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ABSTRACT
We study the effects of diffusion on the non-linear corotation torque, or horseshoe drag, in
the two-dimensional limit, focusing on low-mass planets for which the width of the horseshoe
region is much smaller than the scaleheight of the disc. In the absence of diffusion, the non-
linear corotation torque saturates, leaving only the Lindblad torque. Diffusion of heat and
momentum can act to sustain the corotation torque. In the limit of very strong diffusion, the
linear corotation torque is recovered. For the case of thermal diffusion, this limit corresponds
to having a locally isothermal equation of state. We present some simple models that are able
to capture the dependence of the torque on diffusive processes to within 20 per cent of the
numerical simulations.

Key words: planets and satellites: formation – planet–disc interactions.

1 IN T RO D U C T I O N

Low-mass planets, embedded in circumstellar gas discs, are subject
to orbital migration (Goldreich & Tremaine 1979, 1980) through
disc tides. Until they can acquire a massive gas envelope, planets
comparable in mass to the Earth can therefore significantly move
away from their place of birth. It was long thought that this Type I
migration was always directed inwards, and alarmingly fast (Ward
1997; Tanaka, Takeuchi & Ward 2002), which suggested that the
survival of long-period planets could be problematic within this
theory. Recent work has indicated that the situation may be dif-
ferent if the disc’s thermodynamics is taken into account properly
(Paardekooper & Mellema 2006b; Kley & Crida 2008; Kley, Bitsch
& Klahr 2009), in which case outward migration is possible. It was
subsequently realized that this migration behaviour is due to an
entropy-related corotation torque (Paardekooper & Mellema 2008;
Baruteau & Masset 2008a) and is non-linear in nature (Paardekooper
& Papaloizou 2008).

In Paardekooper et al. (2010, hereafter Paper I), we studied the
non-linear corotation torque, or horseshoe drag (Ward 1991), in the
two-dimensional adiabatic limit. It was shown that this horseshoe
drag is dominated by a term proportional to a radial entropy gra-
dient in the unperturbed disc and can lead to outward migration if
the entropy decreases outwards. In the absence of any diffusion,
however, the corotation torque is a transient phenomenon and prone
to saturation (Quinn & Goodman 1986; Ward 2007). The necessary
gradients [vortensity in the (locally) isothermal limit, entropy and
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vortensity for the non-isothermal case] within the horseshoe region
need to be restored on a libration time-scale in order for the corota-
tion torque to be sustained (Masset 2001; Ogilvie & Lubow 2003).
It was shown in Paardekooper & Papaloizou (2008) that for non-
isothermal discs, both thermal diffusion and viscosity are needed to
sustain the non-linear corotation torque.

Apart from possibly keeping the corotation torque unsaturated,
diffusion of heat and momentum can also, in the limit of high dif-
fusion, act to reduce the non-linearity of the torque. It was already
noted in Masset (2002) that there exists a cut-off for the isother-
mal horseshoe drag at high viscosity. Paardekooper & Papaloizou
(2009a) showed that in this limit, the corotation torque returns to
its linear value. For non-barotropic discs, the limit of high thermal
diffusion effectively corresponds to the locally isothermal case.

Depending on radial profiles of density, temperature, viscosity
and thermal diffusion, the latter mainly determined by temperature
and opacity, a wealth of Type I migration behaviour is possible
therefore. While the sign of the unsaturated torque is indepen-
dent of planet mass, saturation does depend on the mass of the
planet, which can lead to different migration directions for different
planet masses. Moreover, since the level of saturation effectively
determines whether the non-linear corotation torque can dominate
Type I migration, it is important to study the effects of diffusion on
low-mass planet migration.

In this paper, we study Type I migration in non-barotropic discs in
the presence of thermal and viscous diffusion. We start in Section 2
by reviewing our disc models and numerical methods. In Section 3,
we briefly review the results of Paper I on the unsaturated values of
the torque. We then move on to the effects of viscous diffusion in
Section 4 by considering the simple isothermal case, first looking at
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saturation and then moving to the limit of high diffusion in which
the linear torque is recovered. We extend these results to the non-
barotropic case in Section 5. We discuss our results in Section 6 and
conclude in Section 7.

2 N U M E R I C A L M E T H O D S

For the basic equations and details of the equilibrium disc mod-
els, we refer the reader to Paper I. As in Paper I, we study two-
dimensional power-law discs in surface density � (with index −α)
and temperature T (with index −β). We either study isothermal
discs, for which the pressure P = c2

s �, with cs being the isothermal
sound speed, or solve the energy equation and take a perfect gas
equation of state, P = (γ − 1)ε, where ε is the internal energy den-
sity and γ the adiabatic exponent. The scaleheight of the disc H =
cs/� is taken to be small compared to the orbital radius. Typically,
h = H/r = 0.05 at the location of the planet.

We have used the same numerical methods as in Paper I. Fast
Advection in Rotating Gaseous Objects (FARGO; Masset 2000a,b) is
based on the van Leer upwind algorithm on a staggered mesh. The
time-step calculation takes out the average angular velocity, which is
dominated by Keplerian rotation, so that the time-step is limited by
the residual angular velocity rather than the much larger Keplerian
velocity. An energy equation solver was introduced in Baruteau &
Masset (2008a). Diffusion in the energy equation is obtained by
adding a term proportional to the Laplacian of the entropy:

∂ε

∂t
+ ∇ · εv = −(γ − 1)ε∇ · v + χε∇2 log

P

�γ
, (1)

where v is the velocity and χ a thermal diffusion coefficient. This
equation is strictly equivalent to an advection–diffusion equation
for the gas entropy p/�γ . Using this form of the energy equation
is a common approach in studies of turbulent energy transport (see
Shakura, Sunyaev & Zilitinkevich 1978). We take χ to be a constant
throughout the disc.

