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R
ecent developments in computational imaging and 

restoration have heralded the arrival and convergence 

of several powerful methods for adaptive processing of 

multidimensional data. Examples include moving 

least square (from graphics), the bilateral filter (BF) 

and anisotropic diffusion (from computer vision), boosting, ker-

nel, and spectral methods (from machine learning), nonlocal 

means (NLM) and its variants (from signal processing), Bregman 

iterations (from applied math), kernel regression, and iterative 

scaling (from statistics). While these approaches found their inspi-

rations in diverse fields of nascence, they are deeply connected. 

In this article, I present a practical and accessible framework 

to understand some of the basic underpinnings of these meth-

ods, with the intention of leading the reader to a broad under-

standing of how they interrelate. I also illustrate connections 

between these techniques and more classical (empirical) Bayes-

ian approaches. 

The proposed framework is used to arrive at new insights 

and methods, both practical and theoretical. In particular, sev-

eral novel optimality properties of algorithms in wide use such 

as block-matching and three-dimensional (3-D) filtering 

(BM3D), and methods for their iterative improvement (or non-

existence thereof) are discussed.

A general approach is laid out to enable the performance 

analysis and subsequent improvement of many existing filtering 
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algorithms. While much of the material discussed is applicable 

to the wider class of linear degradation models beyond noise 

(e.g., blur,) to keep matters focused, we consider the problem of 

denoising here. 

INTRODUCTION

Multidimensional filtering is the most fundamental operation 

in image and video processing, and low-level computer vision. 

In particular, the most widely used canonical filtering operation 

is one that removes or attenuates the effect of noise. As such, 

the basic design and analysis of image filtering operations form 

a very large part of the image processing literature; the 

resulting techniques often 

quickly spreading to the wider 

range of restoration and recon-

struction problems in imaging. 

Over the years, many approaches 

have been tried, but only recently 

in the last decade or so, a great 

leap forward in performance has 

been realized. While largely unac-

knowledged in our community, 

this phenomenal progress has been mostly thanks to the adop-

tion and development of nonparametric point estimation proce-

dures adapted to the local structure of the given 

multidimensional data. Viewed through the lens of the denois-

ing application, here we develop a general framework for 

understanding the basic science and engineering behind these 

techniques and their generalizations. Surely this is not the first 

article to attempt such an ambitious overview, and it will likely 

not be the last; but the aim here is to provide a self-contained 

presentation that distills, generalizes, and puts into proper con-

text many other excellent earlier works such as [1]–[5], and, 

more recently, [6]. It is fair to say that this article is, by neces-

sity, not completely tutorial. Indeed it does contain several 

novel results; yet these are largely novel interpretations, for-

malizations, or generalizations of ideas already known or 

empirically familiar to the community. Hence, I hope that the 

enterprising reader will find this article not only a good over-

view, but as should be the case with any useful presentation, a 

source of new insights and food for thought.

So to begin, let us consider the measurement model for the 

denoising problem 

 , , , ,y z e i n1fori i i f= + =  (1)

where ( )z z xi i=  is the underlying latent signal of interest at a 

position , ,x x x, ,i i i
T

1 2=6 @  yi is the noisy measured signal (pixel 

value), and ei is zero-mean, white noise with variance .
2
v  We 

make no other distributional assumptions for the noise. The 

problem of interest then is to recover the complete set of sam-

p l e s  o f  ( ),z x  w h i c h  w e  d e n o t e  v e c t o r i a l l y  a s 

( ), ( ), , ( )z x z x z xz n
T

1 2 f= 6 @  from the corresponding data set 

y. To restate the problem more concisely, the complete mea-

surement model in vector notation is given by (surely a 

similar analysis to what follows can and should be carried out 

for more general inverse problems such as deconvolution, 

interpolation, etc. 

 .y z e= +  (2)

It has been realized for some time now that effective restora-

tion of signals will require methods which either model the 

signal a priori (i.e., are Bayesian) or learn the underlying char-

acteristics of the signal from the given data (i.e., learning, 

nonparametric, or empirical Bayes’ methods.) Most recently, 

the latter category of approaches has become exceedingly pop-

ular. Perhaps the most striking 

recent example is the popularity 

of patch-based methods [7]–[10]. 

This new generation of algo-

rithms exploit both local and 

nonlocal redundancies or “self-

similarities” in the signals being 

treated. Earlier on, the BF [8] was 

developed with very much the 

same idea in mind, as were its 

spiritually close predecessors: the Susan filter [11], normal-

ized convolution [12], and the filters of Yaroslavsky [13]. The 

common philosophy among these and related techniques is 

the notion of measuring and making use of affinities between 

a given data point (or more generally patch or region) of inter-

est, and others in the given measured signal y. These similari-

ties are then used in a filtering context to give higher weights 

to contributions from more similar data values, and to prop-

erly discount data points that are less similar. The pattern rec-

ognition literature has also been a source of parallel ideas. In 

particular, the celebrated mean-shift algorithm [14], [15] is in 

principle an iterated version of point-wise regression as also 

described in [1] and [2]. In the machine learning community, 

the general regression problem has been carefully studied, and 

deep connections between regularization, least-squares regres-

sion, and the support vector formalism have also been estab-

lished [16]–[19].

Despite the voluminous recent literature on techniques 

based on these ideas, simply put, the key differences between 

the resulting practical filtering methods have been relatively 

minor, but rather poorly understood. In particular, the under-

lying framework for each of these methods is distinct only to 

the extent that the weights assigned to different data points is 

decided upon differently. To be more concrete and mathemati-

cally precise, let us consider the denoising problem (2) again. 

The estimate of the signal ( )z x  at the position x is found using 

a (nonparametric) point estimation framework; specifically, 

the weighted least squares problem

 ( ) ( ) ( , , , ),arg minz x y z x K x x y y
( )

j
z x

i j i j i j

i

n
2

1j

= -

=

t 6 @/  (3)

where the weight (or kernel) function ( )K $  is a a symmetric 

function with respect to the indices i and j. ( )K $  is also a 
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positive valued and unimodal function that measures the 

“similarity” between the samples yi and ,y j  at respective posi-

tions xi and .x j  If the kernel function is restricted to be only a 

function of the spatial locations xi and j ,x  then the resulting 

formulation is what is known as (classical, or not data-adap-

tive) kernel regression in the nonparametric statistics litera-

ture [20], [21]. Perhaps more importantly, the key difference 

between local and nonlocal patch-based methods lies essen-

tially in the definition of the range of the sum in (3). Specifi-

cally, indices covering a small spatial region around a pixel of 

interest define local methods, and vice versa.

