A Total Lagrangian Finite Element Analysis for Metal Forming With Application to Metal Extrusion.

Mehrdad Foroozesh
Louisiana State University and Agricultural \& Mechanical College

Follow this and additional works at: https://digitalcommons.Isu.edu/gradschool_disstheses

Recommended Citation

Foroozesh, Mehrdad, "A Total Lagrangian Finite Element Analysis for Metal Forming With Application to Metal Extrusion." (1989). LSU Historical Dissertations and Theses. 4843.
https://digitalcommons.Isu.edu/gradschool_disstheses/4843

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact gradetd@lsu.edu.

INFORMATION TO USERS

The most advanced technology has been used to photograph and reproduce this manuscript from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. These are also available as one exposure on a standard 35 mm slide or as a $17^{\prime \prime} \times 23^{\prime \prime}$ black and white photographic print for an additional charge.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality $6^{\prime \prime} \times 9^{\prime \prime}$ black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

A Total Lagrangian finite element analysis for metal forming with application to metal extrusion

Foroozesh, Mehrdad, Ph.D.
The Louisiana State University and Agricultural and Mechanical Col., 1989

A Total Lagrangian Finite Element Analysis
 for Meta! Forming with Application to Metal Extrusion

A Dissertation
Submitted to the Craduate Facnity of the
lonisima State llaiversily and
Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy
in
The Department of Civil Engineering

b
Mehrdad Foroozesh
B.S., Louisiana State University, 1983
M.S., Louisiana State University, 1988

ACKNOWLEDGMENTS

Many people have earned my gratitude during the course of this study. I specifically wish to thank my parents for the encouragement, moral support, and the financial support that they have given me which has helped me to advance this far and to achieve goals which would have been impossible for me to achieve without their constant guidance. I thank my wife, Mehri, for her understanding and support. Her presence by my side has been a valuable asset. I dedicate this work to her and my son, Paymon. I thank my sisters Maryam and Mahtab for encouraging me to continue my education.

I express my sincere appreciation to Dr. George Z. Voyiadjis who has guided me through the graduate school and who has provided me with a research assistantship for the final year of my graduate studies. His aid and knowledge has made this work possible. To Dr. Richard R. Avent, Dr. Mehmet T. Tumay, Dr. Fariborz Barzegar, Dr. Flora Wang, and Dr. M. Sabbaghian, I express my true appreciation for the valuable advice that they have given me and for serving as members of my advisory committee.

I wish to express my gratitude to the members of the Department of Civil Engineering at LSU and in particular to the chairman of the department, Professor Roger K. Seals, who provided me with financial assistance during the first four years of my graduate studies. I also wish to express my appreciation to the College of Engineering for providing some of the computer time needed to perform the analyses required to complete this study.

Partial support of this research was provided by the National Science Foundation under grant No. MSM-8800832.

TABLE OF CONTENTS

Page
ACKNOWLEDGMENTS ii
LIST OF FIGURES v
LIST OF TABLES vii
ABSTRACT viii

1. INTRODUCTION 1
1.1 General Remarks 1
1.2 Objectives 5
1.3 Scope 6
2. FINITE ELEMENT FORMULATION 9
2.1 Introduction 9
2.2 Mathematical Formulations 10
3. MATERIAL MODEL AND ITS IMPLEMENTATION 15
3.1 Introduction 15
3.2 Preliminary Definitions and Relations 17
3.3 Constitutive Model for Elasto-Plastic Behavior of Metals 23
3.4 Numerical Implementation of the Material Model 31
3.5 A Simple Vectorization Technique 41
3.6 Uniaxial Verification of the Material Model 44
4. SIMULATION OF CONTACT BOUNDARIES 49
4.1 Introduction 49
4.2 Hermite Formulation of Cubic Curves 50
4.3 Motion of the Nodal Points on the Curved Boundaries 54
4.4 Use of Multiple Curves in Generating Complex Boundaries 57
4.5 Description of the Relevant Subroutines 60
Page
5. PARAMETRIC STUDY OF AXISYMMETRIC EXTRUSION 62
5.1 Introduction 62
5.2 Comparison of Different Element Types and Meshes 66
5.3 Numerical Results Obtained Using Run A5 75
5.4 Study of Various Area Reduction and Die Angle Changes 85
6. UNIFES USERS GUIDE 96
6.1 Introduction 96
6.2 Input Commands 97
7. CONCLUSIONS 112
REFERENCES 114
APPENDICES
A. UNIFES 121
B. Solver Module 172
C. Plasticity Module 176
D. Contact Boundary Simulation Module 196
E. Elasticity Module 206
F. Element Library Module 210
G. I/O Module 228
H. Real I/O Utilities Module 248
I. Virtual I/O Utilities Module 251
J. Initializer Module 255
K. Graphics Module 256
L. Block Data Module 280
VITA 282

LIST OF FIGURES

Page
3.1 Coordinate Systems and Description of Displacement 19
3.2 Modification of Prager's Kinematic Hardening Rule by Shield and Ziegler [1958] 27
3.3 Experimental and Numerical Stress-Strain Diagrams for a Uniaxial Problem 45
4.1 Hermite Parametric Cubic Curve 52
4.2 Some Possible Shapes of the Hermite Curve 52
4.3 Correction Process for the Motion of the Points Constrained to Move on the Die 55
4.4 Illustration of what Necessitates Zoning of the Hermite Splines 59
5.1 Schematic Representation of the Die and the Initial Position of the Billet 64
5.2 Meshes Used for Runs A1 Through A5 68
5.3 Extrusion Pressure Versus Displacement for Run A2 (Incomplete Extrusion) 70
5.4 Extrusion Pressure Versus Displacement for Run A3 71
5.5 Extrusion Pressure Versus Displacement for Run A4 72
5.6 Extrusion Pressure Versus Displacement for Run A5 74
5.7 The Yield Zone at Various Stages of the Extrusion for Run A5 76
5.8 Radial Stress Distribution for Run A5 77
5.9 Axial Stress Distribution for Run A5 78
5.10 Shear Stress Distribution for Run A5 79
5.11 Circumferential Stress Distribution for Run A5 80
5.12 Cauchy Volumetric Stress Distribution for Run A5 81
5.13 Radial and Axial Strain Distributions for Run A5 82
Page
5.14 Shear and Circumferential Strain Distribution for Run A5 83
5.15 Distribution of the Plastic Work Intensity for Run A5 84
5.16 Extrusion Pressure Versus Displacement for Runs B1, B2, and B3 89
5.17 Extrusion Pressure Versus Displacement for Runs C1, C2, and C3 90
5.18 Extrusion Pressure Versus Displacement for Runs D1, D2, and D3 91
5.19 Steady-State Extrusion Pressure Versus the Variation in the Die Angle. 92
5.20 Peak Extrusion Pressure Versus the Variation in the Die Angle 93
5.21 Steady-State Extrusion Pressure Versus the \% Reduction in Area 94
5.22 Peak Extrusion Pressure Versus the \% Reduction in Area 95
6.1 Sequence of Node Numbers and Identification Codes for 2D Quadrilateral Elements 99
6.1 Sequence of Node Numbers and Identification Codes for 3D Solid Elements 100

LIST OF TABLES

3.1 Sequence of Computations Required for the First Stage of Implementation (Evaluation of the D Matrix) 34
3.2 Sequence of Computations Required for the Second Stage of Implementation (Evaluation of the Stresses, etc.) 36
3.3 Input File for the Uniaxial Test (First Loading) 46
3.4 Input File for the Uniaxial Test (Second Loading) 47
3.5 Input File for the Uniaxial Test (Third Loading) 48
5.1 Material Parameters for Aluminum 2024-T4 62
5.2 Parameters Used for the Control of the Iterative Solution Process 65
5.3 Mesh Characteristics for Runs A1 Through A5. 66
5.4 Parameters Used to Generate the Die for Runs A1 Through A5 Using the Hermite Formulation 67
5.5 Identification Codes for Each Analysis 86
5.6 Parameters Used to Generate the Die for Run B1 87
5.7 Parameters Used to Generate the Die for Run B2 87
5.8 Parameters Used to Generate the Die for Run B3 87
5.9 Parameters Used to Generate the Die for Run C1 87
5.10 Parameters Used to Generate the Die for Run C2 87
5.11 Parameters Used to Generate the Die for Run C3 88
5.12 Parameters Used to Generate the Die for Run D1 88
5.13 Parameters Used to Generate the Die for Run D2 88
5.14 Parameters Used to Generate the Die for Run D3 88

ABSTRACT

A detailed formulation for finite element analysis of metal forming problems is carried out in this work. It incorporates every aspect of the analysis, including the iterative solution procedures for geometric and material non-linearities, implementation of the material model, and formulation of curved contact boundaries. The finite element formulation is based on a Total Lagrangian approach which by-passes the use of the Jaumann stress rate tensor commonly used in the Updated Lagrangian formulation. The yield model used is of the von Mises type with both kinematic and isotropic hardening and is formulated in the Eulerian space. This model is then transformed to the Lagrangian reference frame. In the evaluation of stresses, yielding is first detected through the use of an elastic-predictor stress; subsequently upon detection of yielding, the consistency condition is used to evaluate the actual stress and plastic strain tensors. This method is used in conjunction with subincrementation of the strain increment tensor. The curved kinematic boundaries are modeled using the Hermite parametric formulation although other formulations such as β-splines and Bésier parametric curves may also be used with slight modifications. The above mentioned formulations are incorporated into the finite element program, UNIFES (UNIfied Finite Element Solver), which is developed by the author. This program may be used for analysis of 2-D and 3-D problems. A complete listing of this program along with the details of the formulations and a users guide is provided in this work.

Applicability of the above formulations in solving metal extrusion problems is examined through several finite element analyses which are performed by using the UNIFES program. It is shown how the distance between the nodes on the die interface can lead to fluctuations in the extrusion pressure, and how the amplitude of these fluctuations may be reduced by mesh refinement, using multiple types of
elements. The effect of changes in the die angle as well as changes in the reduction ratio, on the extrusion pressure is also investigated. A detailed account of the solution procedures is also provided.

1. INTRODUCTION

1.1 General Remarks

Although fabrication of metals into useful shapes by deformation processes has been known to man since the end of the Neolithic Era, systematic scientific investigation of fabrication techniques did not begin until just over fifty years ago. Progress was slow because of both insufficient understanding of the fundamental mechanisms involved in metal deformation, and the inadequate techniques used to model the complex processes occurring during large deformations. Early studies employed simple models of material behavior in order to calculate the relationships between forming loads and the degree of deformation. These analyses have proved useful for design of equipment used in fabrication and for determination of the forming limits and processing schedules applicable to simple product geometries.

Within the last twenty years, the advent of large computers coupled with advances in the finite element method (FEM) have led to greater capability for analyzing processes which produce complex shapes. Simplifications of modelling metal behavior, such as assuming rigid plastic flow, the von Mises yield criterion and the Prandtl-Reuss flow law, are often adequate to describe metal beliavior in deformation processes provided that no information is required on the properties of the resulting product. A particularly instructive example of the power of this method applied to metal forming problems is the design of the near net shape forging processes, where the metal flow pattern is a major concern.

Advances in the understanding of the mechanisms of metal deformation and in the ability to incorporate more accurate models of metal behavior in finite element analysis provide opportunities for a major expansion of the understanding of the relationship among material properties and process variables.

One method of describing the material behavior using the finite element technique is the flow approach (Zienkiewicz and Godbole [1974,1975], Zienkiewicz and Jain [1978]), where the metal is assumed to behave as a non-Newtonian fluid. Although large increments in strain and rotation are accommodated in this method, the elasto-plastic behavior of the material is not properly treated, leading to incorrect results for the metal flow. An alternate method for the solution of metal forming problems is the solid approach where the material is considered to be an elasto-plastic solid. The rigid-plastic formulation (Kobayashi [1977], Kobayashi and Lee [1973], Klie [1979], Roll [1978]), where the elastic deformations are ignored when compared to the large plastic strains represents an example of this approach. Generalizations of this rigid-plastic finite element technique, are used by a number of researchers to deal with the hot, rate dependent processes. The main disadvantage of the rigid-plastic formulation is its inability to predict the stress history whenever elastic loadings or plastic unloadings are encountered. The residual stresses are of critical importance in many manufacturing processes, as for example the "springback" phenomenon in the case of sheet metal forming which is governed by the residual stresses. In order to predict the residual stress in the formed product, it is essential to conduct an elasto-plastic analysis since a rigid-plastic treatment will predict stresses only in the regions currently experiencing considerable plastic flow. The elasto-plastic solid approach enables us to obtain the distribution of the residual stresses and the hardening in the form of subsequent plastic yield surfaces, which are not available from the rigidplastic formulation. Hence, large strain elasto-plastic formulations are introduced to eliminate the shortcomings inherent in rigid-plastic formulations. The studies by Wifi [1976], Wifi and Yamada [1980], Lee and Mallett [1977], Wang and Budiansky [1978], Hibbitt, et. al. [1970], McMeeking and Rice [1975], and Lee [1976] are among many in this area.

Since metal forming involves the formation of large strains, the constitutive strain-displacement relations are non-linear. The geometric non-linearities involved along with the path dependence of the material properties in the plastic range create complex numerical problems which have to be overcome. In finite element analysis of metal forming problems, researchers have moved towards the Updated Lagrangian formulation (Shiau and Kobayashi [1988], Aravas [1986], Oh [1982], Ghosh and Kikuchi [1988], Yang and Yoon [1989], Nagtegaal [1982], Cheng and Kikuchi [1985]). In this formulation, the configuration of the body is updated after each load increment is applied. Hence, the current configuration corresponds to the initial configuration for the subsequent load increment. The popularity of the Updated Lagrangian formulation is due to the fact that the material models which are applicable to small strain problems may be applied directly to this formulation with only slight modifications. This is because in the Updated Lagrangian formulation the Cauchy stress (true stress) and the Almansi's strain tensor are used as the stress and strain measures respectively.

An impediment in the use of the Updated Lagrangian approach is the difficulty of identifying a proper co-rotational stress rate primarily for problems involving finite strains and kinematic hardening. In a number of recent papers by Nagtegaal and de Jong [1982], Lee, et. al. [1983], Dafalias [1983], and Johnson and Bammann [1984], the non-applicability of the Jaumann stress rate to kinematic hardening elasto-plastic constitutive models that display finite strains was pointed out. In these references, it was demonstrated that an oscillatory shear stress is predicted for monotonically increasing simple shear strain when the Jaumann stress rate is used in a kinematic hardening model.

A number of stress rates were proposed by the above authors in order to remedy the oscillatory behavior of the shear stress. Johnson and Bammann [1984], compared their proposed stress rate to the solution obtained using the Green-

Naghdi rate based on a Lagrangian definition of the yield criterion. This is a different yield criterion than the von Mises criterion used in the above references in conjunction with the proposed co-rotational stress rates.

Lee, et. al. [1983], developed a modified Jaumann stress rate and demonstrated its applicability to the specific problem of simple shear. The generalization of this modified Jaumann derivative to the three-dimensional case is not yet demonstrated. In a recent paper by Atluri [1984], it was pointed out that the problem with stress rate is mainly due to improper generalization of the infinitesimal strain theories to the finite strain case. Generalized stress rates are introduced in the above paper to correct the anomalies introduced by kinematic hardening plasticity models that display finite strains.

In the studies performed by Dafalias [1983,1985], Atluri [1984], and Johnson and Bammann [1984], a missing conceptual link is suggested between the microscopic and macroscopic formulations of finite strain plasticity through the plastic spin concept proposed by Dafalias [1984].

An alternate approach to the Updated Lagrangian formulation is the Total Lagrangian approach. In this method the stress and strain measures are referred to the original undeformed configuration of the body. Unfortunately, most researchers are avoiding the Total Lagrangian approach for the solution of metal forming problems because the stresses obtained through this method are the second Piola Kirchhoff stresses which have no real physical meaning. When the Total Lagrangian formulation is used, extensive transformations are needed in order to modify the material model appropriately (Voyiadjis [1984], Voyiadjis and Kiousis [1987]).

A Total Lagrangian approach is used in this work (Voyiadjis [1984]). The yield criterion is originally expressed in terms of the Cauchy stress and subsequently transformed to the Lagrangian reference frame. The associated flow rule
used here preserves the normality rule in the second Piola-Kirchhoff stress space and is equivalent to that of the Cauchy stress space. Although this approach preserves the accuracy of the interpretation of the material behavior in the Eulerian reference frame, it by-passes the use of the Jaumann stress rate in the formulation of the kinematic hardening finite-strain plasticity. The resulting constitutive model is expressed in terms of three material parameters that are determined experimentally.

1.2 Objectives

A Summary of the objectives of this work is provided here. The details of these objectives are discused in the next section. These objectives are as follows:

1) Show applicability of the Total Lagrangian approach in solving large strain metal forming problems.
2) Develop an easy to use and flexibile method for modeling the contact boundaries in metal forming problems.
3) Develop a technique for efficient implementation of an elasto-plastic material model with kinematic and isotropic hardening capabilities.
4) Develop a user friendly finite element program based on the above formulations and with flexibility for future additions or modifications.
5) Perform a limited parametric study of axisymmetric extrusion problems.

1.3 Scope

A finite element program, UNIFES (UNIfied Finite Element Solver), is developed in this work for analysis of general 2-D and 3-D finite strain solid mechanics problems. The geometric and material non-linearities are handled through a NewtonRaphson iterative solution procedure which is based on a Total Lagrangian formulation. In order to facilitate the solution of plane stress, plane strain, and axisymmetric metal forming problems, special routines have been added to this program for handling the kinematic boundary conditions (the present version of this program is not capable of solving 3-D problems which involve contact boundaries). Applicability of the above formulations to metal forming problems is examined through a parametric study of axisymmetric extrusion. A brief discussion of the formulations used in UNIFES is presented next with more details provided in the chapters that follow. A listing of the computer program UNIFES is provided in the appendices.

The proposed Total Lagrangian finite element approach for the solution of metal forming problems incorporates an elasto-plastic von Mises type yield criterion with both isotropic and kinematic hardening capabilities. The present formulation is derived for isothermal conditions. Use of the Lagrangian reference frame for the solution of the problem enables us to utilize the material stress rate as an objective stress rate. Consequently, the problem of identifying a correct co-rotational stress rate which is associated with the Updated Lagrangian formulation is by-passed in this case. Nevertheless, the yield criterion used in this work is expressed in terms of the Cauchy stress tensor and is subsequently transformed to the Lagrangian reference frame. This approach preserves the accuracy of the interpretation of the material behavior in the Eulerian reference frame while it by-passes the problem of the correct identification of a proper stress rate. The proposed solid approach enables us to obtain the distribution of the residual
stresses and the hardening in the form of the subsequent plastic yielding, which is not possible using the rigid-plastic formulation.

A systematic method for implementation of the above mentioned model into a finite element program is developed. The details for calculation of the elastoplastic stiffiness tensor and evaluation of the stresses and plastic strains along with the corresponding FORTRAN programs are presented and discussed in detail in Chapter 3.

Frequently in metal forming analysis, curved boundaries are used as part of the extrusion die, forming presses, and rollers. In finite element implementation of these problems it is necessary to accurately simulate the geometry of these boundaries in an effective and simple way. The design engineer should be able to model a variety of curved shaped boundaries without having to modify the program.

Generation of curves and surfaces have been the subject of extensive research by solid modelers and those involved in computer graphics. Many approaches for generation of curves have been proposed, among them are the Bésier, Overhauser, Hermite and β-spline formulations. The Bésier and β-spline formulations have gained tremendous popularity for their ease of use in interactive systems. These methods of curve and surface generation have also been applied to metal forming problems.

In this work the curved contact boundaries are modeled using Hermite parametric curves. A detailed explanation of this formulation is provided which may also be applied to β-spline, Bésier and Overhauser parametric formulations with only slight modifications. Both tension free contact, and fixed rolling contact may be simulated. The details of this formulation is presented in Chapter 4.

A limited parametric study of the extrusion problem is performed to verify the applicability of the Total Lagrangian formulation to the solution of metal
forming problems. Several different meshes are used in order to determine the optimum mesh type. It is shown how the distance between the nodes on the die interface can lead to fluctuations in the extrusion pressure, and how the amplitude of these fluctuations may be reduced by mesh refinement. It is also shown that for the same reduction in area the steady-state extrusion pressure increases linearly as the die angle increases. The results obtained in this study using the Total Lagrangian approach do agree with the observations made by other researchers using the Updated Lagrangian approach. A detailed discussion of this parametric study is presented in Chapter 5.

2. FINITE ELEMENT FORMULATION

2.1 Introdoction

A finite element formulation for problems in solid mechanics may in general incorporate geometric and material non-linearities. These non-linearities may occur separately or simultaneously depending on the geometry of the problem and the type of material used. Problems involving geometric non-linearities in general may be categorized into either large displacement and small strain problems, or large displacements and finite strain problems. In either case, the two most popular formulations for the solution of these problems are the Total Lagrangian and the Updated Lagrangian. The Total Lagrangian formulation refers the displacements, strains and stresses to the initial configuration of the body. In this formulation, the second Piola-Kirchhoff stress and the Green strain are used as stress and strain measures respectively. The Updated Lagrangian formulation involves updating the nodal coordinates at the end of each load increment. In this formulation displacements, strains, and stresses are referred to the previously updated configuration of the body. In the Updated Lagrangian formulation, the measures of stress and strain rates are given in terms of the co-rotational Cauchy stress rate and the spatial strain rate respectively.

The Total Lagrangian and the Updated Lagrangian formulations are different methods of handling the geometric non-linearities. If the material properties used in the analysis are linear then the Updated Lagrangian formulation requires that the problem be solved by using an incremental loading scheme. There is no need for further iterations within each load increment. The Total Lagrangian formulation, on the other hand does not require incremental loading of the material. However, an iterative solution procedure such as the Newton-Raphson method
must be used.
In situations where both material and geometric non-linearities are present, both methods require incremental loading of the material as well as some form of iterative solution procedure within each load increment. In general the use of the Total Lagrangian formulation poses more difficulties due to the need for a more complex material model to relate the true stress-strain relationship of the material. Once this problem is overcome (refer to Chapter 3) then a Total Lagrangian formulation can be achieved effectively.

The present version of the program UNIFES developed by the author uses the Total Lagrangian formulation for modeling geometric non-linearities. A brief discussion of this formulation is presented in the following section.

2.2 Mathematical Formulation

The fundamental equation in the following arguments is the principle of virtual work. It is first expressed in the Eulerian reference frame as follows:

$$
\begin{equation*}
\int_{V} \delta \epsilon^{T} \mathbf{t} d V-\int_{V} \delta \mathbf{u}^{T} \mathbf{f} d V-\int_{S} \delta \mathbf{u}^{T} \mathbf{p} d S=0 \tag{2.1}
\end{equation*}
$$

where t is the Cauchy stress tensor, δu is the variation of displacements, f is the body force, \mathbf{p} is the surface loading, and V and S are the current volume and surface area at time t of the deformed body. In equation (2.1) $\delta \epsilon$ is the variation of the velocity tensor and may be expressed as follows:

$$
\begin{equation*}
\delta \epsilon_{i j}=\delta \frac{1}{2}\left(\frac{\partial u_{i}}{\partial z_{j}}+\frac{\partial u_{j}}{\partial z_{i}}\right) \tag{2.2}
\end{equation*}
$$

The corresponding form of the virtual work expression in the Larangian reference frame has been shown to be (Zienkiewicz [1977]; Bathe [1982])

$$
\begin{equation*}
\int_{V_{0}} \delta \mathbf{e}^{T} \mathbf{s} d V-\int_{V_{0}} \delta \mathbf{u}^{T} \mathbf{f} d V-\int_{S_{0}} \delta \mathbf{u}^{T} \mathbf{p} d S=0 \tag{2.3}
\end{equation*}
$$

where $\delta \mathbf{e}$ is the variation of the Lagrangian strain, s is the second Piola Kirchhoff stress tensor, $\delta \mathbf{u}$ is the variation of displacements, \mathbf{f} is the body force, and \mathbf{p} is the surface loading. In equation (2.3), V_{0} and S_{0} refer respectively to the initial volume and surface area of the body.

To solve equation (2.3) the finite element method is used. For this purpose the domain of the integration of equation (2.3) is discretized into a finite element. mesh. The formulation that follows is applicable to both two dimensional and three dimensional discretizations of equation (2.3) with only minor differences in some of the matrices used.

The relation between the components of the strain and the element nodal displacements q_{k} for an element k is expressed by

$$
\begin{equation*}
\mathbf{e}_{k}=\left(\mathbf{B}_{k}^{\prime}+\frac{1}{2} \mathbf{B}_{k}^{\prime \prime}\right) \mathbf{q}_{k} \tag{2.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbf{q}_{k}^{T^{\prime}}=\left[u_{1}, v_{1}, w_{1}, u_{2}, v_{2}, w_{2}, \ldots, u_{n}, v_{n}, w_{n}\right] \tag{2.5}
\end{equation*}
$$

where n is the number of nodes in the element. In equation (2.4), \mathbf{B}_{k}^{\prime} and $\mathbf{B}_{k}^{\prime \prime}$ represent the linear and non-linear components of the strain displacement relations.

The theory developed here requires the incremental relationship of the quantities used. Therefore, it is $d \mathrm{e}_{k}$ that needs to be found. Use is made of expression (2.4) to obtain

$$
\begin{equation*}
d \mathbf{e}_{k}=\left(\mathbf{B}_{k}^{\prime}+\mathbf{B}_{k}^{\prime \prime}\right) d \mathbf{q}_{k}=\mathbf{B}_{k} d \mathbf{q}_{k} \tag{2.6}
\end{equation*}
$$

or

$$
\begin{equation*}
d \mathbf{e}_{k}=\mathbf{B}_{k} \mathbf{T}_{k} d \mathbf{q} \tag{2.7}
\end{equation*}
$$

where $\mathbf{q}_{k}=\mathbf{T}_{\boldsymbol{k}} \mathbf{q}$ relates the nodal displacements $\mathbf{q}_{\boldsymbol{k}}$ of the element \boldsymbol{k} to the global nodal displacements \mathbf{q}, using the transformation matrix $\mathbf{T}_{\boldsymbol{k}}$. Substituting equation (2.7) into the constitutive relationship

$$
\begin{equation*}
d \mathbf{s}=\mathbf{D} d \mathbf{e} \tag{2.8}
\end{equation*}
$$

we obtain:

$$
\begin{equation*}
d \mathbf{s}_{k}=\mathbf{D}_{k} \mathbf{B}_{k} \mathbf{T}_{k} d \mathbf{q} \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{s}_{k}=\int_{0}^{t} \mathbf{D}_{k} \mathbf{B}_{k} \mathbf{T}_{k} d \mathbf{q} \tag{2.10}
\end{equation*}
$$

The time integration above is along the deformation path.
The relationship between the displacement field \mathbf{u}_{k} within the element and the element nodal diplacements \mathbf{q}_{k} is obtained through the usual parametric shape functions, N_{i}, of the element as follows:

$$
\begin{equation*}
\mathbf{u}_{k}=\mathbf{N}_{k} \mathbf{q}_{k} \tag{2.11}
\end{equation*}
$$

where

$$
\begin{gather*}
\mathbf{u}_{k}=\left\{\begin{array}{c}
u \\
v \\
w
\end{array}\right\}_{k} ; \tag{2.12}\\
\mathbf{N}_{k}=\left(\begin{array}{cccccccccc}
N_{1} & 0 & 0 & N_{2} & 0 & 0 & \ldots & N_{n} & 0 & 0 \\
0 & N_{1} & 0 & 0 & N_{2} & 0 & \ldots & 0 & N_{n} & 0 \\
0 & 0 & N_{1} & 0 & 0 & N_{2} & \ldots & 0 & 0 & N_{n}
\end{array}\right) \tag{2.13}
\end{gather*}
$$

and q_{k} is given by equation (2.5).
Substituting equation (2.6) in (2.3) and realizing that $\delta \mathbf{e}_{k}^{T}=\delta \mathbf{q}^{T} \mathbf{T}_{k}^{T} \mathbf{B}_{k}^{T}$ and that $\delta \mathbf{u}_{k}^{T}=\delta \mathbf{q}^{T} \mathbf{T}_{k}^{T} \mathbf{N}_{k}^{T}$, we obtain:

$$
\begin{equation*}
\delta \mathbf{q}^{T} \sum_{k=1}^{m} \mathbf{T}_{k}^{T} \int_{V_{0 k}} \mathbf{B}_{k}^{T} \mathbf{s}_{k} d V-\delta \mathbf{q}^{T} \sum_{k=1}^{m} \mathbf{T}_{k}^{T} \int_{V_{0 k}} \mathbf{N}_{k}^{T} \mathbf{f} d V-\delta \mathbf{q}^{T} \sum_{k=1}^{m} \mathbf{T}_{k}^{T} \int_{S_{\mathrm{uk}}} \mathbf{N}_{k}^{T} \mathbf{p} d S=\mathbf{0} \tag{2.14}
\end{equation*}
$$

where m is the number of elements in the mesh. Eliminating the virtual displacement δq^{T} from equation (2.14), we obtain:

$$
\begin{equation*}
\sum_{k=1}^{m} \mathbf{T}_{k}^{T} \int_{V_{0 k}} \mathbf{B}_{k}^{T} \mathbf{s}_{k} d V-\sum_{k=1}^{m} \mathbf{T}_{k}^{T} \int_{V_{0 k}} \mathbf{N}_{k}^{T} \mathbf{f} d V-\sum_{k=1}^{m} \mathbf{T}_{k}^{T} \int_{S_{0 k}} \mathbf{N}_{k}^{T} \mathbf{p} d S=0 \tag{2.15}
\end{equation*}
$$

Note that the first term of the left hand side of (2.15) is a non-linear function of q. This is because both B_{k}^{T} and s_{k} are functions of q. Equation (2.15) can be written as:

$$
\begin{equation*}
\mathbf{Q}(\mathbf{q})=\mathbf{R} \tag{2.16}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbf{Q}(\mathbf{q})=\sum_{k=1}^{m} \mathbf{T}_{k}^{T} \int_{V_{0 k}} \mathbf{B}_{k}^{T} \mathbf{s}_{k} d V \tag{2.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{R}=\sum_{k=1}^{m} \mathbf{T}_{k}^{T} \int_{V_{0 k}} \mathbf{N}_{k}^{T} \mathbf{f} d V+\sum_{k=1}^{m} \mathbf{T}_{k}^{T} \int_{S_{0 k}} \mathbf{N}_{k}^{T} \mathbf{p} d S \tag{2.18}
\end{equation*}
$$

Differentiating equation (2.17) we obtain:

$$
\begin{equation*}
d \mathbf{Q}(\mathbf{q})=\sum_{k=1}^{m} \mathbf{T}_{k}^{T} \int_{V_{0 k}}\left(d \mathbf{B}_{k}^{T} \mathbf{s}_{k}+\mathbf{B}_{k}^{T} d \mathbf{s}_{k}\right) d V \tag{2.19}
\end{equation*}
$$

or

$$
\begin{equation*}
d \mathbf{Q}(\mathbf{q})=\sum_{k=1}^{m} \mathbf{T}_{k}^{T} \mathbf{K}_{k} \mathbf{T}_{k} d \mathbf{q} \tag{2.20}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbf{K}_{k}=\mathbf{K}_{k}^{s}+\widehat{\mathbf{K}}_{k} \tag{2.21}
\end{equation*}
$$

is known as the tangent stiffness matrix of element k.
The solution of equation (2.16) requires obtaining the derivatives

$$
\begin{equation*}
\frac{\partial \mathbf{Q}_{i}}{\partial \mathbf{q}_{j}}=\mathbf{K}_{i j} \tag{2.22}
\end{equation*}
$$

where $i=1,2, \ldots, n$, and $j=1,2, \ldots, n$, where n is the number of degrees of freedom for the mesh. The global tangent stiffness matrix K is obtained from expression (2.20) where

$$
\begin{equation*}
\mathbf{K}=\sum_{k=1}^{m} \mathbf{T}_{k}^{T}\left(\mathbf{K}_{k}^{s}+\widehat{\mathbf{K}}_{k}\right) \mathbf{T}_{k} \tag{2.23}
\end{equation*}
$$

The solution of the system of functional equations (2.16) is then numerically obtained by applying incremental steps of loading and performing iterations within each load increment. The full Newton-Raphson iterative solution procedure is used in this work, whereby the tangent stiffness matrix is evaluated for each iteration. An alternative to this method is the modified Newton-Raphson procedure,
where the stiffness matrix is updated for a selected number of iterations. For reasons that would become obvious in Chapter 3, it was determined that the modified Newton-Raphson iterative solution procedure would lead to higher execution time in this study and was therefore avoided. A more detailed discussion of various iterative solution procedures is given by Zienkiewicz [1977] and Bathe [1982].

3. MATERIAL MODEL AND ITS IMPLEMENTATION

3.1 Introduction

In the last three decades or so, the theory of plasticity has been generalized for elasto-plastic solids with large deformations. Green and Naghdi $[1965,1966]$ generalized the theory for an elasto-plastic continuum where full use is made of the thermodynamical equations. Hill [1958], in his paper, generalized the theory to large deformations without the use of the thermodynamical equations.

There has been a consistant effort to use the Eulerian coordinate system with the Cauchy stress tensor $t_{i j}$ in the analysis of large elasto-plastic deformations of solids (Lee [1969], and Nemat-Nasser [1979]). This is primarily because of the physical interpretation of the Cauchy stress tensor as the true stress which for the case of small strains can be approximated by the engineering stress tensor $\sigma_{i j}$. This conclusion is dependent only on the physical perceptions since mathematically both the Cauchy stress and the second Piola-Kirchhoff stress tensors reduce to the engineering stress for the case of small deformations.

In the case of small strain plasticity, the flow condition is postulated in terms of the traditional engineering stress and engineering strain rate. The corresponding yield function is expressed in terms of the engineering stress. For finite strain deformations, there is no unique approach for the extrapolation of the small strain plasticity flow rule and yield condition into the appropriate corresponding ones for finite strain plasticity.

One approach is when the flow rule is postulated in terms of the second PiolaKirchhoff stress tensor and the material strain rate, while the yield condition is in terms of the second Piola-Kirchhoff stress tensor. The appropriate equations are obtained by direct substitution into the same functional form used for the small
strain plasticity theory. This leads to the use of the material stress rate which is quite simpler to use in solution of problems when compared to the appropriate co-rotational stress rate in the Eulerian reference frame.

The commonly followed approach is the Eulerian formulation. The flow rule is postulated in terms of the Cauchy stress tensor and the spatial strain rate. The yield function is expressed in terms of the Cauchy stress. Both of these expressions are obtained by direct substitution into the same functional form used for the small strain plasticity theory. Explicit transformations of these finite-strain plasticity equations into the Lagrangian reference frame leads to a totally different functional set of equations than those described in the previous paragraph.

The ultimate choice for the appropriate formulation of the constitutive equations for finite strain plasticity does not lie on either the mathematical simplicity of the expressions or the physical interpretation of the conversion of the small-strain expressions to finite-strain expressions. The choice solely depends on the experimental evidence in the range of finite strains for which the constitutive model is to be applied (Voyiadjis [1988]).

Based on the experiments performed on metals by Voyiadjis [1984], for finite strain deformations (up to 20 percent), the von Mises yield criterion was found to be appropriate. Nevertheless, when the von Mises yield criterion was directly expressed in terms of the second Piola-Kirchhoff stress tensor in the Lagrangian reference frame, the resulting yield criterion proved to be inadequate. The additional presence of the deformation gradient in the yield criterion proved to be imperative for the case of the Lagrangian description of the yield criterion. This was achieved by first directly interpreting the von Mises yield criterion in terms of the Cauchy stress tensor and then converting tensorially the resulting expression into the second Piola-Kirchhoff stress space.

Although the proposed theory is postulated for finite strains, in this work it is assumed that the elastic component of the strain tensor is relatively small when compared to the plastic strain component. In the uniaxial load reversal experiments performed by Voyiadjis [1984], small elastic strains were encountered. Consequently, the choice of the proper linear elastic relation between the appropriate stress and appropriate strain was immaterial. No apparent physical significance will be gained in this case whether a linear relation between the Cauchy stress and the elastic spatial strain or the second Piola-Kirchhoff stress and the elastic material strain is postulated. Due to mathematical simplicity, and without violating the experimental observations, the latter choice was made.

3.2 Preliminary Definitions and Relations

The following is a brief summary of the concepts of continuum mechanics which are used in this work. This section is based on the monograph by Truesdell and Toupin [1960]. All subscripts used in this chapter refer to tensorial notation and may have values 1,2 , and 3 unless otherwise stated.

Referring to Figure 3.1, let B_{0} be the initial, or the undeformed, state at time $t=0$, and B the current or the deformed state at some time t. The coordinates x_{A} and z_{k} are the initial and the deformed coordinates corresponding to the undeformed state B_{0} and the deformed state B respectively. The displacement of the body is described by

$$
\begin{equation*}
z_{k}=z_{k}\left(x_{1}, x_{2}, x_{3}, t\right) \tag{3.1}
\end{equation*}
$$

or

$$
\begin{equation*}
x_{A}=x_{A}\left(z_{1}, z_{2}, z_{3}, t\right) \tag{3.2}
\end{equation*}
$$

The usual assumptions of single-valuedness and continuity with

$$
\begin{equation*}
0<\operatorname{det}\left|\frac{\partial z_{k}}{\partial x_{A}}\right|=J<\infty \tag{3.3}
\end{equation*}
$$

are made with regard to eqations (3.1) and (3.2).
In the following discussions, two coordinate systems are employed. Spatial or Eulerian coordinates describe the location of a point in the material using the instantaneous or deformed state as reference. The quantities referred to these coordinates are indicated by lower case Latin suffixes. Material or Lagrangian coordinates describe the location of a point with respect to the original (undeformed) state. All quantities referred to the Lagrangian coordinates are indicated by capital Latin suffixes.

In Figure 3.1, the components of the displacement u are related to z_{k} and x_{A} by

$$
\begin{equation*}
u_{i}=z_{i}-x_{i} \tag{3.4}
\end{equation*}
$$

The displacement vectors in the material and spatial forms, are given by

$$
\begin{equation*}
u_{A}=u_{A}\left(x_{1}, x_{2}, x_{3}, t\right) \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{k}=u_{k}\left(z_{1}, z_{2}, z_{3}, t\right) \tag{3.6}
\end{equation*}
$$

respectively. The expressions for the velocity vectors are

$$
\begin{equation*}
v_{A}=\frac{\partial u_{A}}{\partial t}\left(x_{1}, x_{2}, x_{3}, t\right) \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{k}=\frac{\partial z_{k}}{\partial t}\left(x_{1}, x_{2}, x_{3}, t\right) \tag{3.8}
\end{equation*}
$$

The material form of the velocity is expressed by equation (3.7), while its spatial form is obtained by using equation (3.2) to replace the x with z, hence obtaining expression (3.8).

The material strain tensor which is often referred to as the Green strain tensor is given by the following expression

$$
\begin{equation*}
e_{A B}=\frac{1}{2}\left(\delta_{k \ell} \frac{\partial z_{k}}{\partial x_{A}} \frac{\partial z_{\ell}}{\partial x_{B}}-\delta_{A B}\right) \tag{3.9}
\end{equation*}
$$

Figure 3.1 Coordinate Systems and Description of Displacement.
or, in terms of the displacement vector \mathbf{u},

$$
\begin{equation*}
e_{A B}=\frac{1}{2}\left(\frac{\partial u_{A}}{\partial x_{B}}+\frac{\partial u_{B}}{\partial x_{A}}+\frac{\partial u_{C}}{\partial x_{A}} \frac{\partial u_{C}}{\partial x_{B}}\right) \tag{3.10}
\end{equation*}
$$

Referring to Figure 3.1, the changes of length of a line segment $d \ell_{0}$ at P_{0} can be computed as

$$
\begin{equation*}
d \ell^{2}-d \ell_{0}^{2}=2 e_{A B} d x_{A} d x_{B} \tag{3.11}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{d \ell^{2}-d \ell_{0}^{2}}{d \ell_{0}^{2}}=2 e_{A B} \ell_{0_{A}} \ell_{0_{D}} \tag{3.12}
\end{equation*}
$$

where $\ell_{0_{A}}$ are the components of a unit vector along $d \ell_{0}$.
The spatial strain tensor $h_{k \ell}$ which is also known as the Almansi's strain tensor is defined as

$$
\begin{equation*}
h_{k \ell}=\frac{1}{2}\left(\delta_{k \ell}-\frac{\partial x_{A}}{\partial z_{k}} \frac{\partial x_{B}}{\partial z_{\ell}} \delta_{A B}\right) \tag{3.13}
\end{equation*}
$$

or

$$
\begin{equation*}
h_{k \ell}=\frac{1}{2}\left(\frac{\partial u_{k}}{\partial z_{\ell}}+\frac{\partial u_{\ell}}{\partial z_{k}}-\frac{\partial u_{m}}{\partial z_{k}} \frac{\partial u_{m}}{\partial z_{\ell}}\right) \tag{3.14}
\end{equation*}
$$

In terms of $h_{k \ell}$, the length changes are

$$
\begin{equation*}
d \ell^{2}-d \ell_{0}^{2}=2 h_{k \ell} d z_{k} d z_{\ell} \tag{3.15}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{d \ell^{2}-d \ell_{0}^{2}}{d \ell^{2}}=2 h_{k \ell} \ell_{k} \ell_{\ell} \tag{3.16}
\end{equation*}
$$

where ℓ_{k} are the components of the unit vector along $d \ell$ at P.
The measure of extension which is defined as

$$
\begin{equation*}
\epsilon=\frac{d \ell-d \ell_{0}}{d \ell_{0}} \tag{3.17}
\end{equation*}
$$

is frequently used in describing the results of uniaxial testing of various materials. ϵ can be related to the components of the material or spatial strain tensors. For example, for a line segment $d \ell_{0}$ whose initial direction at P_{0} was parallel to x_{1},

$$
\begin{equation*}
\epsilon=\sqrt{\left(1+2 e_{11}\right)}-1 \tag{3.18}
\end{equation*}
$$

The determinant of deformation Jacobian J expressed in equation (3.3) is equal to the volumetric strain $d V / d V_{0}$.

The material strain rate tensor is given as

$$
\begin{equation*}
\dot{e}_{A B}=\frac{\partial e_{A B}}{\partial t} \tag{3.19}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\frac{D}{D t}(d \varrho)^{2}=2 \dot{e}_{A B} d x_{A} d x_{B} \tag{3.20}
\end{equation*}
$$

where $\frac{D}{D t}$ is the material time derivative.
The spatial strain rate tensor is given as

$$
\begin{equation*}
d_{k \ell}=\frac{1}{2}\left(\frac{\partial v_{k}}{\partial z_{\ell}}+\frac{\partial v_{\ell}}{\partial z_{k}}\right) \tag{3.21}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\frac{D}{D t}(d \ell)^{2}=2 d_{k \ell} d z_{k} d z_{\ell} \tag{3.22}
\end{equation*}
$$

The condition of incompressability is expressed in terms of $d_{k \ell}$ by the following simple expression:

$$
\begin{equation*}
d_{k k}=0 \tag{3.23}
\end{equation*}
$$

The material strain rate tensor may be expressed in terms of the spatial strain rate tensor by the following relation:

$$
\begin{equation*}
\dot{e}_{A B}=d_{k \ell} \frac{\partial z_{k}}{\partial x_{A}} \frac{\partial z_{\ell}}{\partial x_{B}} \tag{3.24}
\end{equation*}
$$

Let $t_{(n)}$ denote the stress vector, or serface traction acting on the area element P with the unit normal vector n (note: $t_{(n)}$ is force per unit area of the deformed
 are

$$
\begin{equation*}
t_{(n) \ell}=t_{k \ell n_{k}} \tag{3.25}
\end{equation*}
$$

In this work, the material, or the second Piola-Kirchhoff stress tensor $s_{A B}$ will be used. Its definition is

$$
\begin{equation*}
s_{A B}=t_{k \ell} J \frac{\partial x_{A}}{\partial z_{k}} \frac{\partial x_{B}}{\partial z_{\ell}} \tag{3.26}
\end{equation*}
$$

The components of the stress vector $p_{(n)}$ defined as the surface traction for the undeformed body, i.e.,

$$
\begin{equation*}
p_{(n)}=t_{(n)} \frac{d A}{d A_{0}} \tag{3.27}
\end{equation*}
$$

can be expressed in terms of the Cauchy stress $t_{k c}$ or the second Piola Kirchhoff stress tensor $s_{A B}$ in the following maner:

$$
\begin{equation*}
p_{(n) \ell}=t_{k \ell} J \frac{\partial x_{A}}{\partial z_{k}} n_{0_{A}}=s_{A B} \frac{\partial z_{\ell}}{\partial x_{B}} n_{0_{A}} \tag{3.29}
\end{equation*}
$$

An objective stress rate tensor in terms of $s_{A B}$ may be expressed as

$$
\begin{equation*}
\dot{s}_{A B}=\frac{\partial s_{A B}}{\partial t} \tag{3.30}
\end{equation*}
$$

where $s_{A B}$ in equation (3.30) is a function of the material coordinates x_{i} and time t.

3.3 Constitutive Model for Elasto-Plastic Behavior of Metals

The constitutive equations used in UNIFES are based on the general theory of plasticity at large strains in the Lagrangian reference frame (Voyiadjis [1984] and Voyiadjis and Kiousis [1986]).

A yield criterion of the von Mises type in terms of the Cauchy stresses is used. This yield function combines both isotropic and kinematic hardening of the Prager-Ziegler type (Prager [1956]; Ziegler [1959]; Shield and Ziegler [1958]) and is independent of the volumetric component of the Cauchy stress tensor. This yield function is expressed as

$$
\begin{equation*}
f=\frac{1}{2}\left(\bar{t}_{k \ell}-\bar{\alpha}_{k \ell}\right)\left(\bar{t}_{k l}-\bar{\alpha}_{k \ell}\right)-c \kappa-\frac{\sigma_{y}^{2}}{3}=0 \tag{3.31}
\end{equation*}
$$

where $\bar{\alpha}_{k \ell}$ is the deviatoric component of the Eulerian shift stress tensor such that, $\bar{\alpha}_{k \ell}=\alpha_{k \ell}-\frac{1}{3} \alpha_{i i} \delta_{k \ell}$, and $\bar{t}_{k \ell}$ is the deviatoric component of the Cauchy stress tensor such that $\bar{t}_{k \ell}=t_{k \ell}-\frac{1}{3} t_{i i} \delta_{k \ell}$. The constant σ_{y} in equation (3.31), is the uniaxial yield strength of the material which is obtained through simple tension tests and the parameter c is a constant which controls the extend of the isotropic hardening.

The plastic work κ, used in equation (3.31) is obtained through the use of the following expression:

$$
\begin{equation*}
\kappa=\int_{0}^{t} t_{k \ell} d_{k \ell}^{\prime \prime} d t \tag{3.32}
\end{equation*}
$$

where $d_{k \ell}^{\prime \prime}$ is the plastic component of the spatial strain rate tensor $d_{k \ell}$ given by equation (3.21).

The corresponding associated flow rule is described as

$$
\begin{equation*}
d_{k \ell}^{\prime \prime}=\dot{\mathrm{L}} \frac{\partial f}{\partial t_{k \ell}}=\dot{\mathrm{E}}\left(\bar{t}_{k \ell}-\bar{\alpha}_{k \ell}\right) \tag{3.33}
\end{equation*}
$$

where \dot{L} is a scalar function. The absence of plastic volumetric strain can be verified in equation (3.33) where $d_{k k}^{\prime \prime}=0$. Equations (3.31) and (3.33) incorporate
a number of generally accepted assumptions regarding the plastic deformation of metals. This constitutive model produces no plastic volumetric strains. The hydrostatic state of stress even at large strains has no effect on the plastic behavior of metals in this model. Finally, the von Mises yield criterion and the associated flow rule are satisfactory forms of equations (3.31) and (3.33), respectively, in the small deformation theory of plasticity of metals.

The constitutive model given by equations (3.31) and (3.33) is in an Eulerian reference frame. For this model to be applied in a Lagrangian frame of reference, coordinate transformations need to be performed.

In order to obtain the equivalent form of equations (3.31) and (3.33) with respect to the Lagrangian reference frame, certain relations need to be used. Let

$$
\begin{equation*}
\alpha_{k \ell}=A_{A B} \frac{\partial z_{k}}{\partial x_{A}} \frac{\partial z_{\ell}}{\partial x_{B}} J^{-1} \tag{3.34}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{A B}=\int_{0}^{t} \dot{A}_{A B} d t \tag{3.35}
\end{equation*}
$$

is the equivalent Lagrangian counterpart of the spatial shift stress tensor $\alpha_{k c}$. Also,

$$
\begin{equation*}
\dot{e}_{A B}^{\prime \prime}=d_{k \ell}^{\prime \prime} \frac{\partial z_{k}}{\partial x_{A}} \frac{\partial z_{\ell}}{\partial x_{B}} \tag{3.36}
\end{equation*}
$$

where $\dot{e}_{A B}^{\prime \prime}$ is obtained from the following decomposition of the material strain rate tensor

$$
\begin{equation*}
\dot{e}_{A B}=\dot{e}_{A B}^{\prime}+\dot{e}_{A B}^{\prime \prime} \tag{3.37}
\end{equation*}
$$

The terms $e_{A B}^{\prime}$ and $e_{A B}^{\prime \prime}$ are the elastic and plastic components of the strain tensor $e_{A B}$ respectively. In general, the kinematic interpretation of these two components is not the usual one. Instead they are simple mathematical quantities defined by the constitutive law. Nevertheless, when the elastic strains are small compared to the plastic ones (an assumption that is satisfied in a considerable number of
applications), the decomposition of equation (3.37) acquires the usual physical meaning.

Equation (3.31) nay now be expressed in the Lagrangian reference frame as

$$
\begin{equation*}
f=f(1)+f(2)+f(3) \tag{3.38}
\end{equation*}
$$

where

$$
\begin{align*}
f(1) & =\frac{1}{2} J^{-2}\left[s_{A B} s_{C D} C_{A C} C_{B D}-\frac{1}{3} s_{A B} s_{C D} C_{A B} C_{C D}\right] \tag{3.39a}\\
f(2) & =J^{-2}\left[-s_{A B} A_{C D} C_{A C} C_{B D}+\frac{1}{3} s_{A B} A_{C D} C_{A B} C_{C D}\right] \\
& +\frac{1}{2} J^{-2}\left[A_{A B} A_{C D} C_{A C} C_{B D}-\frac{1}{3} A_{A B} A_{C D} C_{A B} C_{C D}\right] \tag{3.39b}\\
f(3) & =-\frac{\sigma_{y}^{2}}{3}-c \kappa \tag{3.39c}
\end{align*}
$$

where $s_{A B}$ is the second Piola-Kirchhoff stress tensor, given by equation (3.26) and $C_{A B}$ is the Green's deformation tensor such that

$$
\begin{equation*}
C_{A B}=\frac{\partial z_{k}}{\partial x_{A}} \frac{\partial z_{k}}{\partial x_{B}}=2 e_{A B}+\delta_{A B} \tag{3.40}
\end{equation*}
$$

where $\delta_{A B}$ is the Kronecker delta. The equivalent plastic work κ given by equation (3.32) may be obtained by the following relation:

$$
\begin{equation*}
\kappa=\int_{0}^{t} \frac{1}{J} s_{A B} \dot{e}_{A B}^{\prime \prime} d t \tag{3.41}
\end{equation*}
$$

The yield function expressed by equation (3.38) which is an interpretation of the von Mises yield criterion in the Lagrangian reference frame, best interprets the behavior of metals at finite strains. This was demonstrated by Voyiadjis [1984] primarily for aluminum alloys (2024 T4 and 6061 T 6) and steel (1180 cold rolled).

In addition, it has been shown by Voyiadjis [1984] that equation (3.33) is equivalent to the Lagrangian expression for the flow rule which is defined as

$$
\begin{equation*}
\dot{\epsilon}_{A B}^{\prime \prime}=\dot{\Lambda} \frac{\partial f}{\partial s_{A B}} \tag{3.42}
\end{equation*}
$$

where

$$
\begin{equation*}
\dot{\Lambda}=\dot{\mathrm{L}} J \tag{3.43}
\end{equation*}
$$

when the yield funtion is expressed as equation (3.38).
Based on the concepts proposed by Shield and Ziegler [1958], it is assumed that the yield surface moves in the direction of the radius connecting the center of the yield surface with the current stress point P on the yield surface(Figure 3.2). Consequently, the hardening rule is expressed by

$$
\begin{equation*}
\dot{A}_{A B}=\left(s_{A B}-A_{A B}\right) \dot{\mu} \tag{3.44}
\end{equation*}
$$

where $\dot{\mu}$ is a positive scalar function and is calculated by assuming that the projection of $\dot{A}_{A B}$ on the stress gradient of the yield surface equals to $b \dot{e}_{A B}^{\prime \prime}$. The procedure to obtain $\dot{\mu}$ is outlined as follows:

$$
\begin{equation*}
b \dot{e}_{A B}^{\prime \prime}=\dot{A}_{C D} \frac{\frac{\partial f}{\partial s_{C D}} \frac{\partial f}{\partial s_{A B}}}{\frac{\partial f}{\partial s_{M N}} \frac{\partial f}{\partial s_{M N}}} \tag{3.45}
\end{equation*}
$$

where b is a material parameter which is related to the kinematic hardening characteristics of the material. Through equations (3.44) and (3.45) the plastic component of the Lagrangian strain rate tensor is determined to be

$$
\begin{equation*}
\dot{e}_{A B}^{\prime \prime}=\dot{\Lambda} \frac{\partial f}{\partial s_{A B}}=\frac{1}{b}\left(s_{C D}-A_{C D}\right) \dot{\mu} \frac{\frac{\partial f}{\partial s_{C D}} \frac{\partial f}{\partial s_{A B}}}{\frac{\partial f}{\partial s_{M N}} \frac{\partial f}{\partial s_{M N}}} \tag{3.46}
\end{equation*}
$$

hence, the value of $\dot{\mu}$ is obtained to be

$$
\begin{equation*}
\dot{\mu}=\dot{\Lambda} b \frac{\frac{\partial f}{\partial s_{M N}} \frac{\partial f}{\partial s_{M N}}}{\left(s_{C D}-A_{C D}\right) \frac{\partial f}{\partial s_{C D}}} \tag{3.47}
\end{equation*}
$$

Figure 3.2 Modification of Prager's Kinematic Hardening Rule by Shield and Ziegler [1958].