ROe solver for Disc Embedded Objects (RODEO; Paardekooper &
Mellema 2006a) is a finite volume method, using an approximate
Riemann solver (Roe 1981) to calculate fluxes between computa-
tional cells. Both codes were shown to yield similar values for the
unsaturated horseshoe drag in the adiabatic case (see Paper I), with
RODEO usually producing slightly larger values (up to 10 per cent).
In RODEO, explicit heat diffusion is implemented by solving

∂T

∂t
= −∇ · (χ∇T ). (2)

For RODEO, we choose χ to be a function of radius such that the
initial temperature profile is a stationary solution. We have found
that this only becomes important when the diffusion time-scale over
the horseshoe width becomes comparable to the dynamical time-
scale. Equation (2) is formally only correct for constant density,
but therefore has the advantage of affecting the temperature only,
while viscosity affects only density structures. This way, thermal
and viscous diffusion can be treated separately.

The two different approaches for obtaining diffusion were found
to yield similar results, with differences less than 10 per cent. In
both cases, the diffusion equations are solved explicitly, which leads
to a restriction of the time-step. Note that we have not included
viscous dissipation in the equations: we assume that the background
temperature profile is set by an equilibrium between viscous heating
and radiative cooling (Kley & Crida 2008) and that viscous and
thermal diffusion will act to restore the original profile.

We take the viscosity ν to be a power law in radius such that the
initial surface density profile is a stationary solution. It is easy to
verify that this requires ν ∝ rα−1/2.

3 U N S ATU R AT E D TO R QU E S

Throughout this paper, we will work with a fixed gravitational
smoothing length for the planet’s potential, b/h = 0.4. We discuss
possible effects of different smoothing lengths in Section 5.7. In Pa-
per I, we found the following unsaturated torques for this smoothing
length, which we repeat here for convenience: the Lindblad torque:

γ�L/�0 = −2.5 − 1.7β + 0.1α, (3)

the barotropic part of the horseshoe drag

γ�hs,baro/�0 = 1.1

(
3

2
− α

)
(4)

and the entropy-related part of the horseshoe drag

γ�hs,ent/�0 = 7.9
ξ

γ
, (5)

where ξ = β − (γ − 1)α is the negative of the power-law index
of the entropy. The barotropic part of the linear corotation torque
reads as

γ�c,lin,baro/�0 = 0.7

(
3

2
− α

)
, (6)

and the entropy-related part of the linear corotation torque is given
by

γ�c,lin,ent/�0 =
(

2.2 − 1.4

γ

)
ξ. (7)

As in Paper I, all torques are normalized to �0 = (q/h)2�pr
4
p �2

p,
where subscripts Xp indicate quantity X evaluated at the orbital
radius of the planet r = rp.

4 ISOTHERMAL D I SCS

4.1 A simple saturation model

Masset (2001) discussed a model for corotation torque saturation.
There are a few drawbacks to this approach, however, the major one
being that the dependence of the corotation torque on background
gradients has to be put in by hand. This actually leads to three
possible saturation laws. Another difficulty is that since Masset
(2001) considers a constant viscosity ν and a constant background
surface density, the unperturbed model has a radial velocity profile
(i.e. it is not in equilibrium). At large viscosities, the co-orbital
region for low-mass planets can be deformed, resulting in a Type III
flow structure. Below, we present a version of the Masset (2001)
model that is tailored to the problem at hand.

Assuming Keplerian rotation everywhere, the evolution of the
surface density is given by

∂�

∂t
= 3

r

∂

∂r

(
1

r�

∂

∂r

(
r2ν��

))

+ |� − �p|
2π

(
�′ �

�′ − �

)
�

(
r − rp

2rpxs

)
, (8)

where the second term on the right-hand side accounts for changes
due to the horseshoe turns (see Masset 2001). Primed quantities
indicate that they should be evaluated at r′ = 2rp − r, i.e. on the
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other side of the horseshoe turn, and � denotes the rectangular
function:

�(t) =
{

1 |t | < 1
2 ,

0 |t | ≥ 1
2 .

(9)

The use of the rectangular function ensures that changes due to
horseshoe turns only occur for |r − rp|/rp < xs, where xs is the non-
dimensional half-width of the horseshoe region. Changing variables
to y = �/� and x = (r − rp)/rp, we have

∂y(x, t)

∂t

= 3νp

r2
p

(1 + x)1/2 ∂

∂x

(
(1 + x)1/2 ∂

∂x

(
(1 + x)α−3/2y(x, t)

))

+ |� − �p|
2π

(y(−x, t) − y(x, t))�

(
x

2xs

)
. (10)

Note that y is proportional to the inverse of the specific vorticity, or
vortensity, under the approximation of � being strictly the Keplerian
angular velocity everywhere. Equation (10) then shows that the
vortensity changes with time due to diffusion (first term on the right-
hand side) and due to advection in the horseshoe region (second term
on the right-hand side).

From now on, we will look for stationary solutions. Changing
variables for a second time, with z = 2(1 + x)1/2 − 2 and f = (1 +
z/2)2α−3y(z), we find

3νp

r2
p

∂2f (z)

∂z2

+ 3�p

4π
|z|

[(
1 −

(
3

2
− α

)
z

)
f (−z)

−
(

1 +
(

3

2
− α

)
z

)
f (z)

]
�

(
z

2zs

)
= 0, (11)

where we have approximated the second term of equation (10) for
x � 1 (or, equivalently, z � 1). Here, zs = z(xs). Following Masset
(2001), we split f into an even part, f̄ , and an odd part, f̃ , given by

f̄ (z) = 1

2
(f (z) + f (−z)) (12)

and

f̃ (z) = 1

2
(f (z) − f (−z)) . (13)

We then finally obtain

∂2f (z)

∂z2

− r2
p �p

2πνp
|z|

(
f̃ (z) +

(
3

2
− α

)
zf̄ (z)

)
�

(
z

2zs

)
= 0. (14)

The even part of equation (14) gives f̄ = fp, if we demand that
f̄ is bounded for all z. Note that f = f p exactly corresponds to the
unperturbed profile of y(x). Defining

k = r2
p �p

2πνp
, (15)

the odd part of equation (14) gives

∂2f̃ (z)

∂z2
− kz

(
f̃ (z) +

(
3

2
− α

)
zfp

)
= 0, (16)

for 0 ≤ z ≤ zs, subject to boundary conditions at z = 0 and z = zs.
Since f̃ is odd, we must have f̃ (0) = 0. The most obvious outer

boundary condition, to ensure continuity of f̃ , is to take f̃ (zs) = 0.