Interestingly, in the early 1980s, the essentially identical 

concept of moving least-squares emerged independently [22], 

[23] in the graphics community. This idea has since been 

widely adopted in computer 

graphics [24] as a very effective 

tool for smoothing and interpola-

tion of data in three dimensions. 

Surprisingly, despite the obvious 

connections between moving 

least-squares and the adaptive fil-

ters based on similarity, their 

kinship has remained largely hid-

den so far.

EXISTING ALGORITHMS

Over the years, the measure of similarity ( , , , )K x x y yi j i j  has 

been defined in a number of different ways, leading to a 

cacophony of filters, including some of the most well-known 

recent approaches to image denoising [7]–[9]. Figure 1 gives a 

graphical illustration of how different choices of similarity 

kernels lead to different classes of filters, some of which we 

discuss next.

CLASSICAL REGRESSION FILTERS 

Naturally, the most naive way to measure the “distance” 

between two pixels is to simply consider their spatial Euclidean 

distance; specifically, using a Gaussian kernel,

( , , , ) .expK x x y y
h

x x
i j i j

x

i j

2

2

=

- -e o
Such filters essentially lead to (possibly space-varying) Gauss-

ian filters which are quite familiar from traditional image pro-

cessing [13], [20], [21], [25]. It is possible to adapt the 

variance (or bandwidth) parameter hx to the local image sta-

tistics, and obtain a relatively modest improvement in perfor-

mance. But the lack of stronger adaptivity to the underlying 

structure of the signal of interest is a major drawback of these 

classical approaches.

THE BILATERAL FILTER 

Another manifestation of the for-

mulation in (3) is the BF [8], [13] 

where the spatial and photomet-

ric distances between two pixels 

are taken into account in separa-

ble fashion as follows:

 
( , , , )

( )

( )
.

exp exp

exp

K x x y y
h

x x

h

y y

h

x x

h

y y

i j i j

x

i j

y

i j

x

i j

y

i j

2

2

2

2

2

2

2

2

=
- - - -

=
- -

+
- -

e eo o
) 3

 

(4)

As can be observed in the exponent on the right-hand side, and 

in Figure 1, the similarity metric here is a weighted Euclidean 

distance between the vectors ( , )x yi i  and ( , ) .x yj j  This approach 

has several advantages. Specifically, while the kernel is easy to 

construct and computationally simple 

to calculate, it yields useful local adap-

tivity to the given data. In addition, it 

has only two control parameters 

( , ),h hx y  which make it very convenient 

to use. However, as is well known, 

this filter does not provide effective 

performance in low signal-to-noise 

scenarios [3].

NONLOCAL MEANS

The NLM algorithm [7], [26], [27], origi-

nally proposed in [28] and [29], has 

stirred a great deal of interest in the 

community in recent years. At its core, 

however, it is a relatively simple general-

ization of the BF; specifically, the photo-

metric term in the bilateral similarity 

kernel, which is measured point-wise, is 

simply replaced with one that is patch-

wise. A second difference is that (at least 

in theory) the geometric distance 

The Photometric
Distance
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Classic Kernel Regression

The Spatial Distance

x

y

K (yi - y)

K (xi - x) . K (yi - y )
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dx 2
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dy = |yi - y |

dx = |xi - x|

:

[FIG1] Similarity metrics and the resulting filters.
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between the patches (corresponding to the first term in the 

bilateral similarity kernel), is essentially ignored, leading to 

strong contribution from patches that may not be physically 

near the pixel of interest (hence, the name nonlocal). To sum-

marize, the NLM kernel is

( , , , )
y y

exp expK x x y y
h

x x

h
i j i j

x

i j

y

i j

2

2

2

2

=

- - - -e eo o  (5)

with ,hx " 3  where yi and y j refer now to patches of pixels cen-

tered at pixels yi and y j, respectively. In practice, two imple-

mentation details should be observed. First, the patch-wise 

photometric distance y yi j
2

-  in the above is in fact measured 

as ( ) ( ),y y G y yi j
T

i j- -  where G is a fixed diagonal matrix con-

taining Gaussian weights, which give higher importance to the 

center of the respective patches. Second, it is rather computa-

tionally impractical to compare all the patches yi to ,y j  so 

although the NLM approach in Buades et al. [28] theoretically 

forces hx to be infinite, in practice typically the search is limited 

to a reasonable spatial neighborhood of .y j  Consequently, in 

effect, the NLM filter too is more or less local; or said another 

way, hx is never infinite in practice. The method in Awate et al. 

[29], on the other hand, proposes a Gaussian-distributed sam-

ple that comes closer to the exponential weighting on Euclidean 

distances in (5).

Despite its popularity, the performance of the NLM filter 

leaves much to be desired. The true potential of this filtering 

scheme was demonstrated only later with the optimal spatial 

adaptation (OSA) approach of Boulanger and Kervrann [26]. In 

their approach, the photometric distance was refined to 

include estimates of the local noise variances within each 

patch. Specifically, they computed a local diagonal covariance 

matrix, and defined the locally adaptive photometric distance 

as ( ) ( )y y V y yi j
T

j i j
1

- -

-  in such a way as to minimize an esti-

mate of the local mean squared error (MSE). Furthermore, 

they considered iterative application of the filter as discussed 

in the section “Improving the Estimate by Iteration.”

