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1. Introduction and preliminaries. This paper deals with a generalization of
the concept of torsion Abelian groups. Our purpose is twofold. On the one hand,
we treat the concept of torsion axiomatically so as to avoid certain pathology
which may be associated with definitions too closely linked with a particular
Abelian category (cf. [7] and [10]). On the other hand, we establish a procedure
by means of which a canonical torsion theory can be singled out for any given
Abelian category %> furnished with enough structure for the existence of certain
restricted infinite sums and products, and investigate the possibility of a primary
decomposition theorem for that canonical torsion theory.

In §2 some useful characterizations of torsion theories are given. The concept
of torsion theory is equivalent to the notion of idempotent radical in the sense
of Maranda [11], and affords some new characterizations of these. The concept
of torsion theory is closely associated with the concept of strongly complete
Serre classes discussed in [6], [8], [1], [13], and [15]. The essential difference
is that the Serre class is closed under taking subobjects, while the class of torsion
objects associated with a torsion theory is not in general closed under taking
subobjects.

In §3 we consider operators Land R, defined on classes of objects of ^ which lead
to the two closure operators T and F. The latter operators, when applied to sub-
classes of the objects of ^ yield torsion classes, or torsion-free classes, respectively.

In §4 we go about the task of constructing the canonical torsion theory and
obtain an approximation to a primary decomposition theorem. Counterexamples
show that this approximation is best-possible in the sense that the primary de-
composition does not hold in an arbitrary Abelian category.

Finally in the last section we give a necessary and sufficient condition for the
primary decomposition to be valid in any subcomplete Abelian category having
injective envelopes. This primary decomposition is always valid for modules
over a commutative Noetherian ring.

The author wishes to express his gratitude to his thesis adviser E. A. Walker
for his inspiration and guidance and to New Mexico State University for the
esprit de corps of its mathematics section. The first four sections of this paper
are for the most part included in the author's doctoral dissertation.
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We shall assume throughout this paper unless otherwise specified (') that ^
is a subcomplete Abelian category in the sense below such that for any object
A, there is a set-indexed family £f(A) of nonequivalent monomorphisms to A
such that any monomorphism to A is equivalent to some member of ¿^(A).
Further we call a member of £f(A) a subobject of A, and identify it with its domain
if no confusion arises. With this convention, if a : A -* R is in S?(B), we some-
times call A the subobject and a the inclusion, or canonical injection, and write
icß. In this case we denote the object Cokera by BjA. We call the category
<£ subcomplete, if for any family {Au \ueU} of subobjects of a fixed object A, the
infinite sum HUeuAi and the infinite product YlU£u(A/AJ exist in (€, The follow-
ing proposition is then easily verified, for the subcomplete Abelian category cß.

Proposition 1.1. For any object A ofr€, £f(A) is a complete lattice under
the following operations: For a subfamily {Au\ueU} of £f(A), define
Ç\AU = Ker(A-> \\u ,VA¡Au), and [JAU = Im( £„ eUAu->A).

When speaking of the operations defined in Proposition 1.1, we shall use the
terms intersection and union, respectively, of the subobjects Au (ueU). We shall
use the notation Hom(A,B) for the Abelian group of morphisms from A to B,
where A and R are objects of <£\ and write Ext(A,B) for Ext1(A,B). We say a
class sé of objects of ^ is closed under group extensions(2) if for any exact sequence

Q-*A1-*X-*A2^0

with Ax ,A2 e sé it follows that Xe si.
A torsion theory for the Abelian category % consists of a couple (^J*-) of

classes of objects of % satisfying the following axioms:
(I) Jnf = {0}.
(II) If T->4->0 is exact with Te ^ then Ae$~.
(III) If 0-*A->F is exact with Pe#" then Ae&.
(IV) For each object X of <£ there is an exact sequence

0 -* T-* X -» F -* 0
with Te Fand Fe#\

Axiom (IV) will be referred to as the extension axiom. Axioms (I) through (III)
may be replaced by the orthogonality axiom.