This way, vortensity perturbations are localized to the horseshoe
region only. However, for xs � h, we expect pressure effects to
spread vortensity perturbations over a length-scale H (Casoli &
Masset 2009). In other words, assuming Keplerian rotation every-
where means that vortensity perturbations will not be in pressure
equilibrium, while for xs � h we expect pressure equilibrium to be
maintained at all times.

We can incorporate this in the simple model by demanding that

�2 = �2
K + c2

s

r�

∂�

∂r
. (17)

However, using equation (17) in equation (8) makes the problem
very difficult to solve. We can still make progress if we assume that
Keplerian rotation still holds for x < xs, while we use equation (17)
in equation (8) for x > xs. In order to match the two solutions at
x = xs, we solve equation (16) with boundary conditions f (0) = 0,
f (zs) = f s, which give us the inner solution

f̃ in(z) =
(

3

2
− α

)
fp

⎛
⎝√

zzs

I1/3

(
2
3

√
kz3

)
I1/3

(
2
3

√
kz3

s

) − z

⎞
⎠

+ fs

√
z

zs

I1/3

(
2
3

√
kz3

)
I1/3

(
2
3

√
kz3

s

) , (18)

where I denotes a modified Bessel function. We fix f s by demanding
that the inner solution matches in a smooth way to the outer solution.
From the above equation, it is clear that saturation is governed by a
single parameter p:

p = 2
√

kx3
s /3. (19)

The outer solution f out will decay on a scale H towards the equilib-
rium solution (Casoli & Masset 2009). There is no need to calculate
it exactly, as long as we have xs � h. We know that the odd part of
the derivative of f out will approach zero on a length-scale H, so for
xs � h we can set it to zero. We can therefore fix f s by demanding
that the derivative of the inner solution is zero at xs. Note that this is
the same boundary condition as used in Masset (2001). This leads
to

fs = −
(

3

2
− α

)
zsfp

3pI4/3(p)

2I1/3(p) + 3pI4/3(p)
. (20)

The resulting solution for y(x) is shown in Fig. 1, for three different
values of p, where we have chosen the outer profile for x > xs to
approach the equilibrium profile exponentially on a scale H. The
exact form does not matter since it does not affect the torque. Note
that all profiles are indeed smooth at x = xs.

The horseshoe drag in an isothermal disc is given by

�hs,baro = 3�pr
4
p �2

p

∫ xs

0

ỹ(x)

yp
x2dx, (21)

where ỹ(x) is the odd part of y(x).
The torque on the planet can be obtained by again integrating

over all material that has undergone a horseshoe turn. This is why
the exact form of the outer solution is of no importance: since that
material never executes a horseshoe turn, it does not contribute to
the torque. We then get a multiplier for the total horseshoe drag:

F (p) = 8I4/3(p)

3pI1/3(p) + 9
2 p2I4/3(p)

. (22)

Equation (22) is shown in Fig. 2, together with numerical results
obtained with FARGO. The model matches the numerical results to
within 20 per cent for p > 1. For smaller values of p, or larger
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Figure 1. The function y(x) = �(x)/�(x), for three different saturation
parameters p. The inset shows a larger spatial domain, where the exponential
decay of the perturbation is apparent.
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Figure 2. The function F(p). The solid curve represents equation (22).
Symbols indicate the results of numerical simulations using FARGO of a q =
1.26 × 10−5 planet embedded in a h = 0.05 disc. The standard model has
α = 1/2, β = 1 and b/h = 0.4.

values of νp, viscosity starts to affect the horseshoe turn itself,
a regime we will deal with in Section 4.2. It can be shown that
equation (22) is identical to equation (20) in Masset (2002). Note,
however, that in our case we automatically get the correct density
profile dependence, which removes the ambiguity in the choice of
F in Masset (2001). We comment that F(p) may be approximated
to within 5 per cent by a simpler form

F (p) = 1

1 + (p/1.3)2
. (23)

4.2 The limit of high νp

In the limit p � 1, the assumption that the horseshoe turn over
time is much smaller than the viscous diffusion time-scale across
the horseshoe region breaks down. In this regime, the horseshoe
turn itself is modified by viscous effects, and specific vorticity is
no longer conserved during the turn. It was shown in Paardekooper
& Papaloizou (2009a) that the non-linear horseshoe drag is then
replaced by the linear corotation torque, which is in general much
weaker. Because of the strong viscosity required, saturation does
not play a role in this regime, making the torque fully linear. It is
important to understand this regime, since in the non-barotropic case
it corresponds to the transition between the optically thick, mostly
adiabatic, inner disc and the optically thin, locally isothermal, outer
disc, with viscosity replaced by thermal diffusion.

The regime in which the viscosity is strong enough to affect the
horseshoe turns, but not strong enough to make the torque fully
linear, is very difficult to model. All we can say is that in the limit
p → 0, there are basically no turns as far as the flow is concerned,
since the viscosity is strong enough for the flow to forget where
it came from, and the corotation torque will be fully linear. In
the opposite limit, the horseshoe turns will prevent the linear torque
from being set up, and the corotation torque will be given by the
(possibly saturated) horseshoe drag. As the viscosity increases, the
horseshoe drag decreases and the linear corotation torque increases,
and it is not a priori clear that these processes occur at the same rate.
In fact, one may expect the rates to be different, since the time-scale
to set up the horseshoe drag, a fraction of the libration time-scale,
is longer than the time-scale associated with the linear corotation
torque, which is a dynamical time-scale.

