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Abstract

Topology analysis of plane, turbulent vector fields results in visual
clutter caused by critical points indicating vortices of finer and finer
scales. A simplification can be achieved by merging critical points
within a prescribed radius into higher order critical points. After
building clusters containing the singularities to merge, the method
generates a piecewise linear representation of the vector field in
each cluster containing only one (higher order) singularity. Any
visualization method can be applied to the result after this pro-
cess. Using different maximal distances for the critical points to
be merged results in a hierarchy of simplified vector fields that can
be used for analysis on different scales.

Keywords: vector field topology, flow visualization, clustering,
simplification

1 Introduction

Computational Fluid Dynamics (CFD) and fluid mechanics mea-
surements provide scientists and engineers with large vector data
sets. A major visualization challenge is to extract essential informa-
tion for interpretation. Vector field topology [6, 4] creates a graph
consisting of all critical points and separatrices resulting in a dense
structure description. The background is given by the qualitative
theory of differential equations due to Poincaré [9]. This method
has been very successful since it automates the visualization pro-
cess of large vector data sets and dramatically reduces the presented
information.

For turbulent flows, however, topology-based methods lead to
cluttered pictures usually preventing the user from large scale qual-
itative analysis. Since turbulent flows are characterized by a large
number of close vortices of different scales, we like to develop a
description with a reduced number of critical points that still con-
tains the topological information of the given data set. This leads to
methods for vector field topology simplification. Our central idea
is to merge close critical points into one, potentially higher order,
critical point. This reduces the clutter, but it keeps the topology
consistent.

The described method starts with a planar piecewise bilinear
structured grid. We locate all critical points in an usual zero search
over the cells. Then, we partition the grid into convex cell clus-
ters, called supercells. In each supercell, the distances between the
critical points must be below a prescribed value. We use a typical
top-down clustering approach starting with the whole grid as first
cluster and successive subdivision until all clusters obey the rule.
Now, we know which critical points to merge. Since we want to
have a piecewise analytic description of our vector field, we have
to modify the internal supercell geometry and/or interpolation. We
choose the grid point closest to the center of all critical points in
the supercell and set its vector value to zero. Then, we connect all
grid points from the supercell boundary to this point. This results

in a new mesh that has exactly one critical point in each supercell.
Since this critical point is on a vertex in a piecewise linear field, we
may produce a higher order critical point of arbitrary complexity.
Essentially, we concentrate the preexisting topological flow proper-
ties in a single point. In this sense, our grid modification acts as a
fusion of all singularities in the supercell.

The analysis of the resulting higher order singularity requires a
generalization of the usual critical point analysis, since there is no
valid derivative at a grid vertex. The general idea goes back to work
by Andronov et al. [1]. It is based on a partition of the neighbor-
hood of the critical point into sectors of different behavior. The
sequence of these sectors defines the topological type of the crit-
ical point. The sectors are divided into three types: hyperbolic,
parabolic and elliptic. A hyperbolic sector contains only stream-
lines that pass the critical point without approaching it. The simple
case is a saddle point with its four hyperbolic sectors. A parabolic
sector consists of streamlines that start/end at the critical point and
end somewhere else. Simple sources or sinks have only parabolic
sectors. Finally, elliptic sectors consist of streamlines that loop back
to the critical point, i. e. that start and end at this point. There
are no elliptic sectors in a linear vector field, but one may imag-
ine a simple dipole with two elliptic sectors. We present the details
on definitions and analysis including calculating the separatrices in
later sections.

We use a simple analytic case to verify the analysis and explain
the results of the basic algorithm. Our application is a axisymmetric
turbulent jet simulation with more than 300 critical points. We show
the simplification for two different values of the radius to give an
impression of the simplification in the topology graph.

2 Related Work

A multiresolution approach of 2D vector fields over curvilinear
grids was introduced in [8] to simplify the flow by eliminating the
visual clutter caused by higher order details. Yet, this method does
not focus on the topology and is not designed to ensure a prescribed
accuracy in the topological graph approximation.

W. de Leeuw et al. [3] addressed the issue of vector field topol-
ogy simplification last year. Their method simplifies the topological
graph by successive removal of connected pairs of critical points.
The authors achieve a significant reduction of the number of criti-
cal points, simplifying the corresponding topological structure. The
method does not give a description of the simplified vector field.
Therefore, it cannot be combined with methods like LIC [2] to show
the results of the simplification. Furthermore, it is unable to sim-
plify arbitrary topological configurations, since it does not create
higher order critical points.