(V) Hom(T,F) = 0 for each Te 3T, Fe &, in the presence of (IV) and the
additional assumption that ^"andJ^ each contain with any object all its iso-
morphic copies in ^'. If there exists for the class ^"a class ÍF such that ^"and 3F
together satisfy (I)-(IV) we say ^"is a torsion class, or T-class. Similarly we de-
fine torsion-free class, or F-class.

(i) See Remark (2) at the end of §5.
(2) This terminology is used to emphasize the fundamental distinction between this concept

and that of "essential extension" below.
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2. Characterizations of torsion theories. If the couple (3~,F) is a torsion
theory for # one verifies in short order that ^"and ¡F are each complete with
respect to the orthogonality relation (V). Also, it follows easily from (IV) and (V)
that the subobject of M isomorphic to Tin (IV) is the least upper bound in Sf(M)
of the set of subobjects of M which are simultaneously members of ¡F. We have
the converse in

Theorem 2.1. Let ¿Fand !F be complete with respect to the orthogonality
relation (V). TAen the couple (¿F,^) is a torsion theory for ^.

Proof. It suffices to verify axiom (IV). To this end we first show that IF is
closed under infinite sums (when they exist in ^) and under group extensions.
Let {Tu}ueU be a family of objects of ¿F whose sum exists in <€. If F is an ar-
bitrary member of J5", we have

Horn (Z Tu,f)   « f] Hom(T„,F) = 0

so that iZueu^e^by the completeness of F. To see that ÍF is closed under
group extensions, consider the exact sequence

o->Ti-»x->:r2-»o
with Tx,T2e 3". For any F e !F, we have the exact sequence of Abelian groups

0-0 = Horn (T2,F)-> Horn (X,P)-> Horn (Tx,F) = 0

from which it follows that X e F~.
Now if M is an arbitrary object of #, let Ji be the class of subobjects of M

which are members of 3". By assumption on <€, Ji can be indexed by a set,
Ji = {Mu}ueV. Now if f'u:M„-> M is the canonical monomorphism for each
subobject M„, the image of Z iu: Zm„->M is equivalent to the least upper
bound subobject M, of the M„ (ueU), given by Proposition 1.1, and Mte?F
(by (II) which we assume has been checked at this point). It remains to show that
M\Mte!F. Let Tbe an arbitrary element of ST and suppose that/: T-* MjM, is
given. Then Im/ is of the form HjM, for some subobject H of M containing Mt
(see, for example, [6, p. 127]). But then H/M, e F, and the sequence

0->M,->/Z->/Z/M(->0

is exact with each end object in^ so HeF~or H = Mt. Hence /= 0,  completing
the proof.

Corollary 2.2. Suppose .Fand!F satisfy (V) and are each closed under iso-
morphic images. Then a necessary and sufficient condition that ¿Fand !F be
complete with respect to (V) is that the extension axiom hold.
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The following characterization of torsion classes has been useful for com-
putations.

Theorem 2.3. TAe class 3~of objects of£ is a torsion class if and only if F"
is closed under images, infinite sums, and group extensions. Dually, the classa
is a torsion-free class if and only if F is closed under kernels, infinite products,
and group extensions.

Proof. If ^"is a torsion class, we have already observed the stated properties,
as in the proof of Theorem 2.1. Conversely, suppose ^"has the three closure
properties. Denote by J^that class of objects F such that Hom(T,F) = 0 for all
TeF'. Then (V) is satisfied, and ^"and !F are closed under isomorphic images.
We now finish the proof by observing that the present hypothesis is just what was
verified in the course of proving Theorem 2.1. The proof of the dual statement
can be constructed in a dual manner, or better—by passing to the dual category,
observing that a torsion theory (F,!F) goes over into the torsion theory (J*, F)
for the dual category #*.

We now prove a few results concerning the maximum ^subobject, beginning with
the following result, one half of which was observed in the proof of Theorem 2.1.

Proposition 2.4. Let (¿F,!F) be a torsion theory, and let M be an arbitrary
object of If. Then there is a unique largest subobject M, of M which is a member
of ¿F Moreover, M/Mte¿F. M, can be calculated by either of the equalities

(i)   Mt=\J{TçzM\Te^},or
(ii) M, = Ç\{SçzM\MISe^}.

