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Abstract

In this paper a total variation (TV) based approach is proposed for pixel level fusion to fuse images

acquired using multiple sensors. In this approach, fusion is posed as an inverse problem and a locally affine

model is used as the forward model. A total variation norm based approach in conjunction with principal

component analysis is used iteratively to estimate the fused image. The feasibility of the proposed

algorithm is demonstrated on images from computed tomography (CT) and magnetic resonance imaging

(MRI) as well as visible-band and infrared sensors. The results clearly indicate the feasibility of the

proposed approach.

Index Terms
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I. INTRODUCTION

Data fusion integrates redundant as well as complementary information present in input signals in

such a manner that the fused signal describes the true source better than any of the individual signals.

The exploitation of redundant information improves accuracy and the reliability whereas integration

of complementary information improves the interpretability of the signal [1], [2]. Data fusion plays
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a crucial role in image-based applications such as computer vision, robotics, remote sensing etc. The

goal of image fusion is to extract information from input images such that the fused image provides

better information for human or machine perception as compared to any of the input images [3]–[6].

Image fusion has been used extensively in various areas of image processing such as remote sensing,

biomedical imaging, nondestructive evaluation etc. [7]–[9]. For example, in optical remote sensing, due

to physical and technical constraints, some sensors provide excellent spectral information but inadequate

spatial information about the scene. On the other hand, there are sensors that are good at capturing

spatial information but which fail to capture spectral information reliably. Fusing these two types of

data provides an image that has both the spatial and the spectral information. Therefore, only the fused

image needs to be stored for subsequent analysis of the scene [10], [11]. As another example, recent

developments in medical imaging have resulted in many imaging techniques to capture various aspects of

the patient’s anatomy and metabolism [12], [13]. However these techniques are complementary in nature.

For example, magnetic resonance imaging (MRI) is very useful for defining anatomical structure whereas

metabolic activity can be captured very reliably using positron emission tomography (PET). Hence, by

using fusion, it is possible to obtain a single image that describes anatomical as well as metabolic activity

of the patient effectively [14].

From the perspective of fusion, features of the observed images that are to be fused can be broadly

categorized in the following three classes.

1) Common features: These are features that are present in all the observed images.

2) Complementary features: Features that are present only in one of the observed images are called

complementary features.

3) Noise: Features that are random in nature and do not contain any relevant information are termed

as noise.

Note that the above categorization of the features is local in nature. A fusion algorithm should be able

to select the feature type automatically and then fuse the information appropriately. For example, if the

features are similar then the algorithm should perform an operation similar to averaging but in the case

of complementary features, should select the feature that contains relevant information.

Due to the large number of applications as well as the diversity of fusion techniques, considerable

efforts have been put in developing standards for data fusion. Several models for data fusion have been

proposed in the recent past [15], [16]. One of the models commonly used in signal processing applications

is the three-level fusion model that is based on the levels at which information is represented [17]. This
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model classifies data fusion into three levels:

• Data or low level fusion

• Feature or intermediate level fusion

• Decision or high-level fusion

At the data level, raw images obtained from different sensors are fused to generate a new image, which

is expected to be more informative than the inputs [18]. Pixel level fusion is an example of low-level

fusion. Feature level fusion deals with the fusion of features such as edges or texture while decision level

fusion corresponds to combining decisions from several experts [19], [20].

In pixel level fusion the fused pixel is derived from a set of pixels in the various inputs [17], [21]. The

main advantage of pixel level fusion is that the original measured quantities are directly involved in the

fusion process. Furthermore, algorithms are computationally efficient and easy to implement. However,

pixel level fusion algorithms require the input images to be co-registered. An intuitive approach for pixel

level fusion is to average the input images. Averaging reduces sensor noise but it also reduces the contrast

of the complementary features. More robust algorithms for pixel level fusion such as weighted average,

transform based approach, etc. have been proposed in the literature [17], [22]–[26]. In the weighted

average approach, the fused pixel is estimated as the weighted average of the corresponding input pixels.