The problem of detecting higher order critical points was dis-
cussed by G. Scheuermann et al. [11]. This paper suggests the use
of polynomial approximations to allow higher order singularities
inside cells. The detection is based on a search for several close
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Figure 1: Cluster singularities and cluster center

simple critical points in a piecewise linear interpolation, since this
might indicate the existence of more complicated features in the
underlying real field.

A cluster based simplification of vector fields has been presented
by B. Heckel et al. [5]. It avoids the use of cell connectivity dur-
ing the simplification process and is able to reduce the size of large
3D vector data sets substantially. The field simplification is moni-
tored by the deviation of streamlines starting at the original discrete
vector positions from their counterparts in the original vector field.
However, no attention is paid to the change of vector field topology,
so qualitative consistency may be lost.

3 Cells Clustering

This section discusses grouping cells to get a domain decomposi-
tion into cell groups that contain only close singularities. This is
a typical clustering problem with the proximity of contained sin-
gularities as criterion. To solve it, we have adapted an algorithm
proposed by T. Schreiber [10] originally designed for computa-
tional geometry. In particular, we had to adapt the method so that it
can handle grid cells. Let us first introduce some convenient nota-
tions. (For simplicity, we deal in this section with a structured grid
mapped in a computational space to a rectilinear grid). We denote
by P1, ..., Pm the positions of the m singularities lying inside a
particular cluster. We want to minimize the approximation error of
these m singularities by a single point, where this point (or cluster
center) Q is chosen to be the best approximation (for a given norm)
of the singularities (see Fig. 1). The corresponding error is

S =

Pm

j=1
ωj ||Pj − Q||

Pm

j=1
ωj

where ωi is the weight (set equal to 1 in our case) associated with
the ith singularity. So the aim of the clustering process is to get
a set of clusters that all have an error value smaller than a speci-
fied threshold (which is the only parameter of our method) and that
cover the whole grid.
If a cluster does not satisfy the given error criterion, we split it into
subclusters. To do this, we need to introduce the projected variances
associated with a given cluster:

Vi =

m
X

j=1

ωj(P
i
j − Q

i)

where i ∈ 0, 1 is the considered coordinate axis (Pj = (P 0

j , P 1

j )).
Now, considering the whole grid as initial cluster, the method is

as follows.

Step 1. Take as cluster center the best
vertex approximation of all cluster
singular points.

Step 2. Compute the approximation error S.

subcluster1 subcluster2

dividing polyline

Figure 2: Cluster splitting

If (S > THRESHOLD) go to step 3.
Otherwise stop.

Step 3. Compute the coordinate axis with
largest projected variance
(i.e. max(V0, V1)).

Step 4. Create 2 subclusters by splitting the
cluster at an edge polyline through Q
perpendicular1 to the selected
coordinate axis.
For each cluster, go to step 1.

Step 4 justifies the need for a cluster center to be a grid vertex.
As a matter of fact, when splitting a cluster, we keep processing
cell groups in the form of Fig. 2. To ensure that the algorithm ter-
minates, we used the existence of a best singularity mean point ap-
proximation by a grid vertex that does not lie on the cluster bound-
ary as additional criterion.

4 Topology Simplification

4.1 Local Cell Structure Modification

Once the close singularity clusters have been determined, we have
to remodel the topology inside each supercell to simplify the result-
ing topology graph. As mentioned previously, we aim at simulat-
ing the fusion of all cluster singularities at their mean point. This
fusion process may be thought of as bringing all singular points ar-
bitrary close together. Nevertheless, this action should remain local
because topological consistency must be preserved. Consequently,
we leave the field unchanged along the cluster boundary. Indeed,
to be consistent, we have to ensure that the index computed along
a curve enclosing all cluster singularities remains unchanged after
deformation (see [1], chapt. V, for a presentation of the Poincaré
index theory). This is guaranteed if the cluster boundary itself re-
mains unchanged. So the desired topology deformation is a new
analytic field description inside the cluster that fits the original field
value on the boundary edges and that contains no other singular-
ity than the one artificially created in order to synthesize the topo-
logical “action” of the preexisting singularities. We have already
mentioned that the kind of data we process lies on a structured bi-
linear interpolated grid, thus the field value on the boundary has to
be piecewise linear. So inside the cluster, we remove all the preex-
isting quadrilateral cells and cover the resulting empty domain with
triangles joining the mean point to the cluster boundary as shown
in Fig. 3.

The new singularity should be located at the center vertex (mean
point), so we give this vertex the vector value zero. Every new
triangle is linearly interpolated. Now a well-known property of a

1in computational space



Figure 3: New cell structure in the cluster

linear vector field is that it contains at most one singular point. So
in each triangle, the “intern” vertex is the only location of a singular
point. At last, the edges on the cluster boundary keep the linear
interpolation so the vector values are unchanged. Consequently,
the new intern structure fulfills all requirements.

