

λ(V)

2π
exp

{
−

ū2

2R(0)

}
,(5.3)

where R(0) = E[|X(v)|2] and −R′′(0) is the vari-
ance of X(v), which is constant by stationarity of X.
Equation (5.3) is maximised at ū = 0, hence, for any
ū such that 0 < |ū| < ∞, min{P(X(v) ≤ ū ∀v ∈
V),P (X(v) ≥ ū ∀v ∈ V)} > min{P(X(v) ≤ 0 ∀v ∈
V),P (X(v) ≥ 0 ∀v ∈ V)}.

Modified half-region depth. Demonstrating that
DHR(x,P ) achieves its maximum value at the zero
mean function of the Gaussian process P entails a
proof that the expected measure of the level zero ex-
cursion set is 1/2, where the level zero excursion set is
defined as

A0 := A0(X,V) :=
{
v ∈ V : X(v) ≥ 0

}
.

By Rice (1945), from which equation (5.3) also orig-
inally derived, the expected length of an excursion
above zero is π

√
R(0)/[−R′′(0)]. Recalling that V is a

compact subset of R and assuming an excursion starts
at min{v ∈ V}, we thus have, using equation (5.3),

E
[
λ(A0)

]
=

λ(V)

2

√
−R′′(0)

R(0)

√
R(0)

−R′′(0)
=

λ(V)

2
.

Hence, DMHR(EX,P ) = 1/2, which coincides with
supx∈F D(x,P ). �

PROOF OF LEMMA 4.3 (PROPERTY P-3, h-DEPTH).
Observe that Dh is translation invariant, that is, for any
x, b ∈ F and PX ∈ P

Dh(x,PX)

= E

[
1

h
√

2π
exp

{
−

‖x − X‖2

2h2

}]

= E

[
1

h
√

2π
exp

{
−

‖(x − b) − (X − b)‖2

2h2

}]
.

Thus, set E[X] = 0 without loss of generality.
Suppose for a contradiction Dh(x,P ) ≥ Dh(y,P ).

Substituting ‖x − X‖2 = ‖x‖2 + ‖X‖2 − 2
∫

x(v) ×
X(v)dv in the expression for Dh gives the inequality

exp
{
−

‖x‖2 − ‖y‖2

2h2

}

≥ E

[
exp

{∫
(y(v) − x(v))X(v) dv

h2

}]
.
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By the statement of P-3 and the fact that E[X] = 0, we
have ‖x‖ > ‖y‖ and so

1 > exp
{
−

‖x‖2 − ‖y‖2

2h2

}
.(5.4)

On the other hand, by Jensen’s inequality,

E

[
exp

{∫
(y(v) − x(v))X(v) dv

h2

}]

≥ exp
{∫

(y(v) − x(v))E[X](v) dv

h2

}
,

which is equal to 1 because E[X] = 0. This together
with (5.4) yields the contradiction

1 > exp
{
−

‖x‖2 − ‖y‖2

2h2

}
≥ 1.

�

PROOF OF THEOREM 4.4 (PROPERTY P-3). Ran-

dom Tukey depth. The proof is by counterexample.
Let P ∈ P be a discrete distribution with support
{x1, x2} with x1(v) = 2 for all v ∈ V and x2(v) =
−1 for all v ∈ V . Let u ∈ H be an arbitrary reali-
sation of the random variable U whose distribution
is μ. The inner product with u of any y ∈ Y :=
{y(v) = c ∀v ∈ V with c ∈ (−1,2)} gives rise to
〈u,y〉 ∈ (min{〈u,x1〉, 〈u,x2〉},max{〈u,x1〉, 〈u,x2〉}).
It follows that DRT(y,P ) = maxx∈F DRT(x,P ) for any
y in the closure of Y , which contradicts Lemma 3.5.