Proof. Having observed (i), we prove (ii). Since M\Mte^, we have one in-
clusion. On the other hand if S £ M with M/SeJ*, then the image of M, under
the natural map M -* MjS is zero, so that M, £ S, and the proposition follows.

We see that M, is the largest of all images in M of maps from objects in F~and
the smallest of all kernels of maps from M into objects of J*f

Corollary 2.5. The correspondence M^>Mt defines a functor x:^'-*&
having the properties:

(i) Givenf: A-*B, x(f): A,-*Bt is the restriction off, i.e., x(f) isf composed
with A, -» A.

(ii) x(Ajx(A)) = 0.
(iii) r2 = r.

Proof. Since ^is closed under images, (i) is obvious. Since M\Mt e ¡F, (ii)
follows. To see that (iii) holds, simply note that M, = x(M) is the largest subobject
of M which is a member of 3~.

Remarks. A functor r satisfying (i) is called a preradical by Maranda [11].
If r also satisfies (ii), r is termed a radical. A radical x is called a torsion radical

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1966] A TORSION THEORY FOR ABELIAN CATEGORIES 227

if r is left exact, equivalently, if A £ B implies x(A) = A r¡x(B). One easily
verifies that a torsion radical is idem potent, or satisfies (iii). However, the converse
is not true. For example, the radical G -» GD of the category of Abelian groups
assigning to each group its maximum divisible subgroup is idempotent but is not a
torsion radical. If G1 denotes the elements of infinite height of the Abelian group G,
the functor G-^G1 satisfies (i) and (ii) but not (iii) (one examines the Priiffer
group, [2, p. 105]). We shall need the following result (see [11, p. 101]):

Proposition 2.6 (Maranda). Ifx is a preradical of ^ and if ^4£r(R) then
x(B/A)=x(B)/A.

Corollary 2.7. TAe class of objects held fixed by a radical x is closed under
images.

Proof.   If x(A) = A   and   K £ A   then  x(A¡K) = x(A)/K = A\K.
We then have the characterization of idempotent radicals in

Theorem 2.8. Let ^ be a subcomplete Abelian category and x a subfunctor
of the identity. Then X is an idempotent radical if and only if the class IF of
objects held fixed by x is a T-class. Equivalently, X is an idempotent radical
if and only if the kernel class F: of x is an F-class.

Proof. Assume r is an idempotent radical. Let F~ be the class of objects A such
that x(A) = A, and J5" the class of objects R with x(B) = 0. We verify the axioms
for a torsion theory. First, (I) is clear. (II) is just Corollary 2.7, and (III) is im-
mediate. Now the exact sequence

0-+t(A)-*A-*Aft(A)-*0
satisfies the axiom (IV) in view of the hypothesis on X-

Conversely, define ¿Fand Fr as above and suppose iF is a T-class. Denoting
by A, the maximum ^subobject of A, we will be through by Corollary 2.5 if
we show that for any object A,x(A) = A,. But given A,x(A) £ At, as A, is the
maximum subobject held fixed by r. On the other hand, At £ A shows
A, — x(At) £ x(A), since x is a subfunctor of the identity.

We have noted that ^"is closed under subobjects if and only if the functor
A-> At is left exact. We have the following characterization of this situation
when ^ has injective envelopes :

Theorem 2.9. Let *€ have injective envelopes and let (!F,!F) be a torsion
theory for *€. Then F is closed under subobjects if and only ifF'is closed under
taking injective envelopes.

Proof.   Suppose  ^"is closed under subobjects. We need only show that F'
is closed under essential extensions, by a well-known result in [6]. If F eF~,
let E be an essential extension of F. Then by hypothesis and (III) we have the
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subobject EtC\F both in F'and inJ^, so that EtF = 0, or E, = 0. Hence
E e ¡F. Conversely, suppose SF is closed under injective envelopes. Then
0-*F-»£(F) is exact, where E(F) is an injective envelope of P. But E(F)e¿F
leads to the exact sequence

0 = Hom(T,£(F))->Hom(,4,£(F))-»0,

from which follows the exact sequence

0 -► Uom(A,F) -» Uom(A,E(F)) = 0,

or AeF~.
Whenever the equivalent conditions of 2.7 are valid, # satisfies the closure

axioms of a strongly complete Serre class (see [6], [8], [1], [13], [15], and
especially [4] and [16]).