LOCALLY ADAPTIVE REGRESSION  

(STEERING) KERNELS

The key idea behind this measure of similarity, originally proposed 

in [9], is to robustly obtain the local structure of images by analyz-

ing the photometric (pixel value) differences based on estimated 

gradients, and to use this structure information to adapt the shape 

and size of a canonical kernel. The locally adaptive regression ker-

nel (LARK) is defined as follows:

 ( , , , ) ( ) ( ) ,expK x x y y x x x xCi j i j i j
T

i i j= - - -" ,  (6)

where the matrix ( , )y yC Ci i j=  is estimated from the given 

data as

( )

( ) ( )

( ) ( )

( )

.

z x

z x z x

z x z x

z x

Ci

x j

x j x j

x j x j

x j
j

2

2

,

, ,

, ,

,

i

i i

i i

i

1

1 2

1 2

2

= > H/

Specifically, ( )z xx j,i *  are the estimated gradients of the underly-

ing signal at point ,xi  computed from the given measurements 

y j in a patch around the point of interest. In particular, the gra-

dients used in the above expression can be estimated from the 

given noisy image by applying classical (i.e., nonadaptive) 

locally linear kernel regression. Details of this estimation proce-

dure are given in [30]. The reader may recognize the above 

matrix as the well-studied “structure tensor” [31]. The advan-

tage of the LARK descriptor is that it is exceedingly robust to 

noise and perturbations of the data. The formulation is also the-

oretically well motivated since the quadratic exponent in (6) 

essentially encodes the local geodesic distance between the 

points ( ,x yi i) and ( ,x yj j) on the graph of the function ( , )z x y  

thought of as a two-dimensional (2-D) surface (a manifold) 

embedded in three dimensions. The geodesic distance was also 

used in the context of the Beltrami-flow kernel in [32] and [33] 

in an analogous fashion.

GENERALIZATIONS AND PROPERTIES

The above discussion can be naturally generalized by defining 

the augmented data variable ,xt yi i
T

i
T T

= 6 @  and a general 

Gaussian kernel as follows:

 ( , ) ( ) ( ) ,expK t t t t Q t ti j i j
T

i j= - - -" ,  (7)

 ,
0

0
Q

Q

Q
,i j

x

y
=; E  (8)

where Q is symmetric positive definite (SPD).

Setting Q Ix
h

1

x
2=  and ,0Qy =  we have classical kernel 

regression, whereas one obtains the BF framework when 

Q Ix
h

1

x
2=  and [ , , , , , , ] .0 0 1 0 0diagQ

h

1
y

y
2 f f=  The latter 

diagonal matrix picks out the center pixel in the element-

wise difference of patches .t ti j-  When 0Qx =  and ,Q G
h

1
y

y
2=  

we have the NLM filter and its variants. Finally, the LARK 

kernel in (6) is obtained when Q Cx i=  and .Q 0y =  More gen-

erally, the matrix Q can be selected so that it has nonzero 

off-diagonal blocks. However, no practical algorithms with 

this choice have been proposed so far. As detailed below, with 

an SPD Q, this general approach results in valid SPD ker-

nels, a property that is used throughout the rest of our dis-

cussion. The definition of t given here is only one of many 

possible choices. Our treatment in this article is equally 

valid when, for instance, ,xt T y= ^ h is any feature derived 

from a convenient linear or nonlinear transformation of the 

original data. 

The above concepts can be further extended using the pow-

erful theory of reproducible kernels originated in functional 

analysis (and later successfully adopted in machine learning 

[34], [35]) to present a significantly more general framework 

for selecting the similarity functions. This will help us identify 

the wider class of admissible similarity kernels more formally, 

and to understand how to produce new kernels from ones 

already defined [35]. Formally, a scalar-valued function ( , )K t s  

over a compact region of its domain Rn is called an admissible 

kernel if
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 ■ K is symmetric: ( , ) ( , )K Kt s s t=

 ■ K is positive definite. That is, for 

any col lect ion of  points  ,ti  

, , ,i n1 f=  the Gram matrix with 

elements ( , )KK t t,i j i j=  is positive 

definite.

Such kernels satisfy some useful prop-

erties such as positivity, ( , ) ,K 0t t $  and the Cauchy–Schwartz 

inequality ( , ) ( , ) ( , ) .K K Kt s t t s s#

With the above definitions in place, there are numerous 

ways to construct new valid kernels from existing ones. We list 

some of the most useful ones below, without proof [35]. Given 

two valid kernels ( , )K t s1  and ( , ),K t s2  the following construc-

tions yield admissible kernels:

1) ( ) ( , ) ( , )K K K,t s t s t s1 2a b= +  for any pair , 0$a b

2) ( , ) ( , ) ( , )K K Kt s t s t s1 2=

3) ( , ) ( ) ( ),K k kt s t s=  where ( )k $  is a scalar-valued function 

4) ( , ) ( , ) ,K p Kt s t s1= ^ h  where ( )p $  is a polynomial with posi-

tive coefficients

5) ( , ) ( ( , )) .expK Kt s t s1=

Regardless of the choice of the kernel function, the weighted 

least-square optimization problem (3) has a simple solution. In 

matrix notation we can write

 ( ) ( ) ( ) ,arg minz x z x z x1 1y K y
( )

j
z x

j n
T

j j n
j

= - -t 6 6@ @  (9)

where , , ,1 11n
T

f=6 @  and ( , , , ), ( , ,K x x y y K x xdiagK j j j j1 1 2= 6  

, ), , ( , , , ) .y y K x x y yj n j n j2 f @  The closed-form solution to the 

above is

 ( )z x 1 1 1K K yj n
T

j n n
T

j
1

=
-

t ^ h  (10)

 ( , , , ) ( , , , )K x x y y K x x y y yi j i j

i

i j i j i

i

1
=

-c cm m/ /

 
K

K
y

ij
i

ij
i

i

=

/
/

 W yij i

i

=/

 .w yj
T

=  (11)

So in general, the estimate ( )z x jt  of the signal at position x j is 

given by a weighted sum of all the given data points ( ),y xi  

each contributing a weight commensurate with its similarity 

as indicated by ( ),K $  with the measurement ( )y x j  at the position 

of interest. Furthermore, as should be apparent in (10), the 

weights sum to one. To control computational complexity, or to 

design local versus nonlocal filters, we may choose to set the 

weight for some “sufficiently far-away” pixels to zero or a small 

value, leading to a weighted sum involving a relatively small 

number of data points in a properly defined vicinity of the sam-

ple of interest. This is essentially the only distinction between 

locally adaptive processing methods (such as BL and LARK) and 

so-called nonlocal methods such as NLM. It is worth noting 

that in the formulation above, despite the simple form of (10), 

in general we have a nonlinear estimator since the weights 

( , , , )W W x x y yij i j i j=  depend on the noisy data. The 

nonparametric approach in 

(3) can be further extended 

to include a more general 

expansion of the signal z(x) 

in a desired basis. We briefly 

discuss this case in “General-

ization to Arbitrary Bases,” 

but leave its full treatment for future research.