We therefore make the assumption that the corotation torque is
given by

�c,baro = G�hs,baro + (1 − K)�c,lin,baro, (24)

with 0 ≤ G, K ≤ 1. In the limit of low viscosity (but still high
enough to keep the corotation torque unsaturated), we expect G,
K → 1, and the corotation torque is given by the horseshoe drag.
In the limit of high viscosity, G, K → 0, and the torque will be
fully linear. As mentioned above, we allow the horseshoe drag to
decrease at a different rate than the linear torque increases towards
high viscosities by having K different from G. Below, we will derive
a general form for G, from which we will extract K using a time-
scale argument.

Consider the contribution of a single streamline, making a horse-
shoe turn from −x to x, to the horseshoe drag. It was shown in
Paardekooper & Papaloizou (2009a) that the time-scale to set up
the horseshoe drag is approximately τ turn = 3τ lib/20. When this is
comparable to the diffusion time-scale across x, viscosity is able to
affect the horseshoe drag. We take this into account by taking the
contribution of the streamline to the horseshoe drag to be

d�hs,baro = 3

(
3

2
− α

)
�pr

4
p �2

px
3F

(
τ

x3

x3
s

)
dx, (25)

with τ = τ diff/τ turn = 45πp2/4 [using τ turn = 2/(5xs�p) and τdiff =
x2

s r
2
p /νp] and F (t) such that F (0) = 0 and F (t) → 1 for t → ∞.

For τ turn � τ diff , this gives us the ordinary horseshoe drag, while
for τ turn � τ diff , the contribution of the streamline goes to zero.

To keep all integrals tractable, we choose a particularly simple
form for F :

F (t) =
{

(t/τ0)l t < τ0

1 t ≥ τ0,
(26)
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for some l, τ 0 > 0. We have obtained good agreement with numerical
experiments with l = 3/4 and τ 0 = 2. It is straightforward to show
that in general

G(τ ) = 4
∫ 1

0
w3F (τw3)dw = 4

3
τ−4/3

∫ τ

0
t1/3F (t) dt, (27)

which for our particular form for F yields

G(τ ) =

⎧⎪⎨
⎪⎩

4
4+3l

(
τ
τ0

)l

τ < τ0

1 − 3l
4+3l

(
τ
τ0

)−4/3
τ ≥ τ0.

(28)

This can be written in terms of p rather than τ :

G(p) =

⎧⎪⎨
⎪⎩

4
4+3l

(
45π
4τ0

)l

p2l p <

√
4τ0
45π

1 − 3l
4+3l

( 4τ0
45π

)4/3
p−8/3 p ≥

√
4τ0
45π

.

(29)

For l = 3/4, τ 0 = 2, we finally have

G(p) =
⎧⎨
⎩

16
25

(
45π

8

)3/4
p3/2 p <

√
8

45π

1 − 9
25

(
8

45π

)4/3
p−8/3 p ≥

√
8

45π
.

(30)

We now assume that K is similar to G, but with a different value of
τ 0. Good results were obtained with τ 0 = 7, so that the linear torque
decreases slower towards lower viscosities than the horseshoe drag
increases. This leads to a maximum corotation torque that is in fact
larger than the unsaturated horseshoe drag, a feature that is already
apparent in the numerical results shown in Fig. 2 (see also Baruteau
& Lin 2010). For this different value of τ 0, we find

K(p) =
⎧⎨
⎩

16
25

(
45π
28

)3/4
p3/2 p <

√
28

45π

1 − 9
25

(
28

45π

)4/3
p−8/3 p ≥

√
28

45π
.

(31)

We can now construct the complete model for the corotation
torque, including both saturation and the cut-off at high viscosity:

�c,baro = G(p)F (p)�hs,baro + (1 − K(p))�c,lin,baro, (32)

which uses equations (22), (30) and (31) and the torques from
equations (4) and (6). We compare the complete model to numer-
ical results in Fig. 3, where we have used the expressions for the
horseshoe drag and linear corotation torque from Paper I. As in the
isothermal case, for the numerical results, xs was determined using
a dichotomic search of the separatrices, with xs being calculated
as the geometric average of the horseshoe half-widths at ±1 rad
(Casoli & Masset 2009). Equation (32) captures the main features
of the numerical results quite well. We have checked that this is true
for different density and temperature profiles.

5 N ON-ISOTHERMAL D ISCS

5.1 Disc models

We now consider the behaviour of non-barotropic effects under the
influence of diffusion. The disc models are similar to those in the
isothermal case, but in addition we solve the energy equation. We
stress again that we do not include viscous energy dissipation in
the equations; we assume that dissipation, together with radiative
cooling, sets the background temperature profile.

5.2 Thermal diffusion

Since we now have an extra physical quantity that is evolved, namely
the temperature, we consider thermal diffusion in addition to viscous

0.1 1.0 10.0
p

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Γ c
/Γ

0

Figure 3. Corotation torque as a function of viscosity (through the p pa-
rameter). Symbols indicate numerical results, obtained with FARGO, for a q =
1.26 × 10−5 planet in a locally isothermal disc with α = 1/2, β = 1, h =
0.05 and b/h = 0.4. The solid curve denotes the model of equation (32).

diffusion. Since we want the disc to be in thermal equilibrium, i.e.
viscous heating should compensate for radiative losses, we can
constrain the range of values we need to consider for the thermal
diffusion coefficient.