Interesting examples of torsion theories appear naturally in the theory of
Abelian groups. For this category we have of course the torsion and torsion-free
groups. Another example is the pair of classes consisting of the divisible groups
and the reduced groups. In this connection it is of interest to note that under
Pontrjagin duality, the T-class of ordinary torsion groups goes over into the
P-class of totally disconnected compact groups [9], from which it is easily deduced
that the T-class of connected compact groups is the dual of the P-class of torsion-
free groups, and so on. In order to obtain unlimited examples of torsion theories
we now consider some closure operations defined on classes of objects of <ê.

3. Generation of torsion theories. In this section ^ is a fixed Abelian category
(subcomplete), and the script letters sé, âS denote classes of objects of if. Then
given sé, we define operators L and R as follows:

Usé)  = {ß|Hom(R,A) = 0   for all A e jé},

R(sé)  = {R|Hom(,4,R) = 0   for all A ese).

Proposition 3.1.

Then we have the easily verified result:
(i)    sé n L(sé) = {0}, sé O R(sé) = {0}.
(ii)   sé £ LR(sé), sé £ RL(sé).
(iii) lfséçz®, then Usé) 2 Uß) and R(sé) = R(J),
(iv)  LRL = L, RLR = R.
(v)    T= LR and F = RLare idempotent.

Proposition 3.2. There is a one-one order-reversing correspondence be-
tween images of T and those of F, wherein T(sé) corresponds to RT(sé) = FR(sé),
and F(sé) corresponds to LF(sé) = TL(sé).

We call a class sé T-closed (F-closed) if T(sé) = sé (F(sé) = sé). Then we
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note that any image of Lis T-closed and any image of R is P-closed. Then the
following proposition is immediate in view of Theorem 2.1. It follows that the
notions of T-class and T-closed class are equivalent.

Proposition 3.3.    TAe following  statements  are  equivalent for   the pair
(F~,!F) of classes of objects of <£.

(i)    (F,&) is a torsion theory for %'.
(ii) Fis T-closed with R(F)r=.Fr.
(iii) Jfj's F-closed with L(F") =F'.
(iv) R(F-)=Fand L(&)=F.

Proposition 3.4.   // séu are classes of objects of <ë (ueU), then

L([Jséu) = L({jRL(séu)) = p) L(séu).

The dual result holds, interchanging Land R.

Proof.   The proof consists of routine application of Proposition 3.1.

Corollary 3.5. If the classes séu (u e U) are each T-closed (F-closed), then
so is their intersection.

Proof.    Suppose T(séu) = séu (u e U). Then we have

T( f| séu) = LR( p) LR(séu)) = LRL( \J R(séu)) = L(\J R(séu)) = f| LR(séu) = f) séu.
One interchanges L and R to prove the dual result.

Corollary 3.6. Let Fu(ueU) be T-closed. Then the F-class corresponding to
f)F~u is R(U^Û). On the other hand, the F-class corresponding to T(\jF~u)
is CiR(Fu). The dual result holds, interchanging R and L, Tand F.

4. Specific torsion theories. We now go about the task of constructing
several specific torsion theories for ^. An object S of if is called simple if any
epimorphism S -» £ is either zero or an isomorphism. In the Abelian category %!
this is of course equivalent to the statement that S has no subobjects except 0
and S. Now if (F,F) is a torsion theory for ^, then we have either Se Fr, or
SeF', according as S, = 0 or S, = S. Hence it is natural to consider the classes
F¡=T({S}) and ®S = F({S}). We shall refer to the former as the class of
S-primary objects of ^ and to the latter as the class of S-reduced objects of <€.
The class S>s = LF({S}) is called the class of S-divisible objects of <&. Finally,
the class JÇ= RT({S}) will be referred to as the class of S-free objects of if.
If now £f is a representative class of nonisomorphic simple objects of <&, then
the classes T(if) =F0 and RT(£f) = R(F0) =F0 will be called the classes of
torsion and torsion-free objects of #, respectively. Finally, two further classes
will be of interest, m = F(Sr°) and 3> = LF(Sf) will be called the classes of reduced
and divisible objects, respectively. It is easy to check that these classes coincide
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with the classes of these classical names in the category of Abelian groups, or
in the category of modules over a Dedekind domain, (not a field), replacing the
letter S by the corresponding prime p (our term S-free is not classical). Ry the
socle s(A) of an object A, we mean the union of zero and all the simple subob-
jects of A. If S e if, we call the union of the zero subobject and all the simple
subobjects of A isomorphic to S the S-socle of A, and denote it by A\S\, fol-
lowing the notation of Abelian group theory. The following proposition is im-
mediate from the above definitions.