The development of this theory is based on the concept that the yield function given by equation (3.38) is at all times equivalent to its spatial counterpart, equation (3.31). Nevertheless, the evolution of its terms, expressed by equations (3.42) and (3.44), does not necessarily yield equivalent evolution to the more usual spatial expressions. Although, in the absence of kinematic hardening, it can be shown that equation (3.33) is equivalent to the Lagrangian expression (3.42), equation (3.44) is not equivalent to the usual Ziegler type shift evolution equation $\hat{\alpha}_{k \ell}=\left(t_{k \ell}-\alpha_{k \ell}\right) \dot{\mu}$, where $\hat{\alpha}_{k \ell}$ implies the Jaumann rate. Further study is needed in this direction so that the implications of equation (3.44) are fully understood and properly evaluated. Nevertheless, one should realize that the development of this formulation is consistently carried out in the material reference frame, where the yield function is defined by equation (3.38), and the evolution of its terms are defined by equations (3.42) and (3.44).

The parameter $\dot{\Lambda}$ is calculated from the consistency condition:

$$
\begin{equation*}
\dot{f} \equiv \dot{f}(\mathbf{s}, \mathbf{A}, \mathbf{e}, \kappa, J)=0 \tag{3.48}
\end{equation*}
$$

hence

$$
\begin{equation*}
\frac{\partial f}{\partial s_{A B}} \dot{s}_{A B}+\frac{\partial f}{\partial A_{A B}} \dot{A}_{A B}+\frac{\partial f}{\partial e_{A B}} \dot{e}_{A B}+\frac{\partial f}{\partial \kappa} \dot{\kappa}+\frac{\partial f}{\partial J} \dot{J}=0 \tag{3.49}
\end{equation*}
$$

Use of the above consistency condition requires evaluation of \dot{J}. This is achieved by expressing the Jacobian J in terms of the strain invariants and subsequently finding an expression for \dot{J} as follows:

$$
\begin{equation*}
J=\frac{d V}{d V_{0}}=\left[1+2 I\left(1+I+\frac{2}{3} I^{2}\right)-4 I I(1+2 I)+8 I I I\right]^{\frac{1}{2}} \tag{3.50}
\end{equation*}
$$

where

$$
\begin{align*}
I & =e_{A A} \tag{3.51a}\\
I I & =\frac{1}{2} e_{A B} e_{A B} \tag{3.51b}\\
I I I & =\frac{1}{3} \epsilon_{A B} e_{B C} e_{A C} \tag{3.51c}
\end{align*}
$$

where $I, I I, I I I$ are the first, second and third strain invariants respectively. Hence, \dot{J} may be evaluated by taking the time derivative of expression (3.50). Therefore,

$$
\begin{equation*}
\dot{J}=R_{C D} \dot{e}_{C D} \tag{3.52}
\end{equation*}
$$

where

$$
\begin{align*}
R_{C D} & =\frac{1}{2 J}\left[2 \delta_{C D}+4 \delta_{C D} e_{K K}-4 e_{C D}+8 e_{D R} e_{R C}-8 e_{C D} e_{K K}\right. \\
& \left.-4 \delta_{C D} e_{O P} e_{O P}+4 \delta_{C D} e_{L L} e_{K K}\right] \tag{3.53}
\end{align*}
$$

Following the procedure outlined by Voyiadjis [1984], the expression for $\dot{\Lambda}$ is determined to be

$$
\begin{equation*}
\dot{\Lambda}=\left[\frac{1}{Q}\left(E_{A B C D} \frac{\partial f}{\partial s_{A B}}+\frac{\partial f}{\partial e_{C D}}+\frac{\partial f}{\partial J} R_{C D}\right)\right] \dot{e}_{C D} \tag{3.54}
\end{equation*}
$$

where

$$
\begin{align*}
Q & =E_{A B C D} \frac{\partial f}{\partial s_{C D}} \frac{\partial f}{\partial s_{A B}}-\frac{\partial f}{\partial \kappa} s_{A B} \frac{\partial f}{\partial s_{A B}} J^{-1} \\
& -\frac{\partial f}{\partial A_{A B}}\left(s_{A B}-A_{A B}\right) b \frac{\frac{\partial f}{\partial s_{M N}} \frac{\partial f}{\partial s_{M N}}}{\left(s_{Q R}-A_{Q R}\right) \frac{\partial f}{\partial s_{Q R}}} \tag{3.55}
\end{align*}
$$

In expressions (3.54) and (3.55), the fourth order elastic stress-strain tensor $E_{A B C D}$ has the following form:

$$
\begin{equation*}
E_{A B C D}=\lambda \delta_{A B} \delta_{C D}+G\left(\delta_{A C} \delta_{B D}+\delta_{A D} \delta_{B C}\right) \tag{3.56}
\end{equation*}
$$

where λ and G are Lame's constants. If a linear elastic relation is assumed between the second Piola-Kirchhoff stress tensor and the material elastic strain tensor

$$
\begin{equation*}
s_{A B}=E_{A B C D} e_{C D}^{\prime} \tag{3.57}
\end{equation*}
$$

Equation (3.57) will be referred to as the Lagrangian linear elasticity.

The elasto-plastic stiffness tensor $\mathbf{D}^{\mathbf{e p}}$ which corresponds to the yield function given by relation (3.38), is given by the following expression:
$D_{M N P Q}^{c p}=E_{M N P Q}-E_{M N C D} \frac{\frac{\partial f}{\partial s_{A B}} \frac{\partial f}{\partial s_{C D}} E_{A B P Q}+\frac{\partial f}{\partial e_{P Q}} \frac{\partial f}{\partial s_{C D}}+\frac{\partial f}{\partial s_{C D}} \frac{\partial f}{\partial J} R_{P Q}}{Q}$

The incremental elasto-plastic constitutive relation can now be expressed as follows:

$$
\begin{equation*}
\dot{s}_{A B}=D_{A B C D}^{e p} \dot{e}_{C D} \tag{3.60}
\end{equation*}
$$

The derivatives of the yield function with respect to $s_{A B}, A_{A B}, \epsilon_{A B}, \kappa$, and J used in the above derivations are obtained through the following expressions:

$$
\begin{align*}
\frac{\partial f}{\partial s_{A B}} & =\frac{1}{J^{2}}\left[\left(A_{C D} C_{C D}-s_{C D} C_{C D}\right) C_{A B}+s_{C D} C_{A C} C_{B D}\right. \\
& \left.-A_{C D} C_{A C} C_{B D}\right] \tag{3.61}\\
\frac{\partial f}{\partial A_{A B}} & =\frac{1}{J^{2}}\left[\left(s_{C D} C_{C D}-A_{C D} C_{C D}\right) C_{A B}+A_{C D} C_{A C} C_{B D}\right. \\
& \left.-s_{C D} C_{A C} C_{B D}\right] \tag{3.62}\\
\frac{\partial f}{\partial e_{A B}} & =\frac{2}{J^{2}}\left[\left(s_{C D} C_{C D}-A_{C D} C_{C D}\right) A_{A B}-\left(s_{C D} C_{C D}-A_{C D} C_{C D}\right) s_{A B}\right. \\
& \left.+s_{D B} C_{C D} s_{C A}+A_{C A} A_{D B} C_{C D}-2 A_{D B} s_{C A} C_{C D}\right] \tag{3.63}\\
\frac{\partial f}{\partial J} & =-\frac{2}{J}(f(1)+f(2)) \tag{3.64}\\
\frac{\partial f}{\partial \kappa} & =-c \tag{3.65}
\end{align*}
$$

As can be seen from equation (3.58), the elasto-plastic stiffness tensor $D_{A B C D}$ is non-symmetric. This requires the use of a non-symmetric equation solver which in turn increases the execution time and the storage requirements. The solution method used for calculation of stresses and plastic strains is based on an elastic-predictor radial-corrector algorithm with subincrementation. Due to the
complexity of the model, and depending on the number of subincrementations used, the computer time required for calculation of stresses may be greater than the time required to solve the system of simultaneous equations and calculating the displacements. For this reason it is determined that a full Newton-Raphson iterative solution procedure results in greater efficiency than the modified NewtonRaphson technique. This is primarily due to the fact that full Newton-Raphson algorithms converge to the solution considerably faster than the modified NewtonRaphson algorithms. Consequently, stress calcalations are performed for a fewer number of iterations.

3.4 Numerical Implementation of the Material Model

The Total Lagrangian plasticity model used in this work is successfully implemented in the finite element program UNIFES developed by the author. This program is primarily used for the solution of general boundary value problems in metal forming. An efficient implementation of this model is not an easy task. This is due to the extensive use of second and fourth order tensors in the principal equations describing this model (equations (3.38) through (3.65)). Furthermore, since tensors can be represented by multidimensional arrays with their subscripts ranging from one to three, due to the short vector lengths, vectorization of equations involving tensors will generate less efficient codes than the equivalent scalar operations. Later in the next section it is shown how some portions of the material model described in the previous section may be vectorized by using some characteristics of the FORTRAN language. However, we should first look at the sequence of operations required for implementing this material model.

Implementation of any material model in a finite element program involves two stages. The first stage is the calculation of the stress-strain or the incremen-
tal stress-strain stiffness matrix D. This is done for the purpose of assembling the global stiffness matrix and subsequent evaluation of the displacements. The second stage of implementation involves evaluation of stresses and any other vital information which is explicitly derived from the constitutive relations. In plasticity for example, calculation of the elastic and plastic components of the strain increment vector and the hardening parameters is an inherent part of the second stage of implementation. This stage of implementation follows the calculation of the strain or the strain increment vector. For both stages the \mathbf{D} matrix and the stresses are sequentially evaluated at each integration point.

The control progran for the plasticity module of the program UNIFES is the MISES subroutine. This subroutine is divided into two segments each of which operates independently and have entry names MISES1 and MISES2. Entry MISES1 is the control routine for evaluation of the elasto-plastic stiffiness matrix (i.e. the first stage of implementation), whereas entry MISES2 is the control program for the second stage of implementation. A listing of the plasticity module of UNIFES is provided in Appendix C.

Table 3.1 lists the sequence of computations required for evaluation of the incremental elasto-plastic stiffness tensor $D_{A B C D}^{e p}$ which is expressed by equation (3.59), and subsequent conversion of this tensor to a second order incremental elasto-plastic stiffness matrix D. A detailed discussion of each step is presented here with references made to the appropriate subroutines listed in Appendix C.

As seen in Table 3.1, the first step of computations requires the evaluation of the fourth order elastic stiffness tensor. This tensor is needed even if the material is determined to behave plastically (see equation (3.59)). Since the fourth order elastic tensor $E_{A B C D}$ is not path or history dependent it is evaluated only once and used over again for all the integration points composed of the same material. If the material used at the current integration point is different from the previous point,
the $E_{A B C D}$ tensor is recalculated using the new material properties. Subroutine ADMAT is used for evaluation of the $A D$ array which is equivalent to $E_{A B C D}$ as presented by equation (3.56).

In the second step, the yield flag, IYIELD, is checked in order to determine if the material has previously yielded. It is important to note that the control subroutine MISES1 checks the yield flag starting with the second load increment. The first load increment is always assumed to be elastic. At the start of the program, IYIELD is initialized to zero for all integration points; its value is then appropriately altered during the course of the stress calculations (second stage of implementation). A value of one for IYIELD indicates that the material is currently yielding and that the incremental elasto-plastic stiffness matrix needs to be evaluated. A zero value for IYIELD indicates that the material is currently elastic. Hence, steps two through ten in Table 3.1, may be by-passed.

In step 3 , the values of the total stress, total strain and the total shift stress tensors along with the plastic work at the end of the last iteration are retrieved from the disk or memory. Notice that these values are evaluated at the end of the previous iteration which may or may not be the converged state in the NewtonRaphson iterative solution process. Program UNIFES is capable of storing and retrieving these values from disk, or alternatively from a memory buffer depending on the limitations of the computer system used. The user has the option of selecting the storage method. The retrieved information is then converted to tensor form (3×3 matrix) by making appropriate calls to subroutine TENSOR. The control program MISES1 makes the necessary calls to the I/O facilities for retrieving the above mentioned information.

The Green's tensor $C_{A B}$ is evaluated in step 4 of the computations. This task is performed by the control program MISES1. After completion of steps one through four, subroutine DEFJAC is called by the control program MISESI

Table 3.1. Sequence of Computations Required for the First Stage of Implementation (Evaluation of the D Matrix).

STEP 1. Evaluate the fourth order elastic stiffness tensor $E_{A B C D}$ as defined by equation (3.56).

STEP 2. Check the yield flag IYIELD at the integration point (this flag is set equal to one if during the stress calculations yielding is detected, otherwise, it will be zero).

```
if IYIELD=0 then (material is elastic)
    go to STEP 11;
else (material is plastic)
    go to STEP 3;
end;
```

STEP 3. Read $s_{A B}, e_{A B}, A_{A B}$, and κ from the memory or disk and convert all vectors to tensors.

STEP 4. Evaluate the Green's tensor $C_{A B}$ through equation (3.40).
STEP 5. Evaluate the strain invariants using expressions (3.51a-c) and calculate the deformation Jacobian J through equation (3.50).

STEP 6. Evaluate the $R_{A B}$ tensor using expression (3.53).
STEP 7. Evaluate the yield function using equations (3.38) and (3.39).
STEP 8. Evaluate the partial derivatives $\frac{\partial f}{\partial e_{A B}}, \frac{\partial f}{\partial J}, \frac{\partial f}{\partial s_{A B}}, \frac{\partial f}{\partial A_{A B}}$, and $\frac{\partial f}{\partial \kappa}$ using equations (3.61) through (3.65).

STEP 9. Evaluate Q using equation (3.55).
STEP 10. Evaluate the fourth order elasto-plastic stiffness tensor $D_{A B C D}^{e p}$ through expression (3.59).

STEP 11. Convert the fourth order elasto-plastic tensor $D_{A B C D}^{c p}$ from STEP 10, or the elastic tensor $E_{A B C D}$ from STEP 1, to a second order matrix D for evaluation of $\mathbf{B}^{T} \mathbf{D B}$.
in order to evaluate the determinant of the deformation Jacobian J. Subroutine DEFJAC first evaluates the strain invariants EINV1, EINV2, and EINV3 which correspond to $I, I I$, and $I I I$ as presented by equations ($3.51 \mathrm{a}-\mathrm{c}$) respectively. After this step is completed the deformation Jacobian DJAC is evaluated through equation (3.50). Subroutine DEFJAC also completes the sixth step of computations by evaluating the RR matrix which corresponds to $R_{A B}$ as defined by equation (3.53).

Step 7 of the first stage of implementation is performed by subroutine IYIELD which is called by MISES1. Subsequent to this step subroutine FDER is called to evaluate the derivatives of the yield function with respect to $s_{A B}, A_{A B}, e_{A B}, J$ and κ using equations (3.61) through (3.65), respectively.

In Step 9, the denominator Q of equation (3.59) is evaluated through expression (3.55). This step is performed by subroutine ELPLD which also performs the computations required to evaluate the fourth order elasto-plastic stiffness tensor as described in Step 10 (Table 3.1).

The eleventh and the final step for evaluation of the elasto-plastic stiffness matrix D, requires conversion of the fourth order tensor $D_{A B C D}^{e p}$ or $E_{A B C D}$ to a second order matrix \mathbf{D} for evaluation of $\mathbf{B}^{T} \mathbf{D B}$. This conversion is performed by subroutine CONVER which is also called by the control routine MISES1.

The evaluation of stress, plastic strain, and the shift stress tensors, and also the plastic work is performed at the second stage of implementation. Evaluation of stresses and plastic strains is in general more difficult than evaluation of the elasto-plastic stiffness tensor. This is primarily because evaluation of stresses requires some form of integration algorithm for the elasto-plastic constitutive relations. The role of an integration algorithm is to correct any possible drift from the yield surface and to ensure compliance with the consistency condition. For more information on various techniques for controlling drift from the yield sur-

Table 3.2. Sequence of Computations Required for the Second Stage of Implementation (Evaluation of the Stresses, etc.).

STEP 1. Retrieve s,e, e^{\prime}, A and also κ obtained at the end of the last converged load increment from memory or disk. Also set FACTOR=1 and FACSUM=0.

STEP 2. Evaluate the strain increment vector, é, by subtracting the total strain vector at the end of the last converged increment from the current strain vector.

STEP 3. Convert all vectors to tensors.
STEP 4. Evaluate the fourth order elastic stiffness tensor $E_{A B C D}$ as defined by equation (3.56).

STEP 5. Evaluate the Green's tensor $C_{A B}$ through equation (3.40).
STEP 6. Evaluate the incremental elastic-predictor stress $\dot{s}_{A B}^{p}$ by assuming that the loading is elastic (i.e. $\dot{s}_{A B}^{p}=E_{A B C D} \dot{e}_{C D}$).

STEP 7. Evaluate the strain invariants using expressions (3.51a-c) and calculate the deformation Jacobian J through equation (3.50).

STEP 8. Evaluate the $R_{A B}$ tensor using expression (3.53).
STEP 9. Evaluate the total elastic predictor stress $s_{A B}^{p}$ by adding $\dot{s}_{A B}^{p}$ to the stress tensor obtained at the end of the last converged load increment or at the end of STEP 21. (i.e., $s_{A B}^{p}=s_{A B}+\dot{s}_{A B}^{p}$).

STEP 10. Evaluate the yield function using the elastic-predictor stress $s_{A B}^{p}$, through equations (3.38) and (3.39).

$$
\begin{array}{ll}
\text { if } f \leq 0 \text { then } & \text { (material is elastic) } \\
\text { FACSUM=FACSUM+FACTOR; } & \\
s_{A B}=s_{A B}^{p} ; & \\
e_{A B}=e_{A B}+\dot{e}_{A B} ; & \\
C_{A B}=2 e_{A B}+\delta_{A B} ; & \\
e_{A B}^{\prime}=e_{A B}^{\prime}+\dot{e}_{A B} ; & \\
\dot{e}_{A B}^{\prime \prime}=0 ; & \\
\text { IYIELD }=0 ; & \\
\text { go to STEP 22; } & \\
\text { else if } f 0 \text { and FACTOR }=1 \text { then } & \text { (material is plastic } \\
\text { FACTOR }=0.01 ; & \text { use subincrementation) } \\
\dot{s}_{A B}^{p}=F A C T O R \times \dot{s}_{A B}^{p} ; & \\
\dot{e}_{A B}=F A C T O R \times \dot{e}_{A B} ; & \\
\text { go to STEP 7; } &
\end{array}
$$

Table 3.2. Continued.

> else if $f>0$ and FACTOR <1 then FACSUM =FACSUM + FACTOR;subincrementation was go to STEP 11; end; performed previously)

STEP 11. Evaluate the yield function using $s_{A B}$ through equations (3.38) and (3.39).

STEP 12. Evaluate the partial derivatives $\frac{\partial f}{\partial \varepsilon_{A B}}, \frac{\partial f}{\partial J}, \frac{\partial f}{\partial s_{A B}}, \frac{\partial f}{\partial A_{A B}}$, and $\frac{\partial f}{\partial \kappa}$ using equations (3.61) through (3.65).

STEP 13. Evaluate Q using equation (3.55).
STEP 14. Evaluate $\dot{\Lambda}$ using equation (3.54).
STEP 15. Evaluate $\dot{\mu}$ using equation (3.47).
STEP 16. Evaluate the plastic component of the strain increment as follows: $\dot{\mathbf{e}}^{\prime \prime}=\dot{\Lambda} \frac{\partial f}{\partial \mathrm{~s}}$.

STEP 17. Determine the elastic component of the strain increment as follows: $\dot{\mathbf{e}}^{\prime}=\dot{\mathbf{e}}-\dot{\mathbf{e}}^{\prime \prime}$.

STEP 18. Determine the stress increment using, $\dot{\mathbf{s}}=\mathbf{E} \dot{e}^{\prime}$.
STEP 19. Calculate the current shift stress tensor through, $\mathbf{A}=\mathbf{A}+(s-\mathbf{A}) \dot{\mu}$.
STEP 20. Calculate the current plastic work through, $\kappa=\kappa+(s+\dot{s}) \dot{\mathbf{e}}^{\prime \prime} / J$.
STEP 21. Update all tensors as shown: $\mathbf{e}=\mathbf{e}+\dot{\mathbf{e}} ; \mathbf{s}=\mathbf{s}+\dot{\mathbf{s}} ; \mathbf{C}=2 \mathbf{e}+\delta$.
STEP 22. Check the subincrementation flag FACSUM;
if $\operatorname{FACSUM}<1$ then go to STEP 7;
else if FACSUM=1 then go to STEP 23;
end;
(more strain subincrements are left to be processed) (all strain subincrements are accounted for)

STEP 23. Write s, e, e^{\prime}, A, and κ to disk or memory for future use during the next iteration.
face the reader is referred to the papers by Ortiz and Popov [1985], Potts and Gens [1985], Schreyer, et. al. [1979], Simo and Taylor [1985] and Simo and Ortiz [1985]. The integration scheme used in this work incoporates the direct use of the consistency condition along with the subincrementation of the strain increment tensor. Prior to application of this method, an elastic-predictor stress is evaluated to determine whether the material is plastically loading. The sequence of computations that need to be performed for the second stage of implementation are listed in Table 3.2. The program flow for this stage is controlled by subroutine MISES at entry MISES2. Appendix C contains the program listing for this stage of implementation.

The first step in evaluation of the stresses involves retrieving the values of the total stress, total strain, shift stress tensor, and the plastic work κ that are evaluated at the end of the last converged load increment from disk or memory buffer. Notice that the first stage of implementation requires the values of the above quantities to be from the end of the previous iteration; whereas, the second stage requires these values to be from the last converged load increment. This is because through several experiments by the author it is determined that measuring the strain increment vector from some stable equilibrium condition results in faster convergence and better results. This may be explained by the fact that errors present during the stress calculations at the previous iterations will have no impact. on the current iteration.

In step 2, the strain increment vector $\dot{e}_{A B}$ is evaluated by subtracting the strain vector at the end of the last converged increment from the current strain vector. The current strain vector is evaluated from the displacement field of the continuum. In Step 3, all quantities that are in vector form are converted to tensor form. The control subroutine MISES2 makes the appropriate calls to subroutine TENSOR in order to perform the above mentioned task.

In Step 4, the elastic stiffness matrix $E_{A B C D}$ as defined by equation (3.56) is evaluated. As explained earlier this tensor is evaluated only once as long as the material properties do not change. The elastic stiffness tensor is evaluated by subroutine ADMAT which is called by the control program MISES2. The control program MISES2 also evaluates the Green's tensor $C_{A B}$ using equation (3.40). This task is performed in the fifth step of the computations as is indicated by Table 3.2.

The sixth step of computations involves evaluation of a trial incremental elastic stress $\dot{s}_{A B}^{P}$ which is commonly referred to as the elastic predictor.

Step 7 is the start of the loop for subincrementation of the incremental strain vector when plastic loading is detected. In this step the strain invariants and the Jacobian of deformation J are evaluated through appropriate expressions as indicated in Table 3.2. Subroutine DEFJAC is called by the control program MISES2 to perform the above mentioned tasks. Subroutine DEFJAC also evaluates the $R_{A B}$ tensor through expression (3.53).

The total elastic predictor stress $s_{A B}^{p}$ is evaluated in ninth step. The incremental elastic predictor stress $\dot{s}_{A B}^{p}$ is added to the stress tensor obtained at the end of the last converged load increment or at the end of step $21,\left(s_{A B}^{p}=s_{A B}+\dot{s}_{A B}^{p}\right)$. Next, in step 10 the yield function is evaluated by using the elastic predictor stress $s_{A B}^{p}$. This task is performed by subroutine IYIELD which is called by the control program MISES2. If the value of the yield function is less than zero the material is in its elastic range and the final stress and strain quantities are determined as given by Table 3.2. If the yield function is greater than zero, then the yield flag IYIELD is set equal to one. The variable FACTOR is checked to determine if subincrementation has been performed previously. The value of variable FACTOR is set equal to one when the control program MISES2 is first accessed. At the current step if FACTOR is equal to one, then subincrementation is performed
by dividing the strain increment $\dot{e}_{A B}$ into one hundred equal subincrements and the value of FACTOR is changed to 0.01 . The incremental elastic predictor stress $\dot{s}_{A B}^{p}$ is also divided into one hundred subincrements. The program control is subsequently transferred to step 7 . If the variable FACTOR has a value less than one, then subincrementation has been performed previously. The program keeps track of the number of subincrements processed by using the variable FACSUM as an accumulator (see Table 3.2). When the value of FACSUM reaches one, it indicates that all subincrements have been processed. When the value of FACTOR is less than one, the program control is transferred to step 11.

In step 11, the yield function is evaluated by using the stresses obtained at the end of the last converged increment or at the end of step 21. This task is again performed by subroutine YIELD. The yield function derivatives as given by equations (3.61) through (3.65) are evaluated in step 12. Subroutine FDER is called by the control program MISES2 to obtain these derivatives.

In steps 13 through 15 the quantities $Q, \dot{\Lambda}$, and $\dot{\mu}$ are evaluated by subroutine ELPLD using equations (3.55), (3.54), and (3.47) respectively. In step 16 , the control program MISES2 evaluates the plastic component of the strain increment vector $\dot{e}_{A B}^{\prime \prime}$. The elastic component of the strain increment vector is then determined by $\dot{e}_{A B}^{\prime}=\dot{e}_{A B}-\dot{e}_{A B}^{\prime}$. The second Piola-Kirchhoff stress increment is calculated in step 18 as shown in Table 3.2.

In steps 19 through 21 all the hardening parameters, stresses and strains are updated to reflect the current values at the end of the current strain subincrement. In step 22, the value of FACSUM described earlier is checked. If FACSUM is equal to one then all subincrements are accounted for and the program control is transferred to the final step 23. Otherwise, if FACSUM is less than one it indicates that there are some strain increments which remain to be processed. Hence, program control is transferred to step 7.

Finally in step 23, the values of the stress, strain and shift stress tensors along with the elastic strain component are converted to vectors (6×1 matrices) from tensors and are stored. The value of the plastic work is also stored. These values correspond to the values at the end of iterations and are used by the first stage of implementation to evaluate the elasto-plastic stiffness tensor for the subsequent iteration.

3.5 A Simple Vectorization Technique

Vector processing is a technique for reducing the execution time required to run a program. It can be applied to FORTRAN code such as a DO-loop that performs the same sequence of operations on successive elements of arrays. Vector processing reduces the processor time required to execute such loops by using specialized hardware which overlaps or pipelines the processing for array elements. Vector processing however, requires that the compiler generate some additional instructions (i.e., vector load instructions). If the array lengths are too short, then the processor time lost due to handling of these instructions exceeds any advantages that are gained from vectorization. The smallest effective vector length depends on the hardware used. Usually this number ranges from nine to sixteen.

In the previous section it was pointed out that due to the short vector lenghts for tensors, vectorizing the operations involving tensors lead to higher execution time than the equivalent scalar operations. Here, in order to increase the vector lengths a simple technique is introduced which takes advantage of the way which FORTRAN stores arrays in the memory registers. Hence, vectorization may be achieved more effectively.

As an example let us consider the different ways in which the expression

$$
\begin{equation*}
s_{A B}=E_{A B C D} e_{C D} \tag{3.66}
\end{equation*}
$$

may be evaluated using two distinctly different subroutines. The program EXAMPL listed below is the main control program which calls subroutines A and B to evaluate the stress tensor as expressed by equation (3.66). The final results which are returned by each subroutine to the main program are identical.

PROGRAM EXAMPL IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION E(3,3,3,3), STRS(3,3), $\operatorname{STRN}(3,3)$
C Initialize E and STRN to the appropriate values
\cdot
.
CALL A(E,STRS,STRN)
GALL B(E,STRS,STRN)
STOP
END

Subroutine A evaluates expression (3.66) using four nested DO-loops each ranging from one to three. Notice that in this subroutine arrays E, STRS, and STRN are dimensioned identical to the calling routine.

```
SUBROUTINE A(E,STRS,STRN)
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION E(3,3,3,3), STRS(3,3), STRN(3,3)
    DO 20J J = 1, 3
    DO 20I = 1,3
    DUMMY = 0.
    DO 10 L = 1,3
    DO 10 K = 1, 3
    10 DUMMY = DUMMY + E(I,J,K,L)*STRN(K,L)
20 STRS(I,J) = DUMMY
RETURN
END
```

C

Subroutine B evaluates expression (3.66) using two nested DO-loops each
ranging from one to nine. This is acheived by dimensioning the arrays E, STRS, and STRN differently from the calling routine.

	SUBROUTINE B(E,STRS,STRN)
	IMPLICIT REAL*8 (A-H,O-Z)
	DIMENSION E(9,9), STRS(9), $\operatorname{STRN}(9)$
C	DO $20 \mathrm{~K} 1=1,9$
	DUMMY $=0$.
	DO $10 \mathrm{~K} 2=1,9$
10	DUMMY $=$ DUMMY $+\mathrm{E}(\mathrm{K} 1, \mathrm{~K} 2) * \operatorname{STRN}(\mathrm{~K} 2)$
20	STRS(K1) = DUMMY
	RETURN
	END

The FORTRAN code presented in subroutine B is far more efficient than the code listed in subroutine A even when scalar operations are used. This is because addressing of one and two dimensional arrays as used in subroutine B is computationally more efficient than addressing two and four dimensional arrays as used in subroutine A. Subroutine B may also be vectorized more effectively due to the use of longer vectors. Both subroutines A and B return identical results for array STRS to the calling program.

The simple technique shown above uses the fact that in FORTRAN arrays are stored by varying the left most indices through their full range first. This is referred to as the column major storage. This technique has been used frequently in implementing the material model introduced earlier, in the program UNIFES. The above discussion should give the reader a basic knowledge for understanding the relevant subroutines listed in Appendix C.

3.6 Uniaxial Verification of the material model

A uniaxial finite element test of the material model is performed by using a single eight-noded axisymmetric quadrilateral element with two inch sides. Numerical results obtained are then compared to the experimental observations made by Voyiadjis [1984]. The material used is aluminum alloy 2024-T4. This material is also used in the extrusion problems presented in Chapter 5. The material properties for this aluminum alloy are listed in Table 5.1.

Referring to Figure 3.3, the material is initially loaded until it elongates 0.1854 inches by using a displacement control scheme. This displacement corresponds to an engineering strain of $\mathbf{9 . 2 7 \%}$ and a Lagrangian strain of $\mathbf{9 . 7 \%}$. At this stage the material is unloaded elastically and reloaded in the compressive direction until a displacement of 0.0852 inches is obtained. This displacement corresponds to an engineering strain of 4.26% and a Lagrangian strain of 4.35%. It must be noted that UNIFES accepts one loading case at a time, hence for unloading the material the RESTART capability of the program is utilized. Finally the material is unloaded again until a displacement of 0.0986 inches is obtained.

Figure 3.3 illustrates the second Piola Kirchhoff versus the Lagrangian strain for this aluminum alloy. As can be seen from this figure the results obtained from experiments and from the numerical model are sufficiently close to each other. The numerical model used here does not allow a variation in the plastic modulus of the material. This explains the deviation of the numerical results from the experimental observations when loading is reversed.

As was mentioned earlier, the RESTART capability of UNIFES is used to complete the analysis presented in Figure 3.3. Tables 3.3 through 3.5 list the UNIFES input files for each stage of the analysis. For detailes on the use of each input command the reader is referred to Chapter 6.

Figure 3.3 . Experimental and Numerical Stress - Strain Diagrams for a Uniaxial Problem (Experimental Data After Voyiadjis [1984]).

Table 3.3. Input File for the Uniaxial Test (First Loading).

TITLE 3

UNIAXIALTEST RUN 1
Loading to a displacement of 0.1854 inches

NONLINEAR NONSYMMETRIC
INCREMENTS 100 ITERATIONS 10 FACLOW 0.0001 FACHIGH 0.001 STOP_AFTER_DIVERGENCE 4 MATERIAL 1

TYPE 2 E 10600. NU 0.3 KINE 40. ISOT 115. YIELD 32.9
ELEMENT 1 MATERIAL 1 NIPXI 3 NIPETA 3 NODES 8

1	0.0	0.0	0
2	0.0	1.0	0
3	0.0	2.0	0
4	1.0	0.0	0
5	1.0	2.0	0
6	2.0	0.0	0
7	2.0	1.0	0
8	2.0	2.0	0

INCIDENCES 1

$\begin{array}{llllllllllll}1 & 2308 & 8 & & 1 & 6 & 8 & 3 & 4 & 7 & 5 & 2\end{array}$
DISPLACEMENTS
NODE 1 TO 3 X 0.
NODE 1 TO 4 BY 3 Y 0.
NODE 6 Y 0.
NODE 3 TO 5 BY 2 Y 0.1854
NODE 8 Y 0.1854
END
OUTPUT_EVERY 1

Table 3.4. Input File for the Uniaxial Test (Second Loading).

TITLE 3

UNIAXIALTEST
RUN 2

Loading to a displacement of 0.0852 inches
RESTART
NONLINEAR
NONSYMMETRIC
INCREMENTS 100 ITERATIONS 10 FACLOW 0.0001 FACHIGH 0.001
STOP_AFTER_DIVERGENCE 4
MATERIAL 1
TYPE 2 E 10600. NU 0.3 KINE 40. ISOT 115. YIELD 32.9
ELEMENT 1 MATERIAL 1 NIPXI 3 NIPETA 3 NODES 8

1	0.0	0.0	0
2	0.0	1.0	0
3	0.0	2.0	0
4	1.0	0.0	0
5	1.0	2.0	0
6	2.0	0.0	0
7	2.0	1.0	0
8	2.0	2.0	0

INCIDENCES 1
$\begin{array}{llllllllllll}1 & 2308 & 8 & & 1 & 6 & 8 & 3 & 4 & 7 & 5 & 2\end{array}$
DISPLACEMENTS
NODE 1 TO 3 X 0.
NODE 1 TO 4 BY 3 Y 0.
NODE 6 Y 0.
NODE 3 TO 5 BY 2 Y - 0.1002
NODE 8 Y-0.1002
END
OUTPUT_EVERY 1

Table 3.5. Input File for the Uniaxial Test (Third Loading).

TITLE 3

UNIAXIALTEST
RUN 3
Loading to a displacement of 0.0986 inches

RESTART NONLINEAR NONSYMMETRIC
INCREMENTS 10 ITERATIONS 10 FACLOW 0.0001 FACHIGH 0.001 STOP_AFTER_DIVERGENCE 4 MATERIAL 1

TYPE 2 E 10600. NU 0.3 KINE 40. ISOT 115.
YIELD 32.9
ELEMENT 1 MATERIAL 1 NIPXI 3 NIPETA 3 NODES 8

1	0.0	0.0	0
2	0.0	1.0	0
3	0.0	2.0	0
4	1.0	0.0	0
5	1.0	2.0	0
6	2.0	0.0	0
7	2.0	1.0	0
8	2.0	2.0	0

INCIDENCES 1
$\begin{array}{llllllllllll}1 & 2308 & 8 & & 1 & 6 & 8 & 3 & 4 & 7 & 5 & 2\end{array}$
DISPLACEMENTS
NODE 1 TO 3 X 0.
NODE 1 TO 4 BY 3 Y 0.
NODE 6 Y 0.
NODE 3 TO 5 BY 2 Y 0.0134
NODE 8 Y 0.0134
END
OUTPUT_EVERY 1

4. SIMULATION OF CONTACT BOUNDARIES

4.1 Introduction

Contact problems in general may be classified into two groups, (1) contact between two deformable objects, and (2) contact between a deformable and a rigid object. Both of the above mentioned classes of contact problems have been extensively studied by a number of researchers. Papers by Hallquist, et. al. [1985], Lee and Kwak [1984], Padovan and Tovichakchaikul [1984], Wanxie and Suming [1988], Okamoto and Nakazawa [1979], and Voyiadjis and Poe [1986] extensively cover most aspects of contact between two deformable bodies. In the study by Ostachowicz [1984], rigid contact elements were used to model the rigid contacting bodies.

In this work we need to consider contact between a highly deformable material and a rigid forming press or extrusion die. Many successful formulations have been achieved by using simple geometric shapes such as straight lines and circular arcs to model the contact boundaries. However, these formulations can model a limited number of shapes and are often difficult to use. In many situations altering the shape of the forming press or the die requires additional programming by the design engineer or the analyst. In finite element solution of metal forming problems, it is necessary to accurately simulate the geometry of the contact boundaries in an effective and simple way. The design engineer should be able to model a variety of curved shaped boundaries without having to modify the program.

Generation of curves and surfaces has been the subject of extensive research by solid modelers and those involved in computer graphics. Many approaches for generation of curves have been proposed, among these are Bésier, Overhauser, Hermite, and β-spline formulations (a detailed discussion of these formulations
may be found in the text book by Foley and Van Dam [1984]). The Bésier and β-spline formulations have gained tremendous popularity for their ease of use in interactive systems. These methods of curve and surface generation have also been applied to metal forming problems. Shiau and Kobayashi [1988], used the Bésier surfaces for analysis of three-dimensional open-die forging problems.

In this work the curved contact boundaries are modeled using Hermite parametric curves. A detailed explanation of this formulation is provided in the following sections which may also be applied to β-splines, Bésier and Overhauser parametric formulations with only slight modifications. Both tension free contact, and fixed rolling contact may be simulated.

4.2 Hermite Formulation of Cubic Curves

The Hermite form for a cubic parametric curve is determined from the end point coordinates and corresponding end point tangents. Referring to Figure 4.1, P and $\overline{\mathbf{P}}$ denote the position vectors of the starting and the finishing points of the curve, respectively. Similarly, \mathbf{T} and $\overline{\mathbf{T}}$ denote the tangent vectors at the corresponding points \mathbf{P} and $\overline{\mathbf{P}}$ respectively. We therefore have

$$
\begin{align*}
& \mathbf{P}=P_{x} \mathbf{i}+P_{y} \mathbf{j} \tag{4.1a}\\
& \overline{\mathbf{P}}=\bar{P}_{x} \mathbf{i}+\bar{P}_{y} \mathbf{j} \tag{4.1b}
\end{align*}
$$

and

$$
\begin{align*}
& \mathbf{T}=T_{x} \mathbf{i}+T_{y} \mathbf{j} \tag{4.2a}\\
& \overline{\mathbf{T}}=\bar{T}_{x} \mathbf{i}+\bar{T}_{y} \mathbf{j} \tag{4.2b}
\end{align*}
$$

where \mathbf{i} and \mathbf{j} are unit vectors along the coordinate axes \boldsymbol{x} and y, respectively. Assuming a parametric expression for x, we have

$$
\begin{equation*}
x(t)=[M]\left\{G_{x}\right\} \tag{4.3a}
\end{equation*}
$$

where

$$
\begin{equation*}
[M]=\left[t^{3}, t^{2}, t, 1\right] \tag{4.3b}
\end{equation*}
$$

and

$$
\left\{G_{x}\right\}=\left\{\begin{array}{l}
a \tag{4.3c}\\
b \\
c \\
d
\end{array}\right\}
$$

In equations (4.3a-b), t is a parameter such that $0 \leq t \leq 1$. The objective is to find the coefficient column vector $\left\{G_{x}\right\}$ of equation (4.3c) in terms of the end point position vectors and the corresponding tangents which are given by equations (4.1a-b) and (4.2a-b), respectively.

For $t=0$, from equation (4.3a) we obtain P_{x}, while for $t=1$, we obtain \bar{P}_{x}. This is expressed as follows:

$$
\begin{align*}
& x(0)=P_{x}=[0,0,0,1]\left\{G_{x}\right\} \tag{4.4a}\\
& x(1)=\bar{P}_{x}=[1,1,1,1]\left\{G_{x}\right\} \tag{4.4b}
\end{align*}
$$

Similarly, the derivatives may be obtained by differentiating equation (4.3a) with respect to t. Consequently we have

$$
\begin{equation*}
x^{\prime}(t)=[M]^{\prime}\left\{G_{x}\right\} \tag{4.5}
\end{equation*}
$$

where $x^{\prime}(t)$ is derivative of $x(t)$ with respect to t and $[M]^{\prime}=\left[3 t^{2}, 2 t, 1,0\right]$. Therefore one obtaines the following:

$$
\begin{equation*}
x^{\prime}(0)=T_{x}=[0,0,1,0]\left\{G_{x}\right\} \tag{4.6a}
\end{equation*}
$$

and

$$
\begin{equation*}
x^{\prime}(1)=\bar{T}_{x}=[3,2,1,0]\left\{G_{x}\right\} \tag{4.6b}
\end{equation*}
$$

The four equations (4.4a-b) and (4.6a-b) can now be cast into a single matrix equation as follows:

$$
\left\{\begin{array}{c}
P_{x} \tag{4.7}\\
\bar{P}_{x} \\
T_{x} \\
\bar{T}_{x}
\end{array}\right\}=\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 \\
3 & 2 & 1 & 0
\end{array}\right)\left\{G_{x}\right\}
$$

Figure 4.1 Hermite Parametric Cubic Curve.

Figure 4.2 Some Possible Shapes of the Hermite Curve.

Inverting the 4×4 matrix and solving for the right hand side unknown coefficient vector $\left\{G_{x}\right\}$, we obtain

$$
\left\{G_{x}\right\}=\left(\begin{array}{cccc}
2 & -2 & 1 & 1 \tag{4.8}\\
-3 & 3 & -2 & -1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)\left\{\begin{array}{l}
P_{x} \\
\bar{P}_{x} \\
T_{x} \\
\bar{T}_{x}
\end{array}\right\}=[H]\left\{L_{x}\right\}
$$

where $[H]$ is the 4×4 Hermite matrix and $\left[L_{x}\right.$] is the corresponding Hermite geometry vector which is specified by the user. Substituting equation (4.8) into equation (4.3a), we obtain

$$
\begin{equation*}
x(t)=[M]\left\{G_{x}\right\}=[M][H]\left\{L_{x}\right\} \tag{4.9}
\end{equation*}
$$

where $\left[G_{x}\right]$ is equal to $[H]\left\{L_{x}\right\}$. A similar parametric expression for $y(t)$ may be obtained such that

$$
\begin{equation*}
y(t)=[M][H]\left\{L_{y}\right\} \tag{4.10}
\end{equation*}
$$

where

$$
\left\{L_{y}\right\}=\left\{\begin{array}{c}
P_{y} \tag{4.11}\\
\bar{P}_{y} \\
T_{y} \\
\bar{T}_{y}
\end{array}\right\}
$$

It must be noted that in using the Hermite formulation, the term $\left[G_{x}\right]=$ $[H]\left\{L_{x}\right\}$ or $\left[G_{y}\right]=[H]\left\{L_{y}\right\}$ may be evaluated only once in the solution process. Any other point on the curve may be evaluated by simply assigning the appropriate value of the parameter t in the expressions (4.9) and (4.10). In using the Hermite parametric formulation, the user can control the shape of the curve by specifying the appropriate end point coordinates and the corresponding tangents at those points. Some of the possible curved shapes which may be obtained through this formulation are shown in Figure 4.2.

4.3 Motion of the Nodal Points on the Curved Boundaries

Unlike the constraint of motion of a nodal point along a straight boundary, simulation of motion along a curved boundary requires updating of the tangent vector to the curve at the nodal point and continuous correction for possible drift of the node away from the boundary. Figure 4.3, shows an incremental motion of the nodal point originally located on the curved boundary at A. Node A is constrained to move tangentially to the curve at A in the direction of vector $T^{(1)}$ during the current load increment. However, this motion moves node A away from the curved boundary to a new location denoted by B. For the subsequent load increment, this node is projected back onto the boundary curve at point C and is constrained to move tangent to the curve in the direction of vector $\mathbf{T}^{(2)}$.

In order to locate point C for the drift correction, we need to find the appropriate parameter t corresponding to point C. Referring to Figure 4.3, since vector \mathbf{R} (along $B C$) is perpendicular to the curve, its scalar dot product with $\mathbf{T}^{(2)}$ should equal to zero. We therefore obtain the following:

$$
\begin{equation*}
\left(x^{C}-x^{B}\right) T_{x}^{(2)}+\left(y^{C}-y^{B}\right) T_{y}^{(2)}=0 \tag{4.12}
\end{equation*}
$$

where $\left(x^{B}, y^{B}\right)$ which represent the coordinates of point B are known values obtained from the equilibrium state during the last load increment. On the other hand, $\left(x^{C}, y^{C}\right)$ and $\left(T_{x}^{(2)}, T_{y}^{(2)}\right)$ are unknown and may be expressed in terms of the unknown parameter t using equations (4.9), (4.10) and (4.5) as follows:

$$
\begin{align*}
& x^{C}=[M]\left\{G_{x}\right\} \tag{4.13a}\\
& y^{C}=[M]\left\{G_{y}\right\} \tag{4.13b}
\end{align*}
$$

and

$$
\begin{align*}
& T_{x}^{(2)}=[M]^{\prime}\left\{G_{x}\right\} \tag{4.14a}\\
& T_{y}^{(2)}=[M]^{\prime}\left\{G_{y}\right\} \tag{4.14b}
\end{align*}
$$

Figure 4.3 Correction Process for the Motion of the Points Constrianed to Move on the Die.

Substituting equations (4.13a-b) and (4.14a-b) into equation (4.12) will result in a fifth order polynomial equation in t as shown below:

$$
\begin{equation*}
c_{5} t^{5}+c_{4} t^{4}+c_{3} t^{3}+c_{2} t^{2}+c_{1} t+c_{0}=0 \tag{4.15}
\end{equation*}
$$

The constants $c_{1}, c_{2}, \ldots, c_{5}$, in equation (4.15) are given as follows:

$$
\begin{align*}
c_{0} & =-G_{x}(3) G_{x}(4)-G_{y}(3) G_{y}(4)+x^{B} G_{x}(3)+y^{B} G_{y}(3) \tag{4.16a}\\
c_{1} & =-\left(G_{x}(3)\right)^{2}-2 G_{x}(2) G_{x}(4)-\left(G_{y}(3)\right)^{2} \\
& -2 G_{y}(2) G_{y}(4)+2\left(x^{B} G_{x}(2)+y^{B} G_{y}(2)\right) \tag{4.16b}\\
c_{2} & =-3 G_{x}(1) G_{x}(4)-3 G_{x}(2) G_{x}(3)-3 G_{y}(1) G_{y}(4) \\
& -3 G_{y}(2) G_{y}(3)+3\left(x^{B} G_{x}(1)+y^{B} G_{y}(1)\right) \tag{4.16c}\\
c_{3} & =-2\left(G_{x}(2)\right)^{2}-4 G_{x}(1) G_{x}(3)-2\left(G_{y}(2)\right)^{2}-4 G_{y}(1) G_{y}(3) \tag{4.16d}\\
c_{4} & =-5 G_{x}(1) G_{x}(2)-5 G_{y}(1) G_{y}(2) \\
c_{5} & =-3\left(G_{x}(1)\right)^{2}-3\left(G_{y}(1)\right)^{2} \tag{4.16f}
\end{align*}
$$

where $G_{x}(n)$ implies the n-th row of the $\left\{G_{x}\right\}$ column vector. In equations (4.16), constants c_{3}, c_{4} and c_{5} are independent of the location of point B and their values will be calculated only once during the course of the analysis provided that the curved boundaries do not move. Similarly, the portions of the constants c_{0}, c_{1} and c_{2} which are independent of the x^{B} and y^{B} will be computed only once, hence resulting in good computational efficiency.

Once the constants c_{0} through c_{5} are evaluated, equation (4.15) is solved numerically for the parameter t. For the solution of the fifth order polynomial equation in t, the Muller's method is chosen (Gerald and Wheatley [1985]). This method converges to the appropriate root of the polynomial within the interval $0 \leq t \leq 1$ effectively when the first root is obtained. However, there are situations when the first root obtained may be outside the appropriate range of $t,(0 \leq t \leq 1)$.

When this situation arises, synthetic division is used to eliminate the first root and the program proceeds to find the next root. This process is continued until the appropriate root t within the required interval is obtained. In this work, it is assumed that the curved boundaries are reasonable enough and that point B is sufficiently close to the boundary so that only one normal from point B to the curve can be drawn. In other words, there is only one root of the equation (4.15) which is within the interval $0 \leq t \leq 1$. Once the appropriate value of the parameter t is determined, the location of point C and the tangent vector $\mathbf{T}^{(2)}$ are respectively evaluated through equations (4.13) and (4.14). Vector \mathbf{R} in Figure 4.3 represents the correction required to bring back the nodal point to the curved boundary. For the subsequent load increment, the magnitude of vector \mathbf{R} is applied to the restrained direction (direction normal to the boundary at C) as an imposed displacement and the nodal point is allowed to move along the tangent direction $T^{(2)}$ freely. This process is repeated at the end of every load increment for all the nodes that are in contact with the curved boundaries.

4.4 Use of Multiple Curves in Generating Complex Boundaries

Quite frequently the curved boundaries involved in contact problems have complex shapes which may not be represented by a single cubic parametric curve. Also, there are situations where multiple boundaries need to be identified. In these situations it is necessary to use multiple splines to represent the appropriate shape of the boundaries. This task is achieved easily in UNIFES by simply allowing the user to define multiple geometry vectors in order to generate multiple Hermite curves.

One major problem in using multiple curve definitions for representing the boundaries is the task of identifying the closest curve to a given interface node.

The procedure described in the earlier section for controlling the motion of the nodal points on the boundaries is applicable, but additional information is needed to eliminate the unnecessary and time consuming solution of the fifth order polynomial of equation (4.15) for the curve segments which are not close to a given nodal point. Also, there are situations where there is a possiblility to draw a normal line from one nodal point to more than one curve segment. Figure 4.4, illustrates this situation. In Figure 4.4, node A should be constrained to move on curve C. However, the procedure described in the previous section can mistakenly identify curve C^{\prime} as the constraining boundary for node A.

The above mentioned problems are eliminated by identifying an inclusion zone for each curve segment. If the coordinates of the node under consideration are within the bounds of the inclusion zone of a curve segment, then the node is constrained by the curve and the procedure of section 4.3 is applied to that particular curve segment.

The inclusion zone for each curve segment is identified by the user through specifying the lower-left and the uper-right hand corners of a box containing the spline. It is possible for the inclusion zone of two splines to overlap. If this situation arises, both curve segments are checked and the first curve with its normal passing through the nodal point is chosen as the constraining curve.

Figure 4.4. Zoning of the Contact Boundaries.

4.5 Description of the Relevant Subroutines

A complete listing of the module necessary for controlling the motion of the nodal points on the curved boundaries is provided in Appendix D. The control program for this module is subroutine BOUND. This module is called by the finite element control program prior to start of each new load increment in order to update the boundary conditions and the orientation of the skew rollers. A brief description of each subroutine belonging to this module is provided next.

Subroutine BOUND. This subroutine is the main control module for determining the location of the interface node (nodes that may become in contact with the boundary during the course of the analysis). The appropriate direction cosine vectors (COSTX, COSTY), the incremental load vector (RINC), and the incremental displacement vector (UINC) are updated appropriately based on the motion and the location of the interface nodes. The parameter ICODE is set equal to zero if recalculation of the degree of freedom vector IDOF is not necessary, otherwise ICODE is set equal to unity.

Subroutine HERMITE. This subroutine is addressed only once during the course of the analysis in order to calculate the $\left\{G_{x}\right\}$ and $\left\{G_{y}\right\}$ column vectors as given by equation (4.8). This program is called by the main finite element module at the start of the program.

Subroutine COEF. This subroutine is addressed only once in order to calculate the coefficients c_{3}, c_{4} and c_{5} and the constant part of the coefficients c_{0}, c_{1} and c_{2} using equations (4.16a-f). This subroutine is called by the main finite element module at the start of the program.

Subroutine HERMXY. This sibroutine is used to evaluate the x and y coor-
dinates of a point on the curved boundary using equations (4.9) and (4.10).

Subroutine XYPRIM. This subroutine calculates the tangent vector to the curve given by equation (4.5).

Subroutine MULLER. This subroutine evaluates the additional parts of constants c_{0}, c_{1} and c_{2} which depend on the location of the node at point B (refer to Figure 4.3). It subsequently checks the position of the nodal point against the inclusion zone for each curve in order to eliminate the curves which are not close to the point. Afterwards, the Muller's method with synthetic division is used to find the appropriate parameter t for the fifth order polynomial given by equation (4.15). If a root is not found within the interval $0 \leq t \leq 1$, the flag IRET is set equal to zero. This indicates to program BOUND that the node is free.

5. PARAMETRIC STUDY OF AXISYMMETRIC EXTRUSION

5.1 Introduction

The problem of axisymmetric metal extrusion is investigated in this work. The billet is ten inches long with a radius of one inch and is made of the aluminum alloy 2024 T4. The material parameters used in the constitutive model (refer to Chapter 3) for this aluminum alloy are presented in Table 5.1. In Table 5.1, σ_{y} is the initial yield for uniaxial loading. The determination of parameters b and c is discussed by Voyiadjis [1984] and Voyiadjis and Kiousis [1987].

Table 5.1. Material Propertics for Aluminum 2024-T4.

Modulus of Elasticity	$E=10,600 k s i$
Poisson's Ratio	$\ldots \nu=0.3$
Kinematic Hardening	$b=40 k s i$
Isotropic Hardening P	$15 k s i$
Initial Yield Stress (F	$\sigma_{y}=57 \mathrm{ksi}$

The contact surface between the billet and the rigid die is assumed to be friction free. This in general is a valid assumption because lubricants are often used in extrusion processes. Referring to Figure 5.1, the die is modeled using three Hermite curves, namely AB, BC and CD . Portion AB represents a cylinder of constant radius that encloses the undeformed billet as shown in Figure 5.1. Region BC is the reduction region of the die and is obtained through a Hermite curve with horizontal tangents at both ends B and C. These horizontal tangents provide for a smooth transition of the material from one segment of the die to another. The exit portion of the die CD provides a region for the smooth recovering of the elastic strains and for unloading of the material. In the finite element formulation the
billet is modeled such that it slides on the rigid die with tension free contact. This formulation allows the material to separate from the die as soon as tensile forces develop between the die and the billet. In the case when a previously released node penetrates the die, that node is again constrained to roll smoothly on the die surface.

Initially the billet is placed in region AB with a slight penetration of 0.05 inches into segment BC. This is to ensure that an axial force developes for the very first load increment. The billet is pushed through the die using a displacement control approach. A total displacement of 5 inches is applied to the left end of the billet using 250 load increments (0.02 inch per load increment) during the process of extrusion.