To summarize the discussion so far, we have presented a 

general framework that absorbs many existing algorithms as 

special cases. This was done in several ways, including a general 

description of the set of admissible similarity kernels, which 

allows the construction of a wide variety of new kernels not con-

sidered before in the image processing literature. Next, we turn 

our attention to the matrix formulation of the nonparametric 

filtering approach. As we shall see, this provides a framework for 

more in-depth and intuitive understanding of the resulting fil-

ters, their subsequent improvement, and for their respective 

asymptotic and numerical properties.

Before we end this section, it is worth saying a few words 

about computational complexity. In general, patch-based meth-

ods are quite computationally intensive. Recently, many works 

have aimed at both efficiently searching for similar patches, and 

more cleverly computing the resulting weights. Among these, 

notable recent work appears in [36] and [37].

THE MARTIX FORMULATION AND ITS PROPERTIES

In this section, we analyze the filtering problems posed earlier 

in the language of linear algebra and make several theoretical 

and practical observations. In particular, we are able to not only 

study the numerical/algebraic properties of the resulting filters, 

but also to analyze some of their fundamental statistical 

properties.

To begin, recall the convenient vector form of the filters:

 ( ) ,z x w yj j
T

=t  (12)

where = ( , , , ), ( , , , ), , ( , , ,W x x y y W x x y y W x x yw j
T

j j j j n j n1 1 2 2 f6  

)y j @ is a vector of weights for each j. Writing the above at once 

for all j we have

 .z

w

w

w

y W y

T

T

n
T

1

2

h
= =t

R

T

S
S
S
S
S

V

X

W
W
W
W
W

 (13)

As such, the filters defined by the above process can be ana-

lyzed as the product of a (square, n n# ) matrix of weights W 

with the vector of the given data y. First, a notational matter: 

W is in general a function of the data, so strictly speaking, the 

notation ( )W y  would be more descriptive. But as we will 

describe later in more detail, the typical process for computing 

these weights in practice involves first computing a prelimi-

nary denoised “pilot,” or “prefiltered” version of the image, 

from which the weights are then calculated. This preprocess-

ing, done only for the purposes of computing the parameters 

THE PERFORMANCE OF ANY  
KERNEL-BASED DENOISING METHOD 
CAN BE IMPROVED BY SOME TYPE  
OF ITERATION. THE KEY IS TO USE  

THE RIGHT ITERATION.
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of the filter, reduces the effective variance of the input noise 

and stabilizes the calculation of the weights so that they are 

not a strong function of the input noise level. As such, it is 

practically more useful to think of the weights as depending 

more directly on the underlying (unknown) image ( ) .W z  As 

such, we shall simply denote the weight matrix going forward 

as W. A more rigorous justification for this is provided later in 

the next section, and supported in “Stability of Filter Coeffi-

cients to Perturbations Due to Noise.” Further justification is 

provided in [75].

Next, we highlight some important properties of the 

matrix W, which lend much insight to our analysis. Referring to 

(10), W can be written as the product

 ,W D K
1

=
-  (14)

where ( , , , )K x x y y KK ij i j i j ij= =6 @  and D is a positive definite 

diagonal matrix with the normalizing factors { }KdiagD jj i ijR=  

along its diagonals. We can write

 .W D K D D KD D
/ / / /1 1 2 1 2 1 2 1 2

L

= =
- - - -

1 2 344 44

 (15)

It is evident that since K and D are SPD, then so is L. Mean-

while, W and L are related through a diagonal similarity trans-

formation, and therefore have the same eigenvalues. Hence, 

interestingly, W has real, nonnegative eigenvalues (even though 

it is not symmetric). An alternative, though not necessarily 

more intuitive, description of the action of W is possible in 

terms of graphical models. Specifically, if we consider the data 

( ,x yi i) to be nodes on a (finite, undirected, weighted) graph 

with weights between nodes i and j given by the kernel values 

( , , , ),K x x y yi j i j  the matrix L IL = -  is precisely the “graph 

Laplacian” [38], [5], [39]. The name is not surprising. In the 

canonical case, W is a low-pass filter (though possibly nonlinear 

and space-varying.) Since W and L share the same spectrum, L 

is also a low-pass filter. Therefore, L IL = -  is generically a 

high-pass filter, justifying the Laplacian label from the point of 

view of filtering. This is illustrated in Figure 2.

Next, we note that W is a positive row-stochastic matrix— 

specifically, by definition, the sum of each of its rows is equal 

to one, as should be clear from (10). Furthermore, the struc-

ture of the pixel data as samples of a function on a finite, 

fixed, lattice means that W can also be interpreted [5], [39] as 

the transition matrix of an aperiodic and irreducible Markov 

GENERALIZATION TO ARBITRARY BASES

The nonparametric approach in (3) can be further extended 

to include a more general model of the signal ( )z x  in some 

appropriate basis. Specifically, expanding the regression 

function ( )z x  in a desired basis ,lz  we can formulate the fol-

lowing optimization problem:

 ( ) ( ) ( , ) ( , , , ),argminx y x x x K y y x xz
( )

j
x

i l j l i j

l

N

i

n

i i j

0

2

1l j

b {= -

b
==

t = G//  (S1)

where N is the model (or regression) order. For instance, 

with the basis set ( , ) ( ) ,x x x xl i j i j
lz = -  we have the Taylor 

series expansion, leading to the local polynomial approaches 

of classical kernel regression [20], [71], [9]. Alternatively, the 

basis vectors could be learned from the given image using a 

method such as K-SVD [72]. In matrix notation we have

 ( ) ( ) ( ) ,argminx x xy K y
( )

j
x

j j
T

j j j
j

b b bU U= - -

b

t 6 6@ @  (S2)

where
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is a matrix containing the basis vectors in its columns; and 

where ( ) , , , ( )x xj N
T

j0 1 fb b b b= 6 @  is the coefficient vector of 

the local signal representation in this basis. Meanwhile, K j is 

the diagonal matrix of weights as defined in (9). To maintain 

the ability to represent the “DC” pixel values, we can insist 

that the matrix jU  contain the vector [ , , , ]1 1 11n
T

f=  as one 

of its columns. Without loss of generality, we assume this to 

be the first column so that by definition ( , )x x 1i j0z =  for all i 

and j.