Proposition 4.1. F e &0 is and only if s(F) = 0, and if Se if, Fe^ if
and only j/F[S] = 0.

Proposition 4.2.    The T-classes Fs and F~0 are   closed under   subobjects.

Proof. By Theorem 2.8 we need only check that J^ and J^ are closed under
essential extensions. So let F e i^ and let £ be an essential extension of F. Then
if S is a simple subobject of £, S n F = 0, so that £ has a zero socle, or £ e J^.
The other assertion follows similarly.

Proposition 4.3.   // Te^ó, íAen T is an essential extension of its socle.

Proof. Let Te^ô and H£ T with Hns(T) = 0. Then HeF0 by Propo-
sition 4.2, but s(H) ^s(T). If s(H) = 0, then He3FQ. Hence H = 0.

Corollary 4.4.   If AeF¡, then A is an essential extension of A[S~\.

Proof. One notes that every simple subobject of the S-primary object A
is isomorphic to S, so that the assertion follows from Propositions 4.2 and 4.3.

Corollary 4.5.   // S, S' e £f with S # S', then Fsr\F¡, = {0}.

Corollary 4.6.   // A is S-primary then A is S'-divisible for S' ^ S in Sf.

Proof. It is immediate from Corollary 4.5 that Hom(yl,S') = 0 for any
S-primary object A.

Corollary 4.7.   // A is S-primary and S-divisible, then A is divisible.

Propositon 4.8.   Let S0e!F. Then we have the equality

^softnKJi^Sesr, S*S0}) = {0).
Proof. We have T({S0}) n T(IJS*S„T({S})) = T({S0}) n T({S \ S * S0})

= T({S0})KLR({S\S ± S0}), which by Proposition 3.4, is T({S0}) n£(f|^so
R({S})) = 0. Since for S # S0, T({S0}) SR({S}) so that T({S0}) £ p|iî6l0R({S})
and we are through by (i) of Proposition 3.1. This result generalizes to

Proposition 4.9. Letsé,@<=;Sf withsén¡%=0. Then T(sé) nT(3») = {0}.
Also, T(sé) and T(SS) are closed under subobjects.
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Proof. T(sé) r\T(ß)= T(sé) n L(p)S6¡aR({S})). But T(sé) £ R({S}) for
any S e âS, for if A e T(sé), A is S-free for S e &. Hence T(sé) £ f], e0BR({S}),
and we have L(f]s eäSR({S})) n [p)s eá¡R({S})] = {0}. The second assertion fol-
lows by comparison with Proposition 4.2.

If M is any object of <€, denote by M, the maximum torsion subobject of M
and by Ms the maximum S-primary subobject of M. Then we have a first ap-
proximation to a primary decomposition in

Theorem 4.10. If M is any object of<£, then the union of the family of sub-
objects Ms (Se£f) of M is isomorphic to the direct sum ZS£^MS, of which
Mt is an essential extension.

Proof.   We need only show that the canonical map

4> =  Z,M :  Zse^Ms->M

is a monomorphism, where iM/.Ms-> M is the canonical injection, for each
S s .y. Note that the image of <f> is precisely the union of the subobjects Ms in
M, £ M. Before proceeding, we prove a lemma.

Lemma 4.11   ( Zs E^MS)S = Ms. for any S'eif.