Radiative diffusion gives rise to a thermal conductivity

KR = acT 3

3κρ
= 4σT 3

3κρ
, (33)

where a is the radiation constant, c the speed of light, σ the Stefan–
Boltzmann constant and κ the opacity. The corresponding thermal
diffusion coefficient χ is

χ = KR

cvρ
= 4(γ − 1)σT 4

3κρP
= 4γ (γ − 1)σT 4

3κρ2H 2�2
, (34)

where we have used the internal energy ε = cvρT = P/(γ − 1),
with cv being the specific heat at constant volume.

Thermal equilibrium requires that (Kley & Crida 2008)

σT 4
eff = 9

4
ν��2, (35)

where Teff is the effective temperature (Hubeny 1990):

T 4
eff = T 4/τeff, (36)

with an effective optical depth

τeff = 3τ

8
+

√
3

4
+ 1

4τ
, (37)

with τ = κρH being the vertical optical depth.
Using equation (35) in equation (34) leads to

χ

ν
= Pr−1 = 9

4
γ (γ − 1)

(
1 + 2

√
3

3τ
+ 2

3τ 2

)
, (38)

where Pr is the Prandtl number, and we have taken � = 2ρH. We
therefore have that in the limit of τ → ∞, Pr will be of order unity,
with in general Pr < 1. In other words, thermal and viscous diffusion
will be of equal magnitude in the optically thick inner regions of
protoplanetary discs. In the outer regions, thermal diffusion will
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come to dominate, leading eventually to isothermal behaviour for
τ � 1 (Paardekooper & Mellema 2006b). Therefore, we only have
to consider cases for which χ ≥ ν or, equivalently, Pr ≤ 1. Note
that this also holds in the presence of other heating sources such as
external irradiation: in thermal equilibrium, any non-viscous heating
source will require an increase in χ to radiate this energy away.
Additional sources of heating therefore necessarily decrease Pr
even further.

We first consider a barotropic disc, including thermal diffusion,
and show that thermal diffusion does not affect the barotropic part
of the corotation torque. Next, we study the case νp = χ p, with χ p

being the thermal diffusion coefficient at the location of the planet,
and show how this case is different to the barotropic case. We then
adjust the model to incorporate the case νp ≤ χ p.

5.3 Constant entropy disc

A disc with P = P(�) ∝ �γ (or constant entropy) initially behaves
in a similar way to an isothermal disc. Since the entropy is constant,
there is no entropy-related horseshoe drag, and since vortensity
is conserved along streamlines in barotropic flows, the vortensity-
related horseshoe drag is exactly the same as in the isothermal case.
The only difference between the isothermal and constant entropy
cases is the value of γ , which affects not only the total Lindblad and
corotation torques (see Paper I), but also the saturation properties
through its effect on xs. Since xs decreases for increasing γ , for a
given value of νp, the horseshoe drag in a constant entropy disc with
γ > 1 will appear less saturated compared to the isothermal case.

We show in Fig. 4 that the time evolution of the torque in a
constant entropy disc is not affected by thermal diffusion. Since
we do not apply viscous heating or radiative cooling, entropy is
conserved for χ p = 0, keeping the disc, and the associated torque
on the planet, fully barotropic. When applying thermal diffusion,
entropy is no longer strictly conserved, but since both thermal and
viscous diffusion act to restore the original density and temperature
profiles, the disc essentially remains barotropic. The torque on the

0 50 100 150 200 250
t (orbits)
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γΓ
/Γ

0
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χ=10-6

Figure 4. Total torque on a q = 1.26 × 10−5 planet, b/h = 0.4, embedded
in a h = 0.05 disc with α = −1/2, β = −1/5 and γ = 7/5, making ξ =
0. Two values for thermal diffusion are considered: χp = 0 (solid line) and
χp = 10−6r2

p �p (dotted line). Results were obtained with RODEO.
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Figure 5. Corotation torque as a function of viscosity (through the p pa-
rameter). Symbols indicate numerical results for a q = 1.26 × 10−5 planet
in a disc with α = 1/2, β = 1, h = 0.05, γ = 7/5 and b/h = 0.4. The Prandtl
number equals unity in all runs. The solid curve denotes the model of equa-
tion (32), with the appropriate values of the barotropic and non-barotropic
linear and non-linear unsaturated torques, and the dashed curve denotes the
modified model discussed in Section 5.4 (see also equation 51).

planet is therefore very similar in both cases. This is not true for
very large values of χ p: when thermal diffusion is strong enough to
affect the horseshoe turn itself, we approach the isothermal regime.
This limit is considered in Section 5.5.

5.4 The case νp = χp

We now consider the case Pr = 1. We have used the same disc model
as for Fig. 3, but now solving the energy equation with γ = 7/5.
Note that this disc model has negative gradients in both entropy and
vortensity, making the total horseshoe drag positive, and dominated
by the entropy-related part (see Paper I). The results are displayed in
Fig. 5. The solid curve denotes the model of equation (32), with the
horseshoe drag and linear corotation torque from Paper I. It is clear
that the torque saturates faster than predicted by equation (32). This
has to do with the fact that the entropy-related part of the horse-
shoe drag essentially originates from a single streamline close to the
separatrix. At this location, advection is at its maximum efficiency,
since the velocity with respect to the planet is largest, and diffusion
has a hard time to keep up. At the same time, the entropy-related
part needs both thermal and viscous diffusion to remain unsaturated.
Thermal diffusion alone cannot provide fresh angular momentum
to the horseshoe region. Even if thermal diffusion (or entropy dif-
fusion) can restore the entropy gradient sufficiently, if viscosity is
not strong enough to diffuse the resulting vortensity production at
the separatrices, the torque will still saturate (Paardekooper & Pa-
paloizou 2008). In this sense, the entropy torque can be doubly
saturated.