However, the weight estimation usually requires a user-specific threshold [17], [22], [23]. Transform

based approaches provide a fused image with full contrast, but these approaches are sensitive to sensor

noise [24]–[26].

In this paper, a total variation norm [27] based approach has been adopted to fuse the pixels of the

noisy input images. The total variation norm has been used in several image processing applications [27]–

[30]. In this paper, we propose to use total variation norm for image fusion. The estimation of fused

pixels is posed as an inverse problem, with a local affine function proposed by Sharma et al. [31] used

as the forward model. Sharma et al. used a Bayesian approach to solve the forward model; however, the

a priori probability density function of the fused pixel was assumed to be Gaussian which is a limiting

assumption. Yang et al. [32] proposed an expectation-maximization (EM) based algorithm to estimate the

fused image from the local affine model, with the noise modeled using a K-term mixture of Gaussian

distributions. In the proposed approach, the total variation norm is used to solve the forward model and

estimate the pixels of the fused image. The total variation norm is based on a nonlinear partial differential

equation (PDE) and is robust to noise [33], [34]. Furthermore, it is a data driven approach and does not

require knowledge of the probability density function of the fused pixels.

This paper is organized as follows. In Section II, we describe the forward model for fusion. Section III
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explains the proposed fusion algorithm, while Section IV summarizes the overall algorithm. Section V

presents the results and is followed by concluding remarks.

II. THE IMAGE ACQUISITION MODEL

Let fo(x, y) be the true image, which is inspected by n different sensors and f1(x, y), f2(x, y), · · ·,

fn(x, y) are the corresponding n measurements for x, y ∈ Ω. The local affine transform that relates the

input pixel and the corresponding pixel in the measured images is given by [31]

fi(x, y) = βi(x, y)fo(x, y) + ηi(x, y); 1 ≤ i ≤ n. (1)

Here, βi(x, y) and ηi(x, y) are the gain and sensor noise, respectively, of the ith sensor at location (x, y).

The goal of fusion is to estimate fo(x, y) from fi(x, y), 1 ≤ i ≤ n.

In many applications such as radar imaging and visual and IR imaging, the complementary as well

as redundant information are available at the local level in the measured images [31], [32]. The main

advantage of the local affine transform model is that it can relate this local information content in a

mathematically convenient manner. For example, as an extreme case, two sensors i and j (i 6= j; 1 ≤

i, j ≤ n) have complementary information at location (x, y) if βi(x, y) 6= βj(x, y) and βi(x, y), βj(x, y) ∈

{0, 1}. Similarly, these two sensors have redundant information if βi(x, y) = βj(x, y).

III. IMAGE FUSION

A. Total Variation Norm for Image Fusion

In order to estimate fo(x, y) from eq. (1), we assume that fo(x, y), fi(x, y) ≥ 0 (1 ≤ i ≤ n). This

assumption is valid for many imaging devices such as digital cameras, IR cameras, etc. and does not

limit the proposed algorithm in any way since data not satisfying this requirement (i.e., with negative

pixel values) can always be transformed using a simple linear transformation to make the pixel values

positive. Furthermore, we also assume that sensor noise η1(x, y), η2(x, y), · · ·, ηn(x, y) are zero mean

random variables and are independent of each other. The standard deviation of ηi(x, y) is denoted as σi,

and σi is assumed to be known a priori and independent of spatial location (x, y).

From eq. (1),
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(2)

⇒ f = βfo + η (3)
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where f = [f1, · · · , fn]T , β = [β1, · · · , βn]T , η = [η1, · · · , ηn]T , and the reference to the pixel location

(x, y) has been dropped for notational simplicity. Eq. (3) can be re-arranged as

βN
f = fo + βNη (4)

where βN = (βT β)−1
βT .