Proof. Clearly Ms. £ (Zse^M5)s.. For the opposite inclusion we need
( Zs eyMs)IMs.e^(= RT({S'}), by Proposition 2.4, (ii)). But this factor object
is naturally isomorphic to the sum Zs#s-Mse F/s,. We now return to the proof
of the theorem. Let £ be arbitrary in <€ and /:£-> Zse5»Ms such that <pf=0.
Then (<p(lmf))s = 0 for each S e Sf. Let is be the injection furnished by the sum
for each Seif. Then <pis = iM is a monomorphism for each SeSf such that.
Ms # 0. We have (Im/)s £ Ms, by the lemma and hence <p((Imf\) £ ((/>(Im/))s = 0,
which implies that </>is((Im/)s) = iM((lmf)s) = (Im/)s = 0 for each Seif.
Hence Im/ is a torsion object with zero socle, or is zero. Hence/= 0.

Remarks. The above result cannot be improved in some Abelian categories
Walker [15] gives an example of an Abelian category having nonisomorphic
simple objects Sx and S2 with Ext(S1,S2) ¥=■ 0. Hence there is an exact sequence
0-> S2-> X -> Sx->0 which is nonsplitting, yet X is torsion with its S2-primary
part isomorphic to S2 and its S-primary part zero.

If the direct sum of injectives is injective and the classes F¡ are closed under
taking injective envelopes for each Se¿f, we can deduce rather easily a primary
decomposition for the torsion injectives by methods used in [4], noticing that
the direct sum of the injective envelopes of the simple objects in the socle of a
torsion injective Q is a torsion essential extension of s(Q), and hence that the sum
is Q itself. Note also that in this situation, each injective object of ^ splits into
its torsion and torsion-free parts. Gabriel [4] has obtained a further decompo-
sition of the torsion-free part into indecomposable injectives.
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Concerning the phenomenon that the S-primary objects are closed under
essential extensions, we have

Proposition 4.12. The following statements are equivalent when ^ has
injective envelopes :

(i)    F¡ is closed under essential extensions for each Se£f.
(ii)   Any S-primary object can be imbedded in an S-primary injective object.
(iii) Any injective object Q decomposes as Q = QS®F, where F is unique

up to isomorphism.
(iv)  // ^4[S] is essential in A then A is S-primary.
(v) For any object A,AS is the unique maximal essential extension in A of

the S-socle ¿[S].

Proof. That (i) implies (ii) follows from elementary properties of essential
extensions. Also, if (ii) holds, the injective envelope of the S-socle of Q is also
S-primary, and is a summand of Q. Assuming (iii), let A be an essential extension
of ^4[S]. Then A is contained in the S-primary injective envelope of ^4[S].
Now assume (iv), and let A be any object of <€. The union in A of all essential exten-
sions of the S-socle of A is S-primary, being a direct limit of S-primary sub-
objects, and is thus an essential extension of its S-socle ^4[S], which has the re-
quired property by its construction. To see that (v) implies (i), let A be S0-primary.
If £ is an essential extension of A, E is an essential extension of S(A) = /1[S0]
in £, so that £ is S0-primary. With a similar proof, we have the corresponding
result :

Proposition 4.13. TAe following are equivalent when If has injective en-
velopes :

(i)    F~0 is closed under essential extensions.
(ii)   Any torsion object can be imbedded in a torsion injective.
(iii) Any injective object A decomposes as A = A,®F, where At is the torsion

part of A and F is unique up to isomorphism and has no socle.
(iv)   If A is an essential extension of s(A), then A is torsion.
(v) For any object A,At is the unique maximal essential extension in A of

the socle s(A).

Matlis in [12] has shown that for modules over a Noetherian commutative
ring R with unit a primary decomposition holds for all modules with maximal
orders. For a given maximal ideal Ji of R, a module A is said to be Ji-primary
if for each x e A, Ji"x = 0 for some n > 0. A module A is said to have maximal
orders if for each xeA, any prime ideal of R containing (0:x) is maximal. One
verifies easily from results in [12] that in the Noetherian case, the .^-primary
modules coincide with the S-primary modules in our sense, where S = R/Ji,
and that the modules with maximal orders coincide with our class F~0. For integral
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domains R such that any nonzero prime ideal is maximal, e.g., Dedekind domains,
the class of modules with maximal orders coincides with the usual order ideal
definition of torsion. We shall give now an example of a commutative ring R
with unit (non-Noetherian) such that the conditions of Proposition 4.13 are
not satisfied for its modules, but every R-module has maximal orders. It will
be apparent that not every R-module decomposes in the sense of [12]. Let R
be the product of countably many nonisomorphic fields, R = Y[F¡ (F¿ the integers
modulo p¡, where p¡ is the ith prime, will do).