Band depth. The proof is by counterexample. Take
P ∈ P discrete with P({x1}) = P({x2}) = 1/2, where
x1(v) = −c for all v ∈ V , x2(v) = c for all v ∈ V .
Then PSj

j = J = 2 is discrete with PSj
(Sj,1) =

PSj
(Sj,2) = 1/4 and PSj

(Sj,3) = 1/2, where Sj,1 =
{x1}, Sj,2 = {x2} and Sj,3 = {[x1(v), x2(v)] : v ∈ V}.
Then DJ (z,P ) has two global maxima, at z = x1
and at z = x2, with DJ (z,P ) = 3/4. Without loss
of generality, set z = x1. For any x, y ∈ F = C(V)

such that max{d(y, z), d(y, x)} < d(x, z) and x2(v) <

x(v) < x1(v), x2(v) < y(v) < x1(v) for all v ∈ V .
Then DJ (x,P ) = DJ (y,P ) = 1/2, violating P-3.

Modified band depth. The proof uses the same coun-
terexample as in the proof for the band depth. We have

DMJ(z,P )

= λ
{
v ∈ V : z(v) ∈ Sj,1(v,P )

}
PSj

(Sj,1)/λ(V)

+ λ
{
v ∈ V : z(v) ∈ Sj,2(v,P )

}
PSj

(Sj,2)/λ(V)

+ λ
{
v ∈ V : z(v) ∈ Sj,3(v,P )

}
PSj

(Sj,3)/λ(V),

and DMJ(z,P ) is maximised at z = x1 and z = x2,
giving DMJ(z,P ) = 3/4. Without loss of general-
ity, set z = x1. For any x, y ∈ F = C(V) such that

max{d(y, z), d(y, x)} < d(x, z) and x2(v) < x(v) <

x1(v), x2(v) < y(v) < x1(v) for all v ∈ V . Then
DMJ(x,P ) = DMJ(y,P ) = 1/2, violating P-3.

Half-region depth. Let P , x and y be as for the (mod-
ified) band depth. Then D(z,P ) = P(X(v) ≥ z(v), v ∈
V) = P(X(v) ≤ z(v), v ∈ V). But P(X(v) ≥ x(v), v ∈
V) = P(X(v) ≥ z(v), v ∈ V) = P(X(v) ≥ y(v), v ∈
V), hence DHR(x,P ) = DHR(y,P ) = DHR(z,P ) de-
spite the fact that d(y, z) < d(x, z).

Modified half-region depth. Let P , x and y be as
for the (modified) band depth. Then for any ω ∈ �,
λ{v ∈ V : X(ω,v) ≤ x(v)} = λ{v ∈ V : X(ω,v) ≤
y(v)} and likewise for the converse inequality. Hence,
DMHR(x,P ) = DMHR(y,P ) despite the fact that
d(y, z) < d(x, z). �

PROOF OF LEMMA 4.5. Write exp{−‖x−X(ω)‖/
2h}/

√
2πh =: F(x,ω). Then for P -almost every ω ∈

�, F(·,ω) is continuous at x. Moreover, since exp{−z}
is bounded on z ∈ R

+, there exists a P -integrable func-
tion g(ω) such that F(y,ω) ≤ g(ω) for P -almost ev-
ery ω ∈ � and all y in a neighbourhood of x. Since the
above holds for all x ∈ F, it follows by Theorem 7.43
of Shapiro, Dentcheva and Ruszczyński (2009) that
E[exp{−‖ · −X(ω)‖/2h}/

√
2πh] is continuous at x

for all x ∈ F. �

PROOF OF THEOREM 4.6 (PROPERTY P-4). h-

depth. By Lemma 4.5, Dh is continuous in x so a for-
tiori, it is upper semicontinuous.

Random Tukey depth. The case of DRT(y,P ) ≤
DRT(x,P ) is trivial. When DRT(y,P ) > DRT(x,P ),
the condition in (3.1) is

sup
y:‖y−x‖<δ

min
u∈U

D1
(
〈u,y〉,Pv

)

(5.5)
≤ min

u∈U
D1
(
〈u,x〉,Pu

)
+ ε.