The goal of fusion is to estimate fo ∀(x, y) ∈ Ω from eq. (4). Note that βN is unknown and must

be estimated from the measurement images fi(x, y) (1 ≤ i ≤ n). The method for estimating βN has

been discussed in Section III-B. If βN is known, then a common approach to estimating fo from the

measurements f minimizes the cost function ‖βN
f − fo‖. The solution to this least square estimate is

fo = βN
f . However, this approach is not robust to noise. As discussed earlier, the TV norm is more

robust to noise as compared to L2 norm based estimators such as least square. A comparison of least

square and TV norm based fusion has been shown in Fig. 1. Fig. 1a and 1b show the input noisy images

that are to be fused. Fig. 1c and 1d are the fused images obtained using least square and TV norm based

approach, respectively. A detailed comparison of the fusion results are presented in Section V. However,

a visual comparison of Fig. 1c and 1d clearly shows that the fused image obtained using a TV norm

based approach is less noisy and provides pronounced edges as compared to the fused image obtained

using a least squares approach.

Therefore, we propose to estimate fo(x, y) by minimizing its TV norm under suitable constraints as

given below:

minimize

∫

Ω

∣

∣

∣
∇fo(x, y)

∣

∣

∣
dx dy;

∣

∣

∣
∇fo(x, y)

∣

∣

∣
= (f2

ox
+ f2

oy
)

1

2 (5)

subject to the following constraints

∫

Ω
fo dx dy =

∫

Ω
βN

f dx dy (6)

∫

Ω
(βN

f − fo)
2 dx dy =

∫

Ω
σ2 dx dy (7)

where fox
and foy

are the derivatives of fo in x and y direction, respectively, and σ2 is the variance of

the transformed noise βNη. Eq. (5) represents the TV norm for fo. The constraints given by eq. (6) and

(7) involve mean and variance of the noise βNη. Eq. (6) ensures that the noise βNη is of zero mean

whereas eq. (7) is based on a priori information about the variance of the noise. Note that the sensor

gain βN depends on spatial location, which in turn also implies that σ2 is a function of (x, y). Assuming

the sensor gain vector β to be independent of fo and its derivatives, the approach proposed by Rudin et
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al. in [27] may be used to derive the following iterative solution to solve eq. (5):

fk+1
o = fk

o − τk

(

∇ •
( ∇fk

o

|∇fk
o |

)

+ λk

(

fk
o − βN

f

)

)

(8)

where k is the iteration number, τk : is the time step, “ • ” represents the dot product and

λk = −
1

∫

Ω σ2 dx dy

∫

Ω

(

fk
o − βN

f

)

∇ •
( ∇fk

o

|∇fk
o |

)

dx dy.

The boundary condition
∂fk+1

o

∂ξ

∣

∣

∣

∂Ω
= 0 must be satisfied for each iteration of eq. (8), where ∂Ω represents

the boundary of Ω and ξ is the outward normal along ∂Ω. However, the solution to eq. (8) requires

knowledge of β and σ2. Since σ2 is the variance of βNη and the variance of the noise vector η is

assumed to be known, σ2 can easily be estimated if β is known. In general, β is unknown and must be

estimated prior to solving eq. (8). This is addressed next.

B. Estimation of β

To estimate βi(1 ≤ i ≤ n), we assume that the gain of the sensor varies slowly from one spatial

location to another. Hence, βi can be assumed to be constant over a small region of the sensor image.

Thus, the input images are split into small regions of size p × q and sensor gains may be computed for

each region. Furthermore, we also assume that βi ∈ [0, 1] for all 1 ≤ i ≤ n.

From eq. (3), it is clear that in the absence of sensor noise, the variance of the observed images

f1, f2, · · · , fn are related to each other through sensor gains β1, β2, · · · , βn. Therefore, the variances

of the observed images may be used to estimate β. Also, it is well known that for a given dataset,

the principal eigenvector of the correlation matrix points in the direction of maximum variance [35].