Lemma¡ 4.14.   £acA prime ideal of R is maximal.

Proof. If P is a prime ideal of R and x e R, x $ P, let yx = 0. Then yxeP
so yeP. In particular, consider an element ex such that (ex)¡ = 0 when
(x)¡ 7¿ 0, (ex)¡ = 1 otherwise. Then exeP, and since P¡ is a field, there is an ele-
ment reR, such that (rx)¡ = 0 or 1 for each i and also rx + ex = e, where e is
the unit of R. Thus P + Rx = R, and it follows that P is maximal.

Lemma  4.15.    The R-module YlFJ^Fi has zero socle.

Proof. Let Z denote the sum Zp;, and let x = x + Z be a nonzero element
of the quotient. Let / = {«t}£°= i be that infinite subset of the positive integers
such that (x)„k ̂  0, k = 1,2, •••. One easily verifies that A = (0:x) is just the set
of t e R such that (t); = 0 for all but finitely many iel. We show that the ideal
A is not maximal. Define (y)} = 1, if j = n2k in /, (y)j = 0 otherwise. Then y£A,
yet there is no reR, aeA such that ry + a = e. For no matter which r is
chosen, (ry 4-a),-= 0 for infinitely many j of the form j = n2k+x el, which
concludes the proof.

Remarks. Lemma 4.14 shows that each R-module has maximal orders, al-
though it is apparent that R does not decompose into a direct sum of its ^-primary
submodules. Indeed, R is an essential extension of Z, but since R/ Zis a nonzero
torsion-free module, it is clear that the socle is contained in Z, which thus co-
incides with the socle.

5. The primary decomposition. In this section ^ is a subcomplete Abelian
category with injective envelopes. As before, Sf denotes a representative class
of nonisomorphic simple objects of %, and we use the words "torsion" and
"S-primary" as in the previous section. We are concerned with the primary
decomposition :

(PD) For any torsion object A, A= Zs e^As.

Lemma 5.1. Assume (PD) holds. If B is a torsion object and A £ B, then
the sequence

i\       * |(E) 0 - A, J Bs J (BIA)S -* 0

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



234 S. E. DICKSON [January

is exact, where i\ and n\ denote the restrictions of the inclusion i:A-*B and
its cokernel n, respectively.

Proof. The sequence (E) is left exact by previous work, and to show that
it is right exact, it suffices to show that every S-primary subobject of R ¡A is an
image under 7t| of some S-primary subobject of R. To this end, let H ¡A be a
subobject of (BjA)s. Then n(H) = H/A, but in view of the primary decompo-
sition of H and Proposition 4.9, it is clear that n( Zs-#s//s.) = 0, so that
n(H) = n(Hs) Un( Zs-#s//s0 = n(Hs) U0 = n(Hs), and the proof is complete.

Proposition 5.2.   Suppose that for any exact sequence

0 -*'¿ -+ £ -♦ C -> 0

of torsion objects, the associated sequence

0 -» A, - Bs - Cs -> 0

is exact, for each Se£f'. TAen a torsion essential extension of an S-primary
object is S-primary.

Proof. Suppose A is S-primary, and £ a torsion essential extension of A.
Then consider the exact sequence

0 -> £s -> £ => £/£s -* 0.

If Sx ^ SeSf, the sequence

0 - 0 = (£s)sl->0 = £sl->(£/£s)51->0

is exact, or (£/£s)s, = 0. We already know (£/£s)s = 0, so that the object £/£s
is torsion and has zero socle, and is therefore zero, as desired.

We now turn to the main result of this section.

Theorem 5.3. (PD) holds if and only if for each Seif, the functor A-*AS
is exact on the full subcategory F~0.