The convergence criterion used in this finite element analysis is based on the incremental internal energy obtained at the end of each iteration. The incremental internal energy defined during the i th iteration of the nth load increment is expressed as follows:

$$
\begin{equation*}
\Delta U_{n}^{(i)}=\left[R e_{n}^{(i)}-R e_{n}^{(i-1)}\right] \Delta u_{n}^{(i)} \tag{5.1}
\end{equation*}
$$

where $R e_{n}^{(i)}$ and $R e_{n}^{(i-1)}$ are equilibrium load vectors at the nth load increment for the i th and $(i-1)$ th iterations respectively. These equilibrium load vectors are obtained from the element stresses. In equation (5.1), $\Delta u_{n}^{(i)}$ represents the displacement increments at the i th iteration of the nth load increment. It is assumed that the convergence is obtained provided:

$$
\begin{equation*}
\Delta U_{n}^{(i)} \leq \epsilon \Delta U_{n}^{(1)} \tag{5.2}
\end{equation*}
$$

where ϵ is a tolerance factor and $\Delta U_{n}^{(1)}$ is the internal energy obtained at the first iteration of the nth load increment. Similarly divergence is implied when

$$
\begin{equation*}
\Delta U_{n}^{(i)}>\Delta U_{n}^{(1)} \tag{5.3}
\end{equation*}
$$

Figure 5.1. Schematic Representation of the Die and the Initial Position of the Billet.

During the course of the analysis, it is observed that for some load increments the proposed iterative solution procedure either diverges or does not converge to the prescribed limit within the prescribed maximum allowable number of iterations. When this occurs, the load step is reduced to one-half of the previous load increment and the procedure is repeated until all the load for this particular load increment is applied. This automatic procedure for the reduction of the load increment is only applied to those particular load increments with convergence problems; hence, it does not affect the loading procedure for any subsequent increments.

Table 5.2. Parameters Used for the Control of the Iterative Solution Process.

Abstract

Strictest convergence tolerance... $=10^{-7}$ Least acceptable convergence tolerance.. 10^{-4} Allowable number of diverging iterations ... $N_{d}=4$ Maximum allowable number of iterations per load increment $\ldots \ldots \ldots . . . N=10$

The parameters listed in Table 5.2, are utilized for the control of the iterative solution procedure used in this work. During each load increment, the tolerance $\epsilon_{\text {max }}$ is used in relation (5.2) in order to test for convergence. In case the criterion expressed by relation (5.2) using $\epsilon_{\max }$ is not met, the corresponding value of ϵ required to satisfy the equality of relation (5.2) is computed. Should the computed value of ϵ fall within the bounds of $\epsilon_{\max }$ and $\epsilon_{\min }$, then the solution is assumed to have converged and the next load increment is applied. Nevertheless, this relaxed convergence criterion is only accepted for a specified limited number of load increments. The parameter N_{d} indicates how many times relation (5.3) should be satisfied (divergence occurs) for a given load increment prior to applying the automatic subincrementation for the diverging load increment.

5.2 Comparison of Different Element Types and Meshes

A series of preliminary analyses are made using five different meshes each with different types of elements. The characteristics of the meshes used for each one of these runs are indicated in Table 5.3. The same die model is used for all five runs which are presented in this section. The initial one inch radius of the billet is reduced to 0.8 inches after extrusion. This is equivalent to a 36% reduction in the cross-sectional area of the billet. The die angle used is approximately 7.59 degrees. Referring to Figue 5.1, the die angle is approximated by connecting points B and C by a straight line and measuring the angle ϕ which this line makes with a horizontal line. The parameters used to generate each segment of the die for these runs are listed in Table 5.4. These runs are made for the purpose of determining the optimum mesh in terms of accuracy of the results, efficiency of analysis and handling of singularities which in particular arise at the exit of the die. Figure 5.2 , illustrates the meshes used for each run.

Table 5.3. Mesh Characteristics for Runs A1 Through A5 \dagger.

Run	Number of Nodes in Element*	Number of Elements	Number of Integration Points per Element	Aspect Ratio of Elements	Total Number of		
					Nodes	Integration Points	Interface Nodes
A1	4	320	4	2	369	1,280	40
A2	4	640	4	1	729	2,560	80
A3	8	320	9	2	1,057	2,880	80
A4	9	320	9	2	1,377	2,880	80
A5	4,5,8	640	4,9	1	970	2,960	160

[^0]It is observed that run A1 using a mesh composed of 320 four-noded elements fails to complete the extrusion problem. Divergence occurs at load increment 84, that is when the second column of elements exit the die. Automatic load subincrementation procedure described earlier fails to correct the divergence. Run A2 using 640 four-noded elements, also fails to complete the analysis. However, this time divergence occurs at load increment 122 , that is when the left end of the billet is displaced by 2.44 inches (6.2 cm). Further mesh refinement using the fournoded isoparametric element will be computationally inefficient when compared to meshes used utilizing eight or nine noded elements in runs A3, A4 and A5.

Table 5.4. Parameters Used to Generate the Die for Runs A1 Through A5 Using the Hermite Formulation.

segment	P_{x}^{*}	$P_{y}^{* *}$	T_{x}^{*}	$T_{y}^{* *}$	\bar{P}_{x}^{*}	$\bar{P}_{y}^{* *}$	\bar{T}_{x}^{*}	$\bar{T}_{y}^{* *}$
AB	1.0	0.0	0.0	2.0	1.0	9.95	0.0	2.0
BC	1.0	9.95	0.0	2.0	0.8	11.45	0.0	2.0
CD	0.8	11.45	0.0	0.7	0.85	11.95	0.08	0.4

* x-direction corresponds to the radial direction. $* * y$-direction corresponds to the axis of symmetry of the billet.

Runs A3 and A4 are successfully completed with the material extruded as specified previously. However, use of 320 nine noded Lagrangian isoparametric elements in run A4 does not lead to improved performance or better resulis over the same number of eight-noded elements used for run A3. The extrusion pressure is obtained at the end of each load increment. The pressure versus the displacement of the left end of the billet is presented for runs A2, A3 and A4 in Figures 5.3 through 5.5. It is seen that the extrusion pressure increases steadily up to approximately a displacement of 1.6 inches. This range of steady increase of the extrusion pressure corresponds to the case when the billet fills the die. As the

Figure 5.2. Meshes Used for Runs A1 Through A5.
billet exits the die, the interface nodes that are constrained to move on the die are released. This causes a drop in the elastic strain energy of the billet which in turn causes a drop in the extrusion pressure. As the material continues to enter the die, the next interface node due to be released continues to move on the die until it reaches the exit point of the die. During this period, the strain energy of the billet continues to increase hence increasing the extrusion pressure. This process will continue as shown in Figures 5.3 through 5.5 until the billet has completely exited the die. It must be noted that this condition does not exist. in real extrusion problems. This is because as one material point on the surface of the billet exits the die, there is another material point infinitesimally close to the previous point which is still constrained to move on the die. In finite element analysis, the nodes that are released as the billet exits the die are a finite distance apart, consequently resulting in the above mentioned fluctuations in the extrusion pressure. Ideally, as one decreases the distance between the constrained nodes, these fluctuations are phased out. The studies performed by Aravas [1986] and Nagtegaal and Veldpaus [1980], confirm the existence of these fluctuations in the numerical solution of metal extrusion problems.

Run A5 is used to verify that these fluctuations are a function of the distance between the interface nodes. The mesh used in this run consists of 640 elements (eight elements in the radial direction and eighty elements along the length of the billet). The row containing 80 elements at the interface with the die is made of eight-noded quadratic isoparametric elements. The second row next to the interface is made of five-noded quadrilateral isoparametric transition elements. These elements are used to provide transition from a quadratic displacement field to a bi-linear displacement field. All subsequent rows are made of four-noded quadrilateral elements (refer to Figure 5.2). This mesh is computationally as efficient as the mesh for run A3 which uses 320 eight-noded quadrilateral isoparametric

Figure 5.3. Extrusion Pressure Versus Displacement for Run A2 (Incomplete Extrusion).

Figure 5.4. Extrusion Pressure Versus Displacement for Run A3.

Figure 5.5. Extrusion Pressure Versus Displacement for Run Af.
elements. However, the distance between the interface nodes for run A5 is one-half of that used for run A3. Figure 5.6 shows the extrusion pressure versus the displacement for the left end of the billet for run A5. Comparison of this figure with Figures 5.3 through 5.5 indicates that the amplitude of the fluctuations decreases substantially when the mesh for run A5 is used.

It is also noted that the fluctuations shown in Figures 5.4 through 5.6 consist of a high peak followed immediately by a low peak. As shown in Figure 5.6, This corresponds to the release of the middle node followed by the release of the neighboring corner node of the quadratic elements respectively. Figure 5.3 which corresponds to run A2 does not show this characteristic because the elements used there at the interface with the die are four-noded isoparametric elements. Therefore, all the fluctuation peaks in Figure 5.3 are identical. We must also note that the distance between the respective peaks is identical to the distance between the neighboring nodes at the interface of the die.

The above mentioned fluctuations may be further reduced by incrementally removing the load on the released nodes as presented by Aravas [1986]. It must be noted however, that this method does not completely remove the fluctuations and will lead to an extrusion pressure which is significantly higher than the actual extrussion pressure. The higher extrusion pressure is caused by the fact that sustaining an artificial load on the exiting nodes will provide additional resistance to the flow of the material through the die.

Figures 5.3 through 5.6 also show that the extrusion pressure increases steadily until the material fills the die. Thereafter, the pressure decreases until a steady state condition is reached. This finding is identical for runs A1 through A5 regardless of element types.

Figure 5.6. Esfrusion Pressure Versus Displacement for Run A5.

5.3 Numerical Results Obtained Using Run A5

In Figure 5.7, the distribution of the yield zone at various stages of the extrusion is shown. It is observed that subsequent to exiting the die, yielding continues at some integration points. This is primarily due to the fact that the extruded material is seeking a final equilibrium state which may only be reached by additional yielding of the material until the residual stresses balance themselves.

In Figures 5.8 through 5.11, the stress intensity contours are plotted for both the Cauchy stress and the second Piola-Kirchhoff stress components. Two regions of heavy stress concentrations are observed in the stress contours. We note that at the entrance of the reduction region of the die (location B in Figure 5.1) and at the exit of the die, large stress variations are observed. This in particular is more intense for the axial and shear stress distributions. Variation of the axial stress distribution indicates that after extrusion, compressive axial stresses occur near the core of the billet and tension forms towards the outer radius of the billet. It is also seen that stresses at the free end of the extruded material vary significantly without showing distinct patterns.

In Figure 5.8, section A-A indicates an appropriate section for obtaining the residual stresses for the extruded material. The regions closer to the free end of the billet or the exit of the die are affected by the stress concentrations and should not be used to record the residual stresses for the final product.

Figure 5.12, shows the distribution of the volumetric Cauchy stress components. The highest compressive volumetric stresses occur in the immediate vicinity of segment BC of the die (reduction region). The maximum tensile volumetric stresses occur at the free end of the extruded billet and also at the axis of the billet after extrusion.

In Figures 5.13 and 5.14 the Lagrangian strain variations are shown. The highest shear strain value observed in Figure 5.14 is -31.96 percent which occurs

Figure 5.7. The Yield Zone at Various Stages of the Extrusion for Run A5.

distribution of the 2nd p.k. radial stress at load step 250 (KSI)
MINIMUM $=-0.3660 \mathrm{E}+03$ MAXIMUM $=0.9490 \mathrm{E}+02$

$$
\begin{array}{llll}
0=-0.3587 \mathrm{E}+03 & 1=-0.3085 \mathrm{E}+03 & 2=-0.2583 \mathrm{E}+03 & 3=-0.2081 \mathrm{E}+03 \\
4=-0.1579 \mathrm{E}+03 & 5=-0.1077 \mathrm{E}+03 & 6=-0.5755 \mathrm{E}+02 & 7=-0.7368 \mathrm{E}+01
\end{array}
$$

$$
8=0.4282 \mathrm{E}+02 \quad 9=0.9300 \mathrm{E}+02
$$

distribution of the radial cauchy stress at load step 250 (KSI)
MINIMUM $=-0.2167 \mathrm{E}+03$ MAXIMUM $=0.5532 \mathrm{E}+02$

$$
\begin{array}{llll}
0=-0.2124 \mathrm{E}+03 & 1=-0.1828 \mathrm{E}+03 & 2=-0.1532 \mathrm{E}+03 & 3=-0.1235 \mathrm{E}+03 \\
4=-0.9391 \mathrm{E}+02 & 5=-0.6429 \mathrm{E}+02 & 6=-0.3466 \mathrm{E}+02 & 7=-0.5039 \mathrm{E}+01 \\
8=0.2459 \mathrm{E}+02 & 9=0.5421 \mathrm{E}+02 & &
\end{array}
$$

Figure 5.8. Radial Stress Distribution for Run A5.

DISTRIBUTION OF THE 2ND P.K. AXIAL STRESS AT LOAD STEP 250 (RSI)
MINIMUM $=-0.9018 \mathrm{E}+02$ MAXIMUM $=0.8603 \mathrm{E}+02$
$0=0.8838 \mathrm{E}+02 \quad 1=0.6919 \mathrm{E}+02 \quad 2=0.5000 \mathrm{E}+02 \quad 3=0.3081 \mathrm{E}+02$
$4=0.1163 \mathrm{E}+02 \quad 5=-0.7561 \mathrm{E}+01 \quad 6=-0.2675 \mathrm{E}+02 \quad 7=-0.4594 \mathrm{E}+02$
$8=-0.6512 \mathrm{E}+02 \quad 9=-0.8431 \mathrm{E}+02$

DISTRIBUTION OF THE CAUCHY AXIAL STRESS AT LOAD STEP 250 (KSI)
MINIMUM $=-0.1615 E+03 \quad$ MAXIMUM $=0.1614 \mathrm{E}+03$
$\begin{array}{lllll}0=0.1583 \mathrm{E}+03 & 1=0.1231 \mathrm{E}+03 & 2=0.8796 \mathrm{E}+02 & 3=0.5280 \mathrm{E}+02 \\ 4=0.1764 \mathrm{E}+02 & 5=-0.1753 \mathrm{E}+02 & 6=-0.5269 \mathrm{E}+02 & 7=-0.8785 \mathrm{E}+02\end{array}$
$8=-0.1230 \mathrm{E}+03 \quad 9=-0.1582 \mathrm{E}+03$

Figure 5.9. Axial Stress Distribution for Run A5.

DISTRIBUTION OF THE 2ND P.K. SHEAR STRESS (RZ) AT LOAD STEP 250 (KSI)
MINIMUM $=-0.5202 \mathrm{E}+02$ MAXIMUH $=0.5801 \mathrm{E}+02$
$\begin{array}{lllll}0=-0.5098 \mathrm{E}+02 & 1=-0.3900 \mathrm{E}+02 & 2=-0.2702 \mathrm{E}+02 & 3=-0.1504 \mathrm{E}+02 \\ 4=-0.3056 \mathrm{E}+01 & 5=0.8925 \mathrm{E}+01 & 6=0.2091 \mathrm{E}+02 & 7=0.3289 \mathrm{E}+02\end{array}$
$8=0.4487 \mathrm{E}+02 \quad 9=0.5685 \mathrm{E}+02$

distribution of the shear cauchy stress (RZ) at load step 250 (KSI)
MINIMUM $=-0.5184 \mathrm{E}+02$ MAXIMUM $=0.5804 \mathrm{E}+02$
$0=-0.5081 \mathrm{E}+02 \quad 1=-0.3884 \mathrm{E}+02 \quad 2=-0.2688 \mathrm{E}+02 \quad 3=-0.1491 \mathrm{E}+02$
$4=-0.2945 \mathrm{E}+01 \quad 5=0.9020 \mathrm{E}+01 \quad 6=0.2098 \mathrm{E}+02 \quad 7=0.3295 \mathrm{E}+02$
$8=0.4492 \mathrm{E}+02 \quad 9=0.5688 \mathrm{E}+02$

Figure 5.10. Shear Stress Distribution for Run A5.

DISTRIBUTION OF THE 2ND P.K. CIRCUMFERENTIAL STRESS AT LOAD STEP 250 (KSI) MINIMUM $=-0.3795 \mathrm{E}+03$ HAXIMUH $=0.1458 \mathrm{E}+03$

$0=-0.3719 \mathrm{E}+03$	$1=-0.3147 \mathrm{E}+03$	$2=-0.2575 \mathrm{E}+03$	$3=-0.2003 \mathrm{E}+03$
$4=-0.1431 \mathrm{E}+03$	$5=-0.8589 \mathrm{E}+02$	$6=-0.2869 \mathrm{E}+02$	$7=0.2850 \mathrm{E}+02$
$8=0.8570 \mathrm{E}+02$	$9=0.1429 \mathrm{E}+03$		

DISTRIBUTION OF THE CIRCUMFERENTIAL CAUCHY STRESS AT LOAD STEP 250 (KSI)
MINIMUM $=-0.3208 \mathrm{E}+03 \quad$ HAXIMUM $=0.1192 \mathrm{E}+03$

$$
\begin{array}{llll}
0=-0.3144 \mathrm{E}+03 & 1=-0.2665 \mathrm{E}+03 & 2=-0.2186 \mathrm{E}+03 & 3=-0.1706 \mathrm{E}+03 \\
4=-0.1227 \mathrm{E}+03 & 5=-0.7481 \mathrm{E}+02 & 6=-0.2690 \mathrm{E}+02 & 7=0.2102 \mathrm{E}+02 \\
8=0.6894 \mathrm{E}+02 & 9=0.1169 \mathrm{E}+03 & &
\end{array}
$$

Figure 5.11. Gircumferential Stress Distribution for Run A5.

DISTRIBUTION OF THE VOLUMETRIC STRESSES AT LOAD STEP 250 (KSI)
MINIMUM $=-0.2121 \mathrm{E}+03$ MAXIMUM $=0.8023 \mathrm{E}+02$
$0=-0.2078 \mathrm{E}+03 \quad 1=-0.1760 \mathrm{E}+03 \quad 2=-0.1442 \mathrm{E}+03 \quad 3=-0.1123 \mathrm{E}+03$ $4=-0.8051 \mathrm{E}+02 \quad 5=-0.4869 \mathrm{E}+02 \quad 6=-0.1686 \mathrm{E}+02 \quad 7=0.1497 \mathrm{E}+02$ $8=0.4679 E+02 \quad 9=0.7862 E+02$

Figure 5.12. Cauchy Volumetric Stress Distribution for Run A5.

Figure 5.13. Radial and Axial Strain Distributions for Run A5.


```
DISTRIBUTION OF THE SHEAR STRAIN (RZ) AT LOAD STEP 250
MINIMUM = -0.3196E+00 MAXIMUM = 0.1758E+00
0=-0.3132E+00 1 = -0.2592E+00 2 = -0.2053E+00 3=-0.1514E+00
4=-0.9742E-01 5=-0.4348E-01 6=0.1047E-01 7 = 0.6441E-01
8=0.1184E+00 9 = 0.1723E+00
```


Figure 5.14. Shear and Circumferential strain Distributions for Run A5.

distribution of the plastic-work intensity at load step 250 (KSi)
MINIMUM $=0.0 \quad$ MAXIHUM $=0.6091 E+02$
$0=0.7157 \mathrm{E}-01 \quad 1=0.6569 \mathrm{E}+01 \quad 2=0.1321 \mathrm{E}+02 \quad 3=0.1985 \mathrm{E}+02$ $4=0.2649 \mathrm{E}+02 \quad 5=0.3313 \mathrm{E}+02 \quad 6=0.3977 \mathrm{E}+02 \quad 7=0.4641 \mathrm{E}+02$ $8=0.5305 \mathrm{E}+02 \quad 9=0.5969 \mathrm{E}+02$

Figure 5.15. Distribution of the Plastic Work Intensity for Run A5.
at the center of the reduction region. It is observed in Figure 5.13 that the axial strain for the extruded billet has almost a constant value of 65.4 percent. However, the maximum axial strain is 75.16 percent at the free end of the extruded billet.

The distribution of the plastic work intensity κ is depicted in Figure 5.15. As anticipated, the maximum plastic work occurs at the outer radius of the extruded billet which undergoes higher shear strains than regions closer to the core of the billet. The value of κ as used in the expression for the yield surface determines the extend of the isotropic hardeneing of the material.

5.4 Study of Various Area Reduction and Die Angle Changes

In order to study the effect of changes in the percent reduction of the crosssectional area and also the die angle on the extrusion pressure a series of nine analyses are performed. The characteristics of each analysis is shown in Table 5.5. As is seen in this table, these runs are made for 25,30 , and 35 percent reductions in the area and also for die angles of 5,7 , and 9 degrees. These numbers are selected because they represent logical values which are used in most extrusion applications. Die angles which are greater than ten degrees have been known to cause large tensile volumetric stresses in the billet which lead to the development of voids in the material. The same reasoning also applies to large reduction ratios in the cross-sectional area of the billet. Tables 5.6 through 5.14 show the parameters used to generate the die for each case.

Figures 5.16 through 5.18 show the extrusion pressure versus the displacement of the left end of the billet for analysis groups B, C and D respectively. As is seen in these figures the extrusion pressure increases as the die angle increases. This is logical because a larger angle tends to reduce the cross-sectional area of the bilet over a shorter distance, therefore requiring a larger driving force. Figures

Table 5.5. Identification Codes for Each Analysis

	\% Area Reduction		
Die Angle	25	30	35
9 Degrees	B1	C1	D1
7 Degrees	B2	C2	D2
5 Degrees	B3	C3	D3

5.16 through 5.18 also indicate that as the die angle increases the amplitude of the fluctuations in the extrusion pressure increases as well. This confirms the observations made in the preceeding section that the amplitude of these fluctuations is directly related to the elastic strain energy of the material. The larger extrusion pressure for sharper die angles induces higher levels of elastic strain energy in the billet; hence, the amplitude of the fluctuations is increased.

Figure 5.19 illustrates the change in the steady-state extrusion pressure for various reduction ratios as the die angle increases. It is observed that the variation in the steady-state pressure with respect to the die angle is linear. However, the slope of the curves in Figure 5.19 increases slightly as the reduction ratio is increased. Figure 5.20 shows the relation between the peak extrusion pressure and the die angle. In this case the curves are not perfect straight lines.

Figures 5.21 and 5.22 illustrate the steady-state and the peak extrusion pressures versus the percent reduction in area for various die angles, respectively. It is again observed that the curves in these figures represent relations which are approximately linear. It is also observed that as the die angle increases the slope of the curves increases slightly.

Table 5.6. Parameters used to generate the die for run B1.

segment	P_{x}^{*}	$P_{y}^{* *}$	T_{x}^{*}	$T_{y}^{* *}$	\bar{P}_{x}^{*}	$\bar{P}_{y}^{* *}$	\bar{T}_{x}^{*}	\bar{T}_{y}^{++}
AB	1.0	0.0	0.0	2.0	1.0	9.95	0.0	2.0
BC	1.0	9.95	0.0	0.5	0.866	10.796	0.0	0.5
CD	0.866	10.796	0.0	0.7	0.916	11.296	0.08	0.4

Table 5.7. Parameters used to generate the die for run B2.

segment	P_{x}^{*}	$P_{y}^{* *}$	T_{x}^{*}	$T_{y}^{* *}$	\bar{P}_{x}^{*}	$\bar{P}_{y}^{* *}$	\bar{T}_{x}^{*}	\bar{T}_{y}^{+*}
AB	1.0	0.0	0.0	2.0	1.0	9.95	0.0	2.0
BC	1.0	9.95	0.0	0.7	0.866	11.041	0.0	0.7
CD	0.866	11.041	0.0	0.7	0.916	11.541	0.08	0.4

Table 5.8. Parameters used to generate the die for run B3.

segment	P_{x}^{*}	$P_{y}^{* *}$	T_{x}^{*}	$T_{y}^{* *}$	\bar{P}_{x}^{*}	$\bar{P}_{y}^{* *}$	\bar{T}_{x}^{*}	$\bar{T}_{y}^{* *}$
AB	1.0	0.0	0.0	2.0	1.0	9.95	0.0	2.0
BC	1.0	9.95	0.0	1.0	0.866	11.482	0.0	1.0
CD	0.866	11.482	0.0	0.7	0.916	11.982	0.08	0.4

Table 5.9. Parameters used to generate the die for run C1.

segment	P_{x}^{*}	$P_{y}^{* *}$	T_{x}^{*}	$T_{y}^{* *}$	\bar{P}_{x}^{*}	$\bar{P}_{y}^{* *}$	\bar{T}_{x}^{*}	$\bar{T}_{y}^{* *}$
AB	1.0	0.0	0.0	2.0	1.0	9.95	0.0	2.0
BC	1.0	9.95	0.0	0.7	0.8367	10.981	0.0	0.7
CD	0.8367	10.981	0.0	0.7	0.8867	11.481	0.08	0.4

Table 5.10. Parameters used to generate the die for run C2.

segment	P_{x}^{*}	$P_{y}^{* *}$	T_{x}^{*}	$T_{y}^{* *}$	\bar{P}_{x}^{*}	$\bar{P}_{y}^{* *}$	\bar{T}_{x}^{*}	$\bar{T}_{y}^{* *}$
AB	1.0	0.0	0.0	2.0	1.0	9.95	0.0	2.0
BC	1.0	9.95	0.0	1.0	0.8367	11.28	0.0	1.0
CD	0.8367	11.28	0.0	0.7	0.8867	11.78	0.08	0.4

Table 5.11. Parameters used to generate the die for run CS.

segment	P_{x}^{*}	$P_{y}^{* *}$	T_{z}^{*}	$T_{y}^{* *}$	\bar{P}_{x}^{*}	$\bar{P}_{y}^{* *}$	\bar{T}_{x}^{*}	$\bar{T}_{y}^{* *}$
AB	1.0	0.0	0.0	2.0	1.0	9.95	0.0	2.0
BC	1.0	9.95	0.0	1.5	0.8367	11.817	0.0	1.5
CD	0.8367	11.817	0.0	0.7	0.8867	12.317	0.08	0.4

Table 5.12. Parameters used to generate the die for run D1.

segment	P_{x}^{*}	$P_{y}^{* *}$	T_{x}^{*}	$T_{y}^{* *}$	\bar{P}_{x}^{*}	$\bar{P}_{y}^{* *}$	\bar{T}_{x}^{*}	$\bar{T}_{y}^{* *}$
AB	1.0	0.0	0.0	2.0	1.0	9.95	0.0	2.0
BC	1.0	9.95	0.0	0.8	0.806	11.175	0.0	0.8
CD	0.806	11.175	0.0	0.7	0.856	11.675	0.08	0.4

Table 5.13. Parameters used to generate the die for run D2.

segment	P_{x}^{*}	$P_{y}^{* *}$	T_{x}^{*}	$T_{y}^{* *}$	\bar{P}_{x}^{*}	$\bar{P}_{y}^{* *}$	\bar{T}_{x}^{*}	$\bar{T}_{y}^{* *}$
AB	1.0	0.0	0.0	2.0	1.0	9.95	0.0	2.0
BC	1.0	9.95	0.0	1.0	0.806	11.53	0.0	1.0
CD	0.806	11.53	0.0	0.7	0.856	12.03	0.08	0.4

Table 5.14. Parameters used to generate the die for run D3.

segment	P_{x}^{*}	$P_{y}^{* *}$	T_{x}^{*}	$T_{y}^{* *}$	\bar{P}_{x}^{*}	$\bar{P}_{y}^{* *}$	\bar{T}_{x}^{*}	$\bar{T}_{y}^{* *}$
AB	1.0	0.0	0.0	2.0	1.0	9.95	0.0	2.0
BC	1.0	9.95	0.0	1.5	0.806	12.167	0.0	1.5
CD	0.806	12.167	0.0	0.7	0.856	12.667	0.08	0.4

Figure 5.16. Extrusion Pressure Versus Displacement for Runs B1, B2, and B3.

Figure 5.17. Extrusion Pressure Versus Displacement for Runs C1, C2, and C9.

Figure 5.18. Extrusion Pressure Versus Displacement for Runs D1, D2, and D9.

Figure 5.19. Steady-State Extrusion Pressure Versus the Variation in the Die Angle.

Figure 5.20. Peak Extrusion Pressure Versus the Variation in the Die Angle.

Figure 5.21. Steady-State Extrusion Pressure Versus the \% Reduction in Area.

Figure 5.22. Peak Extrusion Pressure Versus the $\%$ Reduction in Area.

6. UNIFES USERS GUIDE

6.1. Introduction

In this chapter the reader is familiarized with the UNIFES input commands and the syntax that must be followed in order for these commands to be recognized properly by the program.

UNIFES uses unformated input files which may include character strings as well as numeric data. Character strings should not be enclosed in quotes. The command processor COMPRO selects the first four characters from each character string and uses them to form a simplified four byte long command which is then recognized by the program. A blank space may not be used in a character string which represents a single command. However, a blank space may be used in between different commands and/or numeric data. For example the character string INTERFACE_NODES is recognized as a single command. The command processor selects the first four characters INTE to have a special meaning. The character strings INTE or INTEABCDEFG are interpreted by the program to have the same meaning as the character string INTERFACE_NODES. Notice that the underline between the words INTERFACE and NODES is used to indicate to the program that the string NODES is not a separate command. The character string INTERFACE NODES with a blank space between the words INTERFACE and NODES is considered by the program as two commands INTE and NODE.

UNIFES commands may be entered on the same line or different lines as long as all the information for the commands fit on the same line. Furthermore, there is no order of sequence for most commands. The reader should refer to the description of each command for complete detailes.

6.2 Input Commands

The commands listed in this section are organized in the alphabetic order. Some commands may have a series of sub-commands associated with them. In this case the sub-commands are described as part of the overall description for the parent command.

CONNECTIVITY - CONN n

This command is equivalent to the INCIDENCES command. The CONNECTIVITY command tells the program to look for and generate element connectivities. Integer ' n ' is the number of elements for which the connectivity information is provided for or is to be generated. The CONNECTIVITY command may be entered more than once. The information provided by the last incidence of the CONNECTIVITY command over rides all the preceding recurances of this command.

Example:
CONNECTIVITY 5
$\begin{array}{lllllllllllll}1 & 2308 & 8 & 1 & 6 & 8 & 3 & 4 & 7 & 5 & 2 & 0\end{array}$
$\begin{array}{llllllllllll}4 & 2308 & 8 & 16 & 21 & 23 & 18 & 19 & 22 & 20 & 17 & 1\end{array}$
$\begin{array}{llllllllllll}5 & 2308 & 8 & 21 & 26 & 28 & 23 & 24 & 27 & 25 & 12 & 0\end{array}$

The syntax of the lines that follow the CONNECTIVITY command is

$$
\text { no it } \mathrm{nn} \quad \begin{array}{llllll}
n_{1} & n_{2} & n_{3} & \ldots & n_{n n}
\end{array} \text { igen }
$$

where
no - is the element number
it - is a four digit element identifier (refer to the note)
nn - is the number of nodes in the element
n_{n} - is the global node number associated with the element igen - is the increment of the generated element numbers

Figure 6.1. Sequence of Node Numbers and Identification Codes for 2D Quadrilateral Elements.

Element 3008

Element 3020

Figure 6.2. Sequence of Node Numbers and Identification Codes for SD Solid Elements.

In the above example the CONNECTIVITY command tells the program to look for or generate five elements. Elements 1 through 4 are generated by using the information on the first two lines. This is because the 'igen' $=1$ on the second card. The information for element 5 is read from the third card. Value of the 'it' parameter in the above example is 2308 which corresponds to a 2D axisymmetric eight noded quadrilateral element. Parameter ' nn ' $=8$ indicates that the element is eight noded, hence the program looks for eight node numbers subsequent to 'nn'. The sequence of node numbers for each element is shown in Figures 6.1 and 6.2. Also, notice that the parameter 'igen' must be entered even if its value is zero. If the number of elements inputted or generated does not match the value of ' n ' entered after the CONNECTIVITY command an error will occur.

NOTE: The four digit integer 'it' has the form 'lmnn' where the first digit ' 1 ' represents the dimension of the element, the second digit ' m ' is zero for 3D elements and has values 1,2 , or 3 for 2 D elements corresponding to plane stress, plane strain, and axisymmetric problems respectively. The final two digits 'nn' correspond to the number of nodes in the element.

COORDINATES - COOR n

This command is equivalent to the NODES and JOINTS commands. The COORDINATES command tells the program to look for and generate nodal coordinates. The generated nodes are along a straight line connecting the starting node and the final node. Integer ' n ' is the number of nodes for which the coordinate information is provided or is to be generated. The COORDINATES command may be entered more than once. The information provided by the last incidence of the COORDINATES command over rides all the preceding recurances of this command.

Example:
COORDINATES 8

1	0.0	0.0	0
3	0.0	2.0	1
4	1.0	0.0	0
5	1.0	2.0	0
6	2.0	0.0	0
8	2.0	2.0	1

In the above example the COORDINATES command is used to enter and generate data for 8 nodes in a two dimensional problem. The syntax of the lines that follow the COORDINATES command is

$$
\text { node } x \quad y \quad(z) \text { igen }
$$

The integer 'node' is the node number and real numbers x, y, and z refer to the nodal coordinates in the global reference frame. Notice that the z coordinate component is needed for 3D problems only. The parameter 'igen' is used to increment the node numbers when generating nodes. if 'igen' $=0$ nodes are not generated. Otherwise, if 'igen' is not zero, nodes are generated at increments 'igen' starting with the node specified on the previous input line.

In the above example node 2 is generated from the information provided by nodes 1 and 3 . The same thing is also true for node 7 which is generated form the information provided by nodes 6 and 8 . If the number of nodes inputed or generated does not match the value of ' n ' entered after the COORDINATES command an error will occur.

CURVE - CURV n

This command is used to identify the parameters required for defining the Hermite parametric curves which are used to model the contact boundaries (for description of Hermite curves refer to Chapter 4). Integer ' n ' which follows the CURVE command identifies the curve for which the information is being provided. For each Hermite spline a separate CURVE command must be issued. A maximum of 6 splines may be defined through the use of this command. Sub-commands PAX and PAY refer to the x and y coordinates of the starting point on the curve while $P B X$ and $P B Y$ refer to the end point coordinates. In addition, sub-commands RAX, RAY, RBX and RBY are used to define the components of the tangents to the curve at the starting point and the end point respectively. Furthermore, sub-commands XZL and YZB define the x and y coordinates of the lower left corner of the inclusion zone, while XZR and YZT define the uper right corner of the inclusion zone.

Example:

CURVE 1
PAX 1. PAY 1. PBX 3. PBY 2.
RAX 2. RAY 0.5 RBX 1. RBY 1.
XZL 1. YZB 1. XZR 4. YZT 4.

In the above example the CURVE command and the sub-commands associated with it are used to define the curve number one. Notice that the
sub-commands of the CURVE command may be entered in any order or on multiple number of lines.

DIMENSION - DIME n

This command is used to indicate whether the problem to be solved is a two dimensional or three dimensional problem. Integer ' n ' may have a value of 2 or 3. This command must be entered before the commands COORDINATES, NODES, and JOINTS. The default value for this command is $\mathbf{n}=2$.

DISPLACEMENTS - DISP

This command is used to enter the displacements associated with each node. If a node is fixed the appropriate displacements must be set to zero. This command is also used to identify the orientation of the local degrees of freedom if they are different from the global orientation. The DISPLACEMENT command may be entered more than once, however the necessary information for the entire structure may be specified by using this command once.

Example:
DISPLACEMENTS
NODE 1 TO 3 X 0.
NODES 1 TO 10 BY 3 X 0. Y 0.2 Z 0.1
NODES 6 TO 20 X 0. TX 45. TY 45. TZ 60. NODE 30 Y 0.
END

In the above example the necessary syntax for using the sub-commands of the DISPLACEMENT command is shown. Notice that the END command is necessary to terminate the DISPLACEMENT command. The sub-commands TX, TY, and TZ refer to the direction angles of the normal to the surface
which containes the skew roller boundary condition. For a two dimensional problem $T Z=90$ degrees. The X, Y, and Z refer to the global x, y, and z displacements if TX, TY, and TZ direction angles are not specified. When the direction angles are specified X refers to the displacement in the direction normal to the inclined boundary. The BY sub-command indicates the size of the increments in the node numbers. If BY is not used the default is 'BY 1 '. The TO sub-command is used to indicate the range of nodes effected by the displacement values. If TO is not used only the node identified by the NODE sub-command is effected.

ELEMENT - ELEM

This command is used to define the integration order, thickness and material type of the elements. The following example shows the necessary syntax for this command.

Example:
ELEMT 1 NIPXI 2 NIPETA 2 MATERIAL 1 THICK 1.
ELEM 2 TO 10 NIPXI 2 NIPETA 2 MATERIAL 1 THICK 1.
ELEM 1 TO 7 BY 2 NIPXI 3 NIPETA 3 MATERIAL 1 THICK 1.
ELEM 1 TO 7 BY 2 NIPXI 3 NIPETA 3 NIPSI 3 MATERIAL 1
ELEM 1 TO 7 BY 2 IRONS 150 MATERIAL 1

In the above example the sub-commands TO and BY are used to indicate the range and increment of the element numbers effected by the ELEMENT command respectively. If these sub-commands are not used, as in the first line, then only the element specified by the ELEMENT command will be effected. The sub-subcommands NIPXI, NIPETA, and NIPSI refer to the number of integration points in the element's local coordinate system $\boldsymbol{\xi}, \eta$ and ζ. The number of integration points specified for each direction may vary from 1 to
4. There are no defaults set for integration parameters, hence they must be specified for all elements. The IRONS sub-command specifies the alternative 14 and 15 point integration orders for 3D solid elements. If 'IRONS 150 ' is specified the 15 point integration rule will be used. 'IRONS 140' refers to the 14 point integration rule.

The MATERIAL sub-command identifies the material associated with each element. The material properties are defined by the global MATERIAL command. The THICKNESS sub-command assigns a thickness to the plane stress and plane strain elements.

INCIDENCES - INCI n

For information on this command refer to the CONNECTIVITY command.

INCREMENTS - INCR n

This command is used to specify the number of load increments. The default value for ' n ' is one. When the INCREMENTS command is used the displacements and loads which are specified by the DISP and LOAD commands, respectively, are divided into ' n ' equal portions and are then applied to the structure one portion at a time. If the ITERATIONS command is used then within each load increment iterations are performed until convergence is detected (for information on the convergence criterion used refer to chapter 5).

INTERFACE_NODES- INTE n

This command is used to define the nodes which can come in contact with the contact boundaries which are defined by the CURVE command. Integer ' n ' tells the program to look for or generate ' n ' interface nodes.

Example:
INTERFACE_NODES 11
10
20
202

In the above example 11 interface nodes are defined. Each line that follows the INTE command has the syntax
no igen
where 'no' is the node number and 'igen' is the increment at which the node numbers are generated.

ITERATIONS - ITER n

This command is used to specify the maximum number of iterations allowed for each load increment. If the problem converges to the prescribed tolerance at a fewer number of iterations, then it proceeds to the next load increment. The default value for ' n ' is one. The following example illustrates the subcommands associated with the ITERATIONS command.

Example:

ITERATIONS 10 FACLOW 0.0001 FACHIGH 0.001

 STOP_AFTER_DIVERG 4In the above example a maximum of 10 iterations are allowed for each load increment. The FACLOW value is used to check for convergence. If convergence is detected prior to the tenth iteration, the program procedes to the next load increment. If convergence is not detected prior to the tenth increment, the value of FACHIGH is used to check for convergence. If FACHIGH is satisfied then the solution is accepted and the program procedes to the next load increment. However, if the convergence criterion is not satisfied, then the automatic subincrementation is invoked which would reduce the load increment into one half of its value. This process may be repeated up to three times. The STOP_AFTER_DIVERG sub-command tells the program to terminate execution if four consecutive divergences are detected.

JOINTS - JOIN n

For information on this command refer to the COORDINATES command.

LINEAR - LINE

This command is used to indicate that the problem to be solved is geometrically linear. Notice that material non-linearities may still exist. In that case the commands INCREMENTS and ITERATION should be used to perform the non-linear analysis. If the material used is also linear then INCREMENTS and ITERATIONS need not be specified.

LOADS - LOAD

This command is used to enter the equivalent nodal forces associated with each node. The LOADS command may be entered more than once, however the necessary information for the entire structure may be specified by using this command only once.

Example:
LOADS
NODE 1 TO 3 X 20.
NODES 1 TO 10 BY 3 X 5. Y 10. Z 14.
NODES 6 TO 20 X 90.
NODE 30 Y 6.
END

In the above example the necessary syntax for using the sub-commands of the LOADS command is shown. Notice that the END command is necessary to terminate the LOADS command. The X, Y, and Z refer to the global x, y, and z components of the nodal forces. The BY sub-command indicates the size of the increments in the node numbers. If BY is not used the default is 'BY 1'. The TO sub-command is used to indicate the range of nodes effected by the load values. If TO is not used only the node identified by the NODE sub-command is effected.

MATERIAL - MATE n

This command is used to define the material properties for each material used. Up to seven materials may be defined by the MATERIAL command. The current version of UNIFES allows two types of materials which may be defined by the TYPE sub-command of the material command. 'TYPE 1' refers to isotropic elasticity, whereas 'TYPE 2' refers to the elasto-plastic material model which is described in detail in Chapter 3. The following example illustrates use of the additional sub-commands which are associated with the MATERIAL command.

Example:

MATERIAL 1 TYPE 1 E 10600. NU 0.3
MATERIAL 2 TYPE 1 E 10600. NU 0.3 WX 2. WY 0. WZ 0. MATERIAL 3 TYPE 2 E 10600. NU 0.3 ISOTROPIC 40. KINEMATIC 114. YIELD 56.

In the above example E and NU refer to the elastic modulus and the Poisson's ratio respectively. The sub-commands WX, WY and WZ represent the global components of the specific weight of the material. Materials 1 and 2 defined above are linear elastic materials. Material 3 is an elasto-plastic material with uniaxial yield strength of 56 . The isotropic and kinematic hardening parameters for this material are 40 and 114 respectively.

NODES - NODE n

For information on this command refer to the COORDINATES command.

NONLINEAR - NONL

This command is used to indicate that the problem to be solved is geometrically nonlinear. When this command is used, the commands INCREMENTS and ITERATIONS should also be used to perform the non-linear analysis.

NONSYMMETRIC - NONS

This command is used to indicate that the problem to be solved requires assembly and solution of a non-symmetric system of equations. This option is required when the plasticity material model is used. The default is set to SYMMETRIC

OUTPUT - OUTP n

When this command is used, outputs are provided for every nth load increment. If this command is omitted the outputs are provided for the final load increment.

RESTART - REST

This command tells the program to use the solution obtained at the end of the last analysis as the initial condition for the current analysis. When this command is used, the values that are specified through the LOADS and the DISPLACEMENTS commands represent the additional loads or displacements, respectively, that are to be applied to the structure. User must also make sure that the proper files are provided for the analysis.

SYMMETRIC - SYMM

This command is used to indicate that the problem to be solved requires assebly and solution of a symmetric system of equations. This option is the default.

TITLE - TITL n

This command tells the program to look for ' n ' title cards which immediately follow the TITLE command. Title cards will be printed at the beginning of the output file.

7. CONCLUSIONS

From this work it is observed that the solution of extrusion problems using the finite strain plasticity can be successfully achieved by means of a Total Lagrangian formulation. The proposed approach initialy formulates the constitutive model in the spatial reference frame and subsequently transforms it to the Lagrangian reference frame. It therefore by-passes the use of the Jaumann stress rate in the formulation of the problem and furthermore does not need to identify a proper co-rotational stress rate in the spatial reference frame.

It is also shown here that the computer graphics techniques used for representation of curves can be successfully applied to model curved boundaries in numerical solution of metal forming problems. In particular the Hermite formulation of parametric cubic curves provides a great flexibility in creating an assortment of differently shaped boundaries with minimal effort on the part of the analyst.

In this work it is also shown that the singularities and fluctuations in the extrusion pressure that may result at the exit of the die can be controlled by increasing the number of nodes that are in contact with the die. This can be achieved without any substantial increase in computation time by using transition elements as described in Chapter 5. The residual stress patterns and the strain distributions obtained in this work are identical to the results obtained by other researchers.

Any future research on the use of the Total Lagrangian formulation for the solution of finite strain metal forming problems, should concentrate more extensively on developing material models which are computationally more efficient and also exploring the applicability of parallel processing techniques in the finite element implementation of the constitutive relations. Each of the extrusion problems solved in this work required 7 to 10 hours of CPU time on an IBM 3090 with
vector hardware. The majority of the execution time required by the program was devoted to evaluation of the stresses, plastic strains, shift stress tensor, and the plastic work.

REFERENCES

[1] Aravas, N. (1986). "The Analysis of Void Growth that Leads to General Bursts During Extrusion," Journal of Mechanics of Physics and Solids, Vol. 34(1), pp. 55-79.
[2] Atluri, S. N. (1984). "On Constitutive Relations at Finite Strain: Hypoelasticity and Elasto-plasticity with Isotropic and Kinematic Hardening," Computer Methods in Applied Mechanics and Engineering, Vol. 43, pp.137171.
[3] Bathe, K. J. (1982). Finite Element Procedures in Engineering Analysis, Prentice-Hall, Inc., Englewood Cliffs, New Jersey.
[4] Cheng, J.-H. and Kikuchi, N. (1985). "An Analysis of Metal Forming Processes Using Large Deformation Elasto-Plastic Formulations." Computer Methods in Applied Mechanics and Engineering, Vol. 49, pp. 71-108.
[5] Dafalias, Y. F. (1983). "Corotational Rates for Kinematic Hardening at Large Plastic Deformations," Journal of Applied Mechanics, Transactions of The ASME, Vol. 50, pp. 561-565.
[6] Dafalias, X. F. (1984). "The Plastic Spin Concept and a Simple Illustration of its Role in Finite Plastic Transformations," Mechanics of Materials, Vol. 3, pp. 223-233.
[7] Dafalias, Y. F. (1985). "The Plastic Spin," Journal of Applied Mechanics, Transactions of the ASME, Vol. 52, pp. 865-871.
[8] Foley, J. D. and Van Dam, A. (1984). Fundamentals of Interactive Computer Graphics, Addison Wesley Publishing Company, Inc., Philippines.
[9] Gerald, C. F. and Wheatley, P. O. (1985). Applied Numerical Analysis, Addison-Wesley Publishing Company, Inc., June.
[10] Ghosh, S. and Kikuchi, N. (1988). "Finite Element Formulation of the Simulation of Hot Sheet Metal Forming Processes," International Journal of Engineering Sciences, Vol. 26(2), pp. 143-161.
[11] Green, A. E. and Naghdi, P. M. (1965). "A General Theory of an ElasticPlastic Continuum," Archive for Rational Mechanics and analysis, Vol. 18, pp. 251-281.
[12] Green, A. E. and Naghdi, P. M. (1966). "A Thermodynamic Development of Elastic-Plastic Continuua," Proceedings, IUTAM Symposium on Irrcversiblc Aspects of Continuum Mechanics and Transfer of Physical Characteristics in Moving Fluids, Springer-Verlag, pp. 117-131.
[13] Hallquist, J. O., Goudreau, G. L. and Benson, D. J. (1985). "Sliding Interfaces with Contact-Impact in Large-Scale Lagrangian Computations," Computer Methods in Applied Mechanics and Engineering, Vol. 51, pp. 107-137.
[14] Hibbitt, H. D., Marcal, P. W. and Rice, J. R. (1970). "A Finite Element Formulation For Problems of Large Strain and Large Displacement," International Journal of Solids and Structures, Vol. 6, pp. 1069-1086.
[15] Hill, R. (1958). "A General Theory of Uniqueness and Stability in Elastic Plastic Solids," Journal of Mechanics of Physics and Solids, Vol. 6, pp. 236
[16] Johnson, G. C. and Bammann, D. J. (1984). "A Discussion of Stress Rates in Finite Deformation Problems," International Journal of Solids and Structures, Vol. 20(8), pp. 725-737.
[17] Kanazawa, K. and Marcal, P. V. (1978). "Finite Element Analysis of the Steel Rolling Process," Applied Numerical Methods to Forming Processcs AMD-28, pp. 81.
[18] Klie, W. (1979). "Plastic Deformation with Free Boundaries: A Finite Element Approach," Metal Forming Plasticity (edited by H. Lippmann), SpringerVerlag, Berlin, pp. 260.
[19] Kobayashi, S. and Lee, C. H. (1973). "Deformation Mechanics and Workability in Upsetting Solid Circular Cylinders," Proceedings of the North American Metalworking Res. Conference, McMaster University, Vol. 1, pp. 185.
[20] Kobayashi, S. (1977). "Rigid-Plastic Finite Element Analysis of Axisymmetric Metal Forming Processes,"Numericl Modelling of Manufacturing Processing, ASME, PVP-PB-25, pp. 49.
[21] Lee, B. C. and Kwak, B. M. (1984). "A Computational Method for ElastoPlastic Contact Problems," Computers \& Structures, Vol. 18(5), pp.757-765.
[22] Lee, C. H. and Kobayashi, S. (1973). "New Solutions to Rigid-Plastic Deformation Problems Using a Matrix Method," Journal of Engineering in Industry, Transactions of the ASME, pp. 864.
[23] Lee, E. H. (1969). "Elastic-Plastic Deformation at Finite Strains," Journal of Applied Mechanics, Transactions of the ASME, Vol. 91(3).
[24] Lee, E. H. (1976). "The Basics for an Elastic-Plastic Code," Stanford University, SUDAM 76-1.
[25] Lee, E. H., Mallett, R. L. and Wertheimer, T. B. (1983). "Stress Analysis for Anisotropic Hardening in Finite-Deformation Plasticity," Journal of Applied Mechanics, Transactions of the ASME, Vol. 50, pp. 554-560.
[26] Lee, E. H., Mallett, R. L. and Yang, W. H. (1977). "Stress and Deformation Analysis of Metal Extrusion Process," Computer Methods in Applicd Mechanics and Engineering, Vol. 10, pp. 339.
[27] McMeeking, R. M. and Rice, J. R. (1975). "Finite Element Formulation for Problems of Large Elastic-Plastic Deformation," International Journal of Solids and Structures, Vol. 11, pp. 601-616.
[28] Nagtegaal, J. C. and de Jong, J. E. (1982). "Some Aspects of Non-isotropic Workhardening in Finite Strain Plasticity," Proceedings of the Workshop on Plasticity of Metals at Finite Strain: Theory, Experiment and Computation,

Lee, E. H. and Mallett, R. L., eds. Division of Applied Mechanics, Stanford University and Department of Mechanical Engineering, R.P.I., pp. 64-102.
[29] Nemat-Masser, S. (1979). "Decomposition of Strain Measures and their Rates in Finite Deformation Elasto-Plasticity," International Journal of Solids and Structures, Vol. 15, pp. 155-166.
[30] Oh, S. I. (1982). "Finite Element Analysis of Metal Forming Processes with Arbitrarily Shaped Dies," International Journal of Mechanical Sciences, Vol. 24(8), pp. 479-493.
[31] Okamoto, N. and Nakazawa, M. (1979). "Finite Element Incremental Contact Analysis with Various Frictional Conditions," International Journal for Numerical Methods in Engineering, Vol. 14, pp. 337-357.
[32] Ortiz, M. and Popov, E. P. (1985). "Accuracy and Stability of Integration Algorithms for Elastoplastic Constitutive Relations," International Journal for Numerical Methods in Engineering, Vol. 21, pp. 1561-1576.
[33] Ostachowicz, W. (1984). "Mixed Finite Element Method for Contact Problems," Computers 6 Structures, Vol. 18(5), pp. 937-945.
[34] Padovan, J., Tavichakchaikul, S. and Zeid, I. (1984). "Finite Element Analysis of Steadily Moving Contact Fields," Computers \& Structures, Vol. 18(2), pp. 191-200.
[35] Potts, D. M. and Gens, A. (1985). "A Critical Assessment of Methods of Correcting for Drift from the Yield Surface in Elasto-Plastic Finite Element Analysis," International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 9, pp. 149-159.
[36] Prager, W. (1956). "A New Method of Analyzing Stresses and Strains in Work-Hardening Plastic Solids," Journal of Applied Mechanics, Transactions of the $A S M E$, pp. 493-496, December.
[37] Roll, K. (1978)."Calculation of Metal Forming Processes by Finite Element Methods," Applied Numerical Methods to Forming Processes AMD-28, pp. 67.
[38] Schreyer, H. L., Kulak, R. F. and Kramer, J. M. (1979). "Accurate Numerical Solutions for Elasto-Plastic Models," Journal of Pressure Vessel Technology, Transactions of the $A S M E$, Vol. 101, pp. 226-234.
[39] Shiau, Y. C. and Kobayashi, S. (1988). "Three-Dimensional Finite Element Analysis of Open-Die Forging," International Journal for Numerical Methods in Engineering, Vol. 25, pp. 67-85.
[40] Shield, R. T. and Ziegler, H. (1958). "On Prager's Hardening Rule," ZAMP, Zeitschrift Fur Angewand Mathematik und Physik, Vol. 9, pp. 260-267.
[41] Simo, J. C. and Ortiz, M. (1985). "A Unified Approach to Finite Deformation Elastoplastic Analysis Based on the Use of Hyperelastic Constitutive Equations," Computer Methods in Applied Mechanics and Engineering, Vol. 49, pp. 221-245.
[42] Simo, J. C. and Taylor, R. L. (1985). "Consistent Tangent Operators for RateIndependent Elastoplasticity," Computer Methods in Applicd Mechanics and Engineering, Vol. 48, pp. 101-118.
[43] Truesdell, C. and Toupin, R. (1960). "The Classical Field Theories," Handbuch der Physik (S. Flugge, editor), Springer-Verlag, pp. 226-793.
[44] Voyiadjis, G. Z. (1984). "Experimental Determination of the Material Parameters of Elasto-plastic, Work-hardening Metal Alloys," Materials Science and Engineering Journal, Vol. 62(1), pp. 99-107.
[45] Voyiadjis, G. Z. and Kiousis, P. D. (1987). "Stress Rate and the Lagrangian Formulation of the Finite-Strain Plasticity for a von Mises Kinematic Hardening Model," International Journal of Solids and Structures, Vol. 23(1), pp. 95-106.
[46] Voyiadjis, G. Z. and Poe, A. A. (1986). "A Finite Element Method for Contact Problems with Finite Deformations and Mixed Boundary Conditions," Studies in Applied Mechanics, Vol. 11, Mechanics of Material Interfaces, Elsevier Publishing Company, pp. 111-130.
[47] Wang, N. M. and Budiansky, B. (1978). "Analysis of Sheet Metal Stamping by a Finite Element Method," Journal of Applied Mechanics, Transactions of the ASME, Vol. 45, pp. 73-82.
[48] Wanxie, Z. and Suming, S. (1988). "A Finite Element Method for ElastoPlastic Structures and Contact Problems by Parametric Quadratic Programming," International Journal for Numerical Methods in Engineering, Vol. 26, pp. 2723-2738.
[49] Wifi, A. S. (1976). "An Incremental Complete Solution of the Stretch Forming and Deep Drawing of Circular Blank Using a Hemispherical Punch," International Journal of Mechanical Sciences,Vol. 18, pp. 23-31.
[50] Wifi, A. S. and Yamada, Y. (1980). "Finite Element Analysis of Metal Forming Processes," 1st Cairo University Conference on Mech. Design and Prod., Advances in Mech. Design and Prod., (edited by G. Shawki and S. Metwalli), Pergamon Press, Oxford.
[51] Yang, D. Y. and Yoon, J. H. (1989). "Finite Element Analysis of SteadyState Three-Dimensional Extrusion of Sections Through Curved Dies," International Journal of Mechanical Sciences, Vol. 31(2), pp. 145-156.
[52] Ziegler, H. (1959). "A Modification of Prager's Hardening Rule," Quarterly of Applied Mathematics, Vol. 17(1), pp. 55-65.
[53] Zienkiewicz, O. C. (1977). The Finite Element Method, 3rd edition, McGrawHill, New York.
[54] Zienkiewicz, O. C. and Godbole, P. N. (1974). "Flow of Plastic and Viscoplastic Solids with Special Reference to Extrusion and Forming Processes,"

International Journal for Numerical Methods in Engineering, Vol. 8, pp. 3-16.
[55] Zienkiewicz, O. C. and Godbole, P. N. (1975)."A Penalty Function Approach to Problems of Plastic Flow of Metals with Large Surface Deformations," Journal of Strain Analysis, Vol. 10, pp. 180-183
[56] Zienkiewicz, O. C., Jain, P. C. and Onate, E. (1978). "Flow of Solids During Forming and Extrusion: Some Aspects of Numerical Solutions," International Journal of Solids and Structures, Vol. 14, pp. 15.