Motivated by this fact, we propose to use a principal eigenvector based approach to estimate sensor

gains. The pixels of the observed images are used to construct the correlation matrix and its principal

eigenvector is used to estimate the sensor gains. This approach is explained in detail below.

Let us assume that the input images are divided into blocks of size p×q. For one such block denoted by

R, assume that
(

f1
1 , f2

1 , · · · , fp×q
1

)

,
(

f1
2 , f2

2 , · · · , fp×q
2

)

, · · ·,
(

f1
n, f2

n, · · · , fp×q
n

)

are the lexicographical

representation of pixel values of n sensor images. These pixels can be viewed as n-variate random

variables
(

f1
1 , f1

2 , · · · , f1
n

)T

,
(

f2
1 , f2

2 , · · · , f2
n

)T

, · · ·,
(

f
p×q
1 , f

p×q
2 , · · · , fp×q

n

)T

. Let µ = [µ1, · · · , µn]T

be the principal eigenvector of the correlation matrix Σν , where

Σν =
1

(p × q) − 1

p×q
∑

k=1

νkν
T
k . (9)
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and νk =
(

fk
1 , fk

2 , · · · , fk
n

)T

. Assuming noise in eq.(3) to be zero, and due to the assumption that sensor

gains are constant over block R, it can be shown that

Σν =
1

(p × q) − 1











β1

...

βn











(β1, · · · , βn)

p×q
∑

k=1

f2
o .

⇒ Σν = C











β1

...

βn











(β1, · · · , βn). (10)

where C =
Pp×q

k=1
f2

o

(p×q)−1 .

Let ρ and µ = (µ1, · · · , µn)T be the principal eigenvalue and principal eigenvector respectively, of Σν .

From eq.(10) it is clear that the rank of the matrix Σν is one. Therefore, ρ and µ can be related to the

sensor gains as shown below:

ρ = C(β2
1 + · · · + β2

n). (11)

µ = (µ1, · · · , µn)T ∝ (β1, · · · , βn)T (12)

where “∝” indicates proportionality. Therefore, we propose the following rule to estimate β = [β1, · · · , βn]T

for region R.

1) Compute Σν for block R, and estimate µ such that µT µ = 1.

2) Set β1 = β2 = · · · = βn = 1 if µ1 = µ2 = · · · = µn, otherwise set β = µ.

This process may be repeated for each block. Note that the sensor gains computed this way are assumed

to be constant over the region, i.e., βi(x, y) = βi(r, s), where x 6= r, y 6= s, x, y, r, s,∈ R and 1 ≤ i ≤ n.

Next, we show that this proposed rule for estimating sensor gains can discriminate between common and

complementary features. For the sake of simplicity, assume n = 2, i.e., there are only two sensors. Then,

Σν = C





β2
1 β1β2

β1β2 β2
2



 (13)

ρ = C(β2
1 + β2

2). (14)

and µ can be estimated by solving the following equation:

Σν





µ1

µ2



 = ρ





µ1

µ2



 ; µ2
1 + µ2

2 = 1. (15)
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If the two input images have completely redundant information, i.e., β1 = β2, then, ρ = 2Cβ2
1 = 2Cβ2

2

and µ1 = µ2 = 1√
2
. In this case, we select β1 = β2 = 1, i.e., β = [1, 1]T . Similarly, if β1 > β2

(corresponding to some redundant information between the two measurements), then, from eq. (15):

µ2
1 − µ2

2

µ1µ2
=

β2
1 − β2

2

β1β2
. (16)

It is clear that in this case, µ1 > µ2. Therefore, according to the proposed rule, β1 = µ1 and β2 = µ2. In

the extreme case when β1 6= 0 and β2 = 0, it can be shown using a similar procedure that β = µ = [1, 0]T .