Denoting the jth row of jU  as ( , ), ( , ), ,x x x xj
T

j j j j0 1 fz z z= 6  

( , )x xN j jz @ we have the closed-form solution

 ( ) ( )z x xj j
T

jbz=t t  (S4)

 K K y w yj
T

j
T

j j j
T

j

w

j
T1

j
T

z U U U= =

-^ h
1 2 344444 44444

. (S5)

This again is a weighted combination of the pixels, though a 

rather more complicated one than the earlier formulation. 

Interestingly, the filter vector w j still has elements that sum 

to one. This can be seen as follows. We have

 .w K Kj
T

j j
T

j
T

j j j
T

j j j
T1

z zU U U U U= =

-^ h

Writing this explicitly, we observe

 = ( , )x xz
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Considering the inner product of w j
T with the first column 

of ,jU  we have 1w 1j
T

n =  as claimed.

The use of a general basis as described above carries one dis-

advantage, since the coefficient vectors w j are influenced 

now not only by the choice of the kernel, but also by the 

choice of the basis, the elements of w j can no longer be guar-

anteed to be positive. While this can be useful in the context 

of filtering as it affords additional degrees of freedom, it does 

significantly complicate the analysis of the resulting algo-

rithms. Most notably, the resulting weight matrix W will no 

longer have nonnegative elements, and hence the powerful 

machinery afforded by the Perron–Frobenius theory is no lon-

ger directly applicable. As such, we must resort to a broader 

definition of a generalized stochastic matrix [73].
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chain defined on the entries of the data vector y. Hence, the 

classical Perron–Frobenius theory is at our disposal [40], 

[41], which completely characterizes the spectra of such 

matrices. In particular [42], [43], we have that W has spectral 

radius ( ) .0 1W# #m  Indeed, the largest eigenvalue of W is 

simple (unrepeated) and is exactly ,11m =  with correspond-

ing eigenvector ( / ) [ , , , ] ( / ) .n n1 1 1 1 1 1v
T

n1 f= =  Intui-

tively, this means that filtering by W preserves the average 

grey level, and will leave a constant signal (i.e., a “flat” 

image) unchanged. In fact, with its spectrum inside the unit 

disk, W is an ergodic matrix [40], [41], which is to say that 

its powers converge to a matrix of rank one, with identical 

rows. More explicitly, using the eigen-decomposition of W we 

can write

,W VS V VS U v u
k k k T

i
k

i i
T

i

n
1

1

m= = =
-

=

/

where we have defined ,U V
T 1
=

-  while denoting by ui
T the left 

eigenvectors of W which are the columns of U. Therefore,

.lim 1W u
k

k
n

T
1=

"3

So u1 summarizes the asymptotic effect of applying the filter W 

many times.

As we made clear earlier, W D K
1

=
-  is generically not a 

symmetric matrix, though it always has real, positive eigenval-

ues. As such, it should not come as a surprise that W is quite 

close to an SPD matrix. As we illustrate in “Symmetric 

Approximation of W and its Properties,” this is indeed the 

case. As such, we shall find it useful to approximate W with 

such an SPD matrix. To effect this approximation requires a 

bit of care, as the resulting matrix must still be row-stochastic. 

Fortunately, this is not difficult to do. Sinkhorn’s algorithm 

[44], [45] for matrix scaling provides a provably optimal [46] 

way to accomplish this task. We refer the reader to [75] and 

“Symmetric Approximation of W and its Properties” and cita-

tions therein, where we illustrate and justify both the approxi-

mation procedure and its fidelity in detail. The obtained 

matrix is a close approximation of a given W which is both 

SPD, and now doubly (i.e., row- and column-) stochastic. 

Working with a symmetric (or rather “symmetrized”) W 

makes possible much of the analysis that follows in the 

remainder of this article. Interestingly, there is an inherent 

and practical advantage in using symmetrization. As we will 

see in the experimental results, given any W, employing its 

symmetrized version generally improves performance in the 

MSE sense. We do not present a proof of this observation here, 

but refer the interested reader for details in [75]. 

Therefore, from this point forward, we shall consider W to be 

an SPD, and (doubly) stochastic matrix. The spectrum of W 

determines the effect of the filter on the noisy signal y. We write 

the eigen-decomposition 

 ,W VSV
T

=  (16)

where , ,diagS n1 fm m= 6 @ contains the eigenvalues in decreas-

ing order ,0 1n 1g# # #m m =  and V is an orthogonal matrix. 

As an example, we illustrate the spectrum of the LARK [9] 

The statistical analysis of the nonparametric filters W is quite 

complicated when W is considered random. Fortunately, how-

ever, the stability results in [47] allow us to consider the 

resulting filters as approximately deterministic. More specifi-

cally, we assume that the noise e corrupting the data has i.i.d. 

samples from a symmetric (but not necessarily Gaussian) dis-

tribution, with zero-mean and finite variance .
2
v  The results 

in [47] imply that if the noise variance 2
v  is small relative to 

the clean data z (i.e., when signal-to-noise ratio is high), the 

weight matrix ( )W W y=
P  computed from the noisy data 

y z e= +  is near the latent weight matrix ( ) .W z  That is, with 

the number of samples n sufficiently large [47],

 ,W W c c( ) ( )
F p e e
2

1
2

2
4

# v v- +P  (S6)

for some constants c1 and ,c2  where ( )
e
2

v  and ( )
e
4

v  denote the 

second and fourth order moments of e , respectively, and 

“ p# ” indicates that the inequality holds in probability. When 

the noise variance is sufficiently small, the fourth-order 

moment is even smaller; hence, the change in the resulting 

coefficient matrix is bounded by a constant multiple of the 

small noise variance.