We verify the existence of a δ satisfying (5.5) for all

0 < ε ≤ 1/2 − DRT(x,P ).(5.6)

Note that if DRT(x,P ) ≥ 1/2, we are in the case of
DRT(y,P ) ≤ DRT(x,P ). For the less interesting sce-
nario in which ε > 1/2 − DRT(x,P ), the construc-
tion of δ satisfying (5.5) is more involved. Let u ∈ U

such that DRT(x,P ) = D1(〈u,x〉,Pu), and notice that
DRT(y,P ) ≤ D1(〈u,y〉,Pu) for all u ∈ U. Addition-
ally, DRT(y,P ) > DRT(x,P ) = D1(〈u,x〉,Pu) im-
plies D1(〈u,y〉,Pu) > DRT(x,P ). For ε satisfying
(5.6), DRT(x,P ) = Pu(−∞, 〈u,x〉] implies D1(〈u,y〉,
Pu) = Pu(−∞, 〈u,y〉] and, analogously, DRT(x,P ) =
Pu[〈u,x〉,−∞) that D1(〈u,y〉,Pu) = [〈u,y〉,−∞).
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With these observations, we see that (5.5) is achieved
with δ < sup{η > 0 : P(B(η)) ≤ ε}, where

B(η) :=
{
y ∈ F : DRT(y,P ) > DRT(x,P )

= D1
(
〈u,x〉,Pu

)
,
∣∣〈u,y − x〉

∣∣< η
}
.

Band depth and half-region depth. López-Pintado
and Romo (2009) (Theorem 3) and López-Pintado and
Romo (2011) (Proposition 6) prove that for all x ∈ F

and for all ε > 0, there exists a δ > 0 such that

sup
y:|‖y‖∞−‖x‖∞|<δ

D(y,P ) ≤ D(x,P ) + ε

for the respective depth constructions, D = DJ and
D = DHR. Since |‖y‖∞ − ‖x‖∞| ≤ d(y, x), the proof
is complete.

Modified band depth. The case of DMJ(y,P ) ≤
DMJ(x,P ) is trivial. When DMJ(y,P ) > DMJ(x,P ),
the condition in (3.1) is

sup
y:‖x−y‖∞<δ

J∑

j=2

E
[
λ
{
v ∈ V : y(v) ∈

[
Lj (v),Uj (v)

]
,

(5.7)
x(v) /∈

[
Lj (v),Uj (v)

]}
/λ(V)

]
≤ ε, J ≥ 2.

Taking δ < sup{η > 0 :
∑J

j=2 E[λ{v ∈ V : x(v) /∈
Bj (v),min(|x(v) − Lj (v)|, |x(v) − Uj (v)|) < η}] ≤
ελ(V)} ensures (5.7) is satisfied.

Modified half-region depth. The case of DMHR(y,

P ) ≤ DMHR(x,P ) is trivial. When DMHR(y,P ) >

DMHR(x,P ), the condition in (3.1) is

sup
y:‖x−y‖∞<δ

E
[
λ
{
v ∈ V : y(v) ≤ X(v) ≤ x(v)

}]

(5.8)
≤ ε.

We verify the existence of a δ satisfying (5.8) for all
0 < ε ≤ 1/2 − D(x,P ). For the less interesting case
of ε > 1/2 − D(x,P ), the construction of δ satisfying
(5.8) is more involved. Let

Ŵ :=
{
η > 0 : E

[
λ
{
v ∈ V :

(
X(v) ≤ x(v)

)
1{x ∈A},

(
X(v) ≥ x(v)

)
1{x ∈ B},

∣∣x(v) − X(v)
∣∣< η

}]

< ελ(V)
}
,

where A := {x ∈ F : D(x,P ) = E[λ{v ∈ V : x(v) ≤
X(v)}]} and B := {x ∈ F : D(x,P ) = E[λ{v ∈ V :
x(v) ≥ X(v)}]}. Then taking δ < sup{η ∈ Ŵ} ensures
(5.8) is satisfied. �

PROOF OF THEOREM 4.7 (PROPERTY P-5). h-

depth. We obtain D(f (x),P ) > D(x,P ) by simple

calculation: (α(v))2(x(v) − X(v))2 < (x(v) − X(v))2

for all v ∈ Lδ with λ(Lδ) > 0, hence,

D
(
f (x),Pf (X)

)

=
1

h
√

2π
E

[
exp

{
−

1

2h2

(∫

Lc
δ

(
x(v) − X(v)

)2
dv

+
∫

Lδ

(
α(v)

)2(
x(v) − X(v)

)2
dv

)}]

whilst

D(x,P )

=
1

h
√

2π
E

[
exp

{
−

1

2h2

(∫

Lc
δ

(
x(v) − X(v)

)2
dv

+
∫

Lδ

(
x(v) − X(v)

)2
dv

)}]
.