Similarly, it can be shown that β = µ = [0, 1]T if β1 = 0 and β2 6= 0. Therefore, it is clear that in case of

complementary information, the proposed approach selects the region that has relevant information. Due

to the assumption that pixel values of the measurement images are always positive numbers, the sensor

gains estimated using the proposed approach will always be positive. Note that in the above analysis,

we assumed sensor noise to be zero. If noise is present, then the principal eigenvector will provide a

noisy estimate of the sensor gains. However, these gains are further used in the TV based framework of

eq. (8), which is robust to noise and compensates for the noisy estimate of the sensor gains.

IV. OVERALL APPROACH

The flowchart of the proposed pixel level fusion method is shown in Fig. 2. We first split the input

images into several blocks, and arrange the pixels inside each block lexicographically. The lexicograph-

ically arranged pixels of any given block from all the input images are used to compute the correlation

matrix Σν and the principal eigenvector of this correlation matrix is used to determine the gain β of that

block. This process is repeated for all the blocks. After the sensor gains are estimated, eq. (8) is solved

iteratively to estimate the fused pixels, fo(x, y) for all locations (x, y) ∈ Ω

V. RESULTS

The results of the proposed fusion algorithm are presented in this section. The proposed fusion algorithm

was applied to two different datasets: (i) medical imaging and (ii) aircraft navigation. For each dataset,

only two input images were considered for the fusion process and these two inputs were co-registered.

The sensor noise was simulated by adding zero mean white Gaussian noise to the input images. For ease

of quantitative analysis of the fusion performance, the variance of the noise for each input image was

selected appropriately to get the same level of signal-to-noise (SNR) ratio for all the input images, where

the SNR was computed using the following expression:

SNR = 10 log10
Signal Variance

Noise Variance
dB. (17)
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Fig. 3 shows the medical images that were used to validate the proposed algorithm. Fig. 3a and 3b

are the images of a human brain obtained using computed tomography (CT) and magnetic resonance

imaging (MRI), respectively. These images are available online at [36]. CT and MRI sensors provide

complementary information, with CT proving a good visual description of bone tissue, whereas soft

tissues are better visualized by MRI. To simulate the sensor noise, zero mean white Gaussian noise were

added to these input images. The noisy input images were fused using the least square as well as proposed

approach. For both the approaches for fusion, CT and MRI images were divided into non-overlapping

regions of size 8× 8 and for each region, the sensor gain was computed using the principal eigenvector

approach explained in Section III-B. For least square based fusion, the estimated sensor gain was used

in eq. (3) to estimate the fused images. To fuse these images using the proposed approach, the estimated

sensor gains were used in the total variation algorithm described in Section III-A. Several different levels

of SNR were used to validate the robustness of the algorithm. Three sets of fusion results for 23 dB,

12 dB and 0 dB signal to noise ratio (SNR) have been presented in Fig. 4-6. It is clear that for high

level of SNR (Fig. 4), the performance of least square and the proposed approach is similar. However,

as SNR decreases, proposed approach performs better than the least square approach as shown in Fig. 5

and 6. For very high levels of noise, i.e., low SNR, the proposed algorithm oversmoothes the edges of

the fused image as shown in Fig. 6.

The proposed algorithm was also applied to the aircraft navigation images [36] shown in Fig. 7. Fig. 7a

was captured using a low-light-television (LLTV) sensor and Fig. 7b was obtained using a forward-

looking-infrared (FLIR) sensor. Note that LLTV sensor provides the surface information of the ground as

well building and vegetation details around it. However, FLIR image describes the road network details

accurately. The goal of fusion is to have all the salient features of both the sensors in the fused image.

The sensor noise simulation and the fusion process was exactly the same as that of the previous dataset,

and Fig. 8-10 show the fusion results for 23 dB, 8 dB and 0 dB signal to noise ratio (SNR). It is clear

from the fused images that the proposed approach is more robust to noise as compared to the least square

approach. However, for low SNR, the proposed fusion algorithm tends to oversmooth the edges of the

fused images.