Approximations to the moments of the perturbation 

d WW W= -
P  are also given in [47] and [78] 

 ,d E d dE EW D D K D K
2 1

. -

- -6 6 6@ @ @

 5 ,d d d d dE E E EW D D K D K D K D K
2 2 4 2 2 2 3
. + -

- - -6 6 6 6@ @ @ @

where ,dD D D= -
N  and ,dK K K= -

M  and & denotes an element-

wise product. A thorough description of the perturbation anal-

ysis for the class of Gaussian data-adaptive weights is given in 

[47] and [78]. To summarize, for a sufficiently small noise vari-

ance, the matrix of weights can be treated, with high confi-

dence, as a deterministic quantity that depends only on the 

content of the underlying latent image z.

[FIG2] Construction of the graph Laplacian L from the kernel 
weights K.

Kij
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STABILITY OF FILTER COEFFICIENTS TO PERTURBATIONS DUE TO NOISE
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As elaborated in detail in [75], we approximate approximate 

the matrix W D K
1

=
-  with a doubly stochastic (symmetric) pos-

itive definite matrix. The algorithm we use to effect this 

approximation is due to Sinkhorn [44], [45]. He proved that 

given an irreducible matrix with nonnegative elements (such as 

W), there exist diagonal matrices ( )diagR r=  and ( )diagC c=  

such that

 W RWC=
Z

is doubly stochastic. That is,

 1 1 1 1andW Wn n n
T

n
T

= =
Z Z . (S7)

Furthermore, the vectors r and c are unique to within a scalar 

(i.e., ra , /c a.) Sinkhorn’s algorithm for obtaining r and c in 

effect involves repeated normalization of the rows and col-

umns (see Algorithm 1 below for details) so that they sum to 

one, and is provably convergent and optimal in the cross-

entropy sense [46]. To see that the resulting matrix WZ is SPD, 

we note a corollary of Sinkhorn’s result: When a symmetric 

matrix is considered, the diagonal scalings are in fact identical 

[44], [45]. Applied to K, we see that the symmetric diagonal 

scaling K MKM=W  yields a symmetric doubly stochastic matrix. 

But we have ,W D K
1

=
-  so

 W RD KC
1

=
-Z .

Since the WZ and the diagonal scalings are unique (to within a 

scalar), we must have ,RD C M
1
= =

-  and therefore .W K=Z W  That 

is to say, applying Sinkhorn’s algorithm to either K or its row-sum 

normalized version W yields the very same SPD doubly stochastic) 

result, .WZ

Algorithm 1: Scaling a matrix A to a nearby doubly stochastic 

matrix AX

Given a matrix A, let ( , )n n = size(A) and initialize 

( , );n 1onesr =  for : ;k iter1=

./ ( );1c A r
T

=

./ ( )1r A c= ; 

end 

( );diagC c=  ( );diagR r=

A R A C=
X

The convergence of this iterative algo-

rithm is known to be linear [45], with 

rate given by the subdominant eigen-

value 2m  of W. It is of interest to know 

how much the diagonal scalings will 

perturb the eigenvalues of W. This 

will indicate how accurate our approx-

imate analysis will be, which uses the 

eigenvalues of WZ instead of W. Fortu-

nately, Kahan [74], [43] provides a nice 

result: Suppose that A is a non-Hermi-

tian matrix with eigenvalues 

| | | | | |n1 2 g$ $ $m m m . Let AX be a 

perturbation of A that is Hermitian with eigenvalues 

,n1 2 g$ $ $m mmW W W  then

 .2 A Ai i F

i

n
2 2

1

#m - -

=

mW X/

Specializing the result for W, defining W WT = -
Z  and normal-

izing by n, we have

 .
n n

1 1
i i

i

n

F

1

2 2
T#m m-

=

W/

The right-hand side can be further bounded as described in [75].

Hence, for patches of reasonable size (say n 11$ ), the bound 

on the right-hand side and the eigenvalues of the respective 

matrices are quite close, as demonstrated in Figure S1. Bounds 

may be established on the distance between the eigenvectors of 

W and WZ as well [75]. Of course, since both matrices are row-sto-

chastic, they share their first right eigenvector ,v v1 1=t  corre-

sponding to a unit eigenvalue. The second eigenvectors are 

arguably more important, as they tell us about the dominant 

structure of the region being filtered, and the corresponding 

effect of the filters. Specifically, as indicated in [47], applying The-

orem 5.2.8 from [43] gives a bound on the perturbation of the 

second eigenvectors 

 ,
2

4
v v

F

F
2 2

T

T
#
o

-

-

t

where o is the gap between the second and the third eigenval-

ues. It is worth noting that the bound essentially does not 

depend on the dimension n of the data y. 

As a side note, we mention the interesting fact that, when 

applied to a symmetric squared distance matrix, Sinkhorn’s algo-

rithm has a rather nice geometric interpretation [76], [77]. Specif-

ically, if P is the set of points that generated the symmetric 

distance matrix A, then elements of its Sinkhorn scaled version 

B AM M=  correspond to the square distances between the cor-

responding points in a set Q, where the points in Q are obtained 

by a stereographic projection of the points in P. The points in Q 

are confined to a hypersphere of dimension d embedded in ,R
d 1+  

where d is the dimension of the subspace spanned by the points 

in P.
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[FIGS1] Eigenvalues of row-stochastic (asymmetric) filter matrices and the corresponding 
doubly stochastic (symmetric) filter matrices symmetrized using Sinkhorn’s algorithm: 
(a) an NLM filter example and (b) a LARK filter example.

SYMMETRIC APPROXIMATION OF W AND ITS PROPERTIES
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kernel in Figure 3 for different types of patches. As can be 

observed, the spectrum of W decays rather quickly for “flat” 

patches, indicating that the filter is very aggressive in denoising 

these types of patches. As we consider increasingly more com-

plex anisotropic patches containing edges, corners, and various 

textures, the spectrum of the filter is (automatically) adjusted to 

be less aggressive in particular directions. To take the specific 

case of a patch containing a simple edge, the filter is adjusted in 

unsupervised fashion to perform strong denoising along the 

edge, and to preserve and enhance the structure of the patch 

across the edge. This type of behavior is typical of the adaptive 

nonparametric filters we have discussed so far, but it is particu-

larly striking and stable in the case of LARK kernels shown in 

Figure 3.