4.2 Local Topology Analysis

4.2.1 Sector Types

At this stage, we need a definition of a topology graph that is gen-
eral enough to handle the case of zero vectors lying at a intern vertex
of a piecewise linear interpolated supercell.

As a matter of fact, the classical definition of the topological
graph, as given in [6], supposes that all singular points of the vector
field are of linear type (we say of first order) (see [7], pp. 92-96,
for a classification of the linear singularities). If this is the case, the
topology graph (or skeleton) is defined as the graph built up of all
singular points and the integral curves (or streamlines) starting or
ending at saddle points along the eigenvectors and integrated until
they reach the domain boundary, another singular point or a cycle
orbit. Note that we do not deal with cycle orbits in this paper (see
[12]). This definition is actually a special case of the general defi-
nition as we will see.
In the following, we use the theoretical results of [1]. In the classi-
fication of possible singularity types, the authors distinguish singu-
lar points that are reached by no integral curve (called center type)
from those that are reached by at least one streamline (non center
type).

Center Type In this case, one can find a neighborhood of the
singular point where all integral curves are closed, inside one an-
other, and contain the singular point in their interior as shown in
Fig. 4.

Figure 4: Center type

Non Center Type In this case, one does not only have a single
integral curve converging to the singular point but actually two at
least. To analyze the local structure of such a singularity, we have to

consider the behavior of all streamlines passing through its neigh-
borhood. This neighborhood is made of several curvilinear sectors
(see Fig. 5).
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Figure 5: Curvilinear sector

A curvilinear sector is defined as the region bounded by a circle
C with arbitrary small radius and two streamlines S and S′ both
converging (for either t → ∞ or t → −∞) towards O. One then
considers the streamlines passing through the open sector g in order
to distinguish between three possible types of curvilinear sectors.

• Case 1. S tends to O for t → ∞ and S′ tends to O for
t → −∞: Every integral curve passing through the open
sector g leaves g for both t → ∞ and t → −∞. The sector
is called a hyperbolic or saddle sector.
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Figure 6: Hyperbolic sector

• Case 2. S and S′ both tend to O for t → ∞ (resp. t → −∞):
Every integral curve through the open sector g tends to 0 for
t → ∞ (resp. t → −∞) without leaving g and leaves g for
t → −∞ (resp. t → ∞). The sector is known as a parabolic
sector.
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Figure 7: Parabolic sector

• Case 3. S and S′ are two semi-integral curves on the same
integral curve: All the paths through a point inside this loop
form nested loops tending to O for both t → ∞ and t →

−∞. The sector is called an elliptic sector.
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Now, in the general case, separatrices are defined as stream-
lines that are boundary curves of a hyperbolic sector. To determine
the local topology of a singularity, we have to get the type of its
different curvilinear sectors and retain the boundary curves of the
hyperbolic ones. Obviously, if all singular points are of first or-
der, the only singularities presenting hyperbolic sectors are saddle
points and we are thus consistent with the former definition.

4.2.2 Finding Separatrices

In order to locate the position of our separatrices, we use the fol-
lowing (straightforward) property (see Fig. 9).
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Figure 9: Linear vector field in polar coordinates

Property 4.1 Taking the singularity as origin, the orientation of
the vector field does not depend on the radius. That is, one has:

"v(r, θ) = f(r, θ)."v(θ)

where f(r, θ) > 0.

This property has two fundamental corollaries:

Corollary 4.1 The whole required information for the singularity
analysis can be read directly on the supercell boundary.

Corollary 4.2 Separatrices are in our case streamlines that tend to
the singular point along straight lines from the supercell boundary.

Consequently, we are seeking points where the vector field is ei-
ther parallel or orthogonal to the coordinate vector along the cluster
boundary (the further analysis of the “orthogonal” points is required

for the sector type determination, as shown below). Practically, for
each linear interpolated edge [AB] on the cluster boundary one has
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<

:

"v(A) = "vA

"v(B) = "vB

"v(A + t(B − A)) = "vA + t( "vB − "vA), where 0 ≤ t ≤ 1

Thus, if the singularity is taken as coordinates origin, the vector
field is parallel to the coordinate vector at P := A + t(B − A) if
and only if

"OP ∧ "v(P ) = 0 (cross product is zero)

which is a quadratic equation in t.
The solutions P are then classified as follows.