Proof. Assuming (PD), the necessity of the condition is just 5.1. To prove
the converse it suffices to show that the class F~x of objects A of the form
A = Zs e?As is a torsion class, for it clearly contains the simple objects and thus
would contain F~0, the minimum such class. The class F~x is obviously closed
under images and direct sums, hence it suffices to show that Fx is closed under
group extensions, by Theorem 2.3. But an exact sequence of the form

0^ Zse^s->X^ ZS6^Bs-*0

yields 0-+As->Xs-+Bs^>0 exact for each seSf by Lemma 4.11 so that
Zs syXJ Zs eyAs = Zs esoRj and X = Zs e?Xs follows. This version of the proof

was discovered after the manuscript had been sent for publication. The referee found
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the following elegant proof of the converse : If Tis a torsion object, let A = Zs ssrTs;
then the sequence 0-+,4-> T->T/A -» 0 is exact, and hence 0 -» As-> Ts->(T/,4)s->0
is exact for all seSf. But As = Ts by Lemma 4.11 and so (T/.4)s = 0 for all
seSf. Thus T/j4 is torsion-free. Since Tis torsion, so is TjA, and so T= A.

Remarks. (1) Some investigations on the question of which module categories
satisfy the hypothesis of Theorem 5.3 will appear in a separate publication.

(2) We have chosen to work with a subcomplete Abelian category in §§1 and 2
mainly to avoid the Grothendieck A.B.5 axiom which would be involved in a
Zorn lemma proof of the existence of a maximum torsion subobject. It is well
known that the A.B.5 axiom introduces a certain amount of nonduality which
we have avoided as much as possible. Actually for our purposes all that is needed
is that the subobject lattices ¿f(A) are complete both in t! and in 'S*. For Theo-
rem 2.7 we have assumed injective envelopes rather than to assume A.B.5 along
with the other hypotheses used in [6] to establish the existence of injective en-
velopes. In this connection S. A. Amitsur has pointed out (oral communication)
that by a Zorn lemma argument one can show that if (F,^) is a torsion theory
then F is closed under subobjects if and only if & is closed under essential
extensions — of course the A.B.5 axiom is used.

References
1. S. Balcerzyk, On classes of Abelian groups, Fund. Math. 51 (1962), 149-178.
2. L. Fuchs, Abelian groups, Publ. House Hungarian Acad. Sei., Budapest, 1958.
3. P. Freyd, Abelian categories, Mimeographed Notes, Columbia Univ., New York, 1962.
4. P. Gabriel,   Des catégories Abéliennes, Bull. Soc. Math. France  90 (1962), 323^48.
5. E. Gentile, Singular submodule and injective hull, Indag. Math. 24 (1962), 426-433.
6. A. Grothendieck, Sur quelques points d'algèbre homologique, Tôhoku Math. J. (2) 9

(1957), 119-221.
7. A. Hattori, A foundation of torsion theory for modules over general rings, Nagoya Math.

J. 17 (1960), 147-158.
8. S. T. Hu, Homotopy theory, Academic Press, New York, 1959.
9. I. Kaplansky, Infinite Abelian groups, Michigan Univ. Press, Ann. Arbor, Mich., 1954.
10. L. Levy, Torsion-free   and divisible modules over Noetherian integral domains, Canad.

J. Math. 15 (1963), 132-151.
11. J.-M. Maranda, Injective structures, Trans. Amer. Math. Soc. 110 (1964), 98-135.
12. E. Matlis, Modules with descending chain condition, Trans. Amer. Math. Soc. 97 (1960),

495-508.
13. E. J. Peake, Jr., Serre classes of Abelian groups, Doctoral dissertation, New Mexico

State Univ., University Park, N. M., 1963.
14. C. Walker, Relative homological algebra and abelian groups (to appear).
15. E.A.Walker, Quotient categories andquasi-isomorphisms of Abelian groups, Proceedings

of the Colloquium on Abelian Groups, Tihany (Hungary), 1963, 147-162.
16. E. A. Walker and C. Walker, Quotient categories and rings of quotients (to appear).

University of Nebraska,
Lincoln, Nebraska

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use