Random Tukey depth. The proof is by counterexam-
ple. Let P be a discrete probability with P [xi] = 1/3
for i = 1,2,3 and x1(v) > 0, x2(v) = 0 and x3(v) < 0
for all v ∈ V , with x1 and x3 nonconstant functions.
Suppose for a contradiction that the following inequal-
ity is satisfied for a = x1 and a = x3,

DRT(a,PX) < DRT
(
f (a),Pf (X)

)
.(5.9)

If a = x1, let’s denote b = x3 and else, if a = x3, b =
x1. In general, as 〈u,x2〉 = 〈u,f (x2)〉 = 0, in order for
the inequality (5.9) to be satisfied, any given u ∈ U has
to fulfil either

min
{
0,
〈
u,f (b)

〉}
<
〈
u,f (a)

〉
< max

{
0,
〈
u,f (b)

〉}

with 〈u,f (b)〉 �= 0 or
〈
u,f (a)

〉
= 0 �=

〈
u,f (b)

〉
or

(5.10) 〈
u,f (a)

〉
=
〈
u,f (b)

〉
.

However, in order for the inequality (5.9) to be si-
multaneously satisfied by a = x1 and a = x3, only
(5.10) can apply for each u ∈ U; but μ{u : 〈u,f (x1)〉 =
〈u,f (x3)〉} = 0 because, as α(v) > 0 for all v ∈ V ,
f (x1)(v) > 0 and f (x3)(v) < 0 for all v ∈ V . Thus,
(5.9) cannot be simultaneously satisfied by a = x1 and
a = x3, which leads to contradiction.

Band depth, modified band depth, half-region depth

and modified half-region depth. The proof is by coun-
terexample. We follow the counterexample of the ran-
dom Tukey depth but state it here for the sake of
completeness. Let P be a discrete probability with
P [xi] = 1/3 for i = 1,2,3 and x1(v) > 0, x2(v) = 0
and x3(v) < 0 for all v ∈ V , with x1 and x3 nonconstant
functions. As α(v) > 0 for all v ∈ V , f (x1)(v) > 0,
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f (x2)(v) = 0 and f (x3)(v) < 0 for all v ∈ V . In
the case of the band depth and the modified band
depth, for j ∈ {2,3}, the transformation simply shrinks
the convex hull of any simplex over the Lδ region,
whilst the probability of any simplex based on the
transformation is the same as that of the original
simplex to which it corresponds. It is thus immedi-
ate that D(x1,PX) = D(f (x1),Pf (X)) for any D ∈
{DJ ,DMJ,DHR,DMHR}. �

The proof of Theorem 4.8 relies on the following
definition.

DEFINITION 5.1 (e.g., van der Vaart and Wellner,
1996). For any map � : D �→ K, with D and K

normed spaces endowed with norms ‖ · ‖D and ‖ · ‖K
respectively, the Fréchet derivative of � (if it exists) is
the linear continuous map D�a :D �→K such that

∥∥�(a + b) − �(a) − D�a(b)
∥∥
K

= o
(
‖b‖D

)
.

PROOF OF THEOREM 4.8 (PROPERTY P-6). h-

depth. Let dP of property P-6 be the Prohorov metric or
the bounded Lipschitz metric (see, e.g., Dudley, 2002,
page 394). Then by the Portmanteau theorem (see,
e.g., Dudley, 2002, Theorem 11.3.3), dP(Q,P ) →
0 implies |

∫
f (y)(P − Q)(dy)| → 0 for all f ∈

BL(F, d), where BL(F, d) := {f : F → R : ‖f ‖BL <

∞}, ‖f ‖BL = ‖f ‖L + ‖f ‖∞, and

‖f ‖L := sup
z �=y

|f (y) − f (z)|
d(y, z)

.