APPENDIX A
UNIFES

```
        PROGRAM UNIFES
C 12/15/88
```



```
C I
CI PROGRAM: I
CI UNIFESSI
C I
C
C I
C I
VERSION 1.0
```

```CCI OBJECTIVE:I
#
C I I
C I
C I
C I
C I
C
C I
C I
C I
C I
C I
C I
C I
C I PARTIALLY SUPPORTED BY:
C I
C I NATIONAL SCIENCE FOUNDATION GRANT NO. MSM-8800832
C I I
ANALYISIS OF STRESSES STRAINS AND DEFORMATIONS INDUCED ON
```

I

```ELASTO-PLASTIC SOLID CONTINUUM AS THE RESULT OF VARIOUSI
```

FORCE OR DISPLACEMENT LOADINGS. I
DEVELOPED BY:MEHRDAD FOROOZESHC IC I
ADVISOR: DR. GEORGE Z. VOYIADJIS I
DEPARTMENT OF CIVIL ENGINEERING I
LOUISIANA STATE UNIVERSITY, BATON ROUGE, LA 70803 I
C I I
PARTIALLY SUPPORTED BY: I

```CC INATIONAL SCIENCE FOUNDATION GRANT NO. MSM-8800832
```

I

```
C
```

```
C
    IMPLICIT REAL*8 (A-H,O-Z)
    COMMON/INPUT8/NNODES,NELEM,NNDF,NLINC,MNIT,IFLAG1,IFLAG2,IDIM,
    1
        COMMON/INPUTG/IFLAG3,IOINTR,IFPLOT
        COMMON/CONTR1/INCREM,NIT
        COHMON/SAFE1/SKG(600000),SKGL(600000)
        COMMON/SAFE2/R(8000),IDOF(8000),JDIAG(8000)
        CALL INITAL(IDOF)
C
C ----- IOUT = OUTPUT DEVICE NUMBER
C
    IOUT = 13
C
C ----- READ THE INPUT FILE
C
```

```
CALL INPUT(IDOF,IOUT,IERROR)
IF (NINODE.GT.O) THEN
            CALL HERMIT
            CALL COEFIC
END IF
C
C ----- INITIATE THE PLOTTING ROUTINES
C
    IF (IFPLOT.GT.0) THEN
                            CALL INPLOT( NELEM )
                            IF(IFLAG3.EQ.1.AND.NLINC.EQ.0) THEN
            INCREM = 1
            MDF = NNODES*NNDF
            CALL RECOV(MDF,ISTART,NTDF,IDOF)
            CALL PLOTER(SKG,NNODES,NELEM,NNDF,IDIM,NINODE,IFLAG1,IOUT)
            GO TO 90
            END IF
        END IF
C
C ----- DEFINE THE GLOBAL DEGREES OF FREEDOM
C ----- FIND THE BANDWIDTH AND THE LOCATION OF THE DIAGNAL TERMS
C IN THE GLOBAL STIFFNESS MATRIX
C
    IF(IFLAG3.EQ.0) THEN
                            CALL GLOB1(NNODES,NNDF,NTDF,IDOF)
                            CALL DIAGNL(NELEM,NNDF,NTDF,IDOF,JDIAG,NTSK,MBAND,IFLAG2,
        1 IOUT)
        END IF
C
C ----- ASSEMBLE THE LOAD VECTOR
C
    CALL LOAD(R,IERROR)
C
C --.-- CALL THE SOLUTION CONTROL UNIT
C
    CALL CONTRL(SKG,SKGL,R,IDOF,JDIAG,NTSK,NTDF,IOUT,MBAND)
C
C ------ CLOSE THE PLOT FILES
C
90 IF (IFPLOT.GT.0) THEN
                            CALL ENDPLT
        END IF
C
100 STOP
    END
```

@PROCESS DIRECTIVE('*VDIR:')

C

C

 SUBROUTINE CONTRL(SKG,SKGL,R,IDOF,JDIAG,NTSK,NTDF,IOUT,MBAND)
 C

CI PROGRAM: I
C I I
C I SUBROUTINE 'CONTRL' CONTROLS THE INCREMENTAL LOADING AND THE I
C I NEWTON RAPHSON ITERATIVE PROCESS FOR THE TOTAL LAGRANGIAN I
C I GEOMETRIC AND MATERIAL NONLINEARITIES. I I
C I I I I I
CI ARGUMENT LIST: I
C I I
C I SKG(I) $\quad=$ GLOBAL STIFFNESS MATRIX STORED AS A ONE I
C I DIMENSIONAL ARRAY I
C I R(I) $=$ LOAD VECTOR I I
C I IDOF (I) = VEGTOR CONTAINING THE D.O.F. NUMBERS OF JOINTS I
C I JDIAG(I) = LOCATION OF THE DIAGNAL TERMS OF EACH COLUMN I
C I IN THE GLOBAL STIFFNESS MATRIX 'SKG' I
C I NTSK $\quad=$ TOTAL NUMBER OF TERMS IN THE 'SKG' MATRIX I
C I NTDF $\quad=\quad$ NUMBER OF TOTAL D.O.F. IN THE PROBLEM I
C I NOT INCLUDING THE CONSTRAINED BOUNDARIES I
C I IOUT $=$ OUTPUT DEVICE I
C I MBAND $\quad=$ HALF BAND WIDTH OF THE STIFFNESS MATRIX I
C I I
C I I I
CI COMMON BLOCKS I I
C I I
C I REFFER TO THE COMMON BLOCK DISCRIPTIONS. I
C I I

C
IMPLICIT REAL*8(A-H,O-Z)
LOGICAL YES,NO
COMMON/TRANS/DC $(3,3)$
COMMON/INPUTE/ISPB(4000)
COMMON/MAIN1/U(8000),RE1(8000)
COMMON/MAIN2/UTOTAL(8000)
COMMON/MAIN4/RE(8000)
COMMON/INPUT7/RIT(8000), RINC(8000), UINC(8000)
COMMON/INPUT8/NNODES, NELEM, NNDF, NLING ,MNIT , IFLAG1, IFLAG2, IDIM,
1
NINODE
1
COMMON/INPUTB/FAC,FACNEW,FACLOW , FACHIG, ENRG1,NDIVER,ISTOP
COMMON/INPUTG/IFLAG3,IOINTR, IFPLOT
COMMON/CONTR1/INCREM,NIT
COMMON/DEVICE/LDEV1,LDEV2,LDEV3, LDEV4, LDEV5, LDKEEP, LDEV,LDEVST
DIMENSION R(1),SKG(1), SKGL(1), IDOF(1), JDIAG(1), DUMMY(3)
C
YES $=$. TRUE.

```
    NO = .FALSE.
C
C MDF = MAXIMUM DEGREES OF FREEDOM INCLUDING THE SUPPORTS
C
C
c
C
C
C
C
C
C
C
C
c
C
    DLING = DFLOAT( NLINC )
C*VDIR: PREFER VECTOR
    DO 100 K1 = 1 , MDF
    UINC( K1 ) = U( K1 )/DLINC
100 RINC( K1 ) = R( K1 )/DLINC
```

```
C
C ICOUNT = ITERATION COUNT FOR THE RUN
C IOCNT = INCREMENT COUNT FROM THE THE START OR SINCE THE LAST
                                    OUTPUT. WHEN 'IOCNT' IS EQUAL TO 'IOINTR' A COMPLETE
                                    OUTPUT WILL BE GENERATED.
C
C
\begin{tabular}{|c|c|c|}
\hline & S T AR & F \\
\hline & INCREMEN & L 00 \\
\hline
\end{tabular}
    DO 700 INCREM = ISTART , IFINAL
    IOCNT = IOCNT + 1
    IPLCNT = IPLCNT + 1
    RFACT = 1.0DO
    RFSUM = 0.0D0
    NSUB =0
    FAC = FACLOW
    FACNEW = FACHIG
C
C FAC = CONVERGANCE FACTOR
C
C
C
C
C
C
C
C
C
C
C
    IF (NINODE.GT.0).THEN
    CALL BOUND(IDOF,NNDF,NINODE,ICODE,RFACT,IOUT)
    IF (ICODE.EQ.1) THEN
            CALL GLOB2(NNODES,NNDF,NTDF,IDOF)
                    CALL DIAGNL(NELEM,NNDF,NTDF,IDOF,JDIAG,NTSK,MBAND,
                                    IFLAG2,IOUT)
                    ICODE1 = 1
        END IF
    END IF
C150 ICODE1 = 0
C
C*VDIR: PREFER VECTOR
    150 DO 200 K1 = 1 , MDF
        U( K1 ) = RFACT*UINC( K1 )
        RIT( K1 ) = RFACT*RINC( K1 ) + RE( K1 )
    200 CONTINUE
C
C
    STARTOF
```

```
CIITERATIONLIOOP
C
    DO 580 NIT = 1 , MNIT
C
C NIT = ITERATION NUMBER
C MNIT = MAXIMUM NUMBER OF ITERATIONS ALLOWED
C
    DO 450 K1 = 1 , NNODES
    I = NNDF*
    ICODE = ISPB( K1 )
C*VDIR: PREFER SCALAR
        DO 410 K2 = 1 , NNDF
        IDIR = I + K2
    410 DUMMY( K2 ) = RIT( IDIR ) - RE( IDIR )
        IF (ICODE.GT.0) THEN
        CALL DIRCOS(ICODE,IDIM)
C*VDIR: PREFER SCALAR
        DO 430 K2 = 1 , IDIM
        CST = 0.
C*VDIR: PREFER SCALAR
                                    DO 420 K3 = 1 , IDIM
                IDIR = I + K3
    420 CST = CST + (RIT( IDIR ) - RE( IDIR ))*DC(K3 , K2)
    430 DUMMY( K2 ) = CST
        END IF
C*VDIR: PREFER SCALAR
            DO 450 K2 = 1 , NNDF
            IDIR = I + K2
            ID = IDOF( IDIR )
    450 IF(ID.GT.0) R( ID ) = DUMMY( K2 )
C
    IF (NIT.EQ.1) THEN
            LDEV = LDEV1
            ELSE
            LDEV = LDEV2
        END IF
C
    CALL ASSEMB(SKG,SKGL,R,U,IDOF,JDIAG,NTSK,MBAND,IOUT)
C
    CALL REWIN
C
    IF (IFLAG2.EQ.0) THEN
        CALL SOLVE2(SKG,R,JDIAG,NTDF,1,IOUT)
        CALL SOLVE2(SKG,R,JDIAG,NTDF,2,IOUT)
        ELSE IF(IFLAG2.EQ.1) THEN
            CALL SOLVE1(SKG,SKGL,R,JDIAG,NTDF,YES,YES)
        END IF
C
C*VDIR: PREFER SCALAR
C
    DO 500 KI = 1 , MDF
    ID = IDOF( K1 )
```

```
    500 IF(ID.GT.0) U(K1 ) = U( K1 ) + R( ID )
C
    DO 550 K1 = 1 , NNODES
    I = NNDF*(K1 - 1)
    ICODE = ISPB( K1 )
C}\mp@subsup{}{}{\prime}VDDIR: PREFER SCALAR
    DO 510 K2 = 1 , NNDF
    IDIR = I + K2
    510 DUMMY( K2 ) = U( IDIR )
    IF (ICODE.GT.0) THEN
    CALL DIRCOS(ICODE,IDIM)
C*VDIR: PREFER SCALAR
                                    DO 530 K2 = 1 , IDIM
                                    CST = 0.
C*VDIR: PREFER SCALAR
                                    DO 520 K3 = 1 , IDIM
                                    IDIR = I + K3
                                    CST = CST + DC(K2 , K3)^U( IDIR )
                    DUMMY( K2 ) = CST
            END IF
C*VDIR: PREFER SCALAR
            DO 550 K2 = 1 , NNDF
            IDIR = I + K2
            UTOTAL( IDIR ) = UTOTAL( IDIR ) + DUMMY( K2 )
    550 U( IDIR ) = DUMMY( K2 )
C
    IFLAG1 = ISAVE
C*VDIR: PREFER VECTOR
    DO 560 K1 = 1 , MDF
    RE1( K1 ) = RE(K1 )
    560 RE( K1 ) = 0.
C
    CALL GETSTR(IOUT)
    CALI CHECK(MDF,ITEST,IOUT)
C
C^VDIR: PREFER VECTOR
    DO 570 K1 = 1 , MDF
    570 U( K1 ) = 0.
C
    CALL REWIN
C
        IF(ITEST.EQ.1) THEN
            GO TO 600
        ELSE IF (ITEST.EQ.2) THEN
            ICOND = 2
            GO TO 590
        END IF
        580 CONTINUE
                            EN D OF
C
C
```

```
        ICOND = 1
    590 IF (MNIT.NE.1) THEN
            IF (ICOND.EQ. 1.AND.FACNEW.LT.FACHIG) THEN
                WRITE(IOUT , 1005)INCREM, FACNEW
                GO TO 600
            ELSE IF (ICOND.EQ.1.AND.RFACT.GT.0.0625) THEN
            RFACT = 0.5D0*RFACT
            WRITE(IOUT , 1009)INCREM,FACNEW,RFACT
            IF (NSUB.EQ.0) THEN
                    CALL RESTOR(MDF,LAST,IIII,IDOF)
            ELSE IF(NSUB.EQ.1) THEN
                    CALL RESTR1(MDF,IIII,IDOF)
            END IF
            GO TO 150
            ELSE IF (ICOND.EQ.2.AND.RFACT.GT.0.0625) THEN
                RFACT = 0.5DO%RFACT
                WRITE(IOUT , 1006)INCREM,RFACT
                IF (NSUB.EQ.0) THEN
                CALL RESTOR(MDF,LAST,IIII,IDOF)
            ELSE IF(NSUB.EQ.1) THEN
            CALL RESTR1(MDF,IIII,IDOF)
        END IF
        IF (ICODE1.EQ. 1) THEN
C CALL DIAGNL(NELEM,NNDF,NTDF,IDOF,JDIAG,NTSK,MBAND,
C}
        END IF
        GO TO 150
    END IF
    IF (ICOND.EQ.1) WRITE(IOUT , 1007) INCREM
    IF (ICOND.EQ.2) WRITE(IOUT , 1008) INCREM
    WRITE(IOUT , 1003) INCREM-1
    CALL RESTOR(MDF,LAST,NTDF,IDOF)
    CALL OUTPUT(IOUT,IERROR)
    CALL REWIN
    IF (IFPLOT.GT.0) THEN
        IF (NINODE.GT.0) CALL CURVE
        CALL PLOTER(SKG,NNODES,NELEM,NNDF,IDIM,NINODE,IFLAG1,IOUT)
    END IF
    GO TO }80
    END IF
C
    600 RFSUM = RFSUM + RFACT
        ICOUNT = ICOUNT + NIT
        IF (RFSUM.LT.0.999999999) THEN
            IF (NSUB.EQ.0) THEN
            CALL SWAP1
    ELSE
            CALL SWAP
    END IF
    NSUB = 1
    CALL STORE1(MDF,NTDF,IDOF)
    GO TO 150
```

```
        ELSE IF(NSUB.EQ.1) THEN
        CALL SWAP2
    ELSE IF(NSUB.EQ.0) THEN
        CALL SWAP
    END IF
C
    CALL STORE(MDF,INCREM,NTDF,IDOF)
    IF (IOCNT.EQ.IOINTR) THEN
    WRITE(IOUT , 1004) INCREM
    CALL OUTPUT(IOUT,IERROR)
    CALL REWIN
    IOCNT = 0
    END IF
    IF (IPLCNT.EQ.IFPLOT) THEN
    IF (NINODE.GT.0) CALL CURVE
    CALL PLOTER(SKG,NNODES,NELEM,NNDF,IDIM,NINODE,IFLAG1,IOUT)
    IPLCNT = 0
    END IF
C
    700 CONTINUE
    800 CALL ARCHIV(MDF)
        WRITE(IOUT , 1002) ICOUNT
    RETURN
1002 FORMAT(///1X, '>>>>>>> TOTAL NUMBER OF ITERATIONS FOR THIS RUN IS'
    1 '' = ',I5)
1003 FORMAT(//1X,
    1 '>>>>>>>> OUTPUTS ARE FOR THE LAST CONVERGED INCREMENT ',I4)
1004 FORMAT(////////1X,'>>>>>>> OUTPUTS AT INCREMENT ',I4)
1005 FORMAT(/1X,'>>>>>>> ALLOWABLE NUMBER OF ITERATIONS EXCEEDED AT',
    1' LOAD STEP ',I4/9X,'THE EFFECTIVE CONVERGENCE FACTOR ',E10.3,
    2 ' IS WITHIN TOLERANCE '/9X,'EXECUTION CONTINUES')
1006 FORMAT(/1X,'>>>>>>>> ALLOWABLE NUMBER OF DIVERGING ITERATIONS',
    1' IS EXCEEDED AT LOAD STEP ',I4/
    2 9X,'LOAD STEP FACTOR IS REDUCED TO ',F6.4/
    3 9X,'EXECUTION CONTINUES')
1007 FORMAT(/1X,'>>>>>>> ALLOWABLE NUMBER OF ITERATIONS IS EXCEEDED ',
    1' AT LOAD STEP ',I4/9X, 'THE EFFECTIVE CONVERGENCE FACTOR',E10.3,
    2 ' EXCEEDS THE PRISCRIBED TOLERANCE'/
    3 9X,'SUBINCREMENTATION HAS FAILED TO CORRECT THE PROBLEM'/
    4 9X,'EXECUTION TERMINATED')
1008 FORMAT(/1X,'>>>>>>> ALLOWABLE NUMBER OF DIVERGING ITERATIONS',
    1 ' EXCEEDED AT LOAD STEP ',I4/
    2 9X,'SUBINCREMENTATION HAS FAILED TO CORRECT THE PROBLEM'/
    3 9X,'EXECUTION TERMINATED')
1009 FORMAT(/1X,'>>>>>>> ALLOWABLE NUMBER OF ITERATIONS EXCEEDED AT',
    1 ' LOAD STEP ',I4/9X,'THE EFFECTIVE CONVERGENCE FACTOR',E10.3,
    2 ' EXCEEDS THE PRISCRIBED TOLERANCE'/9X,'REDUCTION FACTOR IS ',
    3 'REDUCES TO ',F6.4/9X,'EXECUTION CONTINUES')
    END
```

```
@PROCESS DIRECTIVE('#VDIR:')
C
C =====================ニ==== C H E C K
C
    SUBROUTINE CHECK(MDF,ITEST,IOUT)
    IMPLICIT REAL*8 (A-H,0-Z)
    COMMON/CONTR1/INCREM,NIT
    COMMON/MAIN1/U(8000),RE1(8000)
    COMMON/MAIN4/RE(8000)
    COMMON/INPUT7/RIT(8000),RINC(8000),UINC(8000)
    COMMON/INPUTB/FAC,FACNEW,FACLOW,FACHIG,ENRG1,NDIVER,ISTOP
C
    ITEST = 0
    ENRG = 0.
C
C CALCULATE THE INCREMENT OF THE INTERNAL ENEGRY DUE TO THE
C OUT OF BALANCE FORCES. AND REINITIALIZE THE INGREMENTAL
C DISPLACEMENT VECTOR 'U'.
C
C*VDIR: PREFER VECTOR
    DO 20 K=1, MDF
    ENRG = ENRG + U( K )*(RE( K ) - RE1( K ))
    20 CONTINUE
    WRITE(6,*)'ENRG=',ENRG,'ENRG1=',ENRG1
C
    IF (NIT.EQ.1.OR.ENRG1.EQ.0.) THEN
        ENRG1 = ENRG
        NDIVER = 0
    ELSE
        IF (ENRG.GT.ENRG1) THEN
                NDIVER = NDIVER + 1
                WRITE(IOUT , 100)INCREM,NIT
                IF (NDIVER.GE.ISTOP) THEN
                    ITEST = 2
                END IF
        ELSE IF(ENRG.LE.FAC*ENRG1) THEN
                ITEST = 1
                NDIVER = 0
        END IF
C FACTMP = ENRG/ENRG1
C IF (FACTMP.LT.FACNEW) FACNEW = FACTMP + FACLOW
    FACNEW = ENRG/ENRG1
    END IF
C
C ITEST = 0; NOCONVERGANCE
            = 1; CONVERGANCE
            = 2; TERMINATE PROGRAM DUE TO EXCEEDING THE ALLOWED
C = 2; TERMINATE PROGRAM DUE TO EXCEED
C
    RETURN
100 FORMAT(/1X,'>>>>>>> DIVERGANCE DETECTED',
    1 ' AT LOAD INCREMENT ',I4,' ITERATION NO. ',I4)
```

```
@PROCESS DIRECTIVE('*VDIR:')
C
C ========================= L 0 A D ========================================
    SUBROUTINE LOAD (R,IERROR)
C
```



```
C I I
CI PROGRAM
C I I
C I LOAD ASSEMBLES THE LOAD VECTOR BY CONSIDERING THE I
C I EXTERNALY APPLIED LOADS AND THE GRAVITY LOADS WHICH ARE I
C I SUPPERIMPOSED ON THE STRUCTER . . I
C I I
C I I
CI ARGUMENT LISTM
C I I
C I R(I) = LOAD VECTOR TO BE ASSEMBLED I I
C I IERROR = ERROR CODE =0; NO ERROR 0<; ERROR I
C I
C
CI COMMON BLOCKS
C I I
C I REFFER TO THE COMMON BLOCK DISCRIPTIONS. I
C I N(I,J) = SHAPE FUNCTION FOR NODE I AT INTEGR. POINT J I
C I W(I) = GAUSSIAN WEIGTHING FUNCTIONS I
C I XGAUSS = X COORDINATE OF THE GAUSSIAN POINTS IN THE ELEM.I
C I WGTX(I) = SPECIFIC WEIGTH OF MATERIAL I IN THE X DIR. I
C I WGTY(I) = SPECIFIC WEIGTH OF MATERIAL I IN THE Y DIR. I
C I WGTZ(I) = SPECIFIC WEIGTH OF MATERIAL I IN THE Z DIR. I
C I THICK = THICKNESS OF THE ELEMENTS FOR PLANE STR & STN I
C I = 2*PI*XGAUSS FOR AXISYMETRIC PROBLEMS I
C
C
C
    IMPLICIT REAL*8 (A-H,O-Z)
    REAL*8 N,NXI,NETA,NSI
    INTEGER ELNUM
        COMMON/INPUT1/NIPXI,NIPETA,NIPSI,NIP, INTCOD
        COMMON/INPUT2/NOP(20,2000)
        COMMON/INPUT6/WGTX(10),WGTY(10),WGTZ(10)
        COMMON/INPUT7/RX(8000),RY(8000),RZ(8000)
        COMMON/INPUT8/NNODES,NELEM,NNDF,NLINC,MNIT, IFLAG1,IFLAG2,IDIM,
        1
                NINODE
        COMMON/ISHAP1/N(20,27),NXI (20,27),NETA(20,27),NSI (20,27)
        COMMON/ISHAP2/W(27)
        DIMENSION R( 1 )
C
C ----- FIND THE CONTRIBUTION OF THE GRAVITY WEIGTHS FO 2D ELEMENTS
C
        ITYPE1 = 0
        IDENT1 = 0
```

```
    DO 30 ELNUM = 1 , NELEM
C
    CALL ELINFO(ELNUM,ITYPE,NNEL,IFLAG,ISTART,LINES)
    CALL ELINTM(ELNUM,IDENT,INTCOD,NIPXI,NIPETA,NIPSI,MATNUM,THICK)
    WRITE(6,*)ITYPE,NNEL,ELNUM,NIPXI ,NIPETA, IDENT
    IF (ITYPE.GT.300) THEN
        IF (ITYPE.NE.ITYPE1.OR.IDENT.NE.IDENT1) THEN
            IF (INTCOD.GE.140) THEN
                    CALL ISH3DI(ITYPE,NNEL,IERROR)
                        ELSE
                    CALL ISH3DG(ITYPE,NNEL,IERROR)
                END IF
            END IF
        IDENT1 = IDENT
        ITYPE1 = ITYPE
        DO 10 INTGPN = 1 , NIP
        CALL JACB3D(INTGPN,ELNUM,NNEL,IERROR,DETJAC)
        CST = DETJAC*W( INTGPN )
C*VDIR: IGNORE RECRDEPS
C*VDIR: PREFER VECTOR
            DO 10 K1 = 1 , NNEL
            M1 = NOP(K1 , ELNUM)
            RX( M1 ) = RX( M1 ) + N(K1 , INTGPN) *WGTX( MATNUM )*CST
            RY( M1 ) = RY( M1 ) + N(K1 , INTGPN)*WGTY( MATNUM )*CST
            RZ( M1 ) = RZ( M1 ) + N(K1 , INTGPN)*WGTZ( MATNUM )*CST
    10 CONTINUE
    ELSE
            IF (ITYPE.NE.ITYPE1.OR.IDENT.NE.IDENT1) THEN
                CALL ISH2DG(ITYPE,NNEL,IERROR)
            END IF
            IDENT1 = IDENT
            ITYPE1 = ITYPE
            DO 20 INTGPN = 1 , NIP
            CALL JACB2D(INTGPN,ELNUM,NNEL,IERROR,DETJAC)
            IF (IFLAG.EQ.3) CALL AXISYM(INTGPN,ELNUM,NNEL,RAD,THICK)
            CST = DETJAC*THICK*N( INTGPN )
C*VDIR: IGNORE RECRDEPS
C*VDIR: PREFER VECTOR
            DO 20 K1 = 1 , NNEL
            M1 = NOP(K1 , ELNUM)
            RX( M1 ) = RX( M1 ) + N(K1 , INTGPN)*WGTX( MATNUM )*CST
            RY( M1 ) = RY( M1 ) + N(K1 , INTGPN)*WGTY( MATNUM )*CST
            20 CONTINUE
        END IF
    30 CONTINUE
C
C --- PLACE RX' S AND RY' S IN THE RIGHT POSITIONS IN THE
C --- LOAD ARRAY.
C
    IF (IDIM.EQ.2) THEN
CrVDIR: PREFER VECTOR
            DO 40 K = 1 , NNODES
```

```
    K2 = 2*K
    K1 = K2 - 1
    R( K1 )=RX( K )
        R( K2 )=RY( K )
    40 CONTINUE
C
        ELSE IF(IDIM.EQ.3) THEN
C*VDIR: PREFER VECTOR
                            DO 50 K = 1 , NNODES
            K3 = 3*K
            K2 = K3 - 1
            K1 = K3 - 2
            R( K1 )=RX( K )
            R( K2 )=RY( K )
                    R( K3 )=RZ( K )
50 CONTINUE
        END IF
1000 RETURN
        END
```

```
@PROCESS DIRECTIVE('*VDIR:')
C
C ======================== A S S E M B ==================================
C
    SUBROUTINE ASSEMB(SKG,SKGL,R,U,IDOF,JDIAG,NTSK,MBAND,IOUT)
C
```



```
C II
```

CI PROGRAM I
C I I
C I SUBROUTINE ASSEMB ASSEMBELS THE GLOBAL STIFFNESS MATRIX AND/OR I
C I STORES THE NODE NUMBERS OF THE CORENT ELEMENT AND THE POSITION I
C I OF THE ELEMENT MATRICES IN THE GLOBAL MATRICES. I
C I I
C I I
CI ARGUMENT L I S T I
CI I

```SKG(I) \(=\) GLOBAL STIFFNESS MATRIX STORED IN A ONE DIMENSIONAL
```

C SKG(I) $=$ GLOBAL STIFFNESS MATRIX STORED IN A ONE DIMENSIONAL
I

```C I
```

C I $\mathrm{R}(\mathrm{I})=$ LOAD VECTOR I
C I U(I) = VECTOR OF THE IMPOSED NODAL DISPLACEMENTS I
C I IDOF(I) = VECTOR CONTAINING THE D.O.F. NUMBERS THE JOINTS I
C I JDIAG(I) $=$ LOCATION OF THE DIAGNAL TERMS OF EACH COLUMN IN THE I
C I GLOBAL STIFFNESS MATRIX 'SKG' I
C I NTSK $=$ NUMBER OF TERMS IN THE SKg MATRIX I
C I IFLAG2 = 0; SYMMETRIC STIFFNESS MATRIX I
C I 1 ; NONSYMMETRIC STIFFNESS MATRIX I
C I IERROR $=$ ERROR CODE >0; ERRORS DETECTED I
C I $=0$; NO ERRORS I
C I I
C I FIRST DEVELOPED: 08-26-1988 I
C I LAST UPDATE: 09-05-1988 I
C I BY: M. FOROOZESH I
C

```C
```

IMPLICIT REAL*8 (A-H,O-Z)
INTEGER ELNUM
COMMON/INPUT1/NIPXI,NIPETA,NIPSI,NIP, INTCOD

```COMMON/INPUT2/NOP \((20,2000)\)COMMON/INPUT8/NNODES, NELEM,NNDF,NLINC, MNIT, IFLAG1, IFLAG2,IDIM,1NINODE
```

COMMON/INPUT9/THICK, IFLAG
COMMON/ELST1/SK $(60,60)$
COMMON/ASSEM2/II(60)

```DIMENSION IDOF ( 1 ), JDIAG( 1 ),SKG( 1 ),SKGL( 1 ),R( 1 ), U( 1 )C
```

c INITIALIZE THE GLOBAL STIFFNESS MATIX TO ZERO

```C
```

IF (IFLAG2.EQ.0) THEN
C*VDIR: PREFER VECTOR
DO $10 \mathrm{K1}=1$, NTSK

```
    SKG( K1 )=0.
```

ELSE

C ${ }^{\text {VDIR }}$: PREFER VECTOR

DO $20 \mathrm{~K} 1=1$, NTSK/2
SKG(K1) $=0$.
20 SKGL(K1) = 0 .
END IF

C

C
C $\quad \mathrm{NCB}=\mathrm{NUMBER}$ OF COLUMNS IN THE MATRIX.
C $\quad \mathrm{NRB}=\mathrm{NUMBER}$ OF ROWS IN THE MATRIX.
C NNEL $=$ NUMBER OF NODES IN THE ELEMENT.
C
MBAN = FULL BANDWIDTH OF THE STIFFNESS MATRIX
C
MBAN $=$ MBAND*2 -1
ITYPE1 $=0$
IDENT1 $=0$
DO 80 ELNUM $=1$, NELEM
C
CALL ELINFO(ELNUM,ITYPE,NNEL,IFLAG,ISTART,LINES)
CALL ELINTM (ELNUM, IDENT,INTCOD,NIPXI,NIPETA,NIPSI,MATNUM,THICK)
IF (ITYPE.NE.ITYPE1.OR.IDENT.NE.IDENT1) THEN
IF (ITYPE.GT. 300) THEN
NCB $=3 *$ NNEL
$\mathrm{NRB}=6$
IF (INTCOD.GE. 140) THEN
CALL ISH3DI (ITYPE,NNEL, IERROR)
ELSE
CALL ISH3DG(ITYPE,NNEL,IERROR)
END IF
ELSE
$\mathrm{NCB}=2^{\star}{ }^{\text {NNEL }}$
CALL ISH2DG(ITYPE,NNEL,IERROR)
IF (IFLAG.EQ.3) THEN
NRB $=4$
ELSE
$\mathrm{NRB}=3$
END IF
END IF
END IF
IDENTI = IDENT
ITYPE1 = ITYPE
C
C*VDIR: PREFER SCALAR
DO $30 \mathrm{~K} 1=1$, NNEL
I1 $=$ NNDF* $(\mathrm{K} 1-1)$
I2 $=$ NNDF* $($ NOP $(K 1, E L N U M)-1)$
C추NIR: PREFER SCALAR
DO 30 K2 $=1$, NNDF
$K=I 1+K 2$
$I I(K)=I 2+K 2$
30 CONTINUE

```
C
                    GEOMETRICALLY NONLINEAR PROBLEMS
C
    IF (IFLAG1.EQ.1) THEN
        IF (ITYPE.GT.300) THEN
        CALL ES3DNS(ELNUM, ITYPE,NNEL,NNDF,NRB ,NCB,NIP,MATNUM, IFLAG2, IOUT)
        ELSE
        CALL ES2DNS(ELNUM,ITYPE,NNEL,NNDF,NRB,NCB,NIP,MATNUM,IFLAG2,IOUT)
        END IF
C
C
C
    ELSE IF(IFLAG1.EQ.0) THEN
        IF (ITYPE.GT.300) THEN
        CALL ES3DLS(ELNUM,ITYPE,NNEL,NNDF,NRB,NCB ,NIP,MATNUM,IFLAG2,IOUT)
        ELSE
        CALL ES2DLS(ELNUM,ITYPE,NNEL,NNDF,NRB,NCB ,NIP,MATNUM,IFLAG2,IOUT)
        END IF
    END IF
C
    DO 70 K1 = 1 , NCB
    NDOF = IDOF(II( K1 ))
    IF (NDOF.GT.O) THEN
        LOCD = JDIAG( NDOF )
        DO 50 K2 = 1 , NCB
        JDOF = IDOF(II( K2 ))
        IF (IFLAG2.EQ.0) THEN
            IF (NDOF.GE.JDOF.AND.JDOF.GT.0) THEN
                LOCA = LOCD + NDOF - JDOF
                SKG( LOCA ) = SKG( LOCA ) + SK(K1 , K2)
            END IF
        ELSE
            IF (NDOF.GE.JDOF.AND.JDOF.GT.0) THEN
                LOCA = LOCD - NDOF + JDOF
                SKG( LOCA ) = SKG( LOCA ) + SK(K2 , K1)
                SKGL( LOCA ) = SKGL( LOCA ) + SK(K1 , K2)
            END IF
        END IF
    50 CONTINUE
    ELSE IF(NDOF.LT.0) THEN
        DO 60 K2 = 1 , NCB
        JDOF = IDOF(II( K2 ))
        IF (JDOF.GT.0) THEN
            R( JDOF ) = R( JDOF ) - SK(K1 , K2)^U(II( K1 ))
        END IF
        CONTINUE
    END IF
    70 CONTINUE
    80 CONTINUE
C
100 RETURN
    END
```

@PROCESS DIRECTIVE('ヵVDIR: ${ }^{\prime}$)

C

C
SUBROUTINE ELSTIF
C

C II

CI PROGRAM
CI PROGRAM I
C I I
C I ELSTIF EVALUATES THE STIFFNESS MATIRIX OF EACH ELEM. I
C I I
CI ENTRYPOINTS I
C I I
C I ES2DLS: FOR 2D PLANE STRESS, PLANE STRAIN AND AXISYMMETRIC I
C I PROBLEMS WITHOUT GEOMETRIC NONLIARITY. I
C I I
ES2DNS: FOR 2D PLANE STRESS, PLANE STRAIN AND AXISYMMETRIC C I I
PROBLEMS WITH GEOMETRIC NONLIEARITY. C I I
C I I
ES3DLS: FOR 3D STRAIN FIELDS WITHOUT GEOM. NONLINEARITY C I I
C I I
C I ES3DNS: FOR 3D STRAIN FIELDS WITH GEOMETRIC NONLINEARITY I
C I I
C I I
ARGUMENTHIST C I I
C I I
C I ELNUM = ELEMENT NUMBER I
C I I
C I NNEL = NUMBER OF NODES IN THE ELEMENT I
C I I
NRB $\quad=$ NUMBER OF ROWS OF THE MATRIX C I I
C I 1
NCB $\quad=$ NUMBER OF COLUMNS OF THE MATRIX C I I
C I I
C I NIP = TOTAL NUMBER OF INTEGRATION POINTS IN THE ELEM. I
C I I
C I MATNUM = MATERIAL NUMBER FOR THE ELEMENT I
C I
IERROR = ERROR CODE C I
C I 1
C I IFLAG $=1$: PLANE STRESS PROBLEM (ES2DLS ,ES2DNS ONLY) I
C I 2: PLANE STRAIN PROBLEM (ES2DLS ,ES2DNS ONLY) I
3: AXISYMMETRIC PROBLEM (ES2DLS ,ES2DNS ONLY) I
I
C I IC I FIRST DEVELOPED: 09-01-1988
IC I LAST UPDATE: 09-02-1988C I BY: M. FOROOZESHI
I
C I I
C
IMPLICIT REAL*8 (A-H,O-Z)

```
    REAL*8 N,NXI,NETA,NSI,NX,NY,NZ
    CHARACTER*48 CSTRES
    CHARACTER*153 DUMMY
    INTEGER ELNUM
    COMMON/UTIL1/STRESS(6),DUMMY
    COMMON/INPUT9/THICK,IFLAG
COMMON/ISHAP2/W(27)
COMMON/ELST1/SK(60,60)
COMMON/DEVICE/LDEV1, LDEV2 ,LDEV3,LDEV4,LDEV5 ,LDREEP ,LDEV,LDEVST
COMMON/ISHAP1/N(20, 27),NXI(20,27),NETA(20, 27),NSI(20,27)
COMMON/JACOB1/NX(20),NY(20),NZ(20)
CONTINUE
CALL SKTRAN(ELNUM,NNEL,NNDF,NCB,2)
RETURN
C
C
CALL ZEROSK(NCB)
RAD \(=1\).
DO 500 INTGPN \(=1\), NIP
CALL JACB2D (INTGPN,ELNUM, NNEL, IERROR, DETJAC)
IF (IFLAG.EQ.3) CALL AXISYM(INTGPN,ELNUM,NNEL,RAD,THICK)
CALL B2DNS (INTGPN,NNEL,RAD)
CALL MATMOD (ELNUM, ITYPE,MATNUM,INTGPN, IFLAG,IOUT,DETJAC,0)
CST \(=\) DETJAC*THICK*W ( INTGPN )
CALL BTDB(IFLAG2,NRB,NCB,CST)
CAL工 IOGET(LDEV, 48, '(A48)', 5)
SX \(=\) STRESS ( 1 )
SY \(=\operatorname{STRESS}(2\) )
SZ \(=\operatorname{STRESS}(4)\)
SXY \(=\) STRESS ( 3 )
```

```
    IF(IFLAG.NE.3) SZ = 0.
C
C --- CALCULATION OF <G>TR <M><G>.
C
    CST1 = SZ*CST/RAD**2
C*VDIR: ASSUME COUNT(8)
    DO 400 K1 = 1 , NNEL
    K12 = 2*K1
    K11 = K12 - 1
    B1 = (NX(K1)*SX+NY(K1)*SXY)*CST
    B2 = (NX(K1)*SXY+NY(K1)*SY)*CST
    B3 = N(K1,INTGPN)*CST1
C
C*VDIR: ASSUME COUNT(8)
    DO 400 K2 = 1 , NNEL
    K22 = 2*K2
    K21 = K22 - 1
    B4 = NX(K2)*B1+NY(K2)*B2
    SK(K11,K21) = SK(K11,K21)+B4+N(K2,INTGPN)*B3
    SK(K12,K22) = SK(K12,K22)+B4
    400 CONTINUE
    500 CONTINUE
    CALL SKTRAN(ELNUM,NNEL,NNDF,NCB,2)
C
    RETURN
C
C
C
C
C
C
    ENTRY ES3DLS(ELNUM,ITYPE,NNEL,NNDF,NRB,NCB,NIP,MATNUM,IFLAG2,IOUT)
C
    CALL ZEROSK(NCB)
    DO 600 INTGPN = 1 , NIP
        CALL JACB3D(INTGPN,ELNUM,NNEL,IERROR,DETJAC)
        CALL B3DLS(NNEL)
        CALL MATMOD(ELNUM,ITYPE,MATNUM,INTGPN,IFLAG,IOUT,DETJAC,0)
        CST = DETJAC*W( INTGPN )
        CALL BTDB(IFLAG2,NRB,NCB,CST)
600 CONTINUE
    CALL SKTRAN(ELNUM,NNEL,NNDF,NCB,3)
C
    RETURN
C
C
C
C
C
    ENTRY ES3DNS(ELNUM,ITYPE,NNEL,NNDF,NRB,NCB,NIP,MATNUM,IFLAG2,IOUT)
C
    CALL ZEROSK(NCB)
```

```
    DO 800 INTGPN = 1 , NIP
    CALL JACB3D(INTGPN,ELNUM,NNEL,IERROR,DETJAC)
    CALL B3DNS(NNEL)
    CALL MATMOD(ELNUM,ITYPE,MATNUM,INTGPN,IFLAG,IOUT,DETJAC,0)
    CST = DETJAC*W( INTGPN )
    CALL BTDB(IFLAG2,NRB,NCB,CST)
C
    CALL IOGET(LDEV,48,'(A48)',5)
    SX = STRESS( 1 )
    SY = STRESS( 2 )
    SZ = STRESS( 3 )
    SXY = STRESS( 4 )
    SYZ = STRESS( 5 )
    SXZ = STRESS( 6 )
C
C --- CALCULATION OF <G>TR <M><G>.
C
CNVDIR: ASSUME COUNT(20)
    DO 700 K1 = 1 , NNEL
    K13 = 3*K1
    K12 = K13 - 1
    K11 = K13 - 2
    B1 = (NX(K1)*SX + NY(K1)*SXY + NZ(K1)*SXZ)*CST
    B2 = (NX(K1)*SXY + NY(K1)*SY + NZ(K1)*SYZ)*CST
    B3 = (NX(K1)*SXZ + NY(K1)*SYZ + NZ(K1)*SZ)*CST
C
C*VDIR: ASSUME COUNT(20)
    DO 700 K2 = 1 , NNEL
    K23 = 3*K2
    K22 = K23 - 1
    K21 = K23 - 2
    B4 = NX(K2)*B1 + NY(K2)*B2 + NZ(K2)*B3
    SK(K11,K21) = SK(K11,K21) + B4
    SK(K12,K22) = SK(K12,K22) + B4
    SK(K13,K23) = SK(K13,K23) + B4
700 CONTINUE
800 CONTINUE
    CALL SKTRAN(ELNUM,NNEL,NNDF,NCB,3)
    RETURN
    END
```

```
@PROCESS DIRECTIVE('*VDIR:')
C
```



```
C
    SUBROUTINE ZEROSK(N)
    REAL*8 SK
    COMMON/ELST1/SK(60,60)
C
C*VDIR: PREFER VECTOR
        DO 100 K1 = 1 , N
        DO 100 K2 = 1 , N
    100 SK(K1 , K2) = 0.
C
    RETURN
    END
```

@PROCESS DIRECTIVE('*VDIR:')
C

C
SUBROUTINE SKTRAN(ELNUM,NNEL,NNDF,NCB,IDIM)
C

CI
C I PROGRAM I
C I I
C I SKTRAN MODIFIES THE ELEMENT STIFFNESS MATRIX FOR THE SKEW I
C I BOUNDARY CONDITIONS USING <T>T<SK><T> TRANSFORMATION. I
C I I
C I ARGUMENT LIST I
C I I
C I ELNUM = ELEMENT NUMBER I
C I
C I NNEL = NUMBER OF NODES IN THE ELEMENT I
C I
C I NNDF = NUMBER OF NODAL DEGREES OF FREEDOM I
C I
C I NCB = NUMBER OF COLUMNS OF THE MATRIX I
N
C I
C I IDIM = PHYSICAL DIMENSION OF THE PROBLEM (I.E.,2D OR 3D) I
C I I
FIRST DEVELOPED: 10-18-1988 C I FIRST DEVELOPED: 10-18-1988 I
C I LAST UPDATE: 10-18-1988 I
C I BY: M. FOROOZESH I
C I I
CC
IMPLICIT REAL*8 (A-H, $\mathrm{O}-2$)
INTEGER ELNUM
COMMON/ELST1/SK $(60,60)$
COMMON/TRANS/DC(3,3)
COMMON/INPUTE/ISPB (4000)
COMMON/INPUT2/NOP $(20,2000)$DIMENSION $\operatorname{CST}(60,3)$
C
DO $600 \mathrm{~K} 1=1$, NNEL
NODE $=\operatorname{NOP}(\mathrm{K1}$, ELNUM $)$
ICODE $=$ ISPB(NODE)
IF (ICODE.GT.0) THEN
I = NNDF*(K1 - 1)
CALL DIRCOS(ICODE,IDIM)
C*VDIR: PREFER VECTOR
DO $300 \mathrm{~K} 2=1$ NCB
C*VDIR: PREFER SCALAR
DO $200 \mathrm{K3}=1$, IDIM
CST(K2 , K3) $=0$.
C*VDIR: PREFER SCALAR
DO 200 IDIR = 1 , IDIM

```
        ID = I + IDIR
    200
        CST(K2 , K3) = CST(K2 , K3) + SK(K2 , ID)*DC(IDIR , K3)
C*VDIR: PREFER SCALAR
    DO 300 K3 = 1 , IDIM
    ID = I + K3
    SK(K2 , ID) = CST(K2 , K3)
C
C*VDIR: PREFER VECTOR
    DO 500 K2 = 1 , NCB
C*VDIR: PREFER SCALAR
    DO 400 K3 = 1 , IDIM
    CST(K2, K3) = 0.
C*VDIR: PREFER SCALAR
        DO 400 IDIR = 1 , IDIM
        ID = I + IDIR
        CST(K2 , K3) = CST(K2 , K3) + SK(ID , K2)*DC(IDIR , K3)
C*VDIR: PREFER SCALAR
                DO 500 K3 = 1 , IDIM
        ID = I + K3
    500
        SK(ID , K2) = CST(K2 , K3)
        END IF
    6 0 0 ~ C O N T I N U E ~
        RETURN
        END
```

```
@PROCESS DIRECTIVE('*VDIR:')
C
C =========================== D | R C 0 S ===================================
C
    SUBROUTINE DIRCOS(ICODE,IDIM)
C
```



```
C I
CI PROGRAM I
C I I
C I DIRCOS EVALUATES THE DIRECTION COSINES OF THE Y_PRIM AND I
C I THE Z_PRIM AXES FOR SKEW BOUNDARY CONDITIONS USING THE I
C I DIRECTION COSINES OF THE X_PRIM (WHICH IS THE AXIS NORMAL TO* I
C I THE PLANE OF THE ROLLER. I
C I I
C I I
CI ARGUMENT LISTM
C I I
C I ICODE = ADDRESS OF THE DIRECTION COSINES OF THE X_PRIM I
C I I
C I IDIM = PHYSICAL DIMENSION OF THE PROBLEM (I.E.,2D OR 3D) I
C I I
C I I
CI COMMONBEOCKS I
C I I
C I COSTX(ICODE) = COSINE OF THETA_X I
C I I I
C I COSTY(ICODE) = COSINE OF THETA_Y I
C I I
C I COSTZ(ICODE) = COSINE OF THETA_Z I
C I I
C I DC(I,J) = TRANSFORMATION MATRIX WHICH HAS ITS COLUMNS I
C I EQUAL TO THE DIRECTION COSINES OF THE I
C I X_PRIM, Y_PRIM, AND Z_PRIM AXES. I
C
C I FIRST DEVELOPED: 10-18-1988
    FIRST DEVELOPED: 10-18-1988 I
    C I LAST UPDATE: 10-19-1988 M M MOROOZESH
    Clll
    C I
I
```



```
    C
    IMPLICIT REAL*8 (A-H,O-Z)
    COMMON/INPUTD/COSTX(300),COSTY(300),COSTZ(300)
    COMMON/TRANS/DC(3,3)
C
    IF(IDIM.EQ.2) THEN
        DC(1 , 1) = COSTX( ICODE )
        DC(2,1) = COSTY( ICODE )
        DC(1, 2) = - COSTY( ICODE )
        DC(2 , 2) = COSTX( ICODE )
    ELSE IF(IDIM.EQ.3) THEN
        TX = COSTX( ICODE )
```

$\mathrm{TY}=\operatorname{COSTY}(\operatorname{ICODE})$
$T Z=\operatorname{cosTz}(\operatorname{ICODE})$
$\mathrm{DC}(1,1)=T X$
$\operatorname{DC}(2,1)=T Y$
$\mathrm{DC}(3,1)=T Z$

C
CNORM $=$ DSQRT $(T Y * * 2+T X * * 2)$
DC(1 , 2) = -TY/CNORM
$\operatorname{DC}(2,2)=T X / C N O R M$
$D C(3,2)=0$.
CNORM $=\operatorname{DSQRT}((T X / T Y) * * 2+1 .+(T X * * 2 /(T Y * T Z)+T Y / T Z) * * 2)$
DC(1 , 3) $=$ TX/(TY*CNORM)
DC(2, 3) = 1./CNORM
$\mathrm{DC}(3,3)=-(\mathrm{TX} * 2 /(T Y * T Z)+T Y / T Z) / C N O R M$
END IF
RETURN
END

```
@PROCESS DIREGTIVE('*VDIR:')
C
C ==================n========= В T D B ====================================
C
    SUBROUTINE BTDB(IFLAG2,NRB,NCB,CST)
C
```



```
C I I
C I SUBPROGRAM BTDB EVALUATES <BT><DEP><B>CST, WHERE I
C I I
C I <BT> = TRANSPOSE OF THE <B> MATRIX I
C I <DEP> = MATERIAL STIFFNESS MATRIX I
C I CST = CONSTANT VALUE TO BE MULT. WITH EACH TERM OF THE . I
C I RESULTING MATRIX. I
C I I
CI ARGUMENTLLISTM
C I I
C I IFLAG2 = 0; FOR SYMMETRIC STIFFNESS MATRIX I
C I 1; FOR NONSYMMETRIC STIFFNESS MATRIX I
C I I
C I NRB = NUMBER OF ROWS IN THE <B> BATRIX I
C I I
C I NCB = NUMBER OF COLUMNS IN THE <B> MATRIX I
C I I
C I CST = INTEGRATION CONSTANT I
C I I
C I I
C I FIRST DEVELOPED: 09-01-1988 I
C I LAST UPDATE: 09-02-1988 I
C I BY: M. FOROOZESH I
C I I
C ====ニ===================================================================
C
    REAL*8 SK,B,DEP,CST,DUMMY,TEMP
    COMMON/ELST1/SK(60,60)
    COMMON/B1/B (6,60)
    COMMON/MATER1/DEP(6,6)
    DIMENSION DUMMY(60,6)
C
C --- B(K3,K1) IS THE TRANSPOSE OF THE B(K1,K3)
C
    DO 10 K1 = 1 , NRB
    DO 10 K2 = 1 , NRB
    10 DEP(K1 , K2) = DEP(K1 , K2)*CST
C
    IF (IFLAG2.EQ.0) THEN
C*VDIR: PREFER VECTOR
        DO 300 K1 = 1,NCB
        DO 100 K2 = 1,NRB
        DUMMY(K1 , K2) = 0.
        DO 100 K3 = 1,NRB
100
        DUMMY(K1 , K2) = DUMMY(K1 , K2) + B(K3 , K1)*DEP(K3 , K2)
```

```
                DO 300 K4 = 1,K1
                DO 200 K5 = 1,NRB
SK(K1,K4) = SK(K1,K4) + DUMMY(K1 , K5)*B(K5 , K4)
SK(K4,K1) = SK(K1,K4)
ELSE IF(IFLAG2.EQ.1) THEN
C
C*VDIR: PREFER VECTOR
DO \(600 \mathrm{~K} 1=1\), NCB
```DO \(400 \mathrm{~K} 2=1\), NRB\(\operatorname{DUMMY}(K 1, K 2)=0\).DO \(400 \mathrm{~K} 3=1\), NRB
 DUMMY(K1 , K2) = DUMMY(K1 , K2) + B(K3 , K1)^DEP(K3 , K2)
 DO 600 K4 = 1,NCB
 DO 600 K5 = 1,NRB
 SK(K1,K4) = SK(K1,K4) + DUMMY(K1 , K5)*B(K5 , K4)
 END IF
C
 RETURN
 END
```

```
@PROCESS DIRECTIVE('*VDIR:')
C
C ======================== В 2 D 3 D ===================================
C
 SUBROUTINE B2D3D
C
```