To estimate the quality of the fused image quantitatively, the similarity measure based quality index

proposed in [37] was used. In this index, a similarity metric is computed between the input images and the

fused image. This index lies between −1 and +1, with index values close to ±1 indicating the robustness

of the fusion algorithm. The goal of quality assessment is to compare the information content in the fused

image and the corresponding input images. Therefore, the similarity index was computed by comparing
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the fused images with the noiseless versions of the corresponding input images. The similarity index for

the medical and navigation datasets are summarized in Table I, and plots of the similarity quality index

for LSE and the proposed approach as a function of SNR are presented in Fig. 11. It is evident from both

the Table I as well Fig. 11 that for very high SNR, performance of both the LSE and the proposed TV

norm based approaches is comparable. However, as the SNR is reduced, the proposed approach performs

better than the LSE. It is apparent that for both approaches, similarity index value approaches zero as

SNR drops.

VI. CONCLUSIONS

A total variation framework for pixel level image fusion is proposed in this paper. The proposed

fusion approach was applied to several different types of datasets. The results on these data indicate the

feasibility of the proposed approach. Future work will focus on analysis of the algorithm performance

with additional datasets.
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(a) (b)

(c) (d)

Fig. 1: Comparison of least square and TV norm based fusion(a) LLTV Image (b) FLIR Image (c)

Fused Image: Least Square (d) Fused Image: Proposed Approach (TV Norm)
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Fig. 2: Flowchart of the Proposed Image Fusion

• Input: n co-registered sensor images

• Output: Fused image

• Sensor Gain Estimation:

–) Split each input image into B blocks each

of size p × q

–) For each block (i) : i = 1, · · · , B

• Estimate sensor gain for each block

using algorithm presented in Section III-B

• Fusion Process:

–) Solve eq. (8) iteratively for each pixel.
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(a) (b)

Fig. 3: Medical Images: (a) CT Image (b) MRI Image
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(a) (b)

(c) (d)

Fig. 4: Medical Images, SNR = 23 dB: (a) CT Image (b) MRI Image (c) Fused Image: Least Square

(d) Fused Image: Proposed Approach

March 13, 2008 DRAFT



17

(a) (b)

(c) (d)

Fig. 5: Medical Images, SNR = 12 dB: (a) CT Image (b) MRI Image (c) Fused Image: Least Square

(d) Fused Image: Proposed Approach
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(a) (b)

(c) (d)

Fig. 6: Medical Images, SNR = 0 dB: (a) CT Image (b) MRI Image (c) Fused Image: Least Square

(d) Fused Image: Proposed Approach
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(a) (b)

Fig. 7: Aircraft Navigation Images: (a) LLTV Image (b) FLIR Image
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(a) (b)

(c) (d)

Fig. 8: Aircraft Navigation Images, SNR = 23 dB: (a) LLTV Image (b) FLIR Image (c) Fused Image:

Least Square (d) Fused Image: Proposed Approach
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(a) (b)

(c) (d)

Fig. 9: Aircraft Navigation Images, SNR = 8 dB: (a) LLTV Image (b) FLIR Image (c) Fused Image:

Least Square (d) Fused Image: Proposed Approach
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(a) (b)

(c) (d)

Fig. 10: Aircraft Navigation Images, SNR = 0 dB: (a) LLTV Image (b) FLIR Image (c) Fused Image:

Least Square (d) Fused Image: Proposed Approach
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Fig. 11: Plot of SNR vs. Similarity Quality Index (a) CT, MRI dataset (b) LLTV, FLIR dataset
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TABLE I: Performance summary of the proposed image fusion algorithm

Image DataSet SNR (dB):

Sensor 1

SNR (dB):

Sensor 2

Similarity

Index: LSE

Similarity

Index:

Proposed

Approach

Medical Image
23 23 0.58 0.62

12 12 0.34 0.44

0 0 0.11 0.22

Aircraft Navigation
23 23 0.66 0.67

8 8 0.20 0.32

0 0 0.07 0.16

March 13, 2008 DRAFT