Given that, for any x ∈ F,
∣∣Dh(x,P ) − Dh(x,Q)

∣∣

=
∣∣∣∣
∫

Kh

(
‖x − y‖L2

)
P(dy)

−
∫

Kh

(
‖x − y‖L2

)
Q(dy)

∣∣∣∣,

it suffices by the previous observations to show that
Kh(‖x − ·‖L2) ∈ BL(F, d). First note

∥∥Kh

(
‖x − ·‖L2

)∥∥
∞

= sup
y∈F

∣∣Kh

(
‖x − y‖L2

)∣∣

= sup
y∈F

∣∣∣∣
1

h

1
√

2π
exp

{
−

‖x − y‖2
L2

2h2

}∣∣∣∣

= (h
√

2π)−1 < ∞.

Thus, it only remains to show ‖Kh(‖x −·‖L2)‖L < ∞.
Taking � = Kh, a = x − z, and b = z − y in Defini-
tion 5.1 yields

(∣∣Kh

(
‖x − y‖L2

)
− Kh

(
‖x − z‖L2

)

− DKh,(x−z)(z − y)
∣∣)/
(
‖y − z‖L2

)
= o(1),

hence, to establish

sup
z �=y

|Kh(‖x − y‖L2) − Kh(‖x − z‖L2)|
‖y − z‖L2

< ∞,

it is sufficient to show

sup
z �=y

|DKh,a(z − y)|
‖y − z‖L2

< ∞.

Let ψ(·) = ‖ · ‖2
L2

and ϕ(·) = 1
h

1√
2π

exp{− (·)
2h2 }. We

can thus write DKh,a(z − y) = Da(ϕ ◦ ψ)(z − y),
and by the chain rule of Fréchet derivatives, Da(ϕ ◦
ψ)(b) = Daϕ((ψ)(b)) ◦ Daψ(b). We start by comput-
ing Daψ(b). Setting � = ψ in Definition 5.1 gives
|〈a +b, a +b〉−〈a, a〉−Dψa(b)| = o(‖b‖) and notic-
ing that |〈a + b, a + b〉 − 〈a, a〉 − 2〈a, b〉| = 〈b, b〉 =
‖b‖2

L2
= o(‖b‖L2), we conclude Dψa(b) = 2〈a, b〉 =

2〈x − z, z − y〉.
For an arbitrary s ∈ F, set w = (ψ)(s), which be-

longs to R
+, thus,

Daϕ(w) = −
1

2h3

1
√

2π
exp

{
−

w

2h2

}
.

The chain rule delivers

DKh,a(z − y)

= Da(ϕ ◦ ψ)(z − y)

= −
1

h3

1
√

2π
exp

{
−

‖y − z‖2
L2

2h2

}
〈x − z, z − y〉,

hence,

sup
z �=y

|DKh,a(z − y)|
‖y − z‖L2

= sup
z �=y

| 1
h3

1√
2π

exp{−
‖z−y‖2

L2
2h2 }〈x − z, z − y〉|

‖y − z‖L2

≤ sup
z �=y

1

h3

1
√

2π
exp

{
−

‖y − z‖2
L2

2h2

}

· max
{
‖x‖2

L2
,‖y‖2

L2
,‖z‖2

L2

}
< ∞

because x, y, z ∈ F = L2 implies they each have finite
L2 norm.
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Random Tukey depth. dP(Q,P ) → 0 P -a.s. for any
metric dP(·, ·) metricising the topology of weak con-
vergence is equivalent to Q → P P -a.s., which in turn
implies Qu → Pu P -a.s. for all u ∈ H. As P is con-
tinuous and u is drawn with a nondegenerate station-
ary Gaussian measure, Pu is also continuous. It follows
that

max
{∣∣Pu

(
−∞, 〈u,x〉

]
− Qu

(
−∞, 〈u,x〉

]∣∣,
∣∣Pu

[
〈u,x〉,∞

)
− Qu

[
〈u,x〉,∞

)∣∣}→ 0P -a.s.

and, consequently, |D1(〈u,x〉,Pu) − D1(〈u,x〉,
Qu)| → 0 P -a.s. for any u ∈ H. Then