```
C
C I SUBPROGRAM B2D3D EVALUATES THE 'B' MATRIX FOR THE 2D AND 3D I
C I FINITE STRAIN PROBLEMS. I
C I I
C I ENTRY POINTS: I
C I B2DLS : FOR 2D PLANE STRESS, PLANE STRAIN AND AXISYMMETRIC I
C I PROBLEMS WITHOUT GEOMETRIC NONLIARITY. I
C I
C I
C I I
C I B3DLS : FOR 3D STRAIN FIELDS WITHOUT GEOMETRIC NONLINEARITY
C I I
C I B3DNS: FOR 3D STRAIN FIELDS WITH GEOMETRIC NONLINEARITY I
C I I
C I B(I,J) = VARIATIONAL STRAIN-DISPLACEMENT STIFFNESS I
C I MATRIX. I
C I I
C I I
C I NX(K) = PARTIAL DERIVATIVE OF N(K) WITH RESPECT TO X; I
C I NY(K) = PARTIAL DERIVATIVE OF N(K) WITH RESPECT TO Y; I
C I NZ(K) = PARTIAL DERIVATIVE OF N(K) WITH RESPECT TO Z; I
C I I
C I I
C I FIRST DEVELOPED: 08-29-1988 I
C I LAST UPDATE: 08-30-1988 I
C I BY: M. FOROOZESH I
C I I
C
 IMPLICIT REAL*8 (A-H,N-Z)
 INTEGER ELNUM,NNEL
 COMMON/INPUT9/THICK,IFLAG
 COMMON/ISHAP1/N(20,27),NXI(20,27),NETA(20,27),NSI(20,27)
 COMMON/MAIN2/UTOTAL(8000)
 COMMON/ASSEM2/II(60)
 COMMON/JACOB1/NX(20),NY(20),NZ(20)
 COMMON/B1/B(6,60)
 COMMON/B2/DUDX,DVDX,DWDX,DUDY,DVDY,DWDY,DUDZ,DVDZ,DWDZ,A5
C
C
C
C
 ENTRY B2DLS(INTGPN,NNEL,RAD)
C
```

```
C --- CALCULATION OF THE MATRIX
C
C*VDIR: ASSUME COUNT(8)
 DO 100 K1 = 1,NNEL
 K12 = 2*K1
 K11 = K12 - 1
 B(1,K11) = NX(K1)
 B(1,K12) = 0.
 B(2,K11) = 0.
 B(2,K12) = NY(K1)
 B(3,K11) = NY(K1)
 B(3,K12) = NX(K1)
 100 CONTINUE
C
C --- CALCULATION OF THE ADDITIONAL ROW OF FOR THE AXISYM. CASE.
C
 IF (IFLAG.EQ.3) THEN
C
C*VDIR: ASSUME COUNT(8)
 DO 200 K1 = 1 , NNEL
 K12 = 2*K1
 K11 = K12-1
 B(4,K11) = N(K1,INTGPN)/RAD
 200 B(4,K12) = 0.
C
 END IF
C
 RETURN
C
C
C
C
 ENTRY B2DNS(INTGPN,NNEL,RAD)
C C-- CATCULATION OF THE MATRIX
C --- CALCULATION OF THE MATRIX
C
 DUDX = 0.
 DVDX = 0.
 DUDY = 0.
 DVDY = 0.
 A5 = 0.
C*VDIR: ASSUME COUNT(8)
 DO 300 K1 = 1,NNEL
 K12 = 2*K1
 K11 = K12 - 1
 DUDX = DUDX + NX(K1)*UTOTAL(II(K11))
 DVDX = DVDX + NX(K1)*UTOTAL(II(K12))
 DUDY = DUDY + NY(K1)*UTOTAL(II(K11))
 DVDY = DVDY + NY(K1)*UTOTAL(II(K12))
 A5 = A5 + N(K1,INTGPN)^UTOTAL(II(K11))
 300
 CONTINUE
C
```

```
C^VDIR: ASSUME COUNT(8)
 DO 400 K1 = 1,NNEL
 K12 = 2*K1
 K11 = K12 - 1
 B(1,K11) = (1. + DUDX)*NX(K1)
 B(1,K12) = DVDX*NX(K1)
 B(2,K11) = DUDY*NY(K1)
 B(2,K12) = (1. + DVDY)*NY(K1)
 B(3,K11) = DUDY*NX(K1) + (1. + DUDX)*NY(K1)
 B(3,K12) = DVDX*NY(K1) + (1. + DVDY)*NX(K1)
 400 CONTINUE
C
C --- CALCULATION OF THE ADDITIONAL ROW OF FOR THE AXISYM CASE.
C
 IF (IFLAG.EQ.3) THEN
 A5 = A5/RAD
C
C*VDIR: ASSUME COUNT(8)
 DO 500 K1 = 1 , NNEL
 K12 = 2*K1
 K11 = K12 - 1
 B(4,K11) = (A5 + 1.)*N(K1,INTGPN)/RAD
 500 B(4,K12) = 0.
C
 END IF
C
 RETURN
C
C
C
C
 ENTRY B3DLS(NNEL)
C
C --- CALCULATION OF THE MATRIX
C
C*VDIR: ASSUME COUNT(20)
 DO 600 K1 = 1,NNEL
 K13 = 3*K1
 K12 = K13 - 1
 K11 = K13 - 2
 B(1,K11) = NX(K1)
 B(1,K12) = 0.
 B(1,K13) = 0.
 B(2,K11) = 0.
 B(2,K12) = NY(K1)
 B(2,K13) = 0.
 B}(3,K11)=0
 B(3,K12) = 0.
 B(3,K13) = NZ(K1)
 B(4,K11) = NY(K1)
 B(4,K12) = NX(K1)
 B(4,K13) = 0.
```

```
 B(5,K11) = 0.
 B(5,K12) = NZ(K1)
 B(5,K13) = NY(K1)
 B(6,K11) = NZ(K1)
 B(6,K12) = 0.
 B(6,K13) = NX(K1)
 600 CONTINUE
C
 RETURN
C
C
C
C
 ENTRY B3DNS(NNEL)
C
C --- CALCULATION OF THE MATRIX
C
 DUDX = 0.
 DVDX = 0.
 DWDX = 0.
 DUDY = 0.
 DVDY = 0.
 DWDY = 0.
 DUDZ = 0.
 DVDZ = 0.
 DWDZ = 0.
C
C*VDIR: ASSUME COUNT(20)
 DO 700 K1 = 1,NNEL
 K13 = 3*K1
 K12 = K13 - 1
 K11 = K13-2
 DUDX = DUDX + NX(K1)*UTOTAL(II(K11))
 DVDX = DVDX + NX(K1)*UTOTAL(II(K12))
 DWDX = DWDX + NX(K1)*UTOTAL(II(K13))
 DUDY = DUDY + NY(K1)*UTOTAL(II(K11))
 DVDY = DVDY + NY(K1)*UTOTAL(II(K12))
 DWDY = DWDY + NY(K1)*UTOTAL(II(K13))
 DUDZ = DUDZ + NZ(K1)*UTOTAL(II(K11))
 DVDZ = DVDZ + NZ(K1)*UTOTAL(II(K12))
 DWDZ = DWDZ + NZ(K1)*UTOTAL(II(K13))
 700 CONTINUE
C
C*VDIR: ASSUME COUNT(20)
 DO 800 K1 = 1,NNEL
 K13 = 3*K1
 K12 = K13 - 1
 K11 = K13 - 2
 B(1,K11) = (1. + DUDX)*NX(K1)
 B(1,K12) = DVDX*NX(K1)
 B(1,K13) = DWDX*NX(K1)
 B(2,K11) = DUDY %NY(K1)
```

```
 B(2,K12) = (1. + DVDY)*NY(K1)
 B(2,K13) = DWDY*NY(K1)
 B(3,K11) = DUDZ*NZ(K1)
 B(3,K12) = DVDZ*NZ(K1)
 B(3,K13) = (1. + DWDZ)*NZ(K1)
 B(4,K11) = DUDY*NX(K1) + (1. + DUDX)*NY(K1)
 B(4,K12) = DVDX*NY(K1) + (1. + DVDY)*NX(K1)
 B(4,K13) = DWDY*NX(K1) + DWDX*NY(K1)
 B(5,K11) = DUDZ*NY(K1) + DUDY*NZ(K1)
 B(5,K12) = DVDZ*NY(K1) + (1. + DVDY)*NZ(K1)
 B(5,K13) = DWDY*NZ(K1) + (1. + DWDZ)*NY(K1)
 B(6,K11) = DUDZ*NX(K1) + (1. + DUDX)*NZ(K1)
 B(6,K12) = DVDX*NZ(K1) + DVDZ*NX(K1)
 B(6,K13) = DWDX*NZ(K1) + (1. + DWDZ)*NX(K1)
 800
CONTINUE
C
RETURN
C
END
```

```
@PROCESS DIRECTIVE('\piVDIR:')
C
```



```
C
 SUBROUTINE AXISYM(INTGPN,ELNUM,NNEL,RAD,THICK)
C
```



```
C I I
C I SUBPROGRAM AXISYM EVALUATES THE RADIUS OF THE INTEGRATION I
C I POINT FROM THE AXIS OF SYMMETRY OF AXISYMMETRIC PROBLEMS. I
C I THE AXIS OF SYMMETRY IS ASSUMED TO BE THE Y AXIS. I
C I I
C I INTGPN = INTEGRATION POINT NUMBER I I
C I ELNUM = ELEMENT NUMBER I
C I NNEL = NUMBER OF NODES IN THE ELEMENT I
C I RAD = RADIUS OF THE INTEGRATION POINT I
C I THICK = SURCOMFRENCE OF THE AXISYMMETRIC SOLID I
C I I
C I FIRST DEVELOPED: 09-01-1988 I
C I LAST UPDATE: 09-01-1988 I
C I BY: M. FOROOZESH I
C ==
 REAL*8 RAD,THICK,N,NXI,NETA,NSI
 REAL*4 X,Y,Z
 INTEGER ELNUM
 COMMON/ISHAP1/N(20,27),NXI(20,27),NETA(20,27),NSI(20,27)
 COMMON/INPUT2/NOP(20,2000)
 COMMON/INPUT3/X(4000),Y(4000),Z(4000)
C
 RAD = 0.
C*VDIR: ASSUME COUNT(8)
 DO 10 K1 = 1 , NNEL
 RAD = RAD + N(K1 , INTGPN)*X(NOP(K1, ELNUM))
 10 CONTINUE
C
 THICK = 6.283185307179586DO*RAD
C
 RETURN
 END
```

```
@PROCESS DIRECTIVE('*VDIR:')
C
C =========================== G E T S T R =================================
C
 SUBROUTINE GETSTR(IOUT)
C
```



```
C I
C I SUBROUTINE GETSTR ASSEMBELS THE GLOBAL STIFFNESS MATRIX AND/OR I
C I STORES THE NODE NUMBERS OF THE CORENT ELEMENT AND THE POSITION I
C I OF THE ELEMENT MATRICES IN THE GLOBAL MATRICES. I
C I I
C I I I
C I II(J) POSITION OF LOCAL STIFFNESS TERMS IN THE GLOBAL I
C I STIFFNESS MATRIX. I
C I I
C I SKG(I) = GLOBAL STIFFNESS MATRIX IN THE CONDENSED FORM I
C I SK(I,J) = ELEMENT STIFFNESS MATRIX I
C I (SK IS COMPUTED BY SUBPROGRAM STIFEL) I
```



```
C
C
C I FIRST DEVELOPED: 08-26-1988 I
C I LAST UPDATE: 09-05-1988 I
C I BY: M. FOROOZESH I
```



```
C
 IMPLICIT REAL*8 (A-H,O-Z)
 INTEGER ELNUM
 COMMON/INPUT8/NNODES ,NELEM,NNDF ,NLINC,MNIT,IFLAG1,IFLAG2,IDIM,
 1 NINODE
 COMMON/INPUT9/THICK,IFLAG
 COMMON/INPUT1/NIPXI,NIPETA,NIPSI,NIP, INTCOD
 COMMON/INPUT2/NOP(20,2000)
 COMMON/ASSEM2/II(60)
C
C
C
C
 ITYPE1 = 0
 IDENT1 = 0
 DO 80 ELNUM = 1 , NELEM
 NCB = NUMBER OF COLUMNS IN THE MATRIX.
 NRB = NUMBER OF ROWS IN THE MATRIX.
 NNEL = NUMBER OF NODES IN THE ELEMENT.
CALL ELINFO(ELNUM, ITYPE,NNEL,IFLAG,ISTART,LINES)
CALL ELINTM(ELNUM,IDENT,INTCOD,NIPXI,NIPETA,NIPSI,MATNUM,THICK)
IF (ITYPE.NE.ITYPE1.OR.IDENT.NE.IDENT1) THEN
IF (ITYPE.GT.300) THEN
NCB \(=3 *\) NNEL
\(\mathrm{NRB}=6\)
IF (INTCOD.GE.140) THEN
CALL ISH3DI(ITYPE,NNEL,IERROR)
ELSE
```

```
 CALL ISH3DG(ITYPE,NNEL,IERROR)
 END IF
 ELSE
 NCB = 2*NNEL
 CALL ISH2DG(ITYPE,NNEL,IERROR)
 IF (IFLAG.EQ.3) THEN
 NRB = 4
 ELSE
 NRB = 3
 END IF
 END IF
 END IF
 ITYPE1 = ITYPE
 IDENT1 = IDENT
C
C*VDIR: PREFER SCALAR
 DO 30 Kl = 1 , NNEL
 I1 = NNDF*(K1 - 1)
 I2 = NNDF*(NOP(K1 , ELNUM) - 1)
C
CHVDIR: PREFER SCALAR
 DO 30 K2 = 1 , NNDF
 K = I1 + K2
 II(K) = I2 + K2
 30 CONTINUE
C
C GEOMETRICALLY NONLINEAR PROBLEMS
C
 IF (IFLAG1.EQ.1) THEN
 IF(ITYPE.GT.300) THEN
 CALL S3DNS (ELNUM,ITYPE,NNEL,NRB,NCB,NIP,MATNUM,IOUT)
 ELSE
 CALL S2DNS (ELNUM,ITYPE,NNEL,NRB,NCB,NIP,MATNUM,IOUT)
 END IF
 C
 C GEOMETRICALLY LINEAR PROBLEMS
 C
 ELSE IF(IFLAG1.EQ.0) THEN
 IF(ITYPE.GT.300) THEN
 CALL S3DLS (ELNUM,ITYPE,NNEL,NRB,NCB,NIP,MATNUM,IOUT)
 ELSE
 CALL S2DLS (ELNUM,ITYPE,NNEL,NRB,NCB,NIP,MATNUM, IOUT)
 END IF
 END IF
 80 CONTINUE
 C
 100 RETURN
 END
```

```
@PROCESS DIRECTIVE('*VDIR:')
C
C ========================== E L S T R =================================
C
 SUBROUTINE ELSTR
C
C ===
C I I
C I SUBPROGRAM ELSTR EVALUATES THE STIFFNESS MATIRIX OF EACH ELEM. I
C I
C I ENTRY POINTS:
I
C I S2DLS : FOR 2D PLANE STRESS, PLANE STRAIN AND AXISYMMETRIC I
C I
C I
C
C
C
C I
C
C I
C I
C I
C I PARAMETER LIST: I
C I I
C I IFLAG = 1: PLANE STRAIN PROBLEM (ES2DLS ,ES2DNS ONLY) I
C I 2: PLANE STRESS PROBLEM (ES2DLS ,ES2DNS ONLY) I
C I 3: AXISYMMETRIC" PRÖBLEM (ES2DLS ,ES2DNS ONLLY) I
C
C I ELNUM = ELEMENT NUMBER I
C I NNEL = NUMBER OF NODES IN THE ELEMENT I
C I NRB = NUMBER OF ROWS OF THE MATRIX I
C I NCB = NUMBER OF COLUMNS OF THE MATRIX I
C I NIP = TOTAL NUMBER OF INTEGRATION POINTS IN THE ELEM. I
C I IERROR = ERROR CODE I
C I I
C I I
C I FIRST DEVELOPED: 09-01-1988 I
C I LAST UPDATE: 09-02-1988 I
C I BY: M. FOROOZESH I
C I I
C
IMPLICIT REAL*8 (A-H,O-Z)
REAL*8 N,NXI,NETA,NSI,NX,NY,NZ
INTEGER ELNUM
COMMON/ISHAP2/W(27)
COMMON/ISHAP1/N(20,27),NXI(20,27),NETA(20,27),NSI(20,27)
COMMON/MAIN2/UTOTAL(8000)
COMMON/ASSEM2/II(60)
COMMON/JACOB1/NX(20),NY(20),NZ(20)
COMMON/B2/DUDX,DVDX,DHDX,DUDY,DVDY ,DWDY,DUDZ ,DVDZ ,DWDZ ,A5
COMMON/INPUT9/THICK,IFLAG
```

```
 COMMON/ELSTR1/STRN(6)
C
C
C
C
 ENTRY S2DLS (ELNUM,ITYPE,NNEL,NRB,NCB,NIP,MATNUM,IOUT)
C
 DO 200 INTGPN = 1, NIP
 CALL JACB2D(INTGPN,ELNUM,NNEL,IERROR,DETJAC)
 IF(IFLAG.EQ.3) CALL AXISYM(INTGPN,ELNUM,NNEL,RAD,THICK)
 CALL B2DLS(INTGPN,NNEL,RAD)
 CST = DETJAC*THICK*W(INTGPN)
 DUDX = 0.
 DVDX = 0.
 DUDY = 0.
 DVDY = 0.
 AS = 0.
C*VDIR: ASSUME COUNT(8)
 DO 100 K1 = 1,NNEL
 K12 = 2*K1
 K11 = K12 - 1
 DUDX = DUDX + NX(K1)*UTOTAL(II(K11))
 DVDX = DVDX + NX(K1)*UTOTAL(II(K12))
 DUDY = DUDY + NY(K1)*UTOTAL(II(K11))
 DVDY = DVDY + NY(K1)*UTOTAL(II(K12))
 A5 = A5 + N(K1,INTGPN)*UTOTAL(II(K11))
 CONTINUE
 100
C
C
 STRN(1) = DUDX
 STRN(2) = DVDY
 STRN(3) = DUDY + DVDX
 STRN(4) = 0.
 IF (IFLAG.EQ.3) STRN(4) = A5/RAD
C
 CALL MATMOD(ELNUM,ITYPE,MATNUM,INTGPN,IFLAG,IOUT,DETJAC,1)
 CALL EQUILB(CST,NCB,NRB)
 200
 CONTINUE
C
 1000 RETURN
C
C
C
C
C
C
ENTRY S2DNS (ELNUM, ITYPE,NNEL,NRB,NCB,NIP, MATNUM, IOUT)
C
DO 400 INTGPN \(=1\), NIP
CALL JACB2D (INTGPN, ELNUM, NNEL, IERROR,DETJAC)
IF(IFLAG.EQ.3) CALL AXISYM (INTGPN,ELNUM,NNEL,RAD,THICK)
CALL B2DNS (INTGPN,NNEL, RAD)
```

```
CST = DETJAC*THICK*W(INTGPN)
C
STRN(1) = DUDX + 0.5*(DUDX**2 + DVDX**2)
STRN(2) = DVDY + 0.5*(DUDY**2 + DVDY**2)
STRN(3) = DUDY + DVDX + DUDX*DUDY + DVDX*DVDY
STRN(4) = 0.
IF (IFLAG.EQ.3) STRN(4) = A5 + 0.5*(A5**2)
C
 CALL MATMOD(ELNUM,ITYPE,MATNUM,INTGPN,IFLAG,IOUT,DETJAC,1)
 CALL EQUILB(CST,NCB,NRB)
 400 CONTINUE
C
 2000 RETURN
C
C
C
C
C
C
 ENTRY S3DLS (ELNUM,ITYPE,NNEL,NRB,NCB,NIP,MATNUM,IOUT)
C
 DO 600 INTGPN = 1 , NIP
 CALL JACB3D(INTGPN,ELNUM,NNEL,IERROR,DETJAC)
 CALL B3DLS(NNEL)
 CST = DETJAC*W(INTGPN)
C
 DUDX = 0.
 DVDX = 0.
 DWDX = 0.
 DUDY = 0.
 DVDY = 0.
 DWDY = 0.
 DUDZ = 0.
 DVDZ = 0.
 DWDZ = 0.
```


## C

## C*VDIR: ASSUME COUNT(20)

```
 DO 500 K1 = 1,NNEL
 K13 = 3*K1
 K12 = K13 - 1
 K11 = K13-2
 DUDX = DUDX + NX(K1)*UTOTAL(II(K11))
 DVDX = DVDX + NX(K1)*UTOTAL(II(K12))
 DWDX = DWDX + NX(K1)*UTOTAL(II(K13))
 DUDY = DUDY + NY(K1)*UTOTAL(II(K11))
 DVDY = DVDY + NY(K1)*UTOTAL(II(K12))
 DWDY = DWDY + NY(K1)*UTOTAL(II(K13))
 DUDZ = DUDZ + NZ(K1)*UTOTAL(II(K11))
 DVDZ = DVDZ + NZ(K1)*UTOTAL(II(K12))
 DWDZ = DWDZ + NZ(K1)*UTOTAL(II(K13))
 CONTINUE
```

        STRN( 1 ) = DUDX
        STRN( 2 ) = DVDY
        STRN( 3 ) = DWDZ
        STRN( 4 ) = DUDY + DVDX
        STRN( 5 ) = DWDY + DVDZ
        STRN( 6 ) = DWDX + DUDZ
    C
CALL MATMOD(ELNUM,ITYPE,MATNUM,INTGPN,IFLAG,IOUT,DETJAC,1)
CALL EQUILB(CST,NCB,NRB)
600 CONTINUE
C
3000 RETURN
C
C
C
C
C
ENTRY S3DNS (ELNUM,ITYPE,NNEL,NRB,NCB,NIP,MATNUM,IOUT)
C
DO 800 INTGPN = 1 , NIP
CALL JACB3D(INTGPN,ELNUM,NNEL,IERROR,DETJAC)
CALL B3DNS(NNEL)
CST = DETJAC*W( INTGPN )
STRN( 1 ) = DUDX + 0.5*(DUDX**2 + DVDX**2 + DWDX**2)
STRN( 2 ) = DVDY + 0.5*(DUDY**2 + DVDY**2 + DWDY**2)
STRN( 3) = DWDZ + 0.5*(DUDZ**2 + DVDZ**2 + DWDZ**2)
STRN( 4 ) = DUDY + DVDX + DUDX*DUDY + DVDX*DVDY + DWDX*DWDY
STRN( 5 ) = DWDY + DVDZ + DUDZ*DUDY + DVDZ*DVDY + DWDZ*DWDY
STRN( 6 ) = DWDX + DUDZ + DUDZ*DUDX + DVDZ*DVDX + DWDZ*DWDX
C
CALL MATMOD(ELNUM,ITYPE,MATNUM,INTGPN,IFLAG,IOUT,DETJAC,1)
CALL EQUILB(CST,NCB,NRB)
CONTINUE
C
4000 RETURN
END

```
```

@PROCESS DIRECTIVE('*VDIR:')
C

```

```

C
SUBROUTINE EQUILB(CST,NCB,NRB)
REAL*8 B,RE,STRESS,STRS,DS,CST,TEMP
COMMON/ASSEM2/II(60)
COMMON/ELSTR2/STRS(6)
COMMON/MAIN4/RE(8000)
COMMON/B1/B(6,60)
DIMENSION TEMP(60)
C
C*VDIR: ASSUME COUNT(16)
C*VDIR: IGNORE RECRDEPS
DO 200 K1 = 1 , NCB
TEMP( K1 ) = 0.
DO 100 K2 = 1 , NRB
100 TEMP( K1 ) = TEMP( K1 ) + B(K2 , K1)*STRS( K2 )
200 RE(II(K1)) = RE(II(K1)) + TEMP( K1 )*CST
C
RETURN
END

```
```

@PROCESS DIRECTIVE('*VDIR:')
C
C
SUBROUTINE CAUCHY(ELNUM,ITYPE,NNEL,NNDF,INTGPN,STRESS,CSTR)
IMPLICIT REAL*8 (A-H,O-Z)
REAL*8 NX,NY,NZ,JACMAT
INTEGER*4 ELNUM
COMMON/JACOB1/NX(20),NY(20),NZ(20)
COMMON/MAIN2/UTOTAL(8000)
COMMON/INPUT2/NOP(20,2000)
C
DIMENSION JACMAT (3,3),PIOLA(3,3),CAUCH(3,3),STRESS(6),CSTR(6)
c
C
DUDX = 0.
DUDY = 0.
DUDZ = 0.
DVDX = 0.
DVDY = 0.
DVDZ = 0.
DWDX = 0.
DWDY = 0.
DWDZ = 0.
C
IF (ITYPE.GT.300) THEN
CALL JACB3D(INTGPN,ELNUM,NNEL,IERROR,DETJAC)
C
C*VDIR: ASSUME COUNT(20)
DO 10 K1 = 1 , NNEL
K11 = NNDF*(NOP(K1 , ELNUM) - 1) + 1
K12 = K11 + 1
K13 = K11 + 2
DUDX = DUDX + NX( K1 )*UTOTAL( K11 )
DUDY = DUDY + NY( K1 )*UTOTAL( K11 )
DUDZ = DUDZ + NZ( K1 )*UTOTAL( K11 )
DVDX = DVDX + NX( K1 )*UTOTAL( K12 )
DVDY = DVDY + NY( K1 )*UTOTAL( K12 )
DVDZ = DVDZ + NZ( K1 )*UTOTAL( K12 )
DWDX = DHDX + NX( K1 )*UTOTAL( K13 )
DWDY = DHDY + NY( K1 )*UTOTAL( K13 )
DWDZ = DWDZ + NZ( K1 )*UTOTAL( K13 )
CONTINUE
10
C
PIOLA(1 , 1) = STRESS( 1 )
PIOLA(2 , 2) = STRESS( 2 )
PIOLA(3 , 3) = STRESS( 3)
PIOLA(1 , 2) = STRESS( 4 )
PIOLA(2 , 1) = STRESS( 4 )
PIOLA(1 , 3) = STRESS( 6 )
PIOLA(3, 1) = STRESS( 6 )
PIOLA(2, 3) = STRESS( 5 )

```
```

    PIOLA(3 , 2) = STRESS( 5 )
    ELSE
CALL JACB2D(INTGPN,ELNUM,NNEL,IERROR,DETJAC)
C
C*VDIR: ASSUME COUNT(8)
DO 20 K1 = 1 , NNEL
K11 = NNDF*(NOP(K1 , ELNUM) - 1) + 1
K12 = K11 + 1
DUDX = DUDX + NX( K1 )*UTOTAL( K11 )
DUDY = DUDY + NY( K1 )*UTOTAL( K11 )
DVDX = DVDX + NX( K1 )*UTOTAL( K12 )
DVDY = DVDY + NY( K1 )*UTOTAL( K12 )
CONTINUE
C
PIOLA(1 , 1) = STRESS( 1 )
PIOLA(2 , 2) = STRESS( 2)
PIOLA(1 , 2) = STRESS( 3)
PIOLA(2 , 1) = STRESS( 3 )
PIOLA(3 , 3) = STRESS( 4 )
PIOLA(1, 3) = 0.
PIOLA(2 , 3) = 0.
PIOLA(3 , 1) = 0.
PIOLA(3 , 2) = 0.
END IF
C
JACMAT(1 , 1) = 1. + DUDX
JACMAT(1 , 2) = DUDY
JACMAT(1 , 3) = DUDZ
JACMAT(2 , 1) = DVDX
JACMAT(2, 2) = 1. + DVDY
JACMAT(2 , 3) = DVDZ
JACMAT(3, 1) = DWDX
JACMAT (3 , 2) = DWDY
JACMAT(3 , 3) = 1. + DWDZ
C
DJAC = (1. + DUDX)*((1. + DVDY)*(1. + DWDZ) - DVDZ*DWDY)-
1 DUDY*(DVDX*(1. + DWDZ) - DVDZ*DWDX) +
2 DUDZ*(DVDX*DWDY - (1. + DVDY)*DWDX)
C
C*VDIR: PREFER SCALAR
DO 40 K1 = 1 , 3
C*VDIR: PREFER SCALAR
DO 40 K2 = 1 , K1
SUM = 0.
G*VDIR: PREFER SCALAR
DO 30 K3 = 1 , 3
C*VDIR: PREFER SCALAR
DO 30 K4 = 1 , 3
30 SUM = SUM + PIOLA(K3 , K4)*JACMAT(K1 , K3)*JACMAT(K2 , K4)
40 CAUCH(K1 , K2) = SUM/DJAC
C
IF (ITYPE.GT.300) THEN

```
```

    CSTR( 1 ) = CaUCH(1, 1)
    CSTR( 2 ) = CAUCH(2, 2)
    CSTR( 3) = CAUCH(3,3)
    CSTR(4)= CAUCH(2, 1)
    CSTR( 5 ) = CAUCH(3,2)
    CSTR( 6 ) = CAUCH(3,1)
    ELSE
CSTR( 1 ) = CAUCH(1 , 1)
CSTR( 2 ) = CAUCH(2 , 2)
CSTR( 3 ) = CAUCH(2, 1)
CSTR( 4 ) = CAUCH(3 , 3)
END IF
C
RETURN
END

```
```

@PROCESS DIRECTIVE('*VDIR:')
C

```

```

C
SUBROUTINE GLOBAL
C

```

```

C I I
C I SUBROUTINE GLOBAL IS USED TO MODIFY THE FINAL GLOBAL I
C I STIFFNESS MATRIX. THIS IS DONE IN ORDER TO SOLVE THE I
C I SET OF SIMULTINOUS EQUATIONS BY THE METHOD OF MODIFFICATION. I
C I THIS SUBROUTINE IS DESIGED FOR MODIFICATION OF BANDED I
C I NONSYMETRIC MATRICES IN THEIR CONDENSED FORM. I
C I I
C I I
C =^=^=====================================================================
C
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION IDOF( 1 )
C
C
C ENTRY G L O B 1
C
ENTRY GLOB1(NNODES,NNDF,NTDF,IDOF)
C
MDOF = NNDF*NNODES
ICOUNT = 0
C
C*VDIR: PREFER SCALAR
DO 40 ID = 1 , MDOF
IF (IDOF( ID ).EQ.0) THEN
ICOUNT = ICOUNT + 1
IDOF( ID ) = ICOUNT
ELSE IF (IDOF( ID ).GT.0) THEN
IDOF( ID ) = 0
END IF
40 CONTINUE
NTDF = ICOUNT
C
RETURN
C
C
C
C
ENTRY GLOB2(NNODES,NNDF,NTDF,IDOF)
C
MDOF = NNDF*NNODES
ICOUNT = 0
C
C*VDIR: PREFER SCALAR
DO 50 ID = 1 , MDOF
IF (IDOF( ID ).GT.0) THEN

```
ICOUNT \(=\) ICOUNT +1\(\operatorname{IDOF}(\operatorname{ID})=\) ICOUNT
 END IF
 50 CONTINUE
 NTDF = ICOUNT
C
 RETURN
 END

C
```

```
MAXDOF = 0
```

```
MAXDOF = 0
MINDOF = 1000000
MINDOF = 1000000
DO 20 NODE = 1 , NNEL
DO 20 NODE = 1 , NNEL
DO 20 IDIR = 1 , NNDF
DO 20 IDIR = 1 , NNDF
K = NNDF*(NOP(NODE , ELNUM) - 1) + IDIR
K = NNDF*(NOP(NODE , ELNUM) - 1) + IDIR
IF(IDOF(K))20,20,10
IF(IDOF(K))20,20,10
MAXDOF = MAXO(MAXDOF , IDOF(K))
MAXDOF = MAXO(MAXDOF , IDOF(K))
MINDOF = MINO(MINDOF , IDOF(K))
MINDOF = MINO(MINDOF , IDOF(K))
CONTINUE
CONTINUE
 AT THIS POINT THE HIGHT OF EACH COLUMN IS STORED IN JDIAG
 AT THIS POINT THE HIGHT OF EACH COLUMN IS STORED IN JDIAG
 DO 26 NODE = 1 , NNEL
 DO 26 NODE = 1 , NNEL
 DO 26 IDIR = 1 , NNDF
 DO 26 IDIR = 1 , NNDF
 ID = NNDF*(NOP(NODE , ELNUM) - 1) + IDIR
 ID = NNDF*(NOP(NODE , ELNUM) - 1) + IDIR
 ID = IDOF(ID)
 ID = IDOF(ID)
 IF (ID)26, 26, 25
 IF (ID)26, 26, 25
 MHT = ID - MINDOF + 1
 MHT = ID - MINDOF + 1
 IF(MHT.GT.JDIAG(ID)) JDIAG(ID) = MHT
 IF(MHT.GT.JDIAG(ID)) JDIAG(ID) = MHT
 CONTINUE
 CONTINUE
 FIND THE BANDWIDTH AND THE AVERAGE BANDWIDTH
 FIND THE BANDWIDTH AND THE AVERAGE BANDWIDTH
 MBN = MAXDOF - MINDOF
 MBN = MAXDOF - MINDOF
 MBAND = MAXO (MBAND , MBN)
 MBAND = MAXO (MBAND , MBN)
 MBAV = MBAV + MBAND
 MBAV = MBAV + MBAND
 CONTINUE
 CONTINUE
 MBAV = MBAV/NELEM + 1
 MBAV = MBAV/NELEM + 1
MBAND = MBAND + 1
MBAND = MBAND + 1
 LOCATION OF EACH DIAGNAL TERM WILL NOW BE STORED IN JDIAG
 LOCATION OF EACH DIAGNAL TERM WILL NOW BE STORED IN JDIAG
 IF (IFLAG2.EQ.0) THEN
 IF (IFLAG2.EQ.0) THEN
 MHT = 1
 MHT = 1
 ID = 0
 ID = 0
 DO 40 K = 1 , NTDF+1
 DO 40 K = 1 , NTDF+1
 ID = ID + MHT
 ID = ID + MHT
 MHT = JDIAG(K)
 MHT = JDIAG(K)
 JDIAG(K) = ID
 JDIAG(K) = ID
 NTSK = JDIAG(NTDF+1) - JDIAG(1)
 NTSK = JDIAG(NTDF+1) - JDIAG(1)
 ELSE
 ELSE
 ID = 0
 ID = 0
 DO 50 K = 1 , NTDF
 DO 50 K = 1 , NTDF
 ID = ID + JDIAG(K)
 ID = ID + JDIAG(K)
 JDIAG(K) = ID
 JDIAG(K) = ID
 NTSK = 2*JDIAG(NTDF)
 NTSK = 2*JDIAG(NTDF)
END IF
```

```
END IF
```

```
```

    NTSK = NUMBER OF TERMS IN THE GLOBAL STIFFNESS MATRIX "SKG"
    ```

WRITE(IOUT, 100)NTDF,MBAND,MBAV,NTSK
100 FORMAT \(\left(/ / 1 X,{ }^{\prime}\right.\) NUMBER OF EQUATIONS \(=1, I 8 / 1 X,{ }^{\prime}\) HALF BANDWIDTH = ', 1 I8/1X,'AVERAGE BANDWIDTH \(=\) ', I8/1X,'SIZE OF THE STIFFNESS MATRIX' \(2, '=1,18)\) RETURN
END
```

@PROCESS DIREGTIVE('\#VDIR:')
C
C =====ニ================= C 0 0 R D ====================================
C
SUBROUTINE COORD
IMPLICIT REAL*8 (A-H,O-Z)
REAL*4 X,Y,Z
REAL*8 N,NXI,NETA,NSI
INTEGER ELNUM
COMMON/MAIN2/UTOTAL(8000)
COMMON/INPUT2/NOP(20,2000)
COMMON/INPUT3/X(4000),Y(4000),Z(4000)
COMMON/ISHAP1/N(20,27),NXI(20,27),NETA(20,27),NSI (20, 27)
DIMENSION U( 3 )
C
C ENTRY COORD1
C
ENTRY COORD1(ELNUM,NNEL,INTGPN,X1,Y1,Z1)
X1 = 0.
Y1 = 0.
z1 = 0.
C*VDIR: ASSUME COUNT(8)
DO 100 K = 1 , NNEL
X1 = X1 + N(K , INTGPN)*X(NOP(K , ELNUM))
Y1 = Y1 + N(K , INTGPN)*Y(NOP(K , ELNUM))
100 Z1 = Z1 + N(K , INTGPN)*Z(NOP(K , ELNUM))
C
RETURN
C
C ENTRY COORD2
C
ENTRY COORD2(ELNUM,NNEL,INTGPN,NNDF,UXIP,UYIP,UZIP)
U( 1 ) = 0.
U( 2) = 0.
U( 3) = 0.
C
DO 200 K = 1 , NNEL
C
DO 200 ID = 1 , NNDF
K1 = NNDF*(NOP(K , ELNUM) - 1) + ID
U( ID ) = U( ID ) + N(K , INTGPN)*UTOTAL( K1 )
200 CONTINUE
UXIP = U( 1 )
UYIP = U( 2 )
UZIP = U( 3 )
RETURN
END

```
```

@PROCESS DIRECTIVE('tVDIR:')
C

```

```

C
SUBROUTINE MATMOD(ELNUM,ITYPE,MATNUM,INTGPN,IFLAG,IOUT,DETJAC,
\#
IMPLICIT REAI*8
INTEGER ELNUM
COMMON/INPUTF/MATYPE(10)
C
I = MATYPE( MATNUM )
IF (I.EQ.1) THEN
CALL ELAST(ITYPE,MATNUM,IFLAG,IOUT,ICODE)
ELSE IF(I.EQ.2) THEN
CALL PLASTN(ELNUM,ITYPE,MATNUM,INTGPN,IFLAG,IOUT,DETJAC,
\#
ELSE IF(I.EQ.3) THEN
CALL PLASTL(ELNUM,ITYPE,MATNUM,INTGPN,IFLAG,IOUT,DETJAC,
\#
ELSE
WRITE (IOUT , 100) I
STOP
END IF
C
RETURN
100 FORMAT (/1X,'INVALID MATERIAL TYPE(',I3,') SPECIFIED')
END

```

\section*{APPENDIX B}

SOLVER MODULE
```

C

```

```

C
SUBROUTINE SOLVE1(A,C,B,JDIAG,NEQ,AFAC,BACK)
C

```

```

C I
CI PROGRAM:
C I I
C I Program 'SOLVE1' IS USED TO SOLVE A SERIES OF bANDED I
C I NONSYMETRIC LINEAR EQUATIONS USING THE GAUSS ELIMINATION/BACK I
C I SUBSTITUTION WITH NO COLUMN PIVOTING. I
C I I
C I STORAGE: COEFICIANT MATRIX SHOULD BE STORED IN TWO ONE I
C I DIMENSIONAL ARRAYS USING THE SKYLINE OR THE I
C I PROFILE METHOD I
C I A( K ) = UPPER TRIANGULAR MATRIX I
C I C( K ) = LOWER TRIANGULAR MATRIC I
C I B( K ) = RIGHT HAND SIDE VECTOR ON CALL I
C I = VECTOR OF UNKNOWNS ON RETURN I
C I I
C I LAST UPDATE: 12-30-1988 I
C I BY: M. FOROOZESH I
C I I
C =========================================================================
C
IMPLICIT REAL*8 (A-H,O-Z)
LOGICAL AFAC,BACK
DIMENSION A( 1 ),C( 1 ),B( 1 ),JDIAG( 1 )
C
C FACTOR A TO UT*D*U, REDUCE B TO Y
C
JR=0
DO 300 J = 1 , NEQ
JD = JDIAG( J )
JH = JD - JR
IF (JH.LE.1) GO TO 300
IS = J + 1 - JH
IE = J - 1
IF (.NOT.AFAC) GO TO 250
K = JR + 1
ID = 0
C
C REDUCE ALL EQUATIONS EXCEPT DIAGNAL
C
DO 200 I = IS , IE
IR = ID

```
```

    ID = JDIAG( I )
    IH = MINO(ID-IR-I , I - IS)
    IF (IH.EQ.0) GO TO }15
    A( K ) = A( K ) - DOTPRO(A( K-IH ),C( ID-IH ),IH)
    C( K ) = C( K ) - DOTPRO(C( K-IH ),A( ID-IH ),IH)
    150 IF (A(ID).NE.0.0) C( K ) = C( K )/A( ID )
    200 K = K + 1
    C
C
C
A( JD ) = A( JD ) - DOTPRO(A( JR+1 ),C( JR+1 ),JH-1)
C
C
C
250 IF ( BACK ) B( J ) = B( J ) - DOTPRO(C( JR+1 ),B( IS ),JH-1)
300 JR = JD
IF(.NOT.BACK) RETURN
C
C BACK SUBSTITUTION
C
J = NEQ
JD = JDIAG( J )
500 IF (A( JD ).NE.0.0) B( J ) = B( J )/A( JD )
D = B( J )
J = J - 1
IF (J.LE.O) RETURN
JR = JDIAG( J )
IF (JD-JR.LE.1) GO TO 700
IS = J - JD + JR + 2
K = JR - IS + 1
DO 600 I = IS , J
600 B(I ) = B(I) - A( I+K )*D
700 JD = JR
GO TO 500
END
C
C
FUNCTION DOTPRO(A,B,N)
REAL*8 A,B,DOTPRO,TEMP
DIMENSION A( 1 ) , B( 1 )
TEMP = 0.0
DO 100 I = 1 ,N
100 TEMP = TEMP + A( I )*B( I )
DOTPRO = TEMP
C
RETURN
END

```
```

C
C ========================== S O L V E 2 =================================
C
SUBROUTINE SOLVE2(A,R,JDIAG,NEQU,KKK,IOUT)
C

```

```

C I I
C I THIS PROGRAM IS USED TO SOLVE FINITE ELEMENT STATIC EQUILIB. I
C I EQUATIONS IN CORE, USING COMPACTED STORAGE AND COLUMN REDUCTON I
C I SCHEME I
C I I
C
C
IMPLICIT REAL*8(A-H,O-Z)
DIMENSION A( 1 ), JDIAG( 1 ), R( 1 )
C
C PERFORM L*D*L FACTORIZATION OF THE STIFFNESS MATRIX
C
IF (KKK - 2) 40, 150, 150
40 DO 140 N = 1 , NEQU
KN = JDIAG( N )
KL = KN + 1
KU = JDIAG(N+1) - 1
KH = KU - KL
IF (KH) 110,90,50
50 K = N - KH
IC = 0
KLT = KU
DO 80 J = 1 , KH
IC = IC + I
KLT = KLT - 1
KI = JDIAG( K )
ND = JDIAG( K + 1 ) - KI - 1
IF (ND) 80, 80,60
60 KK = MINO(IC,ND)
C = 0.
DO 70 L = 1 , KK
70 C = C + A(KI + L)*A(KLT + L)
A( KLT ) = A( KLT ) - C
80 K = K + 1
90 K = N
B = 0.
DO 100 KK = KL , KU
K = K - 1
KI = JDIAG( K )
C = A( KK )/ A( KI )
B = B + C*A( KK )
100 A( KK ) = C
A( KN ) = A( KN ) - B
110 IF (A( KN )) 120,120, 140
120 WRITE(IOUT , 2000) N , A( KN )
STOP

```
```

    140 CONTINUE
        RETURN
    C
    C REDUCE THE RIGHT-HAND-SIDE LOAD VECTOR
    C
    150 DO 180 N = 1 , NEQU
    KL = JDIAG(N) + 1
    KU = JDIAG( N + 1) - 1
    IF(KU-KL) 180 , 160 , 160
    160 K = N
        C = 0.
        DO 170 KK = KL , KU
        K = K - 1
    170 C = C + A( KK )*R( K )
    R(N ) = R(N ) - C
    180 CONTINUE
    C
C BACK-SUBSTITUTE
C
DO 200 N = 1 , NEQU
K = JDIAG( N )
200 R( N ) = R( N )/ A( K )
C
IF (NEQU.EQ.1) RETURN
N = NEQU
DO 230 L = 2 , NEQU
KL = JDIAG( N ) + 1
KU = JDIAG( N + 1 ) - 1
IF ( KU - KL ) 230 , 210 , 210
210 K = N
DO 220 KK = KL , KU
K = K - 1
220 R( K ) = R( K ) - A( KK )*R( N )
230 N = N - 1
RETURN
2000 FORMAT(//1X,'STOP - STIFFNESS MATRIX NOT POSITIVE DEFINITE '//
1 1X,' NONPOSITIVE PIVOT FOR EQUATION ',I4//lX,'PIVOT = ',E2O.12)
END

```

\section*{APPENDIX C}

PLASTICITY MODULE
```

    SUBROUTINE PLAST(ELNUM,ITYPE,MATNUM,INTGPN,IFLAG,IOUT,ICODE)
    C

```

```

C I
CI PROGRAM:
C I I I
C I 'PLAST' IS ENTRANCE POINT TO THE PLASTICITY MODULE. I
C I DEPENDING ON THE VALUE OF "ICODE" THIS ROUTINE PERFORMS I
C I THE FOLLOWING FUNCTIONS. I
C I I
C I 1) ICODE = 1; CALLS SUBROUTINE 'MISES1' FOR EVALUATION I
C I 1) ICODE = 1; CALLS SUBROUTINE 'MISES1' FOR EVALUATION II
C I OF THE ELASTO-PLASTIC STIFFNESS TENSOR. I
C I 2) ICODE = 2; CALLS SUBROUTINE 'MISES2' FOR EVALUATION I
C I OF THE STRESSES, PLASTIC STRAINS, ETC. I
C I I
CI ARGUMENT LISTS: I
C I I
C I ELNUM = ELEMENT NUMBER I
C I ITYPE = ELEMENT TYPE I
C I MATNUM = MATERIAL NUMBER I
C I INTGPN = INTEGRATION POINT NUMBER I
C I IFLAG = ANALYSIS TYPE CODE I
C I 1; PLANE STRESS I
C I 2; PLANE STRAIN I
C I 3; AXISYMMETRIC I
C I IOUT = OUTPUT DEVICE NUMBER I
C I ICODE = TASK DEFINITION CODE AS DEFINED ABOVE. I
C I I

```

```

INTEGER ELNUM
C
IF(ITYPE.GT.300) THEN
IEND $=6$
ELSE
IEND $=4$
END IF
C
IF (ICODE.EQ.0) THEN
CALL MISES 1 (ELNUM, ITYPE, MATNUM, INTGPN,IFLAG,IOUT,IEND)
ELSE
CALL MISES2(ELNUM,ITYPE,MATNUM,INTGPN,IFLAG,IOUT,IEND)
END IF
RETURN
END

```
```

C

```

```

C
SUBROUTINE MISES
C

```

```

C I
I
CI PROGRAM: I
C I I
C I 'MISES' IS THE CONTROL UNIT FOR: I
C I I
C I 1) EVALUATION OF THE STRESS-STRAIN STIFFNESS MATRIX
I
C I 2) CALCULATION OF THE STRESSES, PLASTIC STRAINS, I
C I PLASTIC WORK, AND THE SHIFT STRESS TENSOR. I
C I
CI ENTRY POINTS: I
I
C I I
C I MISES1: EVALUATES THE STRESS-STRAIN STIFFNESS MATRIX I
C I MISES2: EVALUATES THE STRESSES, STRAINS, ETC. I
C I
C
C I I
C I ELNUM = ELEMENT NUMBER I
C I ITYPE = ELEMENT TYPE I
C I MATNUM = MATERIAL NUMBER I
C I INTGPN = INTEGRATION POINT NUMBER I
C I IFLAG = ANALYSIS TYPE CODE I
C I 1; PLANE STRESS I
C I 2; PLANE STRAIN I
C I 3; AXISYMMETRIC I
C IOUT = OUTPUT DEVICE NUMBER I
C I IEND = 4; PLANE STRESS, PLANE STRAIN AND AXISYMMETRIC I
C I = 6; 3-D I
C I I
C I I
C
IMPLICIT REAL*8(A-H,O-Z)
REAL*8 NUX,NUY,NUZ
CHARACTER`1 IYIELD,IY
INTEGER ELNUM
COMMON/MEMO/MATAD,MATDE
COMMON/TEMP/PRESS, PLWORK
COMMON/ISHAP2/W(27)
COMMON/DEVICE/LDEV1,LDEV2,LDEV3,LDEV4,LDEV5,LDKEEP,IDEV,LDEVST
COMMON/UTIL1/STRESS(6),STRAIN(6),STRELA(6),CENTER(6),WORK,IYIELD
COMMON/CONTR1/INCREM,NIT
COMMON/ELSTR1/STRN(6)
COMMON/ELSTR2/STRS(6)
COMMON/ADMAT 1/AD(9,9)
COMMON/PLAST / /IYIEL(2000)
COMMON/FDER1/FJ,FK,FS(9),FE(9),FZ(9)

```
```

    COMMON/MATER1/DEP(6,6)
    COMMON/ELPLD1/DEPM(9,9),ALAM (9),AMU(9)
    COMMON/INPUT8/NNODES,NELEM,NNDF,NLINC ,MNIT,IFLAG1,IFLAG2,IDIM,
    1 NINODE
    COMMON/INPUT5/NUX(10),NUY(10),NUZ(10),EX(10),EY(10),EZ(10),P1X(10
    I
    DIMENSION SO(9),C(9),Z(9),RR(9),E(9),DEL(9),ED(9),
    1 EDOT(9),SF(9),EDOTEL(9),EDOTPL(9),DELAS(6),DE(6),SDOT(9
    C
DATA DEL/1.,0.,0.,0.,1.,0.,0.,0.,1./
C
C
C
C
C
C
C
IYIELD = ' '
IF (INCREM.GT.1) THEN
CALL IOGET(LDEV,201,'(A201)',6)
CALL IOBKS(LDEV)
END IF
C
IF (IYIELD.EQ.'Y') THEN
C
C --- CALCULATION OF THE USEFUL MATRICES
C
CALL TENSOR(ITYPE,STRESS,S0,1.)
CALL TENSOR(ITYPE,STRAIN,E,0.5)
CALL TENSOR(ITYPE,CENTER,Z,1.)
DO 200 K1 = 1 , 9
200 C( K1 ) = 2.*E( K1 ) + DEL( K1 )
C
C --- GET THE MATERIAL PARAMETERS
C
C3 = P1Y( MATNUM )
SY = P12( MATNUM )
BETA = P1X( MATNUM )
YOUNG = EX( MATNUM )
POISS = NUX( MATNUM )
C
C --- CALCULATION OF THE FOURTH ORDER ELASTIC STIFFNESS MATRIX
C
IF (MATNUM.NE.MATAD) THEN
CALL ADMAT(YOUNG,POISS)
MATAD = MATNUM
END IF
C
C --- CALCULATION OF THE JACOBIAN OF DEFORMATION
C
CALL DEFJAC(E,DEL,RR,DJAC)

```
```

C
C --- CALCULATION OF THE YIELD FUNCTION
C
CALL YIELD(SO,C,Z,WORK,DJAC,C3,SY,F,F1,F2)
C
C --- CALCULATION OF THE PARTIAL DERIVATIVE OF THE YIELD FUNCTION
C --- F WITH RESPECT TO THE <STRESS>,<STRAIN>, THE JACOBIAN.
C
CALL FDER(S0,C,Z,DJAC,F1,F2,C3)
C
C --- CALCULATION OF THE ELASTOPLASTIC STIFFNESS MATRIX
C
CALL ELPLD(SO,Z,RR,DJAC,BETA,DEN,0)
C
C --- CONVERTION OF THE FORTH ORDER STIFFNESS TENSOR TO A SECOND
C --- ORDER TENSOR
C
CALL CONVER(DEPM,DEP,IFLAG,ITYPE)
ELSE
CALL DELAST(ITYPE,MATNUM,IFLAG)
END IF
RETURN
C
C
C
C
C ENTRY MISES2
C
ENTRY MISES2(ELNUM,ITYPE,MATNUM,INTGPN,IFLAG,IOUT,IEND)
C
FACTOR = 1.
FACSUM = 0.
C
IF (INCREM.GT.1) THEN
CALL IOGET(LDEV1,201,'(A201)',6)
ELSE
DO 10 K1 = 1, IEND
STRAIN( K1 ) = 0.
STRESS( K1 ) = 0.
CENTER( K1 ) = 0.
STRELA( K1 ) = 0.
WORK = 0.
END IF
C
C --- CALCULATION OF THE STRAIN INCREMENT
C
DO 20 K1 = 1 , IEND
20 DE( K1 ) = STRN( K1 ) - STRAIN( K1 )
C
C --- CALCULATION OF THE USEFULL TENSORS
C
CALL TENSOR(ITYPE,STRESS,S0,1.)

```
```

    CALL TENSOR(ITYPE,STRAIN,E,0.5)
    CALL TENSOR(ITYPE,DE,ED,0.5)
    CALL TENSOR(ITYPE,CENTER,Z,1.)
    C
C --- get the material parameters
C
C3 = P1Y( MATNUM )
SY = P1Z( MATNUM )
BETA = P1X( MATNUM )
YOUNG = EX( MATNUM )
POISS = NUX( MATNUM )
C
C --- CALCULATION OF THE FOURTH ORDER ELASTIC STIFFNESS MATRIX
C
IF (MATNUM.NE.MATAD) THEN
CALL ADMAT(YOUNG,POISS)
MATAD = MATNUM
END IF
C
DO 50 K1 = 1 , 9
C( K1 ) = 2.*E( K1 ) + DEL( K1 )
CST = 0.
DO 40 K2 = 1 , 9
40 CST = CST + AD(K1 , K2)*ED( K2 )
50 SDOT( K1 ) = CST
C
C --- CALCULATION OF THE JACOBIAN OF DEFORMATION
C
34 CALL DEFJAC(E,DEL,RR,DJAC)
C
C --- START OF THE INCREMENTATION LOOP
C --- CALCULATION OF THE TRIAL ELASTIC STRESS
C
DO 35 K1 = 1 , 9
35 SF( K1 ) = S0( K1 ) + SDOT( K1 )
C
C --- CALCULATION OF THE YIELD FUNCTION FOR THE TRIAL ELASTIC STRESS
C
CALL YIELD(SF,C,Z,WORK,DJAC,C3,SY,F,F1,F2)
C
IF (F.LE.O.) THEN
FACSUM = FACSUM + FACTOR
DO 60 K1 = 1 , IEND
STRELA( K1 ) = STRELA( K1 ) + DE( K1 )*FACTOR
C
DO 65 K1 = 1 , 9
E( K1 ) = E( K1 ) + EDOT( K1 )
C( K1 ) = 2.*E( KI ) + DEL( K1 )
SO( K1 ) = SF( K1 )
IYIELD = ' '
C
ELSE IF(F.GT.O.) THEN

```
```

    IF(FACTOR.EQ.1.) THEN
    FACTOR = 1.0D-2
    ```
END IF
```

IF (FACSUM.LT.1.) GO TO 34

```C
```

C

```C
```

115 IF (IYIELD.EQ.'Y') THEN

```ITEMP = IBSET(IYIEL( ELNUM ) , INTGPN)IYIEL ( ELNUM ) = ITEMP
```

ELSE

```
 ITEMP = IBCLR(IYIEL(ELNUM) , INTGPN)
 IYIEL(ELNUM) = ITEMP
 END IF
C
 DO 120 K1 = 1 , IEND
 120 STRAIN(K1) = STRN(K1)
C
 CALL VECTOR(ITYPE,SO,STRS,1.)
 CALL VECTOR(ITYPE,SO,STRESS,1.)
 IF (ELNUM.EQ.2.AND.INTGPN.EQ.1) PRESS = STRESS(2)
 CALL VECTOR(ITYPE,Z,CENTER,1.)
 CALL IOPUT(LDEV2,201,'(A201)',6)
C
 RETURN
 END
```