Of course, the matrix W is a function of the noisy data y and 

hence it is strictly speaking a stochastic variable. But another 

interesting property of W is that when the similarity kernel ( )K $  

is of the general Gaussian type as in (7), as described in “Sym-

metric Approximation of W and its Properties” the resulting fil-

ter coefficients W are quite stable to perturbations of the data by 

noise of modest size [47]. From a practical point of view, and 

insofar as the computation of the matrix W is concerned, it is 

always reasonable to assume that the noise variance is relatively 

small, because in practice we typically compute W on a “prefil-

tered” version of the noisy image y anyway. This small noise 

assumption is made only for the analysis of the filter coeffi-

cients, and is not invoked in rest of the article. Going forward, 

therefore, we consider W as essentially nonstochastic. Some 

experiments in the section “Improving the Estimate by Itera-

tion” and in [75] confirm the validity of this assumption. We 

also elaborate a bit more on this point in the next section. 

STATISTICAL ANALYSIS OF THE 

FILTERS’ PERFORMANCE

We are now in a position to carry out an 

analysis of the performance of filters 

defined earlier. As we just explained, to 

carry out this analysis, we first note 

that W is, strictly speaking, a function 

of the noisy data y. Indeed, the depen-

dence on the given data is what gives 

strength to these adaptive filters. On 

the other hand, one may legitimately 

worry that the effect of noise on the 

computation of these weights may be 

dramatic, resulting in too much sensi-

tivity for the resulting filters to be effec-

tive. This issue has indeed been 

considered in the context of most 

patch-based adaptive filters. The con-

sensus approach, in keeping with simi-

lar thinking in the nonparametric 

statistics literature, is to compute the 

weights from a “pilot” (or prefiltered) 

version z0t  of the noisy data; that is, 

( ) .W z0t  The preprocessing step yielding 

the pilot estimate z0t  can be carried out with any one of many 

simpler (nonadaptive) filters, and is done only for the purpose 

of stably computing the parameters of the filter. The net effect 

of this step, however, is significant: it reduces the effective 

variance of the input noise and stabilizes the calculation of the 

weights so that they are not a strong function of the input 

noise level any longer. In this setting, the noise affecting the 

calculation of the weights can, for all practical intents, be 

assumed small. As such, the stability results in [47] (summa-

rized in “Stability of Filter Coefficients to Perturbations Due 

to Noise”) give strong guarantees that the weights are conse-

quently disturbed relatively little. That is, ( ) ( ) .W z W z0 .t  For 

the purposes of performance analysis below, it is therefore rea-

sonable (and practically verified in Figures 4–7) to consider 

the weights as depending more directly on the underlying 

(unknown) image ( ),W z  rather than ( ) .W y  As such, we also 

drop the dependence on its argument for the sake of simplify-

ing the notation. But the reader is advised to always remember 

that the weights are adapted to the (estimated) structure of 

the underlying image. 

Now, let us compute an approximation to the bias and vari-

ance of the estimator .z Wy=t  The bias in the estimate is

 ( ) ( )

( ) .

bias E z z E Wy z

Wz z W I z.

= - = -

- = -

t

Recalling that the matrix W has a unit eigenvalue correspond-

ing to a (constant) vector, we note that zt is an unbiased estimate 

if z is a constant image, but is biased for all other underlying 

latent images. The squared magnitude of the bias is given by

 ( ) .bias W I z
2 2
= -  (17)
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[FIG3] Spectrum of the LARK filter on different types of patches.
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Writing the image z in the column space of the orthogonal 

matrix V (which contains the eigenvectors as its columns) as 

b,z V=  we can rewrite the squared bias magnitude as

 

( ) ( )

( ) ( ) .b1

bias W I z V S I b

S I b i i

i

n

2 2 2

2 2 2

1

m

= - = -

= - = -

=

/
 

(18)

We note that the last sum can be expressed over the indices 

, , ,i n2 f=  because the first term in fact vanishes since .11m =  

Next, we consider the variance of the estimate. We have

( ) ( ) ( )

( ) ( ( )) .

cov

cov

cov z W y cov W e W W

var z tr z

T

i

i

n

2

2 2

1

(. v

v m

= =

= =

=

t

t t /

Overall, the MSE is given by

 ( ) .b1m v m- +( )biasMSE var z i i i

i

n
2 2 2 2 2

1

= + =

=

t /  (19)

THE IDEAL SPECTRUM: BM3D 

Let us pause for a moment and imagine that we can optimally 

design the matrix W from scratch in such a way as to minimize 

the MSE expression above. That is, consider the set of eigenval-

ues for which (19) is minimized. Differentiating the expression 

for MSE with respect to im  and setting equal to zero leads to a 

familiar expression 

 .
b

b

1

1

snr

*
i

i

i

i
2 2

2

1
m

v
=

+
=
+

-
 (20)

This is, of course, nothing but a manifestation of the Wiener 

filter with snri
bi
2

2

=
v

 denoting the signal-to-noise ratio at each 

component i of the signal. This observation naturally raises 

the question of whether any existing filters in fact get close to 

this optimal performance [49]. Two filters that are designed 

to approximately achieve this goal are BM3D [48] and patch-

wise locally optimal Wiener (PLOW) [50], which are currently 

considered to be the state of the art in denoising. The BM3D 

[FIG5] Parts (a)–(c) show plots of predicted MSE in diffusion based on ideally estimated symmetric NLM filters, and MSE of noisy 
symmetric/asymmetric NLM filters through Monte-Carlo simulations. The input noise variance .0 5

2
v =  and for each simulation 100 

independent noise realizations are implemented.
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[FIG4] Parts (a)–(c) show plots of predicted MSE in diffusion based on ideally estimated symmetric LARK filters, and MSE of noisy 
symmetric/asymmetric LARK filters through Monte-Carlo simulations. The input noise variance .0 5

2
v = , and for each simulation 100 

independent noise realizations are implemented.
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algorithm can be briefly summarized by the following three 

steps:

1) Patches from an input image are classified according to 

their similarity, and are grouped into 3-D clusters 

accordingly.

2) A so-called “3-D collaborative Wiener filtering” is imple-

mented to process each cluster.

3) Filtered patches inside all the clusters are aggregated to 

form an output.