Rather than trying to incorporate these effects into the simple
isothermal model presented in Section 4.1, we try to adjust the
model, guided by the numerical results to allow for the effects de-
scribed above. Both can be incorporated by making the substitution

F (p) → F (pν)F (pχ ), (39)
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where pχ ∝ pν

√
νp/χp is the saturation parameter related to ther-

mal diffusion and pν is the saturation parameter associated with
viscosity, in equation (32). Since advection is most efficient in
the region where the entropy-related torque is generated, we ex-
pect pχ > pν for νp = χ p. Good results were obtained with
pχ = 3pν

√
νp/χp/2, or

pχ =
√

r2
p �px3

s

2πχp
. (40)

We can see indeed that the dashed curve in Fig. 5, obtained with
equation (39), gives a good fit to the data at large pν . Note that
substitution (39) needs to be made for the entropy-related part of
the horseshoe drag only.

The cut-off at high ν and χ should also be modified. Note that in
this regime, advection being most efficient actually helps to keep the
torque non-linear at higher levels of diffusion. Rather than defining
new functions G and K, we have found that the numerical results
can be fitted by making the substitutions

G(p) → √
G(pν)G(pχ ) (41)

and

1 − K(p) → √
(1 − K(pν))(1 − K(pχ )). (42)

Here again, these substitutions only concern the entropy-related
part of the horseshoe drag. The resulting model is shown by the
dashed curve in Fig. 5. Note that at higher levels of diffusion,
the RODEO results differ by 20 per cent from results obtained with
FARGO. We have verified that half of this is due to the different
diffusion implementation: entropy diffusion implemented in RODEO

gave lower values for the torque by approximately 10 per cent at high
diffusion. The remaining 10 per cent can be attributed to a higher
value of the unsaturated torque using RODEO (see Paper I). This
dependence on the nature of the diffusion should be kept in mind
when interpreting these results in terms of radiative discs, where χ

is due to radiative diffusion. The error in the model compared to the
simulations can thus be up to 20 per cent.

5.5 The general case νp ≤ χp

We now consider the general case, still with the restriction Pr ≤
1. We have run a grid of models with different νp and χ p, and the
results are displayed in Fig. 6. All numerical results were obtained
with RODEO, using thermal diffusion.

For all values of pν , Pr = 1 gives the lowest value for the coro-
tation torque. Going up in thermal diffusion, at a fixed value of
pν , the torque increases towards the original model, denoted by
the solid curve. This is consistent with the effect discussed in
the previous section, that a higher thermal diffusion coefficient is
needed to fight advection of entropy along the separatrix. For all
values of χ p, the improved model gives a reasonable fit to the nu-
merical results, with all deviations being less than approximately
20 per cent.

For χ p > 10−5, the corotation torque starts to decrease again. This
is due to thermal diffusion starting to affect the horseshoe turns. For
χ p large enough, we expect to enter the locally isothermal regime,
where the corotation torque is given by the barotropic, non-linear
horseshoe drag plus the linear, entropy-related corotation torque.
Since the linear corotation torque is in general smaller than its
non-linear counterpart, the corotation torque will decrease towards
higher values of χ p. This is illustrated in Fig. 7, where we show
the time evolution of the corotation torque at a fixed value of νp =

10−5 for different values of χ p. The torque decreases with χ p, but
the barotropic part of the corotation torque remains non-linear. The
barotropic horseshoe drag plus the linear entropy-related corotation
torque amount to 1.4�0. However, at these high values of χ p, we
also need to consider the effect of thermal diffusion on the effective
value of γ , which will approach unity for large values of χ p. This
we discuss next.

5.6 Lindblad torque

The Lindblad torque is due to a superposition of linear waves and
does not strongly depend on viscosity, for reasonable values of
the viscosity ν. Thermal diffusion, on the other hand, can play an
important role and is necessary to recover the isothermal result for
large values of the thermal diffusivity χ p. The difference between
the isothermal and adiabatic Lindblad torque basically results from
a difference in sound speeds. Since �L ∝ c−2

s , �L,iso/�L,adi = γ .
Consider the dispersion relation for plane waves ∝exp[i(ωt −

kx)] (Mihalas & Mihalas 1984):

ω2 = c2
s k

2 1 − iχk2/ω

1 − iγχk2/ω
, (43)

with cs being the adiabatic sound speed. From this, one can derive
a phase speed vp:

v2
p

c2
s

= 2Q

γQ + 1
2

√
2
√

(γ 2Q2 − 1)2 + (4Q − 2γQ)2 + 2γ 2Q2 − 2
,

(44)

with Q = χω/c2
s . In the limit of no thermal diffusion (Q = 0),

vp → cs: waves propagate at the adiabatic sound speed. For Q →
∞, vp → cs/γ : waves propagate at the isothermal sound speed.

The torque for any Fourier component will now scale as v−2
p ,

which makes the isothermal torque a factor of γ stronger than the
adiabatic torque. In principle, ω = m�p for the problem at hand,
and one should therefore consider the effects of diffusion on each
Fourier component separately. For simplicity, we consider a single,
representative value of m to describe the effects of diffusion. Since
most of the torque comes from m ∼ 2/3h, we set

Q = 2χp�p

3hc2
s

= 2χp

3h3r2
p �p

. (45)

It is convenient to define an effective γ :

γeff

= 2Qγ

γQ + 1
2

√
2
√

(γ 2Q2 + 1)2 − 16Q2(γ − 1) + 2γ 2Q2 − 2
,

(46)

so that

γeff�L/�0 = −2.5 − 1.7β + 0.1α, (47)

which then replaces equation (3). Note that the horseshoe drag
also scales with γ eff , since the horseshoe width depends on γ