```
C
```



```
C
 SUBROUTINE TENSOR(ITYPE,VECT,TENS,FACT)
C
C ===
C I I
CI PROGRAM: I
C I I
C I TENSOR CALCULATES MATRICES WHICH ARE COMMON IN I
C I MOST OF THE SUBROUTINES THAT CONSTITUTE THE PLASTICITY I
C I FORMULATIONS. I
C I I I
CI ARGUMENT LIST: I
C I I
C I ITYPE = ELEMENT TYPE I
C I VECT(I) = VECTOR TO BE CONVERTED TO A TENSOR I
C I TENS(I,J) = TENSOR EQUIVALENT OF VECT(I) I
C I FACT = FACTOR TO BE MULTIPLIES WITH THE I
C I NON-DIAGONAL TERMS OF TENSOR I
C I I
C
 REAL*8 VECT,TENS
 DIMENSION VECT(6),TENS(9)
C
 TENS(1) = VECT(1)
 TENS(5) = VECT(2)
C
 IF (ITYPE.LT.300) THEN
 TENS(9) = VECT(4)
 TENS(4) = VECT(3)*FACT
 TENS(2) = TENS(4)
 TENS(7) = 0.
 TENS(3) = 0.
 TENS(8) = 0.
 TENS(6) = 0.
 ELSE
 TENS(9) = VECT(3)
 TENS(4) = VECT(4)*FACT
 TENS(2) = TENS(4)
 TENS(7) = VECT(6)*FACT
 TENS(3) = TENS(7)
 TENS(8) = VECT(5)*FACT
 TENS(6) = TENS(8)
 END IF
C
 RETURN
 END
```

```
C
C ========================= V E C T 0 R ===============================
C
 SUBROUTINE VECTOR(ITYPE,TENS,VECT,FACT)
C
```



```
C I I
C I PROGRAM: I
C I I
C I VECTOR CALCULATES MATRICES WHICH ARE COMMON IN I
C I MOST OF THE SUBROUTINES THAT CONSTITUTE THE PLASTICITY I
C I FORMULATIONS. I
C I . I
CI ARGUMENT LIST: I
C I I
C I ITYPE = ELEMENT TYPE I
C I TENS(I,J) = TENSOR TO BE CONVERTED TO A VECTOR I
C I VECT(I) = VECTOR EQUIVALENT OT TENS(I , J) I
C I FACT = FACTOR TO BE MULTIPLIES WITH THE I
C I NON-DIAGONAL TERMS OF TENSOR I
C I I
C ユ==ニ===========ニ==1
C
REAL*8 VECT,TENS
DIMENSION VECT(6),TENS(3,3)
C
VECT(1) = TENS(1 , 1)
VECT(2) = TENS(2, 2)
C
 IF (ITYPE.LT.300) THEN
 VECT(4) = TENS(3 , 3)
 VECT(3) = TENS(1 , 2)*FACT
ELSE
 VECT(3) = TENS(3 , 3)
 VECT(4) = TENS(1 , 2)*FACT
 VECT(6) = TENS(1 , 3)*FACT
 VECT(5) = TENS(2 , 3)*FACT
 END IF
C
RETURN
END
```

```
C
C =============n========= A D M A T ==n==================================
C
 SUBROUTINE ADMAT(YOUNG,POISS)
C
```



```
C I I
CI PROGRAM: I
C I I
C I 'ADMAT' CALCULATES THE FOURTH ORDER ELASTIC STRESS-STRAIN I
C I TENSOR. I
C I I
CI ARGUMENT LIST: I
C I I
C I YOUNG = YOUNG'S MODULUS I
C I POISS = POISSONS RATIO I
C I I
C ===
C
 IMPLICIT REAL*8 (A-H,O-Z)
 COMMON/ADMAT1/AD(3,3,3,3)
C
C --- alam = the lamdA Lame conSTANT
C --- AMUE = THE MU LAME CONSTANT (THE SHEAR MODULUS G)
C
 ALAM = POISS*YOUNG/(1. + POISS)/(1. - 2.*POISS)
 AMUE = YOUNG/2./(1. + POISS)
C
 AD(1, 1, 1, 1) = ALAM + 2.*AMUE
 AD(1, 1,2,2) = ALAM
 AD(1, 1, 3,3)= ALAM
 AD(2, 2, 1, 1) = ALAM
 AD(2,2,2,2) = ALAM + 2.*AMUE
 AD(2, 2, 3,3) = ALAM
 AD(3,3,1,1) = ALAM
 AD(3, 3,2,2) = ALAM
 AD(3,3,3,3) = ALAM + 2.*AMUE
 AD(1, 2, 1, 2) = AMUE
 AD(2, 1, 2, 1) = AMUE
 AD(1, 3,1,3)= AMUE
 AD(3,1,3,1) = AMUE
 AD(2,3,2,3)= AMUE
 AD(3,2,3,2) = AMUE
 AD(1, 2, 2, 1) = AMUE
 AD(2, 1, 1, 2) = AMUE
 AD(1, 3, 3,1) = AMUE
 AD(3,1,1,3)= AMUE
 AD(2, 3, 3, 2) = AMUE
 AD(3,2,2,3)= AMUE
C
 RETURN
 END
```

```
C
C ========================= D E F J A C ================================
C
 SUBROUTINE DEFJAC(E,DEL,RR,DJAC)
C
```



```
C II
```

CI PROGRAM: ..... I
C I ..... I
C I 'dEFJAC' PERFORMS THE FOLLOWING FUNCTIONS: ..... I
C I ..... I

1) EVALUATION OF THE DEFORMATION JACOBIAN C I ..... I
C I 2) EVALUATION OF THE MATRIX <RR> WHICH WHEN MULTIPLIED WITH ..... I
C I STRAIN INCREMENT TENSOR YIELDS THE RATE OF CHANGE OF ..... I
C I THE DETERMINANT OF JACOBIAN. ..... I
C ..... I
CI ARGUMENT LIST: ..... I
C ..... I
C I E(I,J) = LAGRANGIAN STRAIN TENSOR ..... I
C I DELTA = KRONECKER DELTA ..... I
C I RR(I,J) = THIS MATRIX WHEN DOTED WITH THE STRAIN ..... I
C I TENSOR WILL RESULT THE INCREMENT OF THE ..... I
C I JACOBIAN. ..... I
C I DJAC = DETERMINANT OF DEFORMATION JACOBIAN ..... I
C I ..... I
c
IMPLICIT REAL*8 ( $\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}$ )
DIMENSION E (3, 3), $\operatorname{DEL}(3,3), \operatorname{RR}(3,3)$
C --- EINV1 = FIRST STRAIN INVARIANT
```C --- EINV2 \(=\) SECOND STRAIN INVARIANTC --- EINV3 = THIRD STRAIN INVARIANT
```

EINVI $=0.0$
EINV2 $=0.0$
EINV3 $=0.0$

```
C
Do \(10 \mathrm{K1}=1\), 3
```

EINV1 = EINV1+E(K1 , ..... K1)
DO $10 \mathrm{~K} 2=1,3$
EINV2 $=$ EINV2+E(K1 , ..... K2) ${ }^{*}{ }^{2}$
DO $10 \mathrm{~K} 3=1$, 3
10 EINV $3=\operatorname{EINV} 3+E(K 1$ ..... $\mathrm{K} 2) * \mathrm{E}(\mathrm{K} 2, \mathrm{~K} 3) * \mathrm{E}(\mathrm{K} 3, \mathrm{~K} 1)$
EINV2 = 0.5*EINV2
EINV3 = 0.33333333333333333D0*EINV3
C
C --- CALCULATION OF THE DETERMINANT OF THE DEFORMATION JACOBIAN
C
C23 = 0.66666666666666666D0
DJAC1=1.+2.*EINV1*(1.+EINV1+C23*EINV1**2)-4.*EINV2*(1.+2.*EINV1)

```
```

        #+8.*EINV3
        DJAC = DJAC1%*(0.5)
    C
C --- CALCULATION OF THE MATRIX <RR>
C
DO 30 K1 = 1 , 3
DO 30 K2 = 1 , K1
CST1 = 0.
DO 20 K3 = 1 , 3
20 CST1 = CST1+E(K1 , K3)*E(K3 , K2)
DELTA = DEL(K1 , K2)
RR(K1 , K2) = 2.*(DELTA*(EINV1-2.*EINV2+EINV1**2)-(1.+2.*EINV1)*
\#\#E(K1 , K2)+2.*CST1+0.5*DELTA)/DJAC
RR(K2 , K1) = RR(K1 , K2)
30 CONTINUE
RETURN
END

```
```

C

```

```

    SUBROUTINE YIELD(S,C,Z,WORK,DJAC,C3,SY,F,F1,F2)
    C

```

```

C I I
CI PROGRAM: I
C I I
C I 'YIELD' CALCULATES THE VALUE OF THE YIELD FUNCTION. I
C I THE PROGRAMMED YIELD FUNCTION IS AN EXTENDED FORM OF THE I
C I MISES YIELD CRITERION. THIS YIELD FUNCTION IS THE I
C I EQUIVALENT LAGRANGIAN FORMULATION OF THE EULERIAN VON MISES I
C I TYPE YIELD CRITERION. I
C I I
C I THE YIELD FUNCTION HAS THE FOLLOWING FORM: I
C I I
CI F = F1 + F2 + C3'FF3-SY社2 I
C I C3 IS THE ISOTROPIC WORK HAPDENTNG COEFFICIENT I
C I C3 IS THE ISOTROPIC WORK HARDENING COEFFICIENT ISNST(3) I
C I SY IS THE YIELD STRESS IN SIMPLE TENSION TEST/SQRT(3) I
C I F1 IS THE PART WHICH ACCOUNTS FOR ISOTROPIC HARDENING.I
C I F2 IS THE PART WHICH ACCOUNTS FOR THE KINEMATIC WORK I
C I HARDENING. I
C I F3 IS THE NEGATIVE OF THE PLASTIC WORK. I
C I I
CI ARGUMENT L I ST:
C I I I
C I S(I,J) = SECOND PIOLA KIRCHOFF STRESS TENSOR I
C I C(I,J) = GREEN'S TENSOR
C I Z(I,J) = SHIFT STRESS TENSOR I
C I WORK = PLASTIC WORK
C I DJAC = DETERMINANT OF DEFORMATION JACOBIAN I
C I C3 = MATERIAL PARAMETER FOR ISOTROPIC HARDENING I
C I SY = INITIAL YIELD STRESS DIVIDED BY SQUARE ROOT OF 3 I
C I F = VALUE OF THE YIELD FUNCTION I
C I F1 = VALUE OF THE F1 PART OF THE YIELD FUNCTION I
C F2 = VALUE OF F2 PART OF THE YIELD FUNCTION I
C I I

```

```

C
IMPLICIT REAL*8 (A-H,0-Z)
COMMON/PLAST3/TEMP1(3,3),TEMP2(3,3),CST1,CST2
DIMENSION S(3,3),C(3,3),Z(3,3)
DATA C12,C13,C16/O.5DO,0.3333333333333333DO,0.16666666666666666DO/
C
DJACO = 1./DJAC=*2
CST1 = 0.
CST2 = 0.
CST3 = 0.
CST4 = 0.
CST5 = 0.

```
 CST5 \(=\) CST5 \(+\mathrm{Z}(\mathrm{K} 1, \mathrm{~K} 2) *\) CONST2
 \(\operatorname{TEMP1}(\mathrm{K} 1, \mathrm{~K} 2)=\operatorname{CONST1}\)
 \(\operatorname{TEMP2}(K 1, K 2)=\) CONST2
 20 CONTINUE
 F1 = DJAC0*(C12*CST3 - C16*CST1**2)
 F2 = DJAC0* (C13*CST1*CST2 - CST4 + C12*CST5 - C16*CST2**2)
 F3 \(=-\) WORK
 \(\mathrm{F}=\mathrm{F} 1+\mathrm{F} 2+\mathrm{C} 3 \mathrm{FF} 3-\mathrm{SY} * 2\)
C
 RETURN
 END
```

C
C ========================== F D E R ======================================
C
SUBROUTINE FDER(S,C,Z,DJAC,F1,F2,C3)
C
C =======================================================================
C I
CI PROGRAM: I
C I I
C I 'FDER' CALCULATES THE DERIVATIVE OF "F" WITH RESPECT TO I
C I <STRESS>, <STRAIN>, JACOBIAN, AND PLASTIC WORK.WKC I
C I
C I I
C I S(I,J) = SECOND PIOLA KIRCHOFF STRESS TENSOR I
C I C(I,J) = GREEN'S TENSOR I
C I Z(I,J) = SHIFT STRESS TENSOR I
C I DJAC = DETERMINANT OF DEFORMATION JACOBIAN I
C I F1 = VALUE OF THE F1 PART OF THE YIELD FUNCTION I
C I F2 = VALUE OF F2 PART OF THE YIELD FUNCTION I
C I C3 = MATERIAL PARAMETER FOR ISOTROPIC HARDENING I
C I I
C =========================================================================
C
IMPLICIT REAL*8 (A-H,O-Z)
COMMON/FDER1/FJ,FK,FS(3,3),FE(3,3),FZ(3,3)
COMMON/PLAST3/TEMP1(3,3),TEMP2(3,3),CST1,CST2
DIMENSION S(3,3),C(3,3),Z(3,3)
DATA CONST/0.33333333333333333DO/
C
DJACO = 1./DJAC**2
C
CST1 = CONST*CST1
CST2 = CONST*CST2
C
DO 30 K1 = 1 , 3
DO 30 K2 = 1 , K1
CST3 = 0.
CST5 = 0.
CST6 = 0.
DO 20 K3 = 1, 3
DO 20 K4 = 1 , 3
C34 = C(K3 , K4)
SC14 = C34*S(K3 , K1)
CST3 = CST3 + S(K4 , K2)*SC14
CST5 = CST5 + Z(K3 , K1)*Z(K4 , K2)*C34
CST6 = CST6 + 2(K4 , K2)*SC14
20 CONTINUE
C
C --- F1S(I,J) = PARTIAL DERIVATIVE OF F1 WRT <STRESS>
C --- F2S(I,J) = PARTIAL DERIVATIVE OF F2 WRT <STRESS>
C --- F1E(I,J) = PARTIAL DERIVATIVE OF F1 WRT <STRAIN>

```
```

C --- F2E(I,J) = PARTIAL DERIVATIVE OF F2 WRT <STRAIN>
C
CST4 = TEMPI(K1 , K2)
CST7 = TEMP2(K1 , K2)
C12 = C(K1 , K2)
S12 = S(K1 , K2)
F1S = CST4 - CST1*C12
F1E = CST3 - CST1*S12
F2S = CST2*C12 - CST7
F2Z = CST7 - CST4 + (CST1 - CST2)*C12
F2E = CST5 - 2.*CST6 + (CST1 - CST2)*Z(K1 , K2) + CST2*S12
C
C --- FS(I,J) = DERIVATIVE OF F WRT <STRESS>
C --- FE(I,J) = DERIVATIVE OF F WRT <STRAIN>
C --- FZ(I,J) = DERIVATIVE OF F WRT <SHIFT TENSOR>
C
FS(K1 , K2) = DJAC0*(F1S + F2S)
FE(K1 , K2) = 2.*DJACO*(F1E + F2E)
FZ(K1 , K2) = F2Z*DJACO
FS(K2 , K1) = FS(K1 , K2)
FE(K2 , K1) = FE(K1 , K2)
FZ(K2 , K1) = FZ(K1 , K2)
CONTINUE
C
C --- F1J = PARTIAL DERIVATIVE OF FI WRT JACOBIAN
C -.- F2J = PARTIAL DERIVATIVE OF F2 WRT JACOBIAN
C --- FJ = DERIVATIVE OF F WRT JACOBIAN
C --- FK = DERIVATIVE OF F WRT PLASTIC WORK
C
F1J = -2.*F1/DJAC
F2J = -2.*F2/DJAC
FJ = F1J + F2J
FK = -C3
C
RETURN
END

```
```

C

```

```

C
SUBROUTINE ELPLD(S,Z,RR,DJAC,BETA,DEN, ICODE)
C

```

```

C I
C I PROGRAM: I
C I I
C I 'ELPLD' PERFORMS THE FOLLOWING FUNCTIONS DEPENDING ON THE I
C I VALUE OF PARAMETER "ICODE". I
C I I
C I 1) ICODE = 0; IT EVALUATES THE ELASTOPLASTIC STRESS-STRAIN I
C I STIFFNESS MATRIX. I
C I 2) ICODE > 0; IT EVALUATES THE MATRICES NEEDED TO CALCULATE I
C I LAMMDA-DOT AND MU-DOT. I
C I I
C I I
CI ARGUMENT LISST:
C I I
C I S(I,J) = SECOND PIOLA KIRCHOFF STRESS TENSOR I
C I Z(I,J) = SHIFT STRESS TENSOR
C I RR(I,J) = THIS MATRIX WHEN DOTED WITH THE STRAIN I
C I TENSOR WILL RESULT THE INCREMENT OF THE I
C I JACOBIAN. I
C I DJAC = DETERMINANT OF DEFORMATION JACOBIAN I
C I BETA = MATERIAL PARAMETER FOR KINEMATIC HARDENING I
C I DEN = DENOMINATOR Q I
C I I
C
IMPLICIT REAL*8 (A-H,O-Z)
COMMON/FDER1/FJ,FK,FS(9),FE(9),FZ(9)
COMMON/ADMAT1/AD(9,9)
COMMON/ELPLD1/DEPM(9,9),ALAM(9), AMU(9)
DIMENSION EFF(9),S(9),Z(9),RR(9)
C
D1 = 0.
D2 = 0.
D3 = 0.
DEN1 = 0.
DEN2 = 0.
C
C
DO 20 K1 = 1, 9
EFF( K1 ) = 0.
D1 = D1 + FZ( K1 )*(S( K1 ) - Z(K1 ))
D2 = D2 + FS( K1 )**2
D3 = D3 + (S( K1 ) - Z( K1 )) %FS(K1 )
DEN2 = DEN2 + S( K1 )*FS( K1 )
DO 10 K2 = 1, 9
10 EFF( K1 ) = EFF( K1 ) + AD(K2 , K1)*FS(K2 )

```
```

    20 DEN1 = DEN1 + EFF(K1 )*FS(K1 )
    DEN = DEN1 - DEN2*FK/DJAC - BETA*D1*D2/D3
    C
IF (ICODE.EQ.0) THEN
C
DO 30 K1 = 1 , 9
CONST = EFF( K1 )/DEN
C
30
C
ELSE
CST2 = BETA*D2/D3
DO 40 K1 = 1 , 9
ALAM( K1 ) = (EFF( K1 ) + FE( K1 ) + RR( K1 )*FJ)/DEN
AMU( K1 ) = ALAM( K1 )*CST2
4 0
CONTINUE
END IF
C
RETURN
END

```

```

D2(1,3) = D2(1,3)-CST3*D4(1, 1,3,3)
D2(2,1) = D2(2,1)-CST1*D4(2,2,3,3)
D2(2,2) = D2(2,2)-CST2*D4(2,2,3,3)
D2(2,3) = D2(2,3)-CST3*D4 (2, 2,3,3)
D2(3,1) = D2(3,1)-CST1*D4(1,2,3,3)
D2(3,2) = D2(3,2)-CST2*D4(1,2,3,3)
D2(3,3) = D2(3,3)-CST3*D4(1,2,3,3)
DO 10 K1 = 1,4
D2(4,K1) = 0.
D2(K1,4) = 0.

```

ELSE
```

D2(1,1) = D4(1,1,1,1)
D2(1,2) = D4(1,1,2,2)
D2(1,3) = D4(1, 1,3,3)
D2(1,4) = D4(1, 1,1,2)
D2(1,5) = D4(1,1,2,3)
D2(1,6) = D4(1,1,1,3)
D2(2,1) = D4(2,2,1,1)
D2(2,2) = D4(2,2,2,2)
D2(2,3) = D4(2,2,3,3)
D2(2,4) = D4(2,2,1,2)
D2(2,5) = D4(2,2,2,3)
D2(2,6) = D4(2,2,1,3)
D2(3,1) = D4(3,3,1,1)
D2(3,2) = D4 (3,3,2,2)
D2(3,3) = D4(3,3,3,3)
D2(3,4) = D4(3,3,1,2)
D2(3,5) = D4 (3,3,2,3)
D2(3,6) = D4 (3,3,1,3)
D2(4,1) = D4(1,2,1,1)
D2(4,2) = D4(1,2,2,2)
D2(4,3) = D4(1, 2,3,3)
D2(4,4) = D4(1,2,1,2)
D2(4,5) = D4(1,2,2,3)
D2(4,6) = D4(1, 2,1,3)
D2(5,1) = D4(2,3,1,1)
D2(5,2) = D4(2,3,2,2)
D2(5,3) = D4(2,3,3,3)
D2(5,4) = D4(2,3,1,2)
D2(5,5) = D4(2,3,2,3)
D2(5,6) = D4 (2,3,1,3)
D2(6,1) = D4(1,3,1,1)
D2(6,2) = D4 (1,3,2,2)
D2(6,3) = D4(1,3,3,3)
D2(6,4) = D4(1,3,1,2)
D2(6,5) = D4(1,3,2,3)
D2(6,6) = D4(1,3,1,3)

```
END IF

\section*{APPENDIX D}

\section*{CONTACT BOUNDARY SIMULATION MODULE}

SUBROUTINE BOUND(IDOF,NNDF,NINODE,ICODE,RFACT,IOUT)

C I I
CI PROGRAM: I I I I
C I \(\quad\) I
C I 'BOUND' CHECKS THE MOTION OF ROLLERS ON CURVED I
C I BOUNDARIES AND INSURES THAT THE ROLLERS STAY ON THE BOUNDARY I
C I BY DETERMINING THE APPROPRIATE DISPLACEMENT CORRECTIONS. I
C I I I I I
CI ARGUMENT LIST: I

C I IDOF(I) \(=\) THE ARRAY CONTAINING THE D.O.F. NUMBERS I
C I NNDF = NUMBER OF NODAL DEGREES OF FREEDOM I
C I NINODE = NUMBER OF INTERFACE NODES I
C I ICODE = RETURN CODE PASSED TO THE CALLING ROUTINE I
C I \(\quad=0\); NO CHANGE IN THE D.O.F. NUMBERS I
C I \(\quad=1\); RECALCULATION OF THE 'IDOF' ARRAY IS NEEDED I
C I RFACT = REDUCTION FACTOR FOR OUTOMATIC SUBINCREMENTATION I
C I IOUT = OUTPUT DEVICE NUMBER I
C I I I I

C
IMPLICIT REAL*8 (\(\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}\))
REAL*4 X,Y,Z
COMMON/MAIN1/U(8000),RE1(8000)
COMMON/MAIN2/UTOTAL (8000)
COMMON/MAIN4/RE(8000)
COMMON/INPUT3/X(4000),Y(4000),2(4000)
COMMON/INPUT7/RIT(8000),RINC(8000),UINC(8000)
COMMON/INPUTD/COSTX(300), COSTY(300), COSTZ(300)
COMMON/INPUTE/ISPB(4000)
COMMON/INPUTI/INTFAC(500)
COMMON/CONTR1/INCREM,NIT
DIMENSION IDOF (1)
C
ICODE \(=0\)
C
c --- NINODE = NUMBER OF INTERFACE NODES
C
DO \(100 \mathrm{K1}=1\), NINODE
IRLS \(=0\)
NODE = INTFAC(K1)
ID1 \(=\) NNDF* \((\) NODE -1\()+1\)
ID2 \(=\) ID1 + 1
```

C
C YNODE = FINAL Y-COORD OF THE NODE
C
XNODE = X( NODE ) + UTOTAL( ID1 )
YNODE = Y( NODE ) + UTOTAL( ID2 )
C
c --- ChECK TO SEE IF THE NODE IS IN CONTACT WITH THE bOUNDARY
C
C --- FIND THE POINT ON THE DIE FOR A NORMAL RETURN CORRECTION.
C --- THE DIE IS MODELED USING THE HERMITE PARAMETRIC CURVE.
C --- SUBROUTINE MULLER FINDS THE PARAMETER 'T'.
C
CALL MULLER(XNODE,YNODE,T,NCURVE,IRET,IOUT)
IF (IRET.GE.2) THEN
WRITE(IOUT , 1001)
STOP
ELSE IF (IRET.EQ.1) THEN
C
C --- SUBROUTINE HERMXY FINDS THE 'X' AND 'Y' COORDINATES OF THE
C --- RETURN POINT ON THE DIE.
C
CALL XYPRIM(T,XP,YP,NCURVE)
CALL HERMXY(T, XFINAL,YFINAL,NCURVE)
DX = XFINAL - XNODE
DY = YFINAL - YNODE
IF (IDOF( ID1 ).LE.0) THEN
RDOT = -YP*RE( ID1 ) + XP*RE( ID2 )
DOT = -1.
ELSE
RDOT = -1.
DOT = -YP*DX + XP*DY
END IF
IF (RDOT.GE.0.0.OR.DOT.GE.0.0) THEN
C
C --- CHANGE the negative "ISPB" addresses to pOSITIIVE so that
C THEY ARE RECOGNIZED IN THE SOLUTION PROCESS
C
R = DSQRT(DX**2 + DY**2)
RP = DSQRT(XP**2 + YP**2)
IF (ISPB( NODE ).LT.O) THEN
ISPB( NODE ) = - ISPB( NODE )
ELSE IF(ISPB( NODE ).EQ.O) THEN
WRITE(IOUT , 1000) NODE
STOP
END IF
C
C --- FIND THE DIRECTION COSINES OF THE ROLLERS ON THE DIE
C
COSTX(ISPB( NODE )) = -YP/RP
COSTY(ISPB( NODE )) = XP/RP
IF (IDOF( ID1 ).GT.0) THEN
ICODE = 1

```
```

    IDOF( ID1 ) = -1
    IDOF( ID2 ) = 1
    ELSE
IDOF( ID1 ) = -1
END IF
C
C --- IMPOSE THE APPROPRIATE DISPLACEMENT FOR THE NORMAL RETURN
C CORRECTION DURING THE NEXT ITERATION.
C
DOT = -YP*DX + XP*DY
IF (DOT.GE.0) THEN
UINC( ID1 ) = R/RFACT
ELSE
UINC( ID1 ) = -R/RFACT
END IF
ELSE
IRLS = 1
END IF
END IF
IF (IRET.EQ.O.OR.IRLS.EQ.1) THEN
C
C --- IF THE NODE EXITS THE DIE RELEASE IT AND SET ICODE = 1 TO
C THE CALLING ROUTINE RECALCULATES THE "IDOF" ARRAY
C
UINC( ID1 ) = 0.
IF(ISPB( NODE ).GT.0) ISPB( NODE ) = -ISPB( NODE )
IF(IDOF( ID1 ).LEE.O) THEN
ICODE = 1
IDOF( ID1 ) = 1
RINC( ID1 ) = -RE( ID1 )/RFACT
RINC( ID2 ) = -RE( ID2 )/RFACT
ELSE
RINC( ID1 ) = 0.
RINC( ID2 ) = 0.
END IF
C
C
RIT( ID1 ) = 0.
RIT( ID2 ) = 0.
END IF
100 CONTINUE
C
RETURN
1000 FORMAT ( $1 X,{ }^{\prime} \ggg \ggg>$ PROGRAM STOPED IN ROUTINE "BOUND" DUE TO A'/
1 9X, ${ }^{\text {TE }}$ ZER ISPB FOR INTERFACE NODE , I4)
1001 FORMAT ( $1 \mathrm{X},{ }^{\prime} \ggg \ggg \gg$ PROGRAM STOPED IN ROUTINE "BOUND" DUE TO "/ 1 9X,'EXISTANCE OF MULTIPLE CONTACT POINTS')


```
 G0 TO 60
 ELSE IF(YD.GT.YZT(NCURVE).OR.YD.LT.YZB(NCURVE)) THEN
 GO TO 60
 END IF
C
C
 10 T1 = 0.
 T2 = 1.
 T0 = 0.5
C
 F1 = D0
 F2 = D5 + D4 + D3 + D2 + D1 + D0
C
 DO 20 K1 = 1 , NROOT
 F1 = F1/(-ROOT(K1))
 F2 = F2/(1. - ROOT(K1))
 20 CONTINUE
 DO 40 K1 = 1 , 20
 F0 = (((CD5*T0 + D4)*T0 + D3)*T0 + D2)*T0 + D1)*T0 + D0
C
 DO 30 K2 = 1 , NROOT
 30 F0 = FO/(T0 - ROOT(K2))
C
 H2 = T0 - T2
 H1 = T1 - T0
 H1S = H1**2
 GAM = H2/H1
 A = (GAM*F1 - F0*(1.+GAM) + F2)/(GAM*H1S*(1 + GAM))
 B = (F1 - F0 - A*H1S)/H1
C
 SQTRM = B**2 - 4.*A*FO
 IF (SQTRM.LT.O.) GO TO 60
 IF (B.LE.O.) THEN
 D = -DSQRT(SQTRM)
 ELSE
 D = DSQRT(SQTRM)
 END IF
C
 T = T0 - 2.*F0/(B+D)
C
 IF (DABS(T-TO).LE.TOL) GO TO 50
C
 IF (T.GT.TO.AND.T.NE.T2) THEN
 T1 = T0
```

$\mathrm{TO}=\mathrm{T}$
F1 = F0
ELSE IF(T.LT.TO.AND.T.NE.T1) THEN
$T 2=T 0$
$\mathrm{TO}=\mathrm{T}$
$F 2=F 0$
ELSE
GO TO 50
END IF
40 CONTINUE
IF (T.GT.1..OR.T.LT.0.) THEN
IF (NROOT.LT.4) THEN
NROOT $=$ NROOT +1ROOT ( NROOT ) $=T$GO TO 10
END IFELSE
IRET = IRET + 1
$\mathrm{TF}=\mathrm{T}$
NCRV = NCURVE
RETURN
END IF
60 CONTINUECRETURN
END

```
C
C
 SUBROUTINE COEFIC
 IMPLICIT REAL*8 (\(\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}\))
 COMMON/BOUND1/NCURVS
 COMMON/HERM/H(4 , 4),GX(4, 6),GY(4, 6)
 COMMON/CONST/CO(6),C1(6),C2(6),C3(6),C4(6),C5(6)
C
 DO \(10 \mathrm{~K} 1=1\), NCURVS
C
 \(\mathrm{CO}(\mathrm{K} 1)=0\).
 \(\mathrm{C} 1(\mathrm{~K} 1)=0\).
 \(\mathrm{C} 2(\mathrm{K1})=0\).
 C3(K1) \(=0\).
 \(\mathrm{C} 4(\mathrm{~K} 1)=0\).
 C5 (K1) \(=0\).
C
 CO(K1) \(=\mathbf{C O}(\mathrm{K} 1\)) \(-\mathbf{G X (3}, \mathrm{K} 1) * G X(4, \mathrm{~K} 1)\)
 1 - GY(3, K1)*GY(4,K1)
 C1 (K1) \(=\mathbf{C 1}(\mathrm{K} 1\)) - GX(3, K1)**2-2.*GX(2 , K1)*GX(4 , K1)
 \(1-\operatorname{GY}(3, K 1) \pi \hbar 2-2 . * G Y(2, K 1) * G Y(4, K 1)\)
 \(\mathrm{C} 2(\mathrm{~K} 1\)) \(=\mathbf{C} 2(\mathrm{~K} 1\)) \(-3 . * \mathrm{GX}(1, \mathrm{~K} 1) * G X(4, \mathrm{~K} 1)-3 . * G X(2, \mathrm{~K} 1) * G X(3, \mathrm{~K} 1)\)
 1 -3. 1 GY(\(1, \mathrm{~K} 1) * G Y(4, K 1)-3 . * G Y(2, K 1) * G Y(3, K 1)\)
 C3(K1) = C3(K1) - 2. *GX(2 , K1)**2 - 4.*GX(1 , K1) *GX(3 , K1)
 \(1-2 . * G Y(2, K 1) * * 2-4 . \pi G Y(1, K 1) * G Y(3, K 1)\)
 C4(K1) = C4(K1) - 5.*GX(1 , K1)*GX(2 , K1)
 1 - 5.*GY(1, K1)*GY(2,K1)
 C5 (K1) = C5 (K1) - 3.*GX(1 , K1)**2
 1
 - 3.*GY(1, K1)**2
 10 CONTINUE
C
 RETURN
 END
```

```
C
```



```
C
 SUBROUTINE HERMIT
 IMPLICIT REAL*8 (A-H,O-Z)
 REAL*8 LX,LY
 COMMON/BOUND1/NCURVS
 COMMON/POINTS/LX(4 , 6),LY(4 , 6)
 COMMON/HERM/H(4 , 4),GX(4 , 6),GY(4 , 6)
C
 DO 20 K2 = 1, NCURVS
 DO 20 Kl = 1, 4
 GX(K1 , K2) = 0.
 GY(K1 , K2) = 0.
 DO 20 K3 = 1, 4
 GX(K1 , K2) = GX(K1 , K2) + H(K1 , K3)*LX(K3 , K2)
 20 GY(K1 , K2) = GY(K1 , K2) + H(K1 , K3)*LY(K3 , K2)
C
 RETURN
 END
```

C
C
SUBROUTINE HERMXY(T,X,Y,NCURVE)
IMPLICIT REAL*8 ( $\mathrm{A}-\mathrm{H}, \mathrm{O}-\mathrm{Z}$ )
REAL*8 M
COMMON/HERM/H(4 , 4),GX(4 , 6),GY(4 , 6)
DIMENSION M(4)
C
$M(4)=1$.
$M(3)=T$
$M(2)=T * M(3)$
$M(1)=T * M(2)$
C
$X=0$.
$\mathrm{Y}=0$.
DO $20 \mathrm{~K} 1=1,4$
$X=X+M(K 1)$ * GX(K1 , NCURVE)
$20 \mathrm{Y}=\mathrm{Y}+\mathrm{M}(\mathrm{K} 1)$ * GY(K1 , NCURVE)
C
RETURN
END

```
C
C ===
C
 SUBROUTINE XYPRIM(T,XP,YP,NCURVE)
 IMPLICIT REAL*8 (A-H,O-Z)
 REAL*8 MPRIM
 COMMON/HERM/H(4 , 4),GX(4 , 6),GY(4 , 6)
 DIMENSION MPRIM(4)
C
 MPRIM(4) = 0.
 MPRIM(3) = 1.
 MPRIM(2) = 2.*T
 MPRIM(1) = 3.*T**2
C
 XP = 0.
 YP = 0.
 DO 20 K1 = 1, 4
 XP = XP + MPRIM(K1) * GX(K1 , NCURVE)
 20
 YP = YP + MPRIM(K1) * GY(K1 , NCURVE)
C
 RETURN
 END
```


## APPENDIX E

## ELASTICITY MODULE

# SUBROUTINE ELAST(ITYPE,MATNUM,IFLAG,IOUT,ICODE) 

IF (ICODE.EQ.0) THEN
CALL DELAST(ITYPE,MATNUM,IFLAG)
ELSE
CALL STRSTN(ITYPE,MATNUM,IFLAG,IOUT)
END IF
RETURN
END
C

SUBROUTINE STRSTN(ITYPE, MATNUM, IFLAG, IOUT)
IMPLICIT REAL*8 (A-H,O-Z)
CHARACTER* 105 DUMMY
COMMON/UTIL1/STRESS(6),STRAIN(6),DUMMY
COMMON/MATER1/DEP(6,6)
COMMON/ELSTR1/STRN(6)
COMMON/ELSTR2/STRS(6)
COMMON/DEVICE/LDEV1, LDEV2,LDEV3,LDEV4, LDEV5, LDKEEP, LDEV,LDEVST
COMMON/CONTR1/INCREM,NIT
DIMENSION DE(6),DS(6)
IF (ITYPE.GT.300) THEN
IEND $=6$
ELSE
IEND $=4$
END IF
C
IF (INCREM.GT.1) THEN
CALL IOGET(LDEV1,96,'(A96)',5)
ELSE
DO $50 \mathrm{K1}=1$, IEND
STRESS ( K1 ) $=0$.
STRAIN ( K1 ) $=0$.
END IF
C
DO $100 \mathrm{~K} 1=1$, IEND
100 DE( K1 ) = STRN( K1 ) - STRAIN( K1 )
C
CALL DELAST(ITYPE,MATNUM,IFLAG)
C
DO $300 \mathrm{~K} 1=1$, IEND
$\mathrm{S}=0$.
DO $200 \mathrm{~K} 2=1$, IEND
$200 \mathrm{~S}=\mathrm{S}+\mathrm{DEP}(\mathrm{K} 1$, K2)*DE( K2 )

```
 300 DS(K1) = S
C
 DO 400 K1 = 1 , IEND
 STRAIN(K1) = STRN(K1)
 STRESS(K1) = STRESS(K1) + DS(K1)
 STRS(K1) = STRESS(K1)
C
 CALL IOPUT(LDEV2,96,'(A96)',5)
C
 RETURN
 1000 FORMAT(2A48)
 END
```

```
C
```



```
C
 SUBROUTINE DELAST(ITYPE,MATNUM,IFLAG)
C
```



```
C I
C I program 'Elast'evaluates the STRESS-STRAIN STIFFNESS MATRIX I
C I FOR ISOTROPIC OR ORTHOTROPIC ELASTIC MATERIALS I
C I I
CI COMMON BLOCKSSI
C I I
C I I
C =========エ==1
C
 IMPLICIT REAL*8 (A-H,O-Z)
 REAL*8 NUX,NUY,NUZ
 COMMON/MATER1/DEP(6,6)
 COMMON/INPUT5/NUX(10),NUY(10),NUZ(10),EX(10),EY(10),EZ(10),
 1 P1X(10),P1Y(10),P1Z(10),P2X(10),P2Y(10),P2Z(10)
C
C
 DO 100 K2 = 1 , 6
 DO 100 K1 = 1, 6
 100 DEP(K1 , K2) = 0.
C
 G = 0.5*EX(MATNUM)/(1. + NUX(MATNUM))
 CST1 = 2.*G*(1. - NUX(MATNUM))/(1. - 2.*NUX(MATNUM))
 CST2 = 2.^G*^NUX(MATNUM)/(1. - 2.*NUX(MATNUM))
C
 DEP(1 , 1) = CST1
 DEP(2, 2) = CST1
 DEP(3, 3) = CST1
 DEP(4 , 4) = G
 DEP(5 , 5) = G
 DEP(6 , 6) = G
 DEP(1 , 2) = CST2
 DEP(1 , 3) = CST2
 DEP(2 , 1) = CST2
 DEP(2 , 3) = CST2
 DEP(3 , 1) = CST2
 DEP(3 , 2) = CST2
C
 ELSE
C
 DO 200 K2 = 1 , 4
 DO 200 K1 = 1 , 4
 200 DEP(R1 , K2) = 0.
C
C PLAIN STRESS
C
```

```
IF (IFLAG.EQ.1) THEN
 DEP(1 , 1) = EX(MATNUM)/(1. - NUX(MATNUM)**2)
 DEP(2 , 2) = DEP(1 , 1)
 DEP(3 , 3) = EX(MATNUM)*0.5/(1. + NUX(MATNUM))
 DEP(1, 2) = NUX(MATNUM) }\operatorname{NDEP(1, 1)
 DEP(2 , 1) = DEP(1, 2)
 AXISYMMETRIC AND PLANE STRAIN
 ELSE
 CST1 = EX(MATNUM)/(1. + NUX(MATNUM))/(1. - 2.*NUX(MATNUM))
 CST2 = CST1*NUX(MATNUM)
 DEP(1 , 1) = CST1 - CST2
 DEP(2 , 2) = DEP(1, 1)
 DEP(3 , 3) = EX(MATNUM)*0.5/(1. + NUX(MATNUM))
 DEP(4, 4) = DEP(1 , 1)
 DEP(1 , 2) = CST2
 DEP(2 , 1) =. CST2
 DEP(1 , 4) = CST2
 DEP(4 , 1) = CST2
 DEP(2 , 4) = CST2
 DEP(4, 2)= CST2
 C
 END IF
 END IF
C
RETURN
END
```


## APPENDIX F

ELEMENT LIBRARY MODULE

```
C
C =======ニ================= G A U S S =====================================
C
 SUBROUTINE GAUSS(NIP,W,GCOORD)
C
C ==
C
C I SUBPROGRAM GAUSS STORES THE COORDINATES XI AND ETA OF THE I
C I NUMERICAL INTEGRATION POINTS AND THEIR WEIGHTING FUNCTIONS I
C I FOR THE FOUR POINT AND THE NINE POINT INTEGRATION. I
C I I
C I NIP = NUMBER OF THE INTEGRATION POINTS I
C I W(I) = WEIGTH FUNCTION I
C I GCOORD(I) = COORDINATES OF THE GAUSSIAN POINTS I I
C I
C
C I FIRST DEVELOPED: 08-26-1988 I
C I LAST UPDATE: 08-26-1988 I
C I BY: M. FOROOZESH I
```



```
 REAL*8 W,GCOORD
 DIMENSION W(4),GCOORD(4)
C
 IF (NIP.EQ.1) THEN
 W(1) = 2.0D0
 GCOORD(1) = 0.ODO
C
 ELSE IF (NIP.EQ.2) THEN
 W(1) = 1.0D0
 W(2) = 1.0D0
 GCOORD(1) = -0.577350269189626DO
 GCOORD(2) = 0.577350269189626D0
C
 ELSE IF (NIP.EQ.3) THEN
 W(1) = 5.0DO/9.0DO
 W(2) = 8.0DO/9.0DO
 W(3) = W(1)
 GCOORD(1) = -0.774596669241483D0
 GCOORD(2) = 0.
 GCOORD(3) = 0.774596669241483D0
C
 ELSE IF (NIP.EQ.4) THEN
 W(1) = 0.347854845137454D0
 W(2) = 0.652145154862546DO
 W(3) =W(2)
 W(4) =W(1)
```

```
 GCOORD(1) = -0.861136311594053D0
 GCOORD(2) = -0.339981043584856D0
 GCOORD(3) = +0.339981043584856D0
 GCOORD(4) = +0.861136311594053DO
C
 ELSE
 GO TO 10
C
 END IF
 10 RETURN
 END
C
```



```
C
 SUBROUTINE IRONS(A1,B6,C8,B,C,NIP,INTCOD)
C
```



```
C I I
G I SUBPROGRAM IRONS STORES THE COORDINATES RETURNS THE COORD. I
C I AND THE WEIGHT FUNCTIONS FOR THE OPTIMUM INTEGRATION I
C I POINTS INTRODUCED BY BRUCE M. IRONS. I
C I I
C I FOR THE DISCRIPTION OF VARIȦBLES REFER TO THE REFERENCE I
C I PUBLICATION. I
C I I
C I FIRST DEVELOPED: 10-08-1988 I
C I LAST UPDATE: 10-08-1988
C I BY: M. FOROOZESH I
C ===
 IMPLICIT REAL*8 (A-H,O-Z)
C
 IF (INTCOD.EQ.150) THEN
 NIP = 15
 A1 = 1.564444444444D0
 B6 = 0.3555555555556D0
 C8 = 0.5377777777778D0
 B = 1.0D0
 C = 0.674199862D0
 ELSE IF(INTCOD.EQ.151) THEN
 NIP = 15
 A1 =0.712137436D0
 B6 = 0.686227234D0
 C8 = 0.396312395D0
 B = 0.848418011D0
 C = 0.727662441D0
 ELSE IF(INTCOD.EQ.140) THEN
 NIP = 14
 A1 = 0.0D0
 B6 = .886426593D0
 C8 = .335180055D0
 B = 0.795822426D0
 C=0.758786911D0
```

END IF
C
RETURN
END

```
C
```



```
C
 SUBROUTINE ISHAPE
```



```
C I I
C I THIS PROGRAM EVALUATES THE SHAPE FUNGTIONS, THEIR DERIVATIVES I
C I WITH RESPECT TO THE NATURAL COORDINATES, AND THE WEIGHT I
C I FUNCTIONS AT EACH INTEGRATION POINT. I
C I I
C I ENTRY POINTS: I
C I ISH2DG (FOR 2D ELEMENTS) I
C I ISH3DG (FOR 3D ELEMENTS) I
C I I
C I FIRST DEVELOPED: 08-27-1988 I
C I LAST MODIFIED: 08-29-1988 I
C I BY: M. FOROOZESH I
C I I
```



```
 IMPLICIT REAL*8 (A-H,O-Z)
 COMMON/ISHAP2/W(27)
 COMMON/INPUT1/NIPXI,NIPETA,NIPSI,NIP,INTCOD
 DIMENSION F(20), FXI(20), FETA(20),FSI(20)
 DIMENSION WXI(4),WETA(4),WSI(4),XI(4),ETA(4),SI(4)
C
C EVALUATE THE SHAPE FUNCTIONS OF THE 2D ISOPARAMETRIC ELEMENTS
C
 ENTRY ISH2DG(ITYPE,NNEL,IERROR)
C
C GET THE NATURAL COORDINATES OF THE INTEGRATION POINTS
C
 CALL GAUSS(NIPXI,WXI,XI)
 CALL GAUSS(NIPETA,WETA,ETA)
 NIP = NIPXI*NIPETA
C
C NIP = TOTAL NUMBER OF THE INTEGRATION POINTS FOR THE ELEMENT
C IETA = ROW NUMBER OF THE GAUSSIAN POINT FROM THE BOTTOM
C IXI = COLUMN NUMBER OF THE GAUSSIAN POINT FROM LEFT
C
 DO 10 IETA = 1 , NIPETA
 DO 10 IXI = 1 , NIPXI
C
 J = (IETA - 1)*NIPXI + IXI
 W(J) = WXI(IXI)*WETA(IETA)
 AXI = XI(IXI)
 AETA = ETA(IETA)
 CALL ISOP2D(AXI, AETA,F,FXI, FETA,ITYPE,IERROR)
 CALL ISHEXT(NNEL,J,F,FXI,FETA,FSI)
 RETURN
C
C
```

        ENTRY ISH3DG(ITYPE,NNEL,IERROR)
    RETURN

## ENTRY ISH3DI(ITYPE,NNEL,IERROR)

            CALL IRONS(A1,B6,C8,B,C,NIP,INTCOD)
            AXI = B
            AETA = 0.
            ASI = 0.
            DO 40 J = 1, 6
            W(J ) = B6
            CALL ISOP3D(AXI,AETA,ASI,F,FXI,FETA,FSI,ITYPE,IERROR)
            CALL ISHEXT(NNEL,J,F,FXI,FETA,FSI)
            A = AETA
            AETA = -AXI
            AXI = -ASI
    ASI = -A
    CONTINUE
AXI = C
AETA = C
ASI = C
DO 60 J = 7 , 14
W( J ) = C8
CALL ISOP3D(AXI,AETA,ASI,F,FXI,FETA,FSI,ITYPE,IERROR)
CALL ISHEXT(NNEL,J,F,FXI,FETA,FSI)
AXI = -AXI

```
```

    A = AETA
    AETA = -ASI
    IF (J.EQ.10) AETA = ASI
    ASI = A
    CONTINUE
C
IF (INTCOD.GE.150) THEN
W( 15 ) = A1
AXI = 0.
AETA = 0.
ASI = 0.
CALL ISOP3D(AXI,AETA,ASI,F,FXI,FETA,FSI,ITYPE,IERROR)
CALL ISHEXT(NNEL,15,F,FXI,FETA,FSI)
END IF
C
RETURN
END

```
```

@PROCESS DIRECTIVE('*VDIR:')
C
C ============================ I S H E X T ================================
C
C
SUBROUTINE ISHEXT(NNEL,J,F,FXI,FETA,FSI)
REAL*8 N,NXI,NETA,NSI,F,FXI,FETA,FSI
COMMON/ISHAP1/N(20,27),NXI(20,27),NETA(20,27),NSI(20, 27)
DIMENSION F(20),FXI(20),FETA(20),FSI(20)
C
C*VDIR: ASSUME COUNT(8)
DO 70 NN = 1 , NNEL
N(NN , J) = F( NN )
NXI(NN, J) = FXI( NN )
NETA(NN , J) = FETA( NN )
NSI(NN , J) = FSI( NN )
CONTINUE
C
RETURN
END

```
```

C
C ============================ E L M L I B ===============================
C
SUBROUTINE ELMLIB
C

```

```

C I I
C I SUBPROGRAM ELMLIB CALCULATES THE SHAPE FUNCTIONS AND THE I
C I PARTIAL DRIVATIVES OF THE SHAPE FUNCTIONS WRT THE LOCAL I
C I COORDINATES 'XI', 'ETA' AND 'SI'. I
C I I
C I N(I) = SHAPE FUNCTIONS OF THE ELEMENT I
C I NXI(I) = PARTIAL DRIVATIVE OF 'N' WRT 'XI' I
C I NETA(I) = PARTIAL DRIVATIVE OF 'N' WRT 'ETA' I
C I NSI(I) = PARTIAL DERIVATIVE OF 'N' WRT 'SI' I
C I I
C I I
C I FIRST DEVELOPED: 08-27-1988 I
C I LAST MODIFIED: 08-27-1988 I
C I BY: M. FOROOZESH I
C I I
C
REAL*8 XI,ETA,SI,N,NXI,NETA,NSI,XIO,ETAO,SIO
DIMENSION N(20),NXI(20),NETA(20),NSI(20)
COMMON/ELLIB1/XII(20),ETAI(20),SII(20)
C
C
C
ENTRY ISOP2D(XI,ETA,N,NXI,NETA,ITYPE,IERROR)
C
C DRIVATIVE OF SHAPE FUNCTIONS FOR 2D ISOPARAMETRIC ELEMENTS.
C
C
NXI(1) = -0.25*(1.- ETA)
NXI(2) = 0.25*(1.- ETA)
NXI(3) = 0.25*(1.+ ETA)
NXI(4) = -0.25*(1.+ ETA)
NETA(1) = -0.25*(1.- XI)
NETA(2) = -0.25*(1.+ XI)
NETA(3) = 0.25*(1.+ XI)
NETA(4) = 0.25*(1.- XI)
C
IF (ITYPE.EQ.219) THEN
CST = 9.DO/32.DO
C13 = 1.D0/3.D0
C23 = 2.D0/3.DO
NXI( 5 ) = CST*(1. - ETA)*(9.*XI**2 - 2.*XI - 3.)
NXI( 6 ) = CST*(1. - ETA)*(-9.*XI**2 - 2.*XI + 3.)
NXI( 7 ) = 0.5*(1. - ETA**2)
NXI( 8 ) = -XI*(1 + ETA)
NXI( 9 ) = -0.5*(1. - ETA**2)
NXI( 1 ) = NXI( 1 )-0.5*NXI( 9 )-C23*NXI( 5 )-C13*NXI( 6 )

```
```

    NXI( 2 ) = NXI( 2 )-0.5*NXI( 7 )-C23*NXI( 6 )-C13^NXI( 5 )
    NXI( 3 ) = NXI( 3 ) - 0.5*(NXI( 7 ) + NXI( 8 ))
    NXI( 4 ) = NXI( 4 ) - 0.5*(NXI( 8. ) + NXI( 9 ))
    NETA( 5 ) = - CST*(1. - XI**2)*(1. - 3.*XI)
NETA( 6 ) = - CST*(1. - XI**2)*(1. + 3.*XI)
NETA( 7 ) = -ETA*(1. + XI)
NETA( 8 ) = 0.5*(1. - XI**2)
NETA( 9 ) = -ETA*(1. - XI)
NETA( 1 ) = NETA( 1 )-0.5*NETA( 9 )-C23*NETA(5)-C13*NETA(6)
NETA( 2 ) = NETA( 2 )-0.5*NETA( 7 )-C23*NETA(6)-C13*NETA(5)
NETA( 3 ) = NETA( 3 ) - 0.5*(NETA( 7 ) + NETA( 8 ))
NETA( 4 ) = NETA( 4 ) - 0.5*(NETA( 8 ) + NETA( 9 ))
ELSE
IF(ITYPE.EQ.204) GO TO 10

```
```

NXI(6 ) = 0.5*(1. - ETA**2)
NXI( 7 ) = - XI*(1 + ETA)
NXI( 8 ) = -0.50*(1. - ETA**2)
NETA( 6 ) = -(1. + XI)* ETA
NETA( 7 ) = 0.5*(1. - XI**2)
NETA( 8 ) = -(1. - XI)* ETA
NXI( 1 ) = NXI( 1 ) - 0.5*NXI( 8 )
NXI( 2 ) = NXI( 2 ) - 0.5*NXI( 6 )
NXI( 3 ) = NXI( 3 ) - 0.5*(NXI( 7 ) + NXI( 6 ))
NXI(4)=NXI(4)-0.5*(NXI( 7 4) + NXI( }8\mathrm{ ) )
NETA( 1 ) = NETA( 1 ) - 0.5*NETA( 8 )
NETA( 2 ) = NETA( 2 ) - 0.5*NETA( 6 )
NETA( 3) = NETA( 3 ) - 0.5*(NETA( 7 ) + NETA( 6 ))
NETA( 4 ) = NETA( 4 ) - 0.5*(NETA( 7 ) + NETA( 8 ))

```

IF(ITYPE.EQ.208) GO TO 10
ADDITIONAL TERMS FOR THE NINE NODE LAGRANGIAN ELEMENT
```

NXI(9) = - 2.*XI*(1.- ETA**2)
NXI(1) = NXI(1)+NXI (9)/4.
NXI(2) = NXI(2)+NXI(9)/4.
NXI(3) = NXI(3)+NXI(9)/4.