∣∣DRT(x,P ) − DRT(x,Q)
∣∣

=
∣∣∣min
u∈U

D1
(
〈u,x〉,Pu

)
− min

u∈U
D1
(
〈u,x〉,Qu

)∣∣∣

≤ max
u∈U

∣∣D1
(
〈u,x〉,Pu

)
− D1

(
〈u,x〉,Qu

)∣∣

→ 0 P -a.s.,

where the inequality follows because, for any w ∈ U,
minu∈U D1(〈u,x〉,Pu) ≤ D1(〈w,x〉,Pw), and likewise
for Q. The empirical case follows from the proof
of Theorem 2.10 in Cuesta-Albertos and Nieto-Reyes
(2008).

Band depth. Since dP(P,Q) metricises the weak
topology, dP(P,Q) < δ → 0 is the same as writing
Xδ � Y as δ → 0, where � denotes weak convergence
and Xδ and Y are random variables Xδ : � → F and Y :
� → F such that, for any A ∈ A, P(A) = P(X−1

δ (A))

and Q(A) = P(Y−1(A)), where P is a probability
on the underlying sample space �. By the Portman-
teau theorem (e.g., Dudley, 2002, Theorem 11.3.3),
VN →d V if and only if Ef (VN ) → Ef (V ) for all
bounded Lipschitz functions f . Define Xδ,1, . . . ,Xδ,J

to be i.i.d. copies of Xδ and Y1, . . . , YJ to be i.i.d.
copies of Y . Then, by the Portmanteau theorem, for
any ℓ ∈ {1, . . . , j} where j ∈ {2, . . . , J } and for any
(α1, . . . , αj ) ∈ 
j , since f is bounded and continuous,
there exists a δ < δℓ such that

∣∣∣∣E
[
f

([∑

k �=ℓ

αkXδ,k

]
+ αℓXδ,ℓ

)]

−E

[
f

([∑

k �=ℓ

αkXδ,k

]
+ αℓYℓ

)]∣∣∣∣< δ/j.

Hence,
∣∣∣∣∣E
[
f

( j∑

k=1

αkXδ,k

)]
−E

[
f

( j∑

k=1

αkYk

)]∣∣∣∣∣

≤
j∑

ℓ=1

∣∣∣∣E
[
f

(∑

k �=ℓ

αkXδ,k + αℓXδ,ℓ

)]

−E

[
f

(∑

k �=ℓ

αkXδ,k + αℓYℓ

)]∣∣∣∣< δ

for all δ < min{δℓ : ℓ ∈ {1, . . . , j}}. Letting

ZX(δ),j (α) :=
j∑

k=1

αkXδ,k

and

ZY,j (α) :=
j∑

k=1

αkYk,

we conclude through a second application of the Port-
manteau theorem that ZX(δ),j (α) →d ZY,j (α) for
any j ∈ {2, . . . , J } and any α ∈ 
j . Hence, for ev-
ery finite collection α1, . . . ,αℓ where αk ∈ 
j for
each k ∈ {1, . . . , ℓ}, (ZX(δ),j (α1), . . . ,ZX(δ),j (αℓ)) �

(ZY,j (α1), . . . ,ZY,j (αℓ)). Here (ZX(δ),j (α1), . . . ,

ZX(δ),j (αℓ)) is an arbitrary finite set of marginals
(in the α index) ZX(δ),j (α) : �j → F of the stochas-
tic process ZX(δ),j := {ZX(δ),j (α) : α ∈ 
j } which
is the map ZX(δ),j : �j → F(
j ) = C(V,
j ) ⊂
L

∞(V × 
j ), where L
∞(V × 
j ) is the space of

bounded functions from (V × 
j ) to R. Similarly,
(ZY,j (α1), . . . ,ZY,j (αℓ)) is an arbitrary finite set of
marginals of the stochastic process ZY,j := {ZY,j (α) :
α ∈ 
j }. Hence, in order to show that ZX(δ),j � ZY,j

for every j ∈ {2, . . . , J }, it only remains by Theo-
rem 1.5.4 of van der Vaart and Wellner (1996) to show
that, for any j ∈ {2, . . . , J }, ZX(δ),j is asymptotically
tight, that is, for every ξ > 0 there exists a compact set
K such that lim infδ→0 PZ(δ),j (ZX(δ),j ∈ Kη) ≤ 1 − ξ

for every η > 0, where PZ(δ),j is defined at every
A ∈ A by PZ(δ),j (A) = P

j (Z−1
X(δ),j (A)).