• If < "OP,"v(P )> > 0, then P is marked PARALLEL+

• Otherwise, P is marked PARALLEL-

Likewise, the vector field is orthogonal to the coordinate vector at
P if and only if

< "OP,"v(P )>= 0 (scalar product is zero)

which is as well a quadratic equation in t.
The solutions P are then classified as follows.

• If "OP ∧ "v(P ) > 0, then P is marked ORTHOGONAL+

• Otherwise, P is marked ORTHOGONAL-

That is, in both cases, we have to solve a quadratic scalar equation.
The (possible) real roots must next be checked between 0 and 1
to describe a point actually lying on the considered edge. Once
the found points have been sorted, we use the graph in Fig. 10 to
determine the nature of the different sectors and locate the boundary
curves of the hyperbolic ones. Note that a boundary curve between
an elliptic and a parabolic sector cannot be determined locally but
proceeds from the global field topology as a separatrix emanating
from another singular point. An illustration of the definitions above
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Figure 10: Sectors discrimination graph

is proposed in Fig. 11.

5 Results

In this section, we apply our topology simplification method to a
2D polynomial vector field as well as to a simulation of a swirling
jet.
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Figure 12: Application to an analytic vector field
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Figure 11: Example of sector type identification

5.1 Analytic Vector Field

This polynomial example has been designed with Clifford alge-
bra. It consists of two topological features (a monkey saddle and
a dipole) that are joined by the separatrices as shown in Fig. 12, on
the left. The interest of these two features is that they are of higher
order and thus cannot be handled properly by classical topology
extraction methods with linear precision. Furthermore, they cannot
occur in a piecewise bilinear interpolated vector field. Sampling
this field on a 20 x 20 structured grid, we observe this deficiency:
We obtain a topology where 4 critical points are present (the mon-
key saddle has been split into two saddle points and the dipole into a
sink and a source, see in the middle). Processed with a threshold of
0.3, the simplification is as shown on the right: The source and sink
have been merged in a dipole while both saddles have been merged
in a monkey saddle. The local topology analysis of the dipole re-
veals 2 elliptic and 2 parabolic sectors whereas the monkey saddle
presents 6 hyperbolic sectors and therefore is reached by 6 separa-
trices that form the depicted topological graph. That is, the original
features have been recovered. The grid has been displayed to show

how the clustering works.
More generally, this example shows that, when higher order sin-
gular points are in the real vector field, our method can be used to
attack the “splitting effect” of low-order interpolants and to restore
the original nature of the topological features because of its ability
to handle critical points of any type.

5.2 Swirling Jet

This example is a simulation of a swirling jet with an inflow into a
steady medium. It results in a vortex breakdown. Here one wants to
investigate the turbulence of the vector field. The grid is structured
and has 251 x 159 cells ranging from 0 to 15 in x, resp. -1.9 to
1.9 in y. The initial topology has a very complicated structure and
contains 337 singular points. The many singularities lead into vi-
sual clutter so that the topological information cannot be efficiently
interpreted. Figure 13 shows the initial topology together with the
results of our method applied with two different thresholds. Fur-
thermore, three enlargements are proposed that give an insight into
the local effect of the method. With 0.2 taken as threshold, we
get 140 critical points (88 merged ones) and with 0.4, the topology
contains 88 critical points (in this case, only 6 are simple singu-
larities!). It follows that the corresponding pictures appear clarified
and the streamline paths easier to track while for both thresholds the
global structure has been respected. Furthermore, a very interesting
property is the preserved symmetry in the simplified fields. This is
due to the clustering method and the split strategy depending on the
maximal projected variance (see section 3).
At last, to demonstrate the effect of our method on the flow itself,
we give in Fig. 14 the LIC pictures corresponding to the simplified
topologies proposed in Fig. 13.

6 Conclusions

We have presented a method that simplifies the topology of a vec-
tor field defined on a 2D structured grid while providing a piecewise
analytic description for the simplified field. It is based upon the fu-
sion of close simple singularities into a higher order critical point
presenting a similar structure in the large. The groups of singulari-
ties that will be merged is first supplied by a clustering strategy that
works on the grid cells. The merging process is next the result of



Figure 13: Topology scaling: initial graph and simplifications with 0.2 and 0.4 as threshold



Figure 14: Topology scaling: initial LIC picture and simplifications with 0.2 and 0.4 as threshold



a local grid deformation inside each cluster that preserves the field
continuity. We achieve thus a significant reduction of the number of
singular points which clarifies the topological graph while keeping
the initial topological information, as demonstrated by our example.
By considering an analytic vector field, we have also shown that our
method can be used to restore in an interpolated vector field higher
order singular points suspected in the real flow.
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