```
```

        NXI(4) = NXI(4)+NXI(9)/4.
        NXI(5) = NXI(5)-NXI(9)/2.
        NXI(6) = NXI(6)-NXI(9)/2.
        NXI(7) = NXI(7)-NXI(9)/2.
        NXI(8) = NXI(8)-NXI(9)/2.
        NETA(9) = -2.* ETA*(1.- XI**2)
        NETA(1) = NETA(1)+NETA(9)/4.
        NETA(2) = NETA(2)+NETA(9)/4.
        NETA(3) = NETA(3)+NETA(9)/4.
        NETA(4) = NETA(4)+NETA(9)/4.
        NETA(5) = NETA(5)-NETA(9)/2.
        NETA(6) = NETA(6)-NETA(9)/2.
        NETA(7) = NETA(7)-NETA(9)/2.
        NETA(8) = NETA(8)-NETA(9)/2.
    END IF
    ENTRY N2D (XI, ETA, N,ITYPE, IERROR)
C SHAPE FUNCTIONS FOR 2D ISOPARAMETRIC ELEMENTS.
10N(1) = 0.25*(1.- XI)*(1.- ETA)
N(2) = 0.25*(1.+ XI)*(1.- ETA)
N(3) = 0.25*(1.+ XI)*(1.+ ETA)
N(4) = 0.25*(1.- XI)*(1.+ ETA)
IF (ITYPE.EQ.219) THEN
CST $=9$. DO/32.DO
$\mathrm{C} 13=1 . \mathrm{DO} / 3 . \mathrm{DO}$
C23 = 2.D0/3.D0

```

```

$N(6)=\operatorname{CST}^{*}(1 .-E T A) *(1 .-X I * * 2) N(1 .+3 . * X I)$
$N(7)=0.5^{*}(1 .+X I) *(1 .-E T A * 2)$
$N(8)=0.5^{*}(1 .-X I * * 2) *(1+E T A)$
$N(9)=0.5^{*}(1 .-X I) \star\left(1 .-E T A^{* *} 2\right)$
$N(1)=N(1)-0.5^{\star} N(9)-C 23^{*} N(5)-C 13{ }^{*} N(6)$
$N(2)=N(2)-0.5^{\star} N(7)-C 23^{\star} N(6)-C 13^{\star} N(5)$
$N(3)=N(3)-0.5^{*}(N(7)+N(8))$
$N(4)=N(4)-0.5 *(N(8)+N(9))$
ELSE
IF(ITYPE.EQ.204) GO TO 15

```
```

ADDITIONAL TERMS FOR THE FIVE NODE ISOPARAMETRIC EL.

```
```

N(5) = 0.5*(1.- XI**2)*(1.- ETA)

```
N(5) = 0.5*(1.- XI**2)*(1.- ETA)
N(1) = N(1)-0.5*N(5)
N(1) = N(1)-0.5*N(5)
N(2) = N(2)-0.5*N(5)
N(2) = N(2)-0.5*N(5)
IF(ITYPE.EQ.205) GO TO 15
IF(ITYPE.EQ.205) GO TO 15
ADDITIONAL TERMS FOR THE EIGHT NODE ISOPARAMETRIC EL.
```

```
N(6) = 0. 5*(1.+ XI)*(1.- ETA**2)
N(7) = 0.5*(1.- XI**2)*(1.+ ETA)
N(8) = 0.5*(1.- XI)*(1.- ETA**2)
N(1) = N(1)-0.5*N(8)
N(2) = N(2)-0.5*N(6)
N(3) = N(3)-0.5*(N(7)+N(6))
N(4) = N(4)-0.5*(N(7)+N(8))
```

END IF
C
15 RETURN
C
C
C
C
C
C
C
20 CONTINUE
C
C
C
C
C
IF(ITYPE.EQ.208) GO TO 15
ADDITIONAL TERMS FOR THE NINE NODE LAGRANGIAN ELEMENT

```
 N(9) = (1.- ETA**2)*(1.- XI**2)
 N(1) =N(1)+N(9)/4.
N(2) =N(2)+N(9)/4.
N(3)}=N(3)+N(9)/4
 N(4)}=N(4)+N(9)/4
N(5) =N(5)-N(9)/2.
N(6) = N(6)-N(9)/2.
 N(7) = N(7)-N(9)/2.
N(8) = N(8)-N(9)/2.
```

    IF (ITYPE.EQ. 308) THEN
    SHAPE FUNCTIONS AND THEIR DERIVATIVES FOR THE 3D ISOP. EL.
    ENTRY ISOP3D(XI,ETA,SI,N,NXI,NETA,NSI,ITYPE, IERROR)
    DO \(20 \mathrm{~K}=1,8\)
    CALL ELMEXT(XI,ETA,SI,K,XIO,ETAO,SIO)
    \(\mathrm{N}(\mathrm{K})=.125^{\star}(1 .+\mathrm{XI} 0)^{\star}(1 .+\mathrm{ETAO})^{\star}(1 .+\mathrm{SI} 0)\)
    \(\operatorname{NXI}(K)=.125^{*}(1 .+E T A O)^{*}(1 .+\) SIO \() * X I I(K)\)
    \(\operatorname{NETA}(K)=.125 *(1 .+X I O) *(1 .+\operatorname{SIO}) * E T A I(K)\)
    \(\operatorname{NSI}(K)=.125 *(1 .+X I 0) \%(1 .+E T A 0) * S I I(K)\)
    ELSE IF (ITYPE.EQ.320) THEN
    HEXAHYDRON SOLID ELEMENT
    SHAPE FUNCTIONS AND THIE DERIVATIVES FOR NODES 1-8.
    DO \(30 \mathrm{~K}=1\), 8
    CALL ELMEXT(XI,ETA,SI,K,XIO,ETAO,SIO)
    \(N(K)=.125 *(1 .+\) XIO \() *(1 .+\) ETAO \() *(1 .+\) SIO \() *(X I O+E T A O+\) SIO-2. \()\)
    NXI \((\mathrm{K})=.125 *(1 .+ \text { ETA0 })^{*}(1 .+\mathrm{SI} 0) *(2 . * X I O+E T A 0+\) SIO-1. \() * X I I(\mathrm{~K})\)
    \(\operatorname{NETA}(K)=.125 *(1 .+X I 0) *(1 .+\mathrm{SI} 0) *(X I 0+2 . * E T A 0+\) SIO-1. \() * E T A I(K)\)
    ```
 NSI(K)=.125*(1. + ETAO)*(1. + XIO)*(XIO+ETAO+2.*SIO-1.)*SII(K)
 30
 CONTINUE
C
 K1 = 9
 K2=10
C
C
C
 DO 40 K = 13
 16
 CALL ELMEXT(XI,ETA,SI,K,XIO,ETAO,SIO)
 N(K) = . 25*(1. + XIO)*(1. + ETAO)*(1. - SI**2)
 NXI(K)=.25*(1. + ETA0)*(1. - SI**2)*XII(K)
 NETA(K)=.25*(1. + XIO)*(1. - SI**2)*ETAI(K)
 NSI (K)=-0.5*(1. + ETA0)*(1. + XIO)*SI
C
C
C
 CALL ELMEXT(XI,ETA,SI,K1,XIO,ETAO,SIO)
 N(K1) = . 25*(1. - XI**2)*(1. + ETA0)*(1. + SI0)
 NXI(K1) =-0.5*(1. + ETA0)*(1. + SIO)*XI
 NETA(K1)=.25*(1. - XI**2)*(1. + SIO)*ETAI(K1)
 NSI(K1)=.25*(1. + ETA0)*(1. - XI**2)*SII(K1)
 CALL ELMEXT(XI,ETA,SI,K2,XIO,ETAO,SIO)
 N(K2) = . 25* (1. + XIO)*(1. - ETA**2)*(1. + SIO)
 NXI(K2)=.25*(1. - ETA**2)*(1. + SIO)*XII(K2)
 NETA(K2)=-0.5*(1. + XIO)*(1. + SIO)*ETA
 NSI(K2)=.25*(1. - ETA**2)*(1. + XIO)*SII(K2)
 IF (K1.EQ.11) THEN
 K1 = 17
 K2=18
 ELSE
 K1 = K1 + 2
 K2 = K2 + 2
 END IF
 CONTINUE
 END IF
C
 RETURN
 END
```

C

C
SUBROUTINE ELMEXT(XI,ETA,SI,K,XIO,ETAO,SIO)
C

C I I
C I FIRST DEVELOPED: 08-29-1988 I
C I LAST MODIFIED: 08-29-1988 I I
C I BY: M. FOROOZESH I
C I I I

C
REAL*8 XI,ETA,SI,XIO,ETAO,SIO
COMMON/ELLIB1/XII(20),ETAI (20),SII(20)
C
C
$\mathrm{XIO}=\mathrm{XI} \mathrm{AXII}(\mathrm{K})$

SIO = SI*SII(K)
C
RETURN
END


```
 COMMON/INPUT3/X(4000),Y(4000),Z(4000)
 COMMON/JACOB1/NX(20),NY(20),NZ(20)
C
C
C
C
C
C
 ENTRY JACB2D(INTGPN,NREL,NNEL,IERROR,DETJAC)
C
 XXI = 0.0
 XETA = 0.0
 YXI = 0.0
 YETA = 0.0
C
C*VDIR: ASSUME COUNT(8)
 DO 10 K1 = 1 , NNEL
 NODE = NOP(K1 , NREL)
 XXI = XXI + NXI(K1,INTGPN)*X(NODE)
 XETA = XETA + NETA(K1,INTGPN)`X(NODE)
 YXI = YXI + NXI(K1,INTGPN)*Y(NODE)
 YETA = YETA + NETA(K1,INTGPN)*Y(NODE)
 10 CONTINUE
C
 DETJAC = XXI*YETA - YXI*XETA
C
C*VDIR: ASSUME COUNT(8)
 DO 20 K = 1 , NNEL
 NX(K) = (YETA*NXI(K,INTGPN) - YXI*NETA(K,INTGPN))/DETJAC
 NY(K) = (-XETA*NXI(K,INTGPN) + XXI*NETA(K,INTGPN))/DETJAC
 20 CONTINUE
 RETURN
C
C
C
C
C
C
 ENTRY JACB3D(INTGPN,NREL,NNEL,IERROR,DETJAC)
C
 XXI = 0.0
 XETA = 0.0
 XSI = 0.0
 YXI = 0.0
 YETA = 0.0
 YSI = 0.0
 ZXI = 0.0
 ZETA = 0.0
 ZSI = 0.0
C
C*VDIR: ASSUME COUNT(20)
 DO 30 K1=1,NNEL
```

```
 NODE = NOP(K1 , NREL)
 XXI = XXI + NXI(K1,INTGPN)*X(NODE)
 XETA = XETA + NETA(K1,INTGPN)*X(NODE)
 XSI = XSI + NSI(KI,INTGPN)^X(NODE)
 YXI = YXI + NXI(K1,INTGPN)*Y(NODE)
 YETA = YETA + NETA(K1,INTGPN)*Y(NODE)
 YSI = YSI + NSI(K1,INTGPN)*Y(NODE)
 ZXI = ZXI + NXI(K1,INTGPN)*Z(NODE)
 ZETA = 2ETA + NETA(K1,INTGPN)*Z(NODE)
 ZSI = ZSI + NSI(K1,INTGPN)*Z(NODE)
 30 CONTINUE
C
 DETJAC= XXI*(YETA*ZSI - ZETA*YSI) - YXI*(XETA*ZSI - ZETA*XSI) +
 1 ZXI*(XETA*YSI - YETA*XSI)
C
CrVDIR: ASSUME COUNT(20)
 DO 40 K = 1 , NNEL
 NX(K) = ((YETA*ZSI - ZETA*YSI)*NXI(K,INTGPN)
 1 -(YXI*ZSI - ZXI*YSI)*NETA(K,INTGPN)
 2 +(YXI*ZETA - ZXI*YETA)*NSI(K,INTGPN))/DETJAC
 NY(K) = (-(XETA*ZSI - ZETA*XSI)*NXI(K,INTGPN)
 1 +(XXI*ZSI - ZXI*XSI)*NETA(K,INTGPN)
 2 -(XXI*2ETA - ZXI*XETA)*NSI(K,INTGPN))/DETJAC
 NZ(K) = ((XETA*YSI - YETA*XSI)*NXI(K,INTGPN)
 1 -(XXI*YSI - YXI*XSI)*NETA(K,INTGPN)
 2 +(XXI*YETA - YXI*XETA)*NSI(K,INTGPN))/DETJAC
 40 CONTINUE
C
 RETURN
 END
```

```
C
C =========================== E L I N F O ==================================
C
 SUBROUTINE ELINFO(ELNUM,ITYPE,NNEL,IFLAG,ISTART,LINES)
C
```



```
CI
```

C I PROGRAM ..... I
C ..... I
PROGRAM 'ELINFO' EXTRACTS ELEMENT INFORMATION FROM THE ARRAY C ..... I
C I 'INFOEL'. ..... I
C I ..... I
ARGUMENT LIST C I ..... I
C I ..... I
C I ELNUM = ELEMENT NUMBER PASSED BY THE CALLING ROUTINE ..... I
C ..... I
C I ITYPE = ELEMENT TYPE PASSED TO THE CALLING ROUTINE
C

```- nugber of noes in The eleunt passed toI
```

C NNEL $\quad=$ NUMBER OF NODES IN THE ELEMNT PASSED TO THE ..... I

```C IC I
```

```CALLING ROUTINEI
```

C ..... MATNUM =
MATERIAL I.D. NUMBER FOR THE ELEMENT PASSED TO THE I
C CALLING ROUTINE ..... I
C I ..... I
ISTART $=$ STARTING POSITION OF THE LINE CONNECTIVITY DATA C ..... I
IN ARRAYS 'IS' AND 'IE'. C

```CCLINES = NUMBER OF LINES CONNECTING THE NODES WITHIN THEI
```

I
C I ELEMENT ..... I
C I ..... I
C

```INTEGER ELNUMREAL*8 THICKCOMMON/INPUTA/INFOEL(2,2000),ETHICK(2000)
```

C
I = INFOEL(1 , ELNUM)
$11=\operatorname{INFOEL}(2$, ELNUM)
LINES $=$ IAND ( 11 , 8257536)/131072
ISTART $=11 / 8388608$
IFLAG $=$ IAND(I , 1835008)/262144
ITYPE $=\operatorname{IAND}(\mathrm{I}, 261632) / 512$
NNEL $=\operatorname{IAND}(I$, 508)/8
C

```RETURN
```

C
ENTRY ELINTM(ELNUM,IDENT,INTCOD,NIPXI,NIPETA,NIPSI,MATNUM,THICK)
I = INFOEL(1, ELNUM)
I1 $=$ INFOEL( 2, ELNUM)
MATNUM $=\operatorname{IAND}(\mathrm{I}, 7)$
NIPSI $=\mathrm{I} / 134217728$
NIPETA $=\operatorname{IAND}(\mathrm{I}, 117440512) / 16777216$
NIPXI $=$ IAND(I , 14680064)/2097152

```
INTCOD = IAND(I1 , 255)
IDENT = IAND(I1 , 130816)/256
THICK = ETHICK(ELNUM)
RETURN
END
```


## APPENDIX G

I/O MODULE

```
C
```



```
C
 SUBROUTINE COMPRO(BUFFER,BUFF,COMM,NEXT,K)
 INTEGER SPACE,COMMA,ZERO,NINE,DOT
 CHARACTER*80 BUFFER,BUFF,BUFER1,BUFF1
 CHARACTER*1 LINE(80),COM(4),COMLIN(80)
 CHARACTER*4 COMM,COMM1
 EQUIVALENCE (BUFER1,LINE),(COM,COMM1),(BUFF1,COMLIN)
 DATA SPACE,COMMA,ZERO,NINE,DOT,MINUS/64,107,240,249,75,96/
C
 BUFER1 = BUFFER
C
 IFL = 0
 BUFF1 = ' '
 NEXT = 0
 K1 = 0
 110 K = K + 1
 K1 = K1 + 1
 NCHAR = ICHAR(LINE(K))
 IF (K.EQ.80) THEN
 GO TO 120
 ELSE IF (NCHAR.GE.ZERO.AND.NCHAR.LE.NINE) THEN
 IFL = 1
 ELSE IF (IFL.EQ.1.AND.NCHAR.NE.SPACE.AND.NCHAR.NE.DOT) THEN
 NEXT = 1
 K = K - 1
 K1 = K1 - 1
 GO TO 120
 END IF
 COMLIN(K1) = LINE(K)
 GO TO 110
C
 120 IFL = 0
 COMM1 = ' '
 ICOUNT = 0
 DO 130 K2 = 1 , K1
 NCHAR = ICHAR(COMLIN(K2))
 IF (NCHAR.EQ.SPACE.OR.NCHAR.EQ.DOT.OR.NCHAR.EQ.MINUS) THEN
 GO TO 130
 ELSE IF (NCHAR.LT.ZERO.OR.NCHAR.GT.NINE) THEN
 ICOUNT = [COUNT + 1
 IF (ICOUNT.LE.4) COM(ICOUNT) = COMLIN(K2)
 COMLIN(K2) =
 END IF
 130 CONTINUE
```

C
BUFF $=$ BUFF 1
BUFFER = BUFER1
COMM = COMM1
RETURN
END

```
C
C ======================== l N P U T ==
C
 SUBROUTINE INPUT(IDOF,IOUT,IERROR)
C
```



```
C
C I SUBROUTINE INPUT2 READS ALL THE INPUT INFORMATION FROM I
C I CARD SETS 2 THROUGH 10. IT ALSO READS THE INFORMATION FROM I
C I THE PRIVIOUS RUNS IF THE PROGRAM IS RESUBMITED. I
C
C
C
C ==
 IMPLICIT REAL*8 (A-H,O-Z)
 REAL*8 NUX,NUY,NUZ,LX,LY
 REAL*4 X,Y,Z,FMAG,DMAG,ETHICK,THICK
 CHARACTER*80 BUFFER,BUFF,TITEL
 CHARACTER*4 COMM
 COMMON/MAIN1/U(8000),RE1(8000)
 COMMON/INPUT2/NOP(20,2000)
 COMMON/INPUT3/X(4000),Y(4000),Z(4000)
 COMMON/INPUT5/NUX(10),NUY(10),NUZ(10),EX(10),EY(10),EZ(10),
 1 P1X(10),P1Y(10),P1Z(10),P2X(10),P2Y(10),P2Z(10)
 COMMON/INPUT6/WGTX(10),WGTY(10),WGTZ(10)
 COMMON/INPUT7/RX(8000),RY(8000),RZ(8000)
 COMMON/INPUTB/NNODES,NELEM,NNDF,NLINC,MNIT, IFLAG1, IFLAG2, IDIM,
 1
 NINODE
 COMMON/INPUTA/INFOEL(2,2000),ETHICK(2000)
 COMMON/INPUTB/FAC,FACNEW,FACLOW,FACHIG,ENRG1,NDIVER,ISTOP
 COMMON/INPUTC/TITEL
 COMMON/INPUTD/COSTX(300),COSTY(300),COSTZ(300)
 COMMON/INPUTE/ISPB(4000)
 COMMON/INPUTF/MATYPE(10)
 COMMON/INPUTG/IFLAG3,IOINTR,IFPLOT
 COMMON/BOUND1/NCURVS
 COMMON/BOUND2/XZL(6),X2R(6),Y2B(6),YZT(6)
 COMMON/INPUTI/INTFAC(500)
 COMMON/POINTS/LX(4 , 6), LY(4 , 6)
 DIMENSION IDOF(1),DUMMY(6),M(20)
C
C
C
C
C
 ICNT = 1
C
C
 READ THE COMMAND LINE BUFFER
C
ICNT = COUTER FOR THE 'ISPB' ARRAY WHICH DETERMINES WHERE
 TO LOOK FOR THE DIRECTION COSINES OF THE SKEW BOUNDARY IN
 THE 'COSTX', 'COSTY' AND 'COSTZ' ARRAYS.
 LDEV11 = 11
100 IPOS = 0
 READ(LDEV11 , 101 ,END=1000) BUFFER
```

```
 101 FORMAT(A80)
C
 105 CALL COMPRO(BUFFER,BUFF,COMM,N,IPOS)
 IF(N.EO.O) THEN
 ASSIGN 100 TO NEXT
 ELSE
 ASSIGN 105 TO NEXT
 END IF
C
C
C
C
C
C
 IF (COMM.EQ.'TITE') THEN
 GO TO 200
 ELSE IF (COMM.EQ.'COOR'.OR.COMM.EQ.'NODE'.OR.COMM.EQ.'JOIN') THEN
 GO TO 300
 ELSE IF (COMM.EQ.'MEMB'.OR.COMM.EQ.'INCI'.OR.COMM.EQ.'CONE') THEN
 GO TO 400
 ELSE IF (COMM.EQ.'DISP') THEN
 CALL IODISP(IDOF,NNDF,IDIM,ICNT,LDEV11,IOUT)
 GO TO 100
 ELSE IF (COMM.EQ.'LOAD') THEN
 CALL IOLOAD(LDEV11,IOUT)
 GO TO 100
 ELSE IF (COMM.EQ.'GRAP') THEN
 READ(BUFF ,* , END = 2000) IFPLOT
 CALL GRAPHX(LDEV11,IOUT)
 GO TO 100
 END IF
 IF (COMM.EQ.'MATE') THEN
 READ(BUFF ,* , END = 2000) MATNUM
 ELSE IF (COMM.EQ.'STOP') THEN
 READ(BUFF ,* , END=2000) ISTOP
 ELSE IF (COMM.EQ.'LINE') THEN
 IFLAG1 = 0
 ELSE IF (COMM.EQ.'NONL') THEN
 IFLAG1 = 1
 ELSE IF (COMM.EQ.'NONS') THEN
 IFLAG2 = 1
 ELSE IF (COMM.EQ.'SYMM') THEN
 IFLAG2 = 0
 ELSE IF (COMM.EQ.'ELEM') THEN
 GO TO 440
 ELSE IF (COMM.EQ.'DIME') THEN
 READ(BUFF , * , END = 2000) IDIM
 NNDF = IDIM
ELSE IF (COMM.EQ.'ITER') THEN
 READ(BUFF ,* , END = 2000) MNIT
ELSE IF (COMM.EQ.'INCR') THEN
 READ(BUFF , * , END = 2000) NLINC
```

```
 ELSE IF (COMM.EQ.'FACL') THEN
 READ(BUFF ,* , END = 2000) FACLOW
 FAC = FACLOW
ELSE IF (COMM.EQ.'FACH') THEN
 READ(BUFF ,* , END = 2000) FACHIG
ELSE IF (COMM.EQ.'NU') THEN
 READ(BUFF ,* , END = 2000) NUX(MATNUM)
ELSE IF (COMM.EQ.'E') THEN
 READ(BUFF , * , END = 2000) EX(MATNUM)
ELSE IF (COMM.EQ.'WX') THEN
 READ(BUFF ,* , END = 2000) WGTX(MATNUM)
ELSE IF (COMM.EQ.'WY') THEN
 READ(BUFF, *, END = 2000) WGTY(MATNUM)
ELSE IF (COMM.EQ.'WZ') THEN
 READ(BUFF , * , END = 2000) WGTZ(MATNUM)
ELSE
 GO TO 150
END IF
GO TO NEXT
150 IF (COMM.EQ.'TYPE') THEN
 READ(BUFF ,* , END = 2000) MATYPE(MATNUM)
ELSE IF(COMM.EQ.'YIEL') THEN
 READ(BUFF , * , END = 2000) P1Z(MATNUM)
ELSE IF(COMM.EQ.'ISOT') THEN
 READ(BUFF ,* , END = 2000) P1Y(MATNUM)
ELSE IF(COMM.EQ.'KINE') THEN
 READ(BUFF ,* , END = 2000) P1X(MATNUM)
ELSE IF(COMM.EQ.'REST') THEN
 IFLAG3 = 1
ELSE IF(COMM.EQ. 'OUTP') THEN
 READ(BUFF , 穴 , END = 2000) IOINTR
ELSE IF(COMM.EQ.'INTE'') THEN
 GO TO 1100
ELSE
 GO TO 155
END IF
GO TO NEXT
155 IF (COMM.EQ.'PAX') THEN
 READ(BUFF ,* , END = 2000) LX(1 , NCURVE)
ELSE IF(COMM.EQ.'PAY') THEN
 READ(BUFF , * , END = 2000) LY(1 , NCURVE)
ELSE IF(COMM.EQ.'PBX') THEN
 READ(BUFF ,* , END = 2000) LX(2 , NCURVE)
ELSE IF(COMM.EQ.'PBY') THEN
 READ(BUFF , * , END = 2000) LY(2 , NCURVE)
ELSE IF(COMM.EQ.'RAX') THEN
 READ(BUFF ,* , END = 2000) LX(3 , NCURVE)
ELSE IF(COMM.EQ.'RAY') THEN
 READ(BUFF ,* , END = 2000) LY(3 , NCURVE)
ELSE IF(COMM.EQ.'RBX') THEN
 READ(BUFF , * , END = 2000) LX(4 , NCURVE)
ELSE IF(COMM.EQ.'RBY') THEN
```

```
 READ(BUFF , *, END = 2000) LY(4 , NCURVE)
 ELSE IF(COMM.EQ.'CURV') THEN
 READ(BUFF ,* , END = 2000) NCURVE
 IF (NCURVE.GT.NCURVS) NCURVS = NCURVE
 ELSE IF(COMM.EQ.'XZL') THEN
 READ(BUFF ,* , END = 2000) XZL(NCURVE)
 ELSE IF(COMM.EQ.'XZR') THEN
 READ(BUFF ,* , END = 2000) XZR(NCURVE)
 ELSE IF(COMM.EQ.'YZB') THEN
 READ(BUFF ,* , END = 2000) YZB(NCURVE)
 ELSE IF(COMM.EQ.'YZT') THEN
 READ(BUFF ,* , END = 2000) YZT(NCURVE)
 ELSE
 GO TO 3000
 END IF
 GO TO NEXT
C
C -m--- READ THE TITEL OF THE PROGRAM (CARD SET1)
C
 200 READ(BUFF , * , END = 2000) NUMBER
 DO 210 K = 1 , NUMBER
 READ(LDEV11 , 101) TITEL
 210 WRITE(IOUT , 101) TITEL
 GO TO NEXT
C
C ----- READ AND GENERATE THE NODAL COORDINATES
C
 300 I=0
 READ(BUFF ,* , END = 2000) NNODES
 310 READ (LDEV11 , *) K,(DUMMY(IDIR) , IDIR = 1 , IDIM),INCR
C
 X(K) = DUMMY(I)
 Y(K) = DUMMY(2)
 Z(K) = DUMMY(3)
C
 I=I+1
 IF (INCR.EQ,0) GO TO 330
 N=(K-K1)/INCR
 DX=(X(K)-X(K1))/N
 DY=(Y(K)-Y(K1))/N
 DZ=(Z(K)-Z(K1))/N
 K2=K-INCR
 DO 320 J=K1,K2,INCR
 N1=(J-K1)/INCR
 X(J)=X(K1)+N1*DX
 Y(J)=Y(K1)+N1*DY
 Z(J)=Z(K1)+N1'DZ
 I=I+1
 320 CONTINUE
 I=I-1
 330 K1=K
 IF(I.IT.NNODES) GO TO 310
```

```
C
 WRITE(IOUT , 6009)
 DO 340 K1 = 1 , NNODES
 340 WRITE(IOUT , 5004)K1,X(K1),Y(K1),Z(K1)
 GO TO NEXT
C
C ----- READ AND WRITE AND GENERATE THE ELEMENTS
C
 400 I = 0
 READ(BUFF ,** , END = 2000) NELEM
 410 READ(LDEV11 , *)K,ITYPE,NNEL, (NOP(NODE,K) ,NODE=1,NNEL),INCR
 ID = ITYPE/1000
 ID1 = ITYPE - ID*1000
 IFLAG = ID1/100
 ID2 = ID1 - IFLAG*100
 ITYPE = ID*100 + ID2
 IF (ITYPE.LT.300) THEN
 IF (NNEL.EQ.4) THEN
 ISTART = 1
 LINES = 4
 ELSE IF(NNEL.EQ.5) THEN
 ISTART = 5
 LINES = 5
 ELSE IF(ITYPE.EQ.208.OR.ITYPE.EQ.209) THEN
 ISTART = 10
 LINES = 8
 ELSE IF(ITYPE.EQ.219) THEN
 ISTART = 54
 LINES = 9
 END IF
 ELSE IF(ITYPE.GT.300) THEN
 IF (NNEL.EQ.8) THEN
 ISTART = 18
 LINES = 12
 ELSE IF(NNEL.EQ.20) THEN
 ISTART = 30
 LINES = 24
 END IF
 END IF
C
 I=I + 1
 INF1 = NNEL*8 + ITYPE*512 + IFLAG*262144
 INF2 = 8388608*ISTART + 131072*LINES
 INFOEL(1 , K) = INFOEL(1 , K) + INF1
 INFOEL(2,K) = INFOEL(2 , K) + INF2
 IF(INCR.EQ.0) THEN
 K1 = K
 ELSE
 K2 = (K - KI)/INCR
 DO 420 NODE = 1 , NNEL
 420 M(NODE) = (NOP(NODE , K) - NOP(NODE , K1))/K2
C
```

```
 DO 430 IELEM = K1+INCR , K-INCR , INCR
 INFOEL(1 , IELEM) = INFOEL(1 , IELEM) + INF1
 INFOEL(2 , IELEM) = INFOEL(2 , IELEM) + INF2
 I = I + 1
 IELEM1 = IELEM - INCR
 DO 430 NODE = 1 , NNEL
 430 NOP(NODE , IELEM) = NOP(NODE , IELEM1) + M(NODE)
 END IF
 IF(I.LT.NELEM) GO TO 410
 GO TO NEXT
C
C ----- READ AND GENERATE ELEMENT INFORMATIONS
C
 440 READ(BUFF ,* , END = 2000) ISTART
 IEND = ISTART
 INTR = 1
 NIPXI = 0
 NIPETA = 0
 NIPSI = 0
 INTCOD = 0
 THICK = 0.
 450 CALL COMPRO(BUFFER,BUFF,COMM,N,IPOS)
 IF (COMM.EQ.'TO') THEN
 READ(BUFF ,*, END = 2000) IEND
 ELSE IF(COMM.EQ.'BY') THEN
 READ(BUFF,* END = 2000) INTR
 ELSE IF(COMM.EQ.'NIPX') THEN
 READ(BUFF , * , END = 2000) NIPXI
 ELSE IF(COMM.EQ.'NIPE') THEN
 READ(BUFF ,* , END = 2000) NIPETA
 ELSE IF(COMM.EQ.'NIPS') THEN
 READ(BUFF ,* , END = 2000) NIPSI
 ELSE IF(COMM.EQ.'IRON') THEN
 READ(BUFF , * , END = 2000) INTCOD
 ELSE IF (COMM.EQ.'THIC') THEN
 READ(BUFF ,* , END = 2000) THICK
 ELSE IF (COMM.EQ.'MATE') THEN
 READ(BUFF , * , END = 2000) MAT
 ELSE
 GO TO 3000
 END IF
 IF (N.NE.O) GO TO 450
C
 INF1. = 2097152*NIPXI + 16777216*NIPETA + 134217728*NIPSI + MAT
 INF2 = INTCOD + 256*(INTCOD + NIPXI + 10*NIPETA + 100*NIPSI)
 DO 460 K = ISTART , IEND , INTR
 ETHICK(K) = ETHICK(K) + THICK
 INFOEL(1 , K) = INFOEL(1 , K) + INF1
460 INFOEL(2 , K) = INFOEL(2 , K) + INF2
 GO TO 100
C
C ----- READ AND GENERATE THE INTERFACE NODES
```

```
C
 1100 I = 0
 READ(BUFF , * , END = 2000) NINODE
 1110 READ (LDEV11 , *) K,INCR
 IF(INCR.EQ.0) THEN
 I = I + I
 INTFAC(I) = K
 IF (ISPB(K).EQ.0) THEN
 ISPB(K) = -ICNT
 ICNT = ICNT + 1
 END IF
 ELSE
 ISTART = INTFAC(I) + INCR
 IEND = K
 DO 1130 J = ISTART , IEND , INCR
 IF (ISPB(J).EQ.0) THEN
 ISPB(J) = -ICNT
 ICNT = ICNT + 1
 END IF
 I = I + 1
 1130 INTFAC(I) = J
 END IF
 IF (I.LT.NINODE) GO TO 1110
 GO TO NEXT
C
3000 WRITE(IOUT , 3001)
3001 FORMAT(1X,'COMMAND ENTERED IS NOT RECOGNIZED BY *SAFE*')
2000 STOP
1000 RETURN
5004 FORMAT(I5,1P,3G20.10)
6002 FORMAT(//,1X,'PHYSICAL DIMENSION = ',I3/1X,'NUMBER OF NODES = ',
 1 I6/1X,'NUMBER OF ELEMENTS = ',I6/1X,'NUMBER OF NODAL D.O.F. = ',
 2 16/,
 3 1X,'NUMBER OF APPLIED NODAL LOADS = ',I6/1X, 'NUMBER OF IMPOSED'
 4 ,' NODAL DISPLACEMENTS = ',I6/1X,'NUMBER OF SKEW BOUNDARIES = ',
 5 I6/1X,'INTEGRATION CODE = ',I6/1X,'NUMBER OF LOAD INCREMENTS = ;
 6 ,I6/1X,'GEOMETRIC LINEAR/NONLINEAR CODE = ',I6/1X,'MAXIMUM',
 7 'NUMBER OF ITERATION ALLOWED = ',I6/1X,'FACTOR = ',F14.7)
6009 FORMAT(/,20X,'COORDINATES OF THE NODES'/' NODE NO.',11X,'X',
 #19X,'Y',19X,'Z'/)
 END
```

```
C
```



```
C
 SUBROUTINE IODISP(IDOF,NNDF,IDIM,ICNT,LDEV11,IOUT)
 IMPLICIT REAL*8 (A-H,O-Z)
 CHARACTER*80 BUFFER,BUFF
 CHARACTER*4 COMM
 COMMON/MAIN1/U(8000),RE1(8000)
 COMMON/INPUTD/COSTX(300),COSTY(300),COSTZ(300)
 COMMON/INPUTE/ISPB(4000)
 DIMENSION IDOF(1),D(3),IDO(3),THETA(3)
C
 ITIME = 0
 CST = 3.141592653589793DO/180.DO
 IF (IDIM.EQ.2) THEN
 CST1 = 90.
 ELSE
 CST1 = 0.
 END IF
C
 10 IPOS = 0
 READ(LDEV11 , '(A80)' , END = 1000) BUFFER
 20 CALL COMPRO(BUFFER,BUFF,COMM,N,IPOS)
C
 IF (COMM.EQ.'NODE') THEN
 IF(ITIME.EQ.1) THEN
 ASSIGN 30 TO NEXT
 GO TO 60
 END IF
 READ(BUFF ,* , END=3000) ISTART
 ITIME = 1
 ISP = 0
 IEND = ISTART
 INTR = 1
 DO 40 K1 = 1 , NNDF
 D(K1) = 0.
 IDO(K1) = 0
40 THETA(K1) = 0.
 THETA(3) = CST1
 ELSE IF(COMM.EQ.'TO') THEN
 READ(BUFF ,* , END=3000) IEND
ELSE IF(COMM.EQ.'BY') THEN
 READ(BUFF ,* , END=3000) INTR
ELSE IF(COMM.EQ.'X') THEN
 READ(BUFF , * , END=3000) D(1)
 IF (D(1).EQ.O.) THEN
 IDO(1) = 1
 ELSE
 IDO(1) = -1
 END IF
ELSE IF(COMM.EQ.'Y') THEN
 READ(BUFF , * , END=3000) D(2)
```

```
 IF (D(2).EQ.O.) THEN
 IDO(2) = 1
 ELSE
 IDO(2) = - 1
 END IF
 ELSE IF(COMM.EQ. 'Z') THEN
 READ(BUFF , * , END=3000) D(3)
 IF (D(3).EQ.O.) THEN
 IDO(3) = 1
 ELSE
 IDO(3) = -1
 END IF
 ELSE IF(COMM.EQ.'TX') THEN
 READ(BUFF , * , END=3000) THETA(1)
 ISP = 1
 ELSE IF(COMM.EQ.'TY') THEN
 READ(BUFF ,* , END=3000) THETA(2)
 ISP = 1
 ELSE IF(COMM.EQ.'TZ') THEN
 READ(BUFF , * , END=3000) THETA(3)
 ISP = 1
 ELSE IF (COMM.EQ.'END') THEN
 ASSIGN 50 TO NEXT
 GO TO 60
 ELSE
 GO TO 2000
 END IF
C
 IF (N.NE.O) THEN
 GO TO 20
 ELSE
 GO TO 10
 END IF
C
 60 DO 80 K1 = ISTART , IEND , INTR
 DO 70 IDIR = 1 , NNDF
 ID = NNDF*
 U(ID) = U(ID) + D(IDIR)
 70 IDOF(ID) = IDOF(ID) + IDO(IDIR)
C
 IF (ISP.EQ.1) THEN
 IF (ISPB(K1).EQ.0) THEN
 ISPB(K1) = ICNT
 K2 = ICNT
 ICNT = ICNT + 1
 ELSE IF (ISPB(K1).LT.0) THEN
 ISPB(K1) = -ISPB(K1)
 K2 = ISPB(K1)
 ELSE
 WRITE(IOUT , 2002) KI
 STOP
```

```
 END IF
 COSTX(K2) = DCOS(THETA(1)*CST)
 COSTY(K2) = DCOS(THETA(2)*CST)
 COSTZ(K2) = DCOS(THETA(3)*CST)
 END IF
 80 CONTINUE
 go TO NEXT
C
1000 RETURN
2000 WRITE(IOUT , 2001)
2001 FORMAT(1X,'>>>>>>> COMMAND ENTERED IS NOT RECOGNIZED AS A ,
 1 ' DISPLACEMENT SUBCOMMAND ')
2002 FORMAT(/1X,'>>>>>>> PROGRAM STOPED DUE TO MULTIPLE DEFINITIONS'/
 1 9X,'OF THE SKEW DIRECTION FOR NODE ',I4)
3000 STOP
 END
```

```
C
```



```
C
 SUBROUTINE IOLOAD(LDEVII,IOUT)
 IMPLICIT REAL*8 (A-H,O-Z)
 CHARACTER*80 BUFFER,BUFF
 CHARACTER*4 COMM
 COMMON/INPUT7/RX(8000),RY(8000),RZ(8000)
 DIMENSION IDOF(1),D(3),IDO(3),THETA(3)
C
 ITIME = 0
C
 10 IPOS = 0
 READ(LDEV11 , '(A80)' , END = 1000) BUFFER
 20 CALL COMPRO(BUFFER,BUFF,COMM,N,IPOS)
C
3 0
 ELSE
 GO TO 2000
 END IF
C
 IF (N.NE.0) THEN
 GO TO 20
 ELSE
 GO TO 10
 END IF
C
```

```
 60 DO 80 K1 = ISTART , IEND , INTR
 RX(K1) = RX(K1) + PX
 RY(K1) = RY(K1) + PY
 RZ(K1) = RZ(K1) + PZ
 80 CONTINUE
 GO TO NEXT
C
 1000 RETURN
 2000 WRITE(IOUT , 2001)
2001 FORMAT(1X, '>>>>>>> COMMAND ENTERED IS NOT RECOGNIZED AS A ',
 1 ' LOAD SUBCOMMAND ')
3000 STOP
 END
```

```
C
C ======================= G R A P H X
C
 SUBROUTINE GRAPHX(LDEVI1,IOUT)
 CHARACTER*80 BUFFER,BUFF
 CHARACTER:54 COMM
 COMMON/GRAPH3/XL,XR,YB,YT,ZF,D
 COMMON/GRAPH4/XVL,XVR,YVB,YVT,SX,SY
 COMMON/GRAPH5/FMAG,DMAG,HIGHT, ANGLE,NOLINE, ITHICK,NLINES
C
C READ THE COMMAND LINE BUFFER
C
 100 IPOS = 0
 READ(LDEV11 , 101 ,END=1000) BUFFER
 101 FORMAT(A80)
C
 105 CALL COMPRO(BUFFER,BUFF,COMM,N,IPOS)
 IF(N.EQ.0) THEN
 ASSIGN 100 TO NEXT
 ELSE
 ASSIGN 105 TO NEXT
 END IF
C
 IF (COMM.EQ.'FMAG') THEN
 READ(BUFF , * , END = 2000) FMAG
 ELSE IF(COMM.EQ.'DMAG') THEN
 READ(BUFF , * , END = 2000) DMAG
 ELSE IF(COMM.EQ.'WL') THEN
 READ(BUFF ,* , END = 2000) XL
 ELSE IF(COMM.EQ.'WR') THEN
 READ(BUFF ,* , END = 2000) XR
 ELSE IF(COMM.EQ.'WT') THEN
 READ(BUFF ,* , END = 2000) YT
 ELSE IF(COMM.EQ.'WB') THEN
 READ(BUFF , * , END = 2000) YB
 ELSE IF(COMM.EQ.'VL') THEN
 READ(BUFF , * , END = 2000) XVL
 ELSE IF(COMM.EQ.'VR') THEN
 READ(BUFF , * , END = 2000) XVR
 ELSE IF(COMM.EQ.'VT') THEN
 READ(BUFF , * , END = 2000) YVT
 ELSE IF(COMM.EQ.'VB') THEN
 READ(BUFF ,* , END = 2000) YVB
 ELSE IF(COMM.EQ.'LINE') THEN
 READ(BUFF , * , END = 2000) ITHICK
 ELSE IF(COMM.EQ.'CONT') THEN
 NOLINE = 1
 ELSE IF(COMM.EQ.'HIGH') THEN
 READ(BUFF , * , END = 2000) HIGHT
 ELSE IF(COMM.EQ.'ANGL') THEN
 READ(BUFF , * , END = 2000) ANGLE
 ELSE IF(COMM.EQ.'END') THEN
```

ELSE
WRITE(IOUT , 200) COMM
200 FORMAT(1X,'>>>>>>> COMMAND '", A4,'" IS NOT RECOGNIZED BY'
1 ,' ROUTINE GRAPHX')
GO TO 2000
END IF
GO TO NEXT
1000 RETURN
2000 STOP
END

```
C
```



```
 C
 SUBROUTINE OUTPUT(IOUT,IERROR)
 IMPLICIT REAL*8 (A-H,O-Z)
 CHARACTER*48 CDUMMY,CSELA(27),CSTRS(27),CSTRN(27),CDUM
 CHARACTER*48 CSTRS1,CSTRN1,CSELA1
 CHARACTER*57 CTEMP
 INTEGER ELNUM
 COMMON/UTIL1/CSTRS1,CSTRN1,CSELA1,CTEMP
 COMMON/INPUT1/NIPXI,NIPETA,NIPSI,NIP,INTCOD
 COMMON/INPUT6/WGTX(10),WGTY(10),WGTZ(10)
 COMMON/INPUT8/NNODES,NELEM,NNDF,NLINC,MNIT,IFLAG1, IFLAG2,IDIM,
 1
 COMMON/INPUTF/MATYPE(10)
 COMMON/DEVICE/LDEV1,LDEV2,LDEV3,LDEV4,LDEV5,LDKEEP,LDEV,LDEVST
 COMMON/MAIN2/UTOTAL(8000)
 COMMON/MAIN4/RE(8000)
 DIMENSION STRESS(6),STRAIN(6),COORDS(3),FORCES(6),DISPL(6)
 DIMENSION CSTR(6),STRPLA(6),STRELA(6)
 EQUIVALENCE (STRESS,STRAIN,FORCES,DISPL,CDUMMY),(STRELA,CDUM)
C
 ITYPE1 = 0
 IDENT1 = 0
 DO 100 ELNUM = 1 , NELEM
 CALL ELINFO(ELNUM,ITYPE,NNEL,IFLAG,ISTART,LINES)
 CALL ELINTM(ELNUM,IDENT,INTCOD,NIPXI,NIPETA,NIPSI,MATNUM,THICK)
C
 IF (ITYPE.NE.ITYPE1.OR.IDENT.NE.IDENT1) THEN
 IF (ITYPE.GT.300) THEN
 ASSIGN 3001 TO IFOR
 ASSIGN 3101 TO IFOR1
 IF (MATYPE(MATNUM).EQ.2) THEN
 ASSIGN 3102 TO IF1
 ELSE
 ASSIGN 3002 TO IF1
 END IF
 IF (IFLAG1.EQ.1) THEN
 ASSIGN 3103 TO IF2
 ELSE
 ASSIGN 3003 TO IF2
 END IF
 IF (INTCOD.EQ.0) THEN
 CALL ISH3DG(ITYPE,NNEL,IERROR)
 ELSE
 CALL ISH3DI(ITYPE,NNEL,IERROR)
 END IF
 IEND = 6
 ELSE
 IEND = 4
 CALL ISH2DG(ITYPE,NNEL,IERROR)
 IF (IFLAG.EQ.3) THEN
```

ASSIGN 2001 TO IFOR
ASSIGN 2101 TO IFOR1
IF (MATYPE ( MATNUM ).EQ.2) THEN

```ASSIGN 2104 TO IF1
```

ELSE

```END IFIF (IFLAG1.EQ.1) THENASSIGN 2105 TO IF2
```

ELSE
ASSIGN 2005 TO IF2
END IF
ELSE
ASSIGN 2001 TO IFOR
ASSIGN 2101 TO IFOR1
IF (MATYPE ( MATNUM ).EQ.2) THEN

```ASSIGN 2102 TO IF1
```

ELSE
ASSIGN 2002 TO IF1
END IF
IF (IFLAG1.EQ.1) THEN

```ASSIGN 2103 TO IF2
```

ELSE
ASSIGN 2003 TO IF2
END IF
END IF
END IF
END IF
ITYPE1 = ITYPE
IDENT1 = IDENT
IF (MATYPE( MATNUM ).EQ.1) THEN
DO 2 K1 = 1 , NIP
CALL IOGET(LDEV1,96,'(A96)',5)
CSTRS( K1 ) = CSTRS1
ELSE IF (MATYPE( MATNUM ).EQ.2) THEN
DO 3 K1 = 1 ,NIP
CALL IOGET(LDEV1,144,'(A144)',6)
CSTRS( K1 ) = CSTRS1
CSTRN( K1 ) = CSTRN1
CSELA( K1 ) = CSELA1
END IF
C
WRITE(IOUT , 5002) ELNUM
WRITE(IOUT , IF1)
DO 10 INTGPN = 1 , NIP
CALL COORDI(ELNUM,NNEL,INTGPN,COORDS(1),COORDS(2),COORDS(3))
CDUMMY = CSTRN( INTGPN )
WRITE(IOUT , IFOR) INTGPN,(COORDS(K1),K1=1,IDIM),
1 (STRAIN(K1),K1=1,IEND)
IF (MATYPE( MATNUM ).EQ.2) THEN

```
```

                    CDUM = CSELA( INTGPN )
                    DO 5 K1 = 1, IEND
                    STRPLA( K1 ) = STRAIN( K1 ) - STRELA( K1 )
                    WRITE(IOUT ,IFOR1) (STRELA(K1),K1=1,IEND)
                        WRITE(IOUT ,IFOR1) (STRPLA(K1),K1=1,IEND)
                        END IF
                            CONTINUE
    C
C
WRITE(IOUT , IF2)
DO 20 INTGPN = 1 ,NIP
CALL COORD1(ELNUM,NNEL,INTGPN,COORDS(1),COORDS(2),COORDS(3))
CDUMMY = CSTRS( INTGPN )
WRITE(IOUT , IFOR) INTGPN,(COORDS(K1),K1=1,IDIM),
1 (STRESS(K1),K1=1,IEND)
IF(IFLAG1.EQ.1) THEN
CALL CAUCHY(ELNUM,ITYPE,NNEL,NNDF,INTGPN,STRESS,CSTR)
WRITE(IOUT , IFOR1) (CSTR(K1),K1=1,IEND)
END IF
CONTINUE
CONTINUE
C
WRITE(IOUT , 6009)
DO 220 K1 = 1 , NNODES
DO 210 K2 = 1 , NNDF
K3 = (K1 -1)*NNDF + K2
210 FORCES( K2 ) = RE( K3 )
220 WRITE(IOUT , 5004) K1,(FORCES(K2),K2 = 1 ,NNDF)
C
WRITE(IOUT , 6007)
DO 240 K1 = 1 , NNODES
DO 230 K2 = 1 , NNDF
K3 = (K1 -1) *NNDF + K2
230 DISPL( K2 ) = UTOTAL( K3 )
240 WRITE(IOUT , 5004) K1,(DISPL( K2 ),K2 = 1 ,NNDF)
C
RETURN
C
2001 FORMAT(/I4,1P,6G14.5)
C
2101 FORMAT(32X,1P,4G14.5)
C
2002 FORMAT(/,50X,'STRAIN COMPONENTS'//IX,'POINT',5X,'X',14X,'Y',
\#12X,'EXX',11X,'EYY',11X, 'EXY',11X, 'EZZ'/)
C
2102 FORMAT(/, 70X,'STRAIN COMPONENTS'//1X, 'POINT', 5X, 'X', 14X,'Y',
\#⿰7X,' TOTAL_X ',3X,' TOTAL_Y ',3X,' TOTAL_XY ',2X,
\#\#' TOTAL_Z
\#34X,' ELAST_X',6X,' ELAST_Y',6X,' ELAST_XY',5X,' ELAST_Z'/

```

```

C
2003 FORMAT(/,70X,'STRESS COMPONENTS'//1X,'POINT',5X,'X',14X,'Y',

```
```

    #12X,'SXX',11X,'SYY',11X,'SXY',11X,'SZZ'/)
    C
2103 FORMAT(/,70X,'STRESS COMPONENTS'//1X,'POINT',5X,'X',14X,'Y',
\#7X,'2ND PIOLA_X',3X,'2ND PIOLA_Y',3X,'2ND PIOLA_XY',2X,
\#'2ND_PIOLA_2'/
\#34X,'CAUCHY_X',6X,'CAUCHY_Y',6X,'CAUCHY_XY',5X,'CAUCHY_Z'/)
C
2004 FORMAT(/,50X,'STRAIN COMPONENTS'//1X,'POINT',5X,'X',14X,'Y',
\#11X,'ER ',11X,'EY ',11X,'ERY',11X,'ET '/)
C
2104 FORMAT(/,70X,'STRAIN COMPONENTS'//1X,'POINT',5X,'X',14X,'Y',
\#7X,' TOTAL_R ',3X,' TOTAL_Y ',3X,' TOTAL_RY ',2X,
\#' TOTAL_T
\#34X,' ELAST_R',6X,' ELAST_Y',6X,' ELAST_RY',5X,' ELAST_T'/
\#34X,' PLAST_R',6X,' PLAST_Y',6X,' PLAST_RY',5X,' PLAST_T'/)
C
2005 FORMAT(/,50X,'STRESS COMPONENTS'//1X,'POINT',5X,'X',14X,'Y',
\#12X,'SR ',11X,'SY ',11X,'SRY',11X,'ST '/)
C
2105 FORMAT(/,70X,'STRESS COMPONENTS'//1X,'POINT',5X,'X',14X,'Y',
\#7X,'2ND PIOLA_R',3X,'2ND PIOLA_Y',3X,'2ND PIOLA_RY',2X,
\#'2ND_PIOLA_T'/
\#34X,'CAUCHY_R',6X,'CAUCHY_Y',6X,'CAUCHY_RY',5X,'CAUCHY_T'/)
C
3001 FORMAT(I3,1P,9G14.5)
3101 FORMAT(45X,1P,6G14.5/)
C
3002 FORMAT(/,50X,'STRAIN COMPONENTS'//1X,'POINT',5X,'X',13X,'Y',13X,
\#'Z',11X,'EXX',11X,'EYY',11X,'EZZ',11X,'EXY',11X,'EYZ',11X,'EXZ'/)
C
3102 FORMAT(/,50X,'STRAIN COMPONENTS'//1X,'POINT',5X,'X',13X,'Y',
\#14X,'Z',7X,' TOTAL_X ',3X,' TOTAL_Y ',3X,' TOTAL_Z ',2X,
\#\#' TOTAL_XY ',2X,' TOTAL_YZ ',2X,' TOTAL_XZ, '/
\#\#48X,' ELAST_X',6X,' ELAST_Y',6X,' ELAST_Z',5X,' ELAST_XY',5X,
\#'' ELAST_YZ',5X,' ELAST_XZ'/
\#\#48X,' PLAST_X',6X,' PLAST_Y',6X,' PLAST_Z',5X,' PLAST_XY',5X,
\#' PLAST_YZ',5X,' PLAST_XZ'/)
C
3003 FORMAT(/,50X,'STRESS COMPONENTS'//1X,'POINT',5X,'X',13X,'Y',13X,
\#'Z',11X,'SXX',11X,'SYY',11X,'SZZ',11X,'SXY',11X,'SYZ',11X,'SXZ'/)
C
3103 FORMAT(/,50X,'STRESS COMPONENTS'//1X,'POINT',5X,'X',13X,'Y',
\#14X,'Z',7X,'2ND PIOLA_X',3X,'2ND PIOLA_Y',3X,'2ND PIOLA_Z', 2X,
\#'2ND_PIOLA_XY',2X,'2ND PIOLA_YZ',2X,'2ND PIOLA_XZ'/
\#48X, ''CAUCHY_X',6X,'CAUCHY_Y',6X,'CAUCHY_Z',5X,'CAUCHY_XY',5X,
\#'CAUCHY_YZ',5X,'CAUCHY_XZ'/)
C

```

```

    5004 FORMAT(I5,1P,3G20.10)
    5005 FORMAT(I3,9(1X,G12.9))
    C
6007 FORMAT(/,20X,'DISPLACEMENT OF THE NODES'/' NODE NO.',10X,'UX',

```
```

        #18X,'UY',18X,'UZ'/)
    C
6008 FORMAT(/,45x,'TOTAL PLASTIC WORK AT GAUSSIAN POINTS'/11X,'P1',
\#11X,'P1',11X,'P3',11X,'P4',11X,'P5',11X,'P6',11X,'P7',11X,'P8'
\#,11X,'P9'/)
C
6009 FORMAT(/,20X,'REACTIONS AT THE NODES'/' NODE NO.',10X,'RX',
\#18X,'RY',18X,'RZ'/)
C
6010 FORMAT(/20X,'POINTS THAT HAVE YIELDED'/12X,'P1',5X,'P2',5X,'P3',
\#5X,'P4',5X,'P5',5X,'P6',5X,'P7',5X,'P8',5X,'P9')
END

```

\section*{APPENDIX H}

\section*{REAL I/O UTILITIES MODULE}
```