By Theorem 1.5.7 of van der Vaart and Wellner
(1996), ZX(δ),j is asymptotically tight if and only if
ZX(δ),j (v,α) is tight in R for every w = (v,α), and
there exists a semimetric dw on W = (V × 
j ) such
that (W, dw) is totally bounded and ZX(δ),j is uni-
formly dw-equicontinuous in probability, that is, for
every κ, ς > 0 there exists a γ such that

lim sup
δ→0

PZ(δ),j

(
sup

w,w′:dw(w,w′)<γ

∣∣ZX(δ),j (w)

− ZX(δ),j

(
w′)∣∣> κ

)
< ς.

Tightness of ZX(δ),j (v,α) holds by completeness of F,
which gives rise to tightness of Xδ and hence ZX(δ),j
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because tightness is preserved under convex combina-
tions. Since V is compact, so too is W , hence, (W, dw)

is totally bounded with respect to the ℓ1 norm. We have

Pr
(

sup
w,w′:dw(w,w′)<γ

∣∣ZX(δ),j (w) − ZX(δ),j

(
w′)∣∣> κ

)

≤ Pr
(

sup
w,w′:dw(w,w′)<γ

∣∣ZX(δ),j (v,α)

− ZX(δ),j

(
v′,α

)∣∣> κ/2
)

+ Pr
(

sup
w,w′:dw(w,w′)<γ

∣∣ZX(δ),j

(
v′,α

)

− ZX(δ),j

(
v′,α′)∣∣> κ/2

)
= I + II.

By the statement of Theorem 4.8, F is the space
of dw-equicontinuous functions over V . Since con-
vex combinations of dw-equicontinuous functions are
dw-equicontinuous, ZX(δ),j (·,α) is dw-equicontinuous
with probability 1. It follows that for every κ, ς > 0,
there exists a γ > 0 such that I < ς/2. Noting that
v′ ∈ V is fixed in II, taking γ sufficiently small also
gives rise to II < ς/2, proving tightness. Asymptotic
tightness is immediate because the bounds on I and II

hold independently of δ.
From here we know ZX(δ),j � ZY,j for every j ∈

{2, . . . , J }. It follows by Theorem 11.3.3 of Dudley
(2002) that there exists a η(δ) ց 0 as δ ց 0 such that
ρ(PZ(δ),j ,QZ(Y ),j ) = M < η(δ), where QZ(Y ),j (A) =
P

j (Z−1
Y,j (A)), that is, for all A ∈ A, PZ(δ),j (A) ≤

QZ(Y ),j (A
ξ ) + ξ for all ξ ∈ [M,η(δ)). Hence, letting

B(x) =
⋃

{A ∈ A : x ∈ A}, we have PZ(δ),j (B(x)) ≤
QZ(Y ),j (B(x)ξ ) + ξ for all ξ ∈ [M,η(δ)) and by
the symmetry of the Prohorov metric and the fact
that B(x) ⊂ B(x)ξ for ξ > 0, we conclude that
|PZ(δ),j (B(x))−QZ(Y ),j (B(x))| ≤ ξ < η(δ). We have

∣∣DJ (x,P ) − DJ (Q)
∣∣

≤
J∑

j=2

∣∣PZ(δ),j

(
B(x)

)
− QZ(Y ),j

(
B(x)

)∣∣

< (J − 1)η(δ).

Setting ε = (J − 1)η(δ), we see that the result follows
by taking every δℓ in the above derivations equal to
δ = η−1(ε/(J − 1)).