(Paardekooper & Papaloizou 2009b). Equation (46) is plotted in
Fig. 8 as a function of αχ = χ p/(csH), for three different scale-
heights h. It is clear that a substantial thermal diffusion coeffi-
cient is required in order to modify the Lindblad torque (typically
χp = 10−3r2

p �p). We have overplotted numerical results obtained
with RODEO, for a disc with h = 0.05, α = 3/2, β = 1 and γ =
5/3. Since this disc has no entropy or vortensity gradients, the
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Figure 6. Corotation torque as a function of viscosity (through the p parameter). Symbols indicate numerical results for a q = 1.26 × 10−5 planet in a disc
with α = 1/2, β = 1, h = 0.05, γ = 7/5 and b/h = 0.4, for different values of thermal diffusion χp. The solid curve denotes the model of equation (32)
(saturation of the non-barotropic horseshoe drag is similar to the barotropic part), with the appropriate values for the barotropic and non-barotropic parts
of the linear and non-linear unsaturated torques. The remaining curves indicate the modified model discussed in Section 5.4 for different values of χp

(see also equation 51). Different panels highlight different values of χp, with the corresponding model prediction. Numerical results were obtained with
RODEO.

corotation torque vanishes. We can therefore measure γ eff from the
total torque, which should be given by equation (3) with γ = γ eff .
Since for equation (46) we have chosen a single value of m to signal
the transition from isothermal to adiabatic, we expect the numeri-
cal results to show a smoother transition between γ eff = 5/3 and
γ eff = 1. This is indeed what is observed in Fig. 8. Note, however,
that the model does a good job in predicting where the transition
takes place. We have checked that this also holds for different values
of h. Around this transition, the maximum error in γ eff observed is
20 per cent. Note that, since all unsaturated torques are proportional
to γ −1

eff (see below), the error in γ eff only affects the magnitude of
the total torque, not the sign. The dependence of γ eff on thermal
diffusion will therefore not affect planet migration in a qualitative
way, but it is necessary to connect the adiabatic to the isothermal
regime.

5.7 A modified torque formula

Before we combine the results of the previous sections into a single
torque formula, we restate the assumptions made in deriving these
results. We have worked in the two-dimensional approximation,
considered laminar discs only and kept the planet on a fixed circular
orbit. We have ignored the self-gravity of the disc, assumed thermal
equilibrium and considered a simplified energy equation. It is clear
that future studies should be aimed at clarifying the role of magnetic
turbulence and radiative energy transport in keeping the corotation
torque unsaturated.

We have mainly focused on q = 1.26 × 10−5 using a softening
parameter b/h = 0.4, which seems to be an appropriate value to
mimic 3D effects (Paardekooper & Papaloizou 2009a). In the model,
the only place where the mass and the softening parameter enter is
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Figure 7. Corotation torque on a q = 1.26 × 10−5 planet in a disc with
α = 1/2, β = 1, h = 0.05, γ = 7/5 and b/h = 0.4, νp = 10−5 for different
values of thermal diffusion χp. Results were obtained with RODEO.
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Figure 8. The values of γ eff from equation (46), as a function of thermal
diffusion, here represented by αχ = χp/(cs�p). Curves denote equation (46)
for different values of h; open circles indicate numerical results obtained
with RODEO for h = 0.05.

in the values of the unsaturated torques, which have a q2 dependence
and depend on b/h (Paardekooper & Papaloizou 2009a), and in the
value of xs, which can be written as (Paardekooper & Papaloizou
2009b)

xs = C(b/h)

√
q

h
, (48)

where C can be approximated by a power law around b/h = 0.4:

C = 1.1

γ
1/4
eff

(
0.4

b/h

)−1/4

(49)

(see Paper I). The dependence on softening of the linear torques
was studied in Paardekooper & Papaloizou (2009a) and of xs and
the non-barotropic horseshoe drag in Paper I. Given a different value
of the softening, it is straightforward to adjust the formulae below
by using equations (48) and (49). The value of xs then features in
the saturation parameters pν (given by equation 19) and pχ (equa-
tion 40). Note, in particular, that the functional form of F, G and K
will not change for different values of b/h.

The total torque on a low-mass planet is given by the Lindblad
torque plus the corotation torque:

� = �L + �c, (50)

with �L given by equation (3), but with γ → γ eff (see equation 47).
The corotation torque is split into a barotropic part and an entropy-

related part:

�c = �c,baro + �c,ent. (51)

The barotropic part of the horseshoe drag is not affected by thermal
diffusion; therefore,

�c,baro = �hs,baroF (pν)G(pν) + (1 − K(pν))�c,lin,baro, (52)

where �hs,baro is the fully unsaturated horseshoe drag (equation 4,
but with γ → γ eff ), �c,lin,baro is the linear barotropic corotation
torque (equation 6, but with γ → γ eff ), F(p) governs saturation (see
equation 22) and G(p) and K(p) govern the cut-off at high viscosity
(see equations 30 and 31).

For the non-barotropic, entropy-related corotation torque, we
need the modifications discussed in Section 5.4:

�c,ent = �hs,entF (pν)F (pχ )
√

G(pν)G(pχ )

+√
(1 − K(pν))(1 − K(pχ ))�c,lin,ent, (53)

where �hs,ent is the fully unsaturated, entropy-related part of the
horseshoe drag (equation 5, but with γ → γ eff ), �c,lin,ent is the
linear, entropy-related part of the corotation torque (equation 7, but
with γ → γ eff ) and pχ is the saturation parameter associated with
thermal diffusion (see equation 40).

From Fig. 6, we estimate that the maximum error in the corotation
torque is approximately 20 per cent compared to the simulations.
From Paper I, we know that the error in the Lindblad torque is
smaller in general, so for the total torque we expect differences of
20 per cent between model and simulations as well, except close to
the transition between isothermal and adiabatic behaviour, where
the error in the Lindblad torque can be 20 per cent as well (see
Fig. 8).