C
C ====================== U T I L I T =====================================
C
SUBROUTINE UTILIT
IMPLICIT REAL*8 (A-H,O-Z)
CHARACTER*240 BUFFER
CHARACTER*6 FMAT
COMMON/UTIL1/BUFFER
COMMON/DEVICE/LDEV1,LDEV2,LDEV3,LDEV4,LDEV5,LDKEEP,LDEV,LDEVST
COMMON/MAIN2/UTOTAL(8000)
COMMON/MAIN4/RE(8000)
COMMON/TEMP/PRESS, PLWORK
DIMENSION IDOF( 1 )
C
C
C
C
ISWAP = LDEV1
LDEV1 = LDEV2
LDEV2 = ISWAP
C
RETURN
C
ENTRY SWAP1
C
LDKEEP= LDEV1
LDEV1 = LDEV2
ISWAP = LDEV2
LDEV2 = LDEV3
LDEV3 = ISWAP
C
RETURN
C
ENTRY SWAP2
C
LDEV1 = LDEV2
LDEV2 $=$ LDKEEP
C
RETURN
C
C
ENTRY
REWIN

```

C

\section*{ENTRY REWIN}

C

> REWIND(UNIT=LDEV1, \(\mathrm{ERR}=1000\), IOSTAT \(=\) IERROR \()\)
> REWIND(UNIT=LDEV2, \(\mathrm{ERR}=1000\), \(\mathrm{IOSTAT}=\mathrm{IERROR}\))
> RETURN

\section*{C}

ENTRY RESTOR (MDF, ISTART,NTDF,IDOF)
READ(LDEVST , *)ISTART,NTDF,NWMAX,LDEV1,LDEV2,LDEV3
DO \(100 \mathrm{Kl}=1\), MDF
100 READ(LDEVST, *)RE(K1),UTOTAL(K1)
REWIND(UNIT=LDEVST, ERR=1000,IOSTAT=IERROR)
RETURN
ENTRYSTORE
ENTRY STORE (MDF,INCREM,NTDF,IDOF)
WRITE(LDEVST , *)INCREM,NTDF,NWMAX,LDEV1,LDEV2,LDEV3
DO 200 K1 = 1 , MDF
200 WRITE (LDEVST , *)RE(K1), UTOTAL(K1), IDOF(K1)
REWIND(UNIT=LDEVST,ERR=1000,IOSTAT=IERROR)
WRITE (LDEV5 , *)INCREM, PRESS, UTOTAL(2),UTOTAL(2114),PLWORK PLWORK \(=0\) RETURN

ENTRY STORE1 (MDF,NTDF,IDOF)
WRITE (15 , *)NTDF,LDEV1,LDEV2,LDEV3
DO \(300 \mathrm{K1}=1\), MDF
300 WRITE(15 , *)RE(K1), UTOTAL(K1) REWIND(UNIT \(=15\), ERR \(=1000\), IOSTAT \(=\) IERROR) RETURN

> ENTRY RESTR1

ENTRY RESTR1(MDF,NTDF,IDOF)
READ (15 , *)NTDF, LDEV1,LDEV2,LDEV3
DO \(400 \mathrm{~K} 1=1\), MDF
\(400 \operatorname{READ}(15\), *)RE(KI), UTOTAL (K1)
REWIND(UNIT=15 ,ERR=1000,IOSTAT=IERROR)
RETURN
C
C
C
ENTRY IOGET(IDEV,LENGTH,FMAT,N)
```

    READ(UNIT=IDEV , FMT=FMAT(1:N)) BUFFER(1:LENGTH)
    RETURN
    C
C ENNTRY IOPUT
C
ENTRY IOPUT(IDEV,LENGTH,FMAT,N)
WRITE(UNIT=IDEV ,FMT=FMAT(1:N)) BUFFER(1:LENGTH)
RETURN
C
C ENTRYYIOBKS
C
ENTRY IOBKS(IDEV)
BACKSPACE (UNIT=IDEV)
RETURN
C
C
C
ENTRY ARCHIV(MDF)
RETURN
C
C ENTRYY RECOV
C
C
ENTRY RECOV(MDF,ISTART,NTDF,IDOF)
READ(LDEVST , *)ISTART,NTDF,NWMAX,LDEV1,IDEV2,LDEV3
DO 500 K1 = 1 , MDF
500 READ(LDEVST, *)RE( K1 ),UTOTAL( K1 ),IDOF( K1 )
REWIND(UNIT=LDEVST,ERR=1000,IOSTAT=IERROR)
RETURN
C
RETURN
1000 WRITE(IOUT , 1001)
1001 FORMAT(1H0,1X,'ERROR IN REWINDING UTILITY FILES IS DETECTED',
1 ' BY ROUTINE CONTRL')
STOP
END

```

APPENDIX I
VIRTUAL I/O UTILITIES MODULE
```

C
C ====================== U T I L I T ========================================
C
SUBROUTINE UTILIT
IMPLICIT REAL*8 (A-H,O-Z)
CHARACTER*201 BUFFER,IOBUFF,TBUFF1,TBUFF2
CHARACTER*6 FMAT
COMMON/UTILI/BUFFER
COMMON/UTIL2/IOBUFF(3,18000)
COMMON/UTIL3/NREC(3),NWMAX
COMMON/UTIL4/TBUFF1,TBUFF2
COMMON/UTIL5/REQ1(8000),REQ2(8000),UTL1(8000),UTL2(8000),
1
COMMON/DEVICE/LDEV1,LDEV2 ,LDEV3,LDEV4, LDEV5,LDKEEP ,LDEV,LDEVST
COMMON/MAIN2/UTOTAL(8000)
COMMON/MAIN4/RE(8000)
COMMON/TEMP/PRESS,PLWORK
DIMENSION IDOF( 1 )
C
C
C
ENTRY SWAP
C
ISWAP = LDEV 1
LDEV1 = LDEV2
LDEV2 = ISWAP
C
RETURN
C
C
C
ENTRY SWAP1
C
LDKEEP= LDEV1
LDEV1 = LDEV2
ISWAP = LDEV2 .
LDEV2 = LDEV3
LDEV3 = ISWAP
C
RETURN
C
C
C
ENTRY SWAP2
C
LDEV1 = LDEV2

```
```

    LDEV2 = LDKEEP
    C
C
C
C
C
C
C
C
C
RETUNNE
RETURN
C
C
C
C
WRITE(TBUFF1 , *)INCREM,NTDF,NWMAX,LDEV1,LDEV2,LDEV3
DO 200 K1 = 1 , MDF
REQ1( K1 ) = RE( K1 )
UTL1( K1 ) = UTOTAL( K1 )
IDOF1( K1 ) = IDOF( K1 )
200 CONTINUE
WRITE(LDEV5 , *)INCREM,PRESS,UTOTAL( 2 ),UTOTAL(2114),PLWORK
PLWORK = 0
RETURN
C
C
C
C
WRITE(TBUFF2 , *)NTDF,LDEV1,LDEV2,LDEV3
DO 300 K1 = 1 , MDF
REQ2( K1 ) = RE( K1 )
UTL2( K1 ) = UTOTAL( K1 )
300 CONTINUE
RETURN
C
C

```
C
```

    ENTRY RESTRI(MDF,NTDF,IDOF)
    C
READ(TBUFF2 , *)NTDF,LDEV1,LDEV2,LDEV3
D0 400 K1 = 1 , MDF
RE( K1 ) = REQ2( K1 )
UTOTAL( K1 ) = UTL2( K1 )
400 CONTINUE
RETURN
C
C ENTRY I OGET
C
ENTRY IOGET(IDEV,LENGTH,FMAT,N)
BUFFER(1:LENGTH) = IOBUFF(IDEV , NREC( IDEV ))(1:LENGTH)
NREC( IDEV ) = NREC( IDEV ) + 1
RETURN
ENTRY IOPUT
ENTRY IOPUT(IDEV,LENGTH,FMAT,N)
IOBUFF(IDEV , NREC( IDEV )) = BUFFER
NREG( IDEV ) = NREC( IDEV ) + 1
RETURN
ENTRYIOBKS
ENTRY IOBKS(IDEV)
NREC( IDEV ) = NREC( IDEV ) - 1
RETURN
C
C
C
ENTRY ARCHIV(MDF)
READ(TBUFF1 , *)ISTART,NTDF,NWMAX,LDEV1,LDEV2,LDEV3
WRITE(LDEVST , *)ISTART,NTDF,NWMAX,LDEV1,LDEV2,LDEV3
DO 450 K1 = 1 , MDF
WRITE(LDEVST , *)REQ1( K1 ),UTL1( K1 ),IDOF1( K1 )
450 CONTINUE
C
DO 500 K1 = 1 , NHMAX
BUFFER = IOBUFF(LDEV1 , K1)
500 WRITE(LDEV1,'(A201)')BUFFER
RETURN
C
C ENTRY RECOV
C
ENTRY RECOV(MDF,ISTART,NTDF,IDOF)
READ(LDEVST , *)ISTART,NTDF,NWMAX,LDEV1,LDEV2,LDEV3
DO 600 K1 = 1 , MDF
600 READ(LDEVST , *)RE( K1 ),UTOTAL( K1 ),IDOF( K1 )
REWIND (UNIT=LDEVST)
C
DO 700 K1 = 1 , NWMAX

```
```

    READ(LDEV1,'(A201)')BUFFER
    700 IOBUFF(LDEV1 , K1) = BUFFER
    REWIND (UNIT=LDEV1)
    RETURN
    C
END

```

\section*{APPENDIX J}

\section*{INITIALIZER MODULE}
```

        SUBROUTINE INITAL(IDOF)
        IMPLICIT REAL*8 (A-H,O-Z)
        COMMON/MAIN1/U(8000),RE1(8000)
        COMMON/INPUT7/RX(8000),RY(8000),RZ(8000)
        COMMON/INPUTE/ ISPB(4000)
        DIMENSION IDOF( 1 )
    C
NNODS = 4000
NELEM = 2000
NDOF =8000
C
DO 10 K1 = 1 , NNODS
ISPB( K1 ) = 0
10 CONTINUE
C
DO 20 K1 = 1 , NDOF
IDOF( K1 ) = 0
U( K1 ) = 0.
RX( K1 ) = 0.
RY( K1 ) = 0.
RZ( K1 ) = 0.
20 CONTINUE
RETURN
END

```

\section*{APPENDIX K}

\section*{GRAPHICS MODULE}
```

C
C ==========ニ============= 1 N P L 0 T==================================
C
SUBROUTINE INPLOT(NELEM)
C
C =======================================================================
C I : I
CI PROGRAM: I
C I I
C I I
C I INPLOT PERFORMS THE FOLLOWING FUNCTIONS I
C I I
C I 1 - INITILIZES THE PLOTTING DEVICE I
C I 2- EVALUATES THE LINE CONNECTIVITY OF THE MESH I
C I 3-EVALUATES THE NODE CONNECTIVITY OF THE MESH I
C I
C I
ARGUMENT L I ST:

```
ARGUMENTLIST: 1
C
C I
```C I I NELEM = NUMBER OF ELEMENTS IN THE MESH
```

I

```I
```

C I I
C I CONSIDERATIONS: I
C I I
C I BITS 0-5 AND THE STORES THE REPETITION NUMBER OF THE
THE ARRAY IREP STORES THE REPETITION NUMBER OF THE LINES IN

```I
```

C I NODES IN BITS 6-31. THESE VALUES MUST BE EXTRACTED PROPERLY I
C I IF NEEDED. I
C I I
C
INTEGER ELNUM

```COMMON/INPUT2/NOP \((20,2000)\)COMMON/GRAPH1/IS(62),IE(62)COMMON/GRAPH2/IVS(8000), IVE (8000), ILS(8000), ILE(8000)COMMON/GRAPH3/XL , XR , YB , YT , ZF, DCOMMON/GRAPH4/XVL, XVR, YVB ,YVT, SX, SYCOMMON/GRAPH5/FMAG, DMAG ,HIGHT, ANGLE ,NOLINE , ITHICK ,NLINES, NLINCOMMON/GRAPH8/LDEVPCOMMON/IREPI/IREP (8000), LREP(8000)
```

C
C ----- SEARCH THROUGH ELEMENTS FOR LINE AND NODE CONNECTIVITY

```C
```

DO 60 ELNUM $=1$, NELEM
CALL ELINFO(ELNUM,ITYPE,NN,IFLAG,ISTART,LINES)
C
C DETERHINE THE LINE CONNECTIVITY OF THE ELEMENT
C

```
            ISTOP = ISTART + LINES - 1
            DO 20 K2 = ISTART , ISTOP
            J1 = NOP(IS( K2 ), ELNUM)
            J2 = NOP(IE( K2 ), ELNUM)
            ICODE = 0
            DO 10 K1 = 1 , NLINES
            IF (J2.EQ.IVS(K1).OR.J2.EQ.IVE(K1)) THEN
                IF (J1.EQ.IVE(K1).OR.J1.EQ.IVS(K1)) THEN
                IREP( K1 ) = IREP( K1 ) + 1
                    ICODE = 1
            END IF
            END IF
    10 CONTINUE
C
    IF (ICODE.EQ.0) THEN
            NLINES = NLINES + 1
            IREP( NLINES ) = IREP( NLINES ) + 1
            IVS( NLINES ) = J1
            IVE( NLINES ) = J2
            END IF
            20 CONTINUE
C
C ----- DETERMINE THE NODE CONNECTIVITY OF THE ELEMENT
C
            DO 30 K1 = 1 , NN
            NODE = NOP(K1 , ELNUM)
            IREP( NODE ) = IREP( NODE ) + 32
            30 CONTINUE
C
C ----- DETERMINE THE LINE CONNECTIVITY USING THE CORNER NODES
C
        DO 50 K2 = 1, 4
        J1 = NOP(IS( K2 ), ELNUM)
        J2 = NOP(IE( K2 ), ELNUM)
        ICODE = 0
        DO 40 K1 = 1 , NLIN
        IF (J2.EQ.ILS(K1).OR.J2.EQ.ILE(K1)) THEN
            IF (J1.EQ.ILE(K1).OR.J1.EQ.ILS(K1)) THEN
                LREP( K1 ) = LREP( K1 ) + 1
                ICODE = 1
            END IF
        END IF
        40 CONTINUE
        IF (ICODE.EQ.0) THEN
            NLIN = NLIN + 1
            LREP( NLIN ) = LREP( NLIN ) + 1
            ILS( NLIN ) = J1
            ILE( NLIN ) = J2
            END IF
    5 0 ~ C O N T I N U E ~
    60 CONTINUE
```

C
C ----- DETERMINE THE FACTORS FOR THE WINDOW TO VIEWPORT MAPPING
. C
$S X=(X V R-X V L) /(X R-X L)$
SY = (YVT - YVB)/(YT - YB)
C
C ----- TO PRESERVE PROPORTIONALITY USE THE SMALEST OF THE SX AND SY
C IN BOTH X AND Y DIRECTIONS
C
IF (SX.GT.SY) THEN $S X=S Y$
ELSE
$S Y=S X$
END IF
RETURN
C
ENTRY ENDPLT
ID $=30$
WRITE(LDEVP, '(13)') ID
RETURN
END


```
LOGICAL*4 LOGIC
CHARACTER*80 GTITLE
C
WARNING ZONEI
COMMON/MAIN1/XXS(1500) ,XXE(1500), YYS(1500), YYE(1500),XC(1500), 1 YC(1500),LNSTR (1500), INEND (1500)
    COMMON/INPUT1/NIPXI,NIPETA,NIPSI,NIP,INTCOD
    COMMON/INPUT2/NOP(20, 2000)
    COMMON/GRAPH1/IS(62),IE(62)
    COMMON/GRAPH2/IVS(8000),IVE(8000),ILS(8000), ILE(8000)
    COMMON/IREP1/IREP(8000),LREP(8000)
    COMMON/INPUT3/X(4000), Y(4000), Z(4000)
    COMMON/DEVICE/LDEV1,LDEV2,LDEV3,LDEV4,LDEV5,LDKEEP,LDEV,LDEVST
    COMMON/MAIN2/UTOTAL(8000)
    COMMON/GRAPH5/FMAG,DMAG,HIGHT,ANGLE ,NOLINE ,ITHICK,NLINES,NLIN
    COMMON/GRAPH7/GTITLE(20)
    COMMON/GRAPH8/LDEVP
    COMMON/PLAST1/IYIEL(2000)
    COMMON/CONTR1/INCREM,NIT
    DIMENSION VALUE (1),LEGEND(10),VLEGND(10)
C
C ----- IR = MAXIMUM NUMBER OF REPETITIONS FOR SURFACE LINES
    IR = IDIM - 1
C
C ----- LIMIT = THE MAXIMUM NUMBER OF LINE SEGMENTS PER CONTOUR VALUE
                                    ALLOWED BY THE SIZE OF THE ARRAYS IN COMMON MAIN1
    LIMIT = 3000
C
C ----- IDENTIFY EACH NODE BY A DIAMOND
    DO 20 NODE = 1 , NNODES
    ID1 = NNDF*(NODE - 1)
    XS = X( NODE )*FMAG + UTOTAL( ID1 + 1 )*DMAG
    YS = Y( NODE )*FMAG + UTOTAL( ID1 + 2 )*DMAG
    CAZL VIEW2(XS,YS,.02,5)
    20 CONTINUE
C
C ----- IDENTIFY EACH ACTIVE YIELD POINT WITH AN ASTRISC
C
    ITYPE1 = 0
    IDENT1 = 0
    DO 30 ELNUM = 1 , NELEM
    CALL ELINTM(ELNUM,IDENT,INTCOD,NIPXI,NIPETA,NIPSI,MATNUM,THICK)
    CALL ELINFO(EINUM,ITYPE,NN,IFLAG,ISTART,LINES)
C
IF (ITYPE.NE.ITYPE1.OR.IDENT.NE.IDENT1) THEN
```

```
    IF (ITYPE.GT.300) THEN
        IF (INTCOD.GE.140) THEN
            CALL ISH3DI(ITYPE,NN,IERROR)
        ELSE
            CALL ISH3DG(ITYPE,NN,IERROR)
        END IF
        ELSE
        CALL ISH2DG(ITYPE,NN,IERROR)
        END IF
        END IF
        ITYPE1 = ITYPE
        IDENT1 = IDENT
    C
        DO 30 INTGPN = 1 , NIP
        LOGIC = BTEST(IYIEL( ELNUM ) , INTGPN)
        IF (LOGIC) THEN
            CALL COORD1(ELNUM,NN,INTGPN,XIP,YIP,2IP)
            CALL COORD2(ELNUM,NN,INTGPN,NNDF,UXIP,UYIP,UZIP)
            XS = XIP*FMAG + UXIP*DMAG
            YS = YIP*FMAG + UYIP*DMAG
            CALL VIEW2(XS,YS,0.02,11)
        END IF
    30 CONTINUE
C
C ----- DRAW THE MESH
C
        DO 40 K1 = 1 , NLINES
        NODE1 = IVS( K1 )
        NODE2 = IVE( K1 )
        ID1 = NNDF*(NODE1 - 1)
        ID2 = NNDF*(NODE2 - 1)
        XS = X( NODE1 )*FMAG + UTOTAL( ID1 + 1 )*DMAG
        YS = Y( NODE1 )rFMAG + UTOTAL( ID1 + 2 )*DMAG
        XE = X( NODE2 )*FMAG + UTOTAL( ID2 + 1 )*DMAG
        YE = Y( NODE2 )*FMAG + UTOTAL( ID2 + 2 )*DMAG
        IF (IDIM.EQ.3) THEN
                        ZS = Z( NODE1 )*FMAG + UTOTAL( ID1 + 3 )*DMAG
            ZE = Z( NODE2 )*FMAG + UTOTAL( ID2 + 3 )*DMAG
        ELSE
            ZS = 0.
            ZE = 0.
        END IF
C
        CALL CLIP(XS,YS,ZS,1.,XE,YE,2E,1.)
    40 CONTINUE
C
C ---m- CLOSE THE PLOT FRAME
C
        IDPLOT = 20
        WRITE(LDEVP , '(I3)') IDPLOT
C
C PSTARTOFTHESONTOURINGOROUTINE<
```

```
C
    IF (NOLINE.EQ.O.OR.INCREM.EQ.0) GO TO 1000
C
C ----- EXTRAPOLATE THE VALUES TO BE CONTOURED TO THE NODAL POINTS
C
    CALL EXTRAP(NELEM,NNODES,NNDF,IFLAG1,VALUE)
    NFRAME = 14
C
        DO 200 IFRAME = 1 , NFRAME
        CALL NNUMO
C
C ----- DRAW THE BOUNDARY OF THE MESH
C
        DO 50 K1 = 1 , NLINES
        IRLINE = IAND(IREP(K1),31)
        IF (IRLINE.LE.IR) THEN
            NODE1 = IVS( K1 )
            NODE2 = IVE( K1 )
            ID1 = NNDF*(NODE1 - 1)
            ID2 = NNDF*(NODE2 - 1)
            XS = X( NODE1 )*FMAG + UTOTAL( ID1 + 1 )*DMAG
            YS = Y( NODE1 )*FMAGG + UTOTAL( ID1 + 2 )*DMAG
            XE = X( NODE2 )*FMAG + UTOTAL( ID2 + 1 )*DMAG
            YE = Y( NODE2 )*FMAG + UTOTAL( ID2 + 2 )*DMAG
            IF (IDIM.EQ.3) THEN
                    ZS = Z( NODE1 )*FMAG + UTOTAL( IDI + 3 )*DMAG
                    ZE = Z( NODE2 )*FMAG + UTOTAL( ID2 + 3 )*DMAG
            ELSE
                    ZS = 0.
                    zE=0.
            END IF
            CALL CLIP(XS,YS,ZS,1.,XE,YE,ZE,1.)
                END IF
    50 CONTINUE
C
C ----- DRAW THE CURVED BOUNDARY OR THE DIE IF THERE IS ONE
C
        IF (NINODE.GT.O) CALL CURVE
C
C ----- IDENTIFY CONTOUR LINES
C
        IVSTR = (IFRAME - 1)*NNODES
        IVEND = IFRAME*NNODES
C
        VMIN = 10.0E50
        VMAX =-10.0E50
        DO 60 K1 = IVSTR + 1 , IVEND
        VMIN = AMIN1(VMIN , VALUE( K1 ))
        VMAX = AMAXI(VMAX , VALUE( K1 ))
    CONTINUE

ARE ALSO PLOTTED.
C

> VMIN1 = VMIN

VMAXI = VMAX
VMAX \(=\) VMAX \(-\operatorname{ABS}(V M A X) / 50\).
VMIN \(=\) VMIN \(+A B S(\) VMIN \() / 50\).
C
VINTR \(=(\) VMAX - VMIN \() / 9\).
VCONT \(=\) VMIN
C
\(\mathrm{K} 3=0\)
DO 160 NCONT \(=0,9\)
\(K 3=K 3+1\)
VLEGND ( K3 ) \(=\) VCONT
LEGEND ( K3 ) \(=\) NCONT
NGLS \(=0\)
DO 90 ELNUM \(=1\), NELEM
CALL ELINFO(ELNUM, ITYPE,NN,IFLAG,ISTART,IINES)
IF(ITYPE.LT. 300) THEN
ISTART = 1
ISTOP \(=4\)
END IF
ICODE \(=0\)
DO 70 K1 = ISTART, ISTOP
NODE1 \(=\) NOP(IS (K1) , ELNUM)
NODE2 \(=\) NOP(IE (K1 ) , ELNUM)
ID1 = NODE1 + IVSTR
ID2 = NODE2 + IVSTR
V1 = VALUE ( ID1 )
V2 = VALUE ( ID2 )
\(\mathrm{VH}=\mathrm{AMAX1}(\mathrm{~V} 1, \mathrm{~V} 2)\)
\(\mathrm{VL}=\) AMIN1 (V1, V2)
IF (VCONT.EQ.VL.OR.VCONT.EQ.VH) THEN
VCONT1 \(=\) VCONT + VCONT/ 10000 .
ELSE
VCONT1 \(=\) VCONT
END IF
IF (VCONT.GT.VL.AND.VCONT.LT.VH) THEN
\(R=(V C O N T 1-V 1) /(V 2-V 1)\)
IDENT1 = NNDF* (NODE1 - 1)
IDENT2 \(=\) NNDF* \((\) NODE2 - 1)
\(\mathrm{X} 1=\mathrm{X}(\) NODE1 \()\) *FMAG + UTOTAL ( IDENT1 + 1 ) *DMAG
X2 \(=\mathrm{X}(\) NODE 2\()\) )FMAG + UTOTAL \((\) IDENT2 +1\()\) *DMAG
Y1 \(=\mathrm{Y}(\) NODE1 \()\) *FMAG + UTOTAL ( IDENT1 +2 ) *DMAG \(\mathrm{Y} 2=\mathrm{Y}(\) NODE2 \() *\) FMAG + UTOTAL \((\) IDENT2 +2\()\) *DMAG
IF (ICODE.EQ.0) THEN
\(\mathrm{XS}=\mathrm{X} 1+\mathrm{R}^{\mathrm{N}}(\mathrm{X} 2-\mathrm{X} 1)\)
\(Y S=Y 1+R^{*}(Y 2-Y 1)\)
CALL GETLIN(NODE1,NODE2,NLIN,LNUM1)
ICODE \(=1\)
ELSE
```

NCLS = NCLS + 1
IF (NCLS.GT.LIMIT) THEN
WRITE(IOUT , 1004)LIMIT
STOP
END IF
XXS(NCLS) = XS
YYS(NCLS) = YS
XXE(NCLS) = X1 + R*(X2 - X1)
YYE(NCLS) = Y1 + R*(Y2 - Y1)
CALL GETLIN(NODE1,NODE2,NLIN,LNUM)
LNEND(NCLS) = LNUM
LNSTR(NCLS) = LNUM1
ICODE = 0
END IF
END IF
70 CONTINUE
90 CONTINUE
C
C ---.- SEARCH FOR THE CONTOUR LINES WHICH CROSS THE BOUNDARIES
C
DO 120 K1 = 1 , NCLS
IR1 = 0
IF (LNSTR(K1).EQ.0) GO TO 120
IF (IAND(LREP(LNSTR(K1)),31).EQ.1) THEN
XC(1) = XXS(K1)
YC(1) = YYS(K1)
XC(2) = XXE(K1)
YC(2) = YYE(K1)
IR1 = 1
LE = LNEND(K1)
LSN = LNSTR(K1)
LNSTR(K1) = 0
ELSE IF(IAND(LREP(LNEND(K1)),31).EQ.1) THEN
XC(2) = XXS(K1)
YC(2) = YYS(K1)
XC(1) = XXE(K1)
YC(1) = YYE(K1)
LE = LNSTR(K1)
LSN = LNEND(K1)
LNSTR(K1) = 0
IR1 = 1
END IF
IF (IR1.EQ.1) THEN
ICOOR = 2
CONTINUE
DO 110 K2 = 1 , NCLS
LS2 = LNSTR(K2)
IF (K2.EQ.K1.OR.LS2.EQ.0) GO TO 110
LE2 = LNEND(K2)
IF (LS2.EQ.LE) THEN
ICOOR = ICOOR + 1
XC(ICOOR) = XXE(K2)

```
```

 YC(ICOOR) = YYE(K2)
 LE = LNEND(K2)
 LNSTR(K2) = 0
 IF (IAND(LREP(LE),31).EQ.1) THEN
 CALL DLINE(XC,YC,ICOOR-1)
 CALL NUMLIN(LSN,XC(1),YC(1),NNDF,NCONT,IOUT)
 CALL NUMLIN(LE,XC(ICOOR),YC(ICOOR),NNDF,NCONT,IOUT)
 GO TO 120
 END IF
 GO TO 100
 ELSE IF(LE2.EQ.LE) THEN
 ICOOR = ICOOR + 1
 XC(ICOOR) = XXS(K2)
 YC(ICOOR) = YYS(K2)
 LE = LNSTR(K2)
 LNSTR(K2) = 0
 IF (IAND(LREP(LE),31).EQ.1) THEN
 CALL DLINE(XC,YC,ICOOR-1)
 CALL NUMLIN(LSN,XC(1),YC(1),NNDF,NCONT,IOUT)
 CALL NUMLIN(LE,XC(ICOOR),YC(ICOOR),NNDF,NCONT,IOUT)
 GO TO 120
 END IF
 GO TO 100
 END IF
 110 CONTINUE
 END IF
 120 CONTINUE
 C
C ----- SEARCH FOR THE CONTOUR LINES WHICH FORM A CLOSED LOOP INSIDE
C THE MESH REGON.
C
DO 150 K1 = 1, NCLS
LS = LNSTR(K1)
LE = LS
IF (LS.NE.0) THEN
XC(1) = XXS(K1)
YC(1) = YYS(K1)
XC(2) = XXE(K1)
YC(2) = YYE(K1)
LE1 = LNEND(K1)
LNSTR(K1) = 0
ICOOR = 2
CONTINUE
DO 140 K2 = 1 , NCLS
LS2 = LNSTR(K2)
IF (K2.EQ.K1.OR.LS2.EQ.0) GO TO 140
LE2 = LNEND(K2)
IF (LS2.EQ.LE1) THEN
ICOOR = ICOOR + 1
XC(ICOOR) = XXE(K2)
YC(ICOOR) = YYE(K2)
LE1 = LNEND(K2)

```
```

 LNSTR(K2) = 0
 IF (LE1.EQ.LE.AND.ICOOR.GT.3) THEN
 CALL DLINE(XC,YC,ICOOR-1)
 CALL NUMLIN(LE,XC(ICOOR),YC(ICOOR),NNDF,NCONT,IOUT)
 GO TO 150
 END IF
 GO TO 130
 ELSE IF(LE2.EQ.LE1) THEN
 ICOOR = ICOOR + 1
 XC(ICOOR) = XXS(K2)
 YC(ICOOR) = YYS(K2)
 LE1 = LNSTR(K2)
 LNSTR(K2) = 0
 IF (LE1.EQ.LE.AND.ICOOR.GT.3) THEN
 CALL DLINE(XC,YC,ICOOR-1)
 CALL NUMLIN(LE,XC(ICOOR),YC(ICOOR),NNDF,NCONT,IOUT)
 GO TO 150
 END IF
 GO TO 130
 END IF
 140 CONTINNUE
 END IF
 150 CONTINUE
 C
C ---.- PLOT THE CONTOUR NUMBERS AND WRITE THE LEGENDS IN DEVICE LDEV4.
C
VCONT = VCONT + VINTR
160 CONTINUE
CALL PLTNUM
C
C ----- CLOSE THE PLOT FRAME
C
IDPLOT = 20
WRITE(LDEVP , '(I3)') IDPLOT
C
WRITE(LDEV4 , 1002)IFRAME,INCREM
WRITE(LDEV4 , 1003)VMIN1,VMAX1
WRITE(LDEV4 , 1001)(LEGEND(K1),VLEGND(K1),K1 = 1 , 10)
200 CONTINUE
1000 RETURN
1001 FORMAT(1X,II,' = ',E11.4,3X,I1,' = ',E11.4,3X,I1,'=',E11.4,
1 3X,I1,' = ',E11.4/1X,I1,' = ',E11.4,
2 3X,I1,' = ',E11.4,3X,I1,' = ',E11.4,3X,I1,' = ',E11.4/
3 1X,I1,' = ',E11.4,3X,I1,' = ',E11.4////)
1002 FORMAT(1X, 'LEGENDS FOR FRAME NUMBER ',I3,' AT LOAD STEP ',I3)
1003 FORMAT(1X, 'MINIMUM = ',E11.4,3X,'MAXIMUM = ',E11.4)
1004 FORMAT(1X,'>>>>>>> PROGRAM TERMINATED IN ROUTINE PLOTER DUE TO '/
1 9X,'EXCEEDING THE ALLOWABLE NUMBER OF COUNTOUR LINE SEGMENTS'/
2 9X,'INTERNALY SET TO (',I5,')')
END

```
```

C

```

```

C
SUBROUTINE GETLIN(NODE1,NODE2,NLIN,LNUM)
COMMON/GRAPH2/IVS(8000),IVE(8000),ILS(8000),ILE(8000)
C
DO 100 K1 = 1 , NLIN
IF (NODE1.EQ.ILS(K1).OR.NODE1.EQ.ILE(K1)) THEN
IF (NODE2.EQ.ILE(K1).OR.NODE2.EQ.ILS(K1)) THEN
LNUM = K1
RETURN
END IF
END IF
100 CONTINUE
RETURN
END

```
```

C
C =========================== D L I N E ====================================
C
SUBROUTINE DLINE(XC,YC,NLIN)
DIMENSION XC(1),YC(1)
C
XS = XC(1)
YS = YC(1)
DO 100 K1 = 2 , NLIN+1
XE = XC(K1)
YE = YC(K1)
CALL CLIP(XS,YS,0.,1.,XE,YE,0.,1.)
XS = XE
YS = YE
100 CONTINUE
C
RETURN
END

```
```

C
C =ニ=ニ==ニ=ニ===ニ=============== N U M L I N
C
SUBROUTINE NUMLIN(LE,XE,YE,NNDF,NCONT,IOUT)
C

```

```

C I
CI PROGRAM: I
C I I
C I I
C I NUMLIN PERFORMS THE FOLLOWING FUNCTIONS AT EACH ENTRY POINT
C I I
C I
C I
C I
C I
C I
C I
C I
C I
C I
C I
C I
C I LE = LINE NUMBER OF WHERE THE CONTOUR LINE STARTS OR I
C I LE = LINE NUMBER OF WHERE THE CONTOUR LINE STARTS OR I
C I TERMINATES I
C I
C I XE = X-COORDINATE OF THE START (END) OF THE CONTOUR LINE
C I XE = X-COORDINATE OF THE START (END) OF THE CONTOUR LINEI

```

```

C I YE = Y-COORDINATE OF THE START (END) OF THE CONTOUR LINE I
C I Ye m
C I NNDF = NUMBER OF NODAL DEGREES OF FREEDOM I
C I I
C I NCONT = CONTOUR NUMBER TO BE PLOTED I
C I I
C I IOUT = OUTPUT DEVICE NUMBER I
C I I
C I I
CI CONSIDERATIONS: I
C I I
C I I
C I SOME NUMBERS THAT ARE TOO CLOSE TO THE ALREADY PLOTED I
C I NUMBERS WILL NOT BE PLOTED. I
C I I

```

```

 REAL*8 UTOTAL
 COMMON/GRAPH2/IVS(8000),IVE(8000),ILS(8000),ILE(8000)
 COMMON/INPUT3/X(4000),Y(4000),Z(4000)
 COMMON/MAIN2/UTOTAL(8000)
 COMMON/GRAPH4/XVL,XVR,YVB,YVT,SX,SY
 COMMON/GRAPH5/FMAG,DMAG,HIGHT, ANGLE,NOLINE,ITHICK,NLINES,NLIN
 COMMON/GRAPH6/XNUM(100),YNUM(100),NUMVAL(100),NNUM
 C

```
```

C -.--- D = DISTANCE OF THE NUMBER FROM THE BOUNDARY OF THE MESH
C ----- NNUM = NUMBER OF CONTOUR NUMBERS
C ----- LIMIT = MAXIMUM NUMBER OF CONTOUR NUMBERS DUE TO STORAGE
LIMITATIONS IN COMMON GRAPHG
C
D = 1.2*HIGHT/SX
NNUM = NNUM + 1
LIMIT = 100
IF (NNUM.GT.LIMIT) THEN
WRITE(IOUT , 1001)LIMIT
STOP
END IF
C
ID1 = NNDF*(ILS(LE) - 1)
ID2 = NNDF*(ILE(LE) - 1)
X1 = X(ILS(LE))*FMAG + UTOTAL(ID1 + 1)*DMAG
X2 = X(ILE(LE))*FMAG + UTOTAL(ID2 + 1)*DMAG
Y1 = Y(ILS(LE))*FMAG + UTOTAL(ID1 + 2)*DMAG
Y2 = Y(ILE(LE))*FMAG + UTOTAL(ID2 + 2)*DMAG
V1 = Y2 - Y1
V2 = X2 - X1
THETA = ATAN2(V1 , V2)
XNUM(NNUM) = XE + D*SIN(THETA)
YNUM(NNUM) = YE - D*COS(THETA)
NUMVAL(NNUM) = NCONT
C
1001 FORMAT(1X,'>>>>>>> PROGRAM TERMINATED IN ROUTINE NUMLIN DUE TO'/
1 9X,'EXCEEDING THE ALLOWABLE NUMBER OF CONTOUR NUMBERS '/
2 9X,'INTERNALY SET TO (',I5,')')
RETURN
C
C
C
ENTRY PLTNUM
C
ENTRY PLTNUM
C
IF (NNUM.EQ.O) RETURN
TOL = 1.6*HIGHT/SX
C
FPN = FLOAT(NUMVAL(1))
CALL VIEW3(XNUM(1),YNUM(1),HIGHT,FPN,ANGLE,-1)
C
WRITE(6,*)'NNUM = ',NNUM
DO 20 K1 = 2, NNUM
ICODE = 0
X1 = XNUM(K1)
Y1 = YNUM(K1)
DO 10 K2 = 1 , K1 - 1
IF (NUMVAL(K2).GE.0) THEN
X2 = XNUM(K2)
Y2 = YNUM(K2)
XDIF = X1 - X2

```
```

 YDIF = Y1 - Y2
 TDIF = SQRT(XDIF**2 + YDIF**2)
 IF (TDIF.LT.TOL) ICODE = 1
 END IF
 10 CONTINUE
 C
IF (ICODE.EQ.0) THEN
WRITE (6,*)'FPN= ',FPN
FPN = FLOAT(NUMVAL(K1))
CALL VIEW3(X1,Y1,HIGHT,FPN,ANGLE,-1)
ELSE
NUMVAL(K1) = -1
END IF
20 CONTINUE
RETURN
C
C
C
C
ENTRYYNNUMO
ENTRY NNUMO
NNUM = 0
RETURN
END

```
```

C

```

```

C
SUBROUTINE CLIP(X1,Y1,Z1,W1,X2,Y2,Z2,W2)
INTEGER ZOR,ZAND
COMMON/GRAPH3/XL,XR,YB,YT,ZF,D
EQUIVALENCE (IZOR,ZOR),(IZAND,ZAND)
C
IF (W1.NE.1..OR.W2.NE.1.) THEN
IF (Z1.GT.ZF.AND.Z2.GT.ZF) THEN
GO TO 2000
ELSE IF(Z1.GT.ZF.OR.Z2.GT.ZF) THEN
CNST = (ZF - Z1)/(Z1 - Z2)
XX = X1 + CNST*(X1 - X2)
YY = Y1 + CNST*(Y1 - Y2)
WW = (1. - ZF/D)
IF (Z1.GT.ZF) THEN
X1 = XX
Y1 = YY
W1 = WW
ELSE IF(Z2.GT.ZF) THEN
x2 = XX
Y2 = YY
W2 = WW
END IF
END IF
END IF
c
90 X1 = X1/W1
Y1 = Y1/W1
X2 = X2/W2
Y2 = Y2/W2
IZ1 = IZONE(X1 , Y1)
IZ2 = IZONE(X2 , Y2)
100 ZOR = IOR(IZ1 , IZ2)
IF (IZOR.NE.0) GO TO 400
200 CALL VIEW1(X1,Y1,3)
CALL VIEW1(X2,Y2,2)
GO TO 2000
ZAND = IAND(IZ1 , IZ2)
IF (IZAND.NE.0) GO TO 300
ZAND = IAND(ZOR , 1)
IF (IZAND.EQ.0) GO TO 900
XX = XL
ICK = 1
500 YY = Y1 + (Y2 - Y1)/(X2 - X1)*(XX - X1)
600 IZ = IZONE(XX , YY)
ZAND = IAND(IZ1 , ICK)
IF (IZAND.NE.0) GO TO 800
700 X2 = XX
Y2 = YY
IZ2 = IZ

```
```

 GO TO 100
 800 X1 = XX
 Y1 = YY
 IZ1 = IZ
 GO TO 100
 900 ZAND = IAND(ZOR , 2)
 IF (IZAND.EQ.0) GO TO 1000
 XX = XR
 ICK = 2
 GO TO 500
 1000 ZAND = IAND(ZOR , 4)
 IF (IZAND.EQ.0) GO TO 1200
 YY = YB
 ICK = 4
 1100 XX = X1 + (X2 - X1)/(Y2 - Y1)*(YY - Y1)
 GO TO 600
 1200 YY = YT
 ICK = 8
 GO TO 1100
 C
2000 RETURN
END

```
```

C
C =========================== 1 Z 0 N E ==================================
C
FUNCTION IZONE(X,Y)
COMMON/GRAPH3/XL,XR,YB,YT,ZF,D
IZONE = 0
IF (X.LT.XL) IZONE = 1
IF (X.GT.XR) IZONE = 2
IF (Y.LT.YB) IZONE = IZONE + 4
IF (Y.GT.YT) IZONE = IZONE + 8
RETURN
END

```
```

C

```

```

C
SUBROUTINE VIEW(X,Y,IPEN)
COMMON/GRAPH3/XL,XR,YB,YT,ZF,D
COMMON/GRAPH4/XVL,XVR,YVB,YVT,SX,SY
COMMON/GRAPH8/LDEVP
C
ENTRY VIEW1(X,Y,IPEN)
XV = SX* (X - XL) + XVL
YV = SY* (Y - YB) + YVB
WRITE(LDEVP,'(I3,2F6.3)')IPEN,XV,YV
RETURN
C
C
ENTRY VIEW2(X,Y,HIGHT,ISYM)
IF (X.LT.XL.OR.X.GT.XR.OR.Y.LT.YB.OR.Y.GT.YT) GO TO 100
ID = 10
ANGL = 0.
XV = SX*(X - XL) + XVL
YV = SY*(Y - YB) + YVB
WRITE(LDEVP,'(I3,2F6.3)')ID,XV,YV
WRITE(LDEVP,'(I3,2F6.3)')ISYM,HIGHT,ANGL
100 RETURN
C
C
ENTRY VIEW3(X,Y,HIGHT,FPN,ANGLE,ICODE)
IF (X.LT.XL.OR.X.GT.XR.OR.Y.LT.YB.OR.Y.GT.YT) GO TO 200
ID = 11
XV = SX'
YV = SY*(Y - YB) + YVB
WRITE(LDEVP,'(I3, 2F6.3)')ID,XV,YV
WRTTE(LDEVP,'(2F6.3)')FPN,ANGLE
WRITE(LDEVP,'(F6.3,I3)')HIGHT, ICODE
200 RETURN
C
END

```
```

C
C====ニ=====ニ================= E X T R A P
C
SUBROUTINE EXTRAP(NELEM,NNODES,NNDF,IFLAG1,VALUE)
IMPLICIT REAL*8 (A-H,O-Z)
REAL*8 N
REAL*4 VALUE
CHARACTER*1 IYIELD
INTEGER ELNUM
COMMON/UTIL1/STRESS(6),STRAIN(6),STRELA(6),CENTER(6),WORK,YIELD
COMMON/INPUT1/NIPXI,NIPETA,NIPSI,NIP,INTCOD
COMMON/INPUT2/NOP(20,2000)
COMMON/INPUTF/MATYPE(10)
COMMON/DEVICE/LDEV1,LDEV2,LDEV3,LDEV4,LDEV5,LDKEEP,LDEV,LDEVST
COMMON/GRAPH2/IVS(8000),IVE(8000),ILS(8000),ILE(8000)
COMMON/IREP1/IREP(8000),LREP(8000)
COMMON/EXTRP1/INT33(9),INT22(4)
DIMENSION SIGXI(9),SIGETA(9),VALUE(1),N(20),STRN(6,9),STRS(6,9),
VOLUMS(9),SHAPE (9,9),\operatorname{CAUCH}(6),\operatorname{CAUC}(6,9),\operatorname{AHORK}(9)
DATA SIGXI/-1.DO,1.DO,1.D0,-1.D0,0.D0,1.D0,0.D0,-1.D0,0.D0/
DATA SIGETA/-1.DO,-1.DO,1.DO,1.DO,-1.DO,0.D0,1.DO,0.DO,0.DO/
C
C
50 VALUE(K1) = 0.
C
ITYPE1 = 0
IDENT1 = 0
DO 400 ELNUM = 1, NELEM
CALL ELINFO(ELNUM,ITYPE,NN,IFLAG,ISTART,LINES)
CALL ELINTM(ELNUM,IDENT,INTCOD,NIPXI,NIPETA,NIPSI,MATNUM,THICK)
IF (ITYPE.NE.ITYPE1.OR.IDENT.NE.IDENT1) THEN
IF (ITYPE.LT.300) THEN
NIP = NIPXI*NIPETA
IF (NIP.EQ.4) THEN
A = 1.73205080756887653D0
IT = 204
ELSE
A=1.29099444873580604DO
IT = 209
END IF
C
DO 80 K1 = I , NN
XI = SIGXI(K1)*A
ETA = SIGETA(K1)*A
CALL N2D(XI,ETA,N,IT,IERROR)
C
IF (NIP.EQ.4) THEN
DO 60 K2 = 1 , NIP
60 SHAPE(INT22(K2) , K1) = N(K2)
ELSE
DO 70 K2 = 1 , NIP

``` END IF CONTINUE IEND \(=4\) ELSE GO TO 2000 END IF
END IF
DO 100 INTGPN \(=1\), NIP
IF (MATYPE( MATNUM ).EQ.1) THEN
CALL IOGET(LDEV1,96,'(A96)',5)
ELSE
CALL IOGET(LDEV1, 201, '(A201)', 6) AWORK ( INTGPN ) \(=\) WORK
END IF
DO \(100 \mathrm{~K} 1=1\), IEND
STRS (K1 , INTGPN) = STRESS (K1 )
\(\operatorname{STRN}(K 1, \operatorname{INTGPN})=\operatorname{STRAIN}(\mathrm{K} 1)\)
CONTINUE
C
DO \(200 \mathrm{Kl}=1\), NN
NODE \(=\) NOP (K1 , ELNUM)
DO \(200 \mathrm{~K} 2=1\), IEND
ID \(=(K 2-1)\) NNNODES + NODE
DO \(200 \mathrm{~K} 3=1\), NIP
\(\operatorname{VALUE}(\) ID \()=\operatorname{VALUE}(\) ID \()+\operatorname{STRS}(K 2, K 3) * S H A P E(K 3, K 1)\)
200
CONTINUE
C
DO \(300 \mathrm{~K} 1=1\), NN
NODE \(=\mathrm{NOP}(K 1\), ELNUM \()\)
DO \(300 \mathrm{~K} 2=1\), IEND
\(I D=(I E N D+K 2-1)\) NNNODES + NODE
DO 300 K3 \(=1\), NIP
VALUE ( ID ) \(=\operatorname{VALUE}(\mathrm{ID})+\operatorname{STRN}(\mathrm{K} 2, \mathrm{~K} 3) * \operatorname{SHAPE}(\mathrm{~K} 3, \mathrm{~K} 1)\)
CONTINUE
C
DO \(350 \mathrm{~K} 1=1\), NN
NODE \(=\mathrm{NOP}(K 1, E L N U M)\)
```

```
    DO 350 K2 = 1 , IEND
    ID = (2*IEND + K2 - 1)^NNODES + NODE
    DO 350 K3 = 1 , NIP
    VALUE( ID ) = VALUE( ID ) + CAUC(K2 , K3)*SHAPE(K3,K1)
CONTINUE
C
    ID1 = 3*IEND*NNODES
    DO 360 K1 = 1 , NN
    ID = ID1 + NOP(K1 , ELNUM)
    DO 360 K3 = 1 , NIP
    VALUE( ID ) = VALUE( ID ) + VOLUMS( K3 )*SHAPE(K3,K1)
    360 CONTINUE
C
    ID1 = (3*IEND + 1)*NNODES
    DO 370 K1 = 1 , NN
    ID = ID1 + NOP(K1 , ELNUM)
    DO 370 K3 = 1 , NIP
    VALUE( ID ) = VALUE( ID ) + AWORK( K3 )*SHAPE(K3,K1)
    370
    CONTINUE
        IDENT1 = IDENT
        ITYPE1 = ITYPE
    400 CONTINUE
C
    DO 500 K2 = 1 , 14
    ID1 = (K2 - 1)%NNODES
    DO 500 NODE = 1 , NNODES
    IRNODE = IREP( NODE )/32
    ID = ID1 + NODE
    VALUE( ID ) = VALUE( ID )/FLOAT(IRNODE)
    500 CONTINUE
C
    CALL REWIN
    2000 RETURN
    1000 FORMAT(2A48)
    1001 FORMAT(4A48,A8,A1)
    END
```

```
C
C ====================== C U R V E =========================================
C
    SUBROUTINE CURVE
    REAL*8 T,X,Y
    COMMON/GRAPH5/FMAG ,DMAG,HIGHT,ANGLE,NOLINE ,ITHICK,NLINES ,NLIN
    COMMON/GRAPH8/LDEVP
    COMMON/BOUND1/NCURVS
C
C ---.- SET THE LINE THICKNESS TO 3
C
    VTHICK = 3.
    ID = 12
    WRITE(LDEVP,'(I3,F6.3)')ID,VTHICK
C
    DO 20 NCURVE = 1 , NCURVS
    DT = 0.05
    T = 0.
    CALL HERMXY(T,X,Y,NCURVE)
    XS = X*FMAG
    YS = Y*FMAG
    DO 10 K1 = 1 , 20
    T = T + DT
    CALL HERMXY(T,X,Y,NCURVE)
    XE = X*FMAG
    YE = Y*FMAG
    CALL CLIP(XS,YS,0.,1.,XE,YE,0.,1.)
    XS = XE
    10
    20
C
    VTHICK = 2.
    WRITE(LDEVP,'(I3,F6.3)')ID,VTHICK
    RETURN
    END
```

APPENDIX L
INITIALIZER MODULE

```
C
```



```
C
    BLOCK DATA
    IMPLICIT REAL*8 (A-H,O-Z)
    REAL*4 XII,ETAI,SII,FMAG,DMAG,ETHICK
    CHARACTER*80 GTITLE
    COMMON/MAIN1/U(8000),RE1(8000)
    COMMON/MAIN4/RE(8000)
    COMMON/INPUT7/RX(8000),RY(8000),RZ(8000)
    COMMON/INPUT8/NNODES,NELEM,NNDF,NLINC,MNIT,IFLAG1,IFLAG2,IDIM,
    1
    COMMON/INPUTB/FAC,FACNEW,FACLOW,FACHIG, ENRG1,NDIVER, ISTOP
    COMMON/INPUTE/ISPB(4000)
    COMMON/INPUTF/MATYPE(10)
    COMMON/INPUTG/IFLAG3,IOINTR,IFPLOT
    COMMON/UTIL3/NREC(3),NWMAX
    COMMON/ADMAT1/AD(81)
    COMMON/DEVICE/LDEV1,LDEV2,LDEV3,LDEV4,LDEV5,LDKEEP,LDEV,LDEVST
    COMMON/ELLIB1/XII(20), ETAI(20),SII(20)
    COMMON/HERM/H(4 , 4),GX(4 , 6),GY(4 , 6)
    COMMON/GRAPH1/IS(62),IE(62)
    COMMON/IREP1/IREP(8000),LREP(8000)
    COMMON/GRAPH5/FMAG ,DMAG,HIGHT,ANGLE ,NOLINE, ITHICK,NLINES,NLIN
    COMMON/GRAPH7/GTITLE(20)
    COMMON/GRAPH8/LDEVP
    COMMON/EXTRP1/INT33(9),INT22(4)
    COMMON/INPUTA/INFOEL(2,2000),ETHICK(2000)
C
    DATA INFOEL/4000*0/,ETHICK/2000*0./
    DATA ((H(I,J),J=1,4),I=1,4)/2.,-2.,1.,1.,-3.,3.,-2.,-1.,0.,0.,
    1 1.,0.,1.,0.,0.,0.1
    DATA U/8000*0.0/,LDEV5/16/,LDEVP/17/
    DATA RE/8000*0.0/,RX/8000*0.0/,RY/8000*0.0/,RZ/8000*0.0/
    DATA LDEV1,LDEV2,LDEV3,LDEV4,LDEVST/1,2,3,4,14/,ISPB/4000*0/
    DATA (XII(K),K=1,20)/-1.,1.,1.,-1.,-1.,1.,1.,-1.,0.,1.,0.,-1.,
    1 -1.,1.,1.,-1.,0.,1.,0.,-1./
    DATA (ETAI(K),K=1,20)/-1.,-1.,1.,1.,-1.,-1.,1.,1.,-1.,0.,1.,
    1 0.,-1.,-1.,1.,1.,-1.,0.,1.,0./
    DATA (SII(K),K=1,20)/-1.,-1.,-1.,-1.,1.,1.,1.,1.,-1.,-1.,-1.,-1.,
    1 0.,0.,0.,0.,1.,1.,1.,1./
    DATA NNODES,NELEM,NNDF,NLINC,MNIT,IFLAG1,IFLAG2,IDIM/0,0,2,1,1,0,
    1 0,2/,IFLAG3,IOINTR,IFPLOT/0,0,0/
    DATA NDIVER,FAC/1,.001/,MATYPE/10*1/,AD/81*0./
    DATA NREC/1,1,1/,NWMAX/0/
C
```

```
C --.-- GRAPHICS ELEMENT LINE CONECTIVITY DATA
C
        DATA IS/1,2,3,4,1,5,2,3,4,
    1 1,5,2,6,3,7,4,8,1,2,3,4,5,6,7,8,2,3,1,4,
    2 1,9,2,10,3,11,4,12,5,17,6,18,7,19,8,20,1,13,4,16,3,15,2,14,
    3 1,5,6,2,7,3,8,4,9/
    DATA IE/2,3,4,1,5,2,3,4,1,
    1 5,2,6,3,7,4,8,1,2,3,4,1,6,7,8,5,6,7,5,8,
    2 9,2,10,3,11,4,12,1,17,6,18,7,19,8,20,5,13,5,16,8,15,7,14,6,
    3 5,6,2,7,3,8,4,9,1/
    DATA FMAG,DMAG,HIGHT,ANGLE,NOLINE,ITHICK/1.,1.,0.08,0.,0,2/
    DATA NLINES,NLIN/O,0/
C
C GAUSSIAN POINT TO NODE CONNECTIVITY DATA FOR NODAL EXTRAPOLATION
C
    DATA INT33/1,3,9,7,2,6,8,4,5/,INT22/1,2,4,3/,IREP/8000*0/
    DATA LREP/8000*0/
    END
```


VITA

Mehrdad Foroozesh was born on September 13, 1962 in Shiraz, Iran. Mr. Foroozesh attended the Louisiana State University in January, 1980. He rceived his bachelor of science degree in civil engineering in December, 1983. Afterwards, Mr. Foroozesh remained at LSU and obtained his master of science degree in civil engineering with emphasis in structural engineering in August of 1988.Mr. Foroozesh is to receive his doctor of philosophy degree in civil engineering in the fall commencement, 1989.

Candidate: Mehrdad Foroozesh

Major Field: Civil Engineering

Title of Dissertation: A Total Lagrangian Finite Element Analysis for Metal Forming with Application to Metal Extrusion

Approved:

EXAMINING COMMITTEE:

Date of Examination: \qquad
\qquad
\qquad

[^0]: \dagger All runs are based on a 36% reduction in the area and a die angle of 7.59 degrees.

 * All elements are isoparametric quadrilateral elements.