Modified band depth. Let [z(·,α) : α ∈ 
j ] be the
set of all convex combinations of the elements of F,
and PZ(δ),j and QY,j be probability measures on that
set, as defined in the proof of Theorem 4.8 for the band

depth. We have
∣∣DMJ(x,P ) − D(x,Q)

∣∣

=
∣∣∣∣∣

J∑

j=2

1

λ(V)

(
E
[
λ
{
v ∈ V : x ∈ Sj (v,P )

}]

−E
[
λ
{
v ∈ V : x ∈ Sj (v,P )

}])
∣∣∣∣∣

≤
J∑

j=2

∣∣∣∣
1

λ(V)

∫
λ
{
v ∈ V : x ∈

[
z(v,α) : α ∈ 
j ]}

· (PZ(δ),j − QY,j )(dz)

∣∣∣∣.

But by compactness of V , λ{v ∈ V : x ∈ [z(v,α) :
α ∈ 
j ]} is bounded and continuous in z because
z ∈ F(
j ) = C(V × 
j ). Hence, |DMJ(x,P ) −
D(x,Q)| → 0 as δ → 0 by the Portmanteau theo-
rem (Dudley, 2002, Theorem 11.3.3) and the fact that
PZ(δ),j → QY,j as δ → 0, as demonstrated in the proof
for the band depth.

Half-region depth. Take dP(P,Q) = ρ(P,Q),
where ρ(P,Q) is defined as in the proof for the
band depth. Suppose ρ(P,Q) = M < δ P -a.s., where
δ > 0. Then for any A ∈ A and any η ∈ [M,δ),
P(A) − Q(Aη) ≤ η < δ. Let Ex denote the epi-
graph of x and let Hx denote the hypograph of x.
|P(Ex) − Q(Ex)| ≤ |P(Ex) − Q(E

η
x )| ≤ η < δ P -

a.s. and |P(Hx) − Q(Hx)| ≤ |P(Hx) − Q(H
η
x )| ≤

η < δ P -a.s., hence, max{|P(Ex)−Q(Ex)|, |P(Hx)−
Q(Hx)|} < δ P -a.s. It follows that, for all ε > 0,
|DHR(x,P ) − DHR(x,Q)| < ε P -a.s. as long as
dP(P,Q) < δ P -a.s. with δ = ε.

Modified half-region depth. Since (F, d) = (C(V),

‖ · ‖∞) is separable and complete, P and Q are tight
and by Theorem 11.3.5 and Corollary 11.6.4 of Dudley
(2002), ρ(P,Q) = α(X,Y ), where X and Y are ran-
dom variables with laws P and Q, respectively, ρ is the
Prohorov metric defined and used throughout the proof
of Theorem 4.8, and α is the Ky-Fan metric, defined
by α(X,Y ) := inf{η > 0 : Pr(d(X,Y ) > η) ≤ η}. Let L

be an arbitrary subset of V , and let XL and YL be the
random variables X and Y defined over the restricted
space with corresponding probability laws PL and QL

respectively. Since P → Q, there exists a δL > 0 such
that ρ(PL,QL) < δL, hence α(XL, YL) < δL, hence
Pr(d(XL, YL) ≥ δL) < δL and for any Borel set AL of
C(L), if XL ∈ AL, then YL ∈ A

δL

L , hence for any L ⊂ V

and a sufficiently small δL, {XL(v) < x(v), YL(v) >

x(v) : v ∈ L} and {XL(v) > x(v), YL(v) < x(v) : v ∈
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L} are events of probability zero under the joint law of
XL and YL. By this argument,
∣∣DMHR(x,P ) − DMHR(x,Q)

∣∣

≤ max
{∣∣∣∣
∫

λ
{
v ∈ V : y(v) ≤ x(v)

}
(P − Q)(dy)

∣∣∣∣,
∣∣∣∣
∫

λ
{
v ∈ V : y(v) ≥ x(v)

}
(P − Q)(dy)

∣∣∣∣
}

with probability 1. Both terms in this expression con-
verge to zero as δ → 0 by Theorem 11.3.3 of Dudley
(2002) because λ{v ∈ V : y(v) ≤ x(v)} and λ{v ∈ V :
y(v) ≥ x(v)} are continuous in y and bounded by com-
pactness of V . �
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