6 D ISCUSSION

We have presented numerical results and some simple models that
capture the behaviour of the torque due to Lindblad resonances and
horseshoe drag on low-mass planets embedded in gaseous discs in
the presence of viscous and thermal diffusion. Several simplifica-
tions of the real physical system were made to keep the problem
tractable.

First, we have worked with vertical integrated quantities only,
which make the problem two-dimensional. The entropy-related
horseshoe drag seems to play an important role in three-dimensional
discs as well (Kley et al. 2009), and it has been shown that, in an
isothermal set-up, the effect of the horseshoe drag is stronger in
three dimensions (Masset, D’Angelo & Kley 2006b). Clearly, a
three-dimensional model of the horseshoe region is desirable. This
would also get rid of the dependence of the torque on the softening
parameter that is necessarily part of a two-dimensional model (see
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Paper I). The results of Kley et al. (2009) indicate, however, that the
main features of three-dimensional simulations can be reproduced
nicely within the two-dimensional approximation.

We have only considered laminar, viscous discs. In reality, discs
are expected to be turbulent in regions where the gas couples to the
magnetic field of the disc (Balbus & Hawley 1991). The interaction
of turbulence with horseshoe turns is an area that is still largely
unexplored. For the isothermal case, with a simplified turbulence
model based on stochastic forcing, Baruteau & Lin (2010) showed
that turbulent models show similar behaviour to laminar models. It
remains to be seen how full magnetic turbulence, in a non-isothermal
setting, affects the horseshoe drag.

We have modelled radiative cooling as thermal diffusion, with a
constant thermal diffusion coefficient. In radiative models, χ will
depend strongly on temperature and opacity. Moreover, radiative
diffusion will probably be most efficient in the vertical direction,
while in our two-dimensional approximation thermal diffusion is
restricted to the plane of the orbit of the planet. It was noted in Kley
& Crida (2008) that this is in fact an unfavourable case for sustain-
ing the corotation torque compared to vertical cooling in radiative
models. Note that we have chosen χ such that the thermal diffusion
time-scale is identical to the vertical cooling time-scale. Since both
act to restore the original temperature profile, it is to be expected
that including heating and cooling (without thermal diffusion) will
lead to similar effects to thermal diffusion alone. When acting to-
gether, they may reduce the effective Prandtl number since the flow
then has two ways of restoring the original temperature profile.

We have taken the background gradients of temperature and sur-
face density to be given. In reality, they will be determined by a
balance of radiative heating and cooling and viscous dissipation. It
was recently shown in Lyra, Paardekooper & Mac Low (2010) that
discs where these profiles are calculated self-consistently allow for
outward Type I migration to occur for a large fraction of the lifetime
of the disc. Of course, since the mass of the disc decreases with time,
radiative cooling becomes more and more efficient, leading in the
end to a situation where the entropy-related torques are fully linear.

The strong dependence of the horseshoe drag on the local tem-
perature gradient makes it relatively easy to trap planets at special
locations in the disc. While in the isothermal case, a surface density
jump (Masset, Morbidelli, Crida & Ferreira 2006a) or at least a pos-
itive surface density gradient (Paardekooper & Papaloizou 2009a)
is required, in the non-isothermal case a trap is readily established
if a local negative temperature gradient exists. Even if the disc as a
whole does not permit outward Type I migration, low-mass planets
may stop their inward journey when reaching such a temperature
trap.

If the disc parameters allow for outward migration, a natural
planet trap occurs at the transition between the optically thick and
optically thin regions of the disc. Outside this radius, we have
isothermal, and therefore inward, Type I migration, while inside
this radius, we have adiabatic, and therefore outward, Type I mi-
gration. The evolution of this equilibrium radius was explored in
more detail in Lyra et al. (2010). Because of the dependence of the
corotation torque on the saturation parameter p, which depends on
the planet mass through xs, different planet masses will have differ-
ent equilibrium radii. The impact of this migration behaviour on the
gravitational interactions between planets is still largely unexplored.

We have focused on low-mass planets, comparable to the Earth.
While planets of approximately 1 Jupiter mass start to open up deep
annular gaps in the disc (Lin & Papaloizou 1986), there exists an in-
teresting intermediate regime where planets comparable to Neptune
experience an enhanced horseshoe drag (Masset et al. 2006b). This

was interpreted in Paardekooper & Papaloizou (2009b) as being
due to the ineffectiveness of the Lindblad wake to push against the
horseshoe region, leading to a larger value of the horseshoe width
at these masses. This means that these planets are more readily sub-
ject to outward migration, leading to mass segregation even without
considering saturation.

The planet was kept on a fixed circular orbit throughout this
paper, and we have ignored any radial viscous flow in the gas. If
the relative radial speed of the planet with respect to the gas is
large enough, the streamline topology will be modified, leading to
a flow structure similar to that encountered in Type III migration
(Masset & Papaloizou 2003; Pepliński, Artymowicz & Mellema
2008). Although in this case the discussion on the corotation torque
will need to be modified, we comment that a very massive disc,
with a Toomre Q of order unity, is needed for a low-mass planet to
migrate fast enough to achieve this situation.

Finally, we have ignored the self-gravity of the disc. The impact of
self-gravity on Type I migration was discussed in Pierens & Huré
(2005) and Baruteau & Masset (2008b), finding an acceleration
of inward migration due to a shift in the Lindblad resonances.
This should be taken into account especially in massive discs. A
quantitative estimate of this effect can be inferred from fig. 8 of
Baruteau & Masset (2008b).

7 C O N C L U S I O N S

We have presented a simple model that can capture the compli-
cated behaviour of the corotation torque with respect to viscous
and thermal diffusion. The formulae presented in Section 5.7 show
good agreement with two-dimensional hydrodynamic simulations
to within 20 per cent. The strong dependence of the total torque on
temperature gradients and the level of viscous and thermal diffu-
sion allow for a wealth of possible outcomes of Type I migration,
depending on global disc parameters.
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