The core process of the BM3D 

algorithm is the collaborative 

Wiener filtering that trans-

forms a patch cluster through a 

fixed orthonormal basis V (e.g., 

DCT) [48], where the coeffi-

cients of each component are then scaled by some “shrink-

age” factor { },im  which are precisely chosen according to 

(20). Following this shrinkage step, the data are trans-

formed back to the spatial domain to generate denoised 

patches for the aggregation process. In practice, of course, 

one does not have access to { },bi
2  so they are estimated 

from the given noisy image y, as is done also in [48]. The 

BM3D is not based on the design of a specific kernel ( ),K $  

or even on a regression framework, as are other patch-

based methods (such as NLM and LARK). In fact, there 

need not exist any closed-form kernel that gives rise to the 

BM3D filter. Still, with the present framework, the diago-

nal Wiener shrinkage matrix 

[ , , ]diagS n1 fm m=  a n d  t h e 

overall 3-D collaborative Wie-

ner filtering process can now 

be understood using a symmet-

r ic ,  posi t ive-def inite  f i l ter 

matrix W  with orthonormal 

eigen-decomposition .VSV
T  If the orthonormal basis V con-

tains a constant vector ,1vi
n

n
1

=l  one can easily make W 

doubly stochastic by setting its corresponding shrinkage 

factor .1im =l
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[FIG6] Parts (a)–(c) show plots of predicted MSE in twicing based on ideally estimated symmetric LARK filters, and MSE of noisy 
symmetric/asymmetric LARK filters through Monte-Carlo simulations. The input noise variance .0 5

2
v =  and for each simulation 100 

independent noise realizations are implemented.

[FIG7] Parts (a)–(c) show plots of predicted MSE in diffusion based on ideally estimated symmetric NLM filters, and MSE of noisy 
symmetric/asymmetric NLM filters through Monte-Carlo simulations. The input noise variance .0 5

2
v =  and for each simulation 100 

independent noise realizations are implemented.
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To summarize this section, we have presented a widely 

applicable matrix formulation z Wy=t  for the denoising prob-

lem, where W is henceforth considered symmetric, positive-

definite, and doubly stochastic. This formulation has thus far 

allowed us to characterize the performance of the resulting fil-

ters in terms of their spectra and to obtain insights as to the 

relative statistical efficiency of existing filters such as BM3D. 

One final observation worth making here is that the Birkhoff–

von Neumann theorem [41] notes that W is doubly stochastic 

if and only if it is a convex combination of permutation matri-

ces. Specifically, ,W Pl l
l

n

1
a=

=

-

/  where Pl are permutation 

matrices; la  are nonnegative scalars with ,1la =/  and nr  is at 

most ( ) .n 1 12
- +  This means that regardless of the choice of 

(an admissible) kernel, each pixel of the estimated image

z W y P yl l

l

n

1

a= =

=

-

t ^ h/

is always a convex combination of at most ( )n n 1 12
= - +

-  (not 

necessarily nearby) pixels of the noisy input.

Going forward, we first use the insights gained thus far to 

study further improvements of the nonparametric approach. 

Then, we describe the relationship between the nonparametric 

approaches and more familiar parametric (empirical) Bayesian 

methods.

IMPROVING THE ESTIMATE BY ITERATION

As we described above, the optimal spectrum for the filter 

matrix W is dictated by the Wiener condition (20), which 

requires clairvoyant knowledge of the signal or at least careful 

estimation of the SNR at each spatial frequency. In practice, 

however, nearly all similarity-based methods we described so far 

(with the notable exception of the BM3D) design a matrix W 

based on a choice of the kernel function, and without regard to 

the ultimate consequences of this choice on the spectrum of the 

resulting filter. Hence, at least in the MSE sense, such choices 

of W are always deficient. As former U.S. Secretary of Defense 

Donald Rumsfeld might have said, we filter with the spectrum 

that we have, not the spectrum that we would like to have! One 

way to remedy the lack of optimality of the choice of kernel is to 

apply the resulting filters iteratively, and that is the subject of 

this section. 

To put the problem in more practical terms, the estimate 

derived from the application of a nonparametric denoising 

filter W will not only remove some noise, but invariably some 

of the underlying signal as well. A number of different 

approaches have been proposed to reintroduce this “lost” 

component back to the estimate. Interestingly, as we describe 

later in the section “Relationship to (Empirical) Bayes’ and 

Regularization Approaches,” similar to the steepest descent 

(SD) methods employed in the solution of more classical 

Bayesian optimization approaches, the iterative method 

employed here involve multiple applications of a filter (or 

sequence of filters) on the data, and somehow pooling the 

results. Next we discuss the two most well-known and fre-

quently used approaches. The first is anisotropic diffusion 

[51], whereas the second class includes the recently popular-

ized Bregman iterations [52], which is closely related to 2,

-boosting [53]. The latter is a generalization of twicing intro-

duced by Tukey [54] more than 30 years ago. In fact, as we 

will illustrate later, this latter class of iterations is also related 

to biased anisotropic diffusion [55], otherwise known as 

anisotropic reaction-diffusion.

DIFFUSION

So far, we have described a general formulation for denoising as 

a spatially adaptive, data-dependent filtering procedure (3) 

amounting to

.z Wy=t

Now consider applying the filter multiple times. That is, define 

,z y0 =t  and the iteration

 .z Wz W yk k
k

1= =-
t t  (21)

The net effect of each application of W is essentially a step of 

anisotropic diffusion [51], [5]. Rewriting the iteration in (21), 

we have

 ,z Wzk k 1= -
t t  (22)

 ,z z Wzk k k1 1 1= - +- - -
t t t  (23)

 ,z W I zk k1 1= + -- -
t t^ h  (24)

which gives

 .z z W I zk k k1 1- = -- -
t t t^ h  (25)

Recall that .W D LD
/ /1 2 1 2

=
-  Hence, we have

 ,W I D L I D D DL
/ / / /1 2 1 2 1 2 1 2

- = - =
- -^ h  (26)

where L is the graph Laplacian operator mentioned earlier [39], 

[5]. Defining the normalized variable ,z D z
/

k k
1 2

=r t  (25) embodies 

a discrete version of anisotropic diffusion 

 
( )

( )
t

t
z z

z
Lk k k1 1

2

2

2
- =- - , ( ) .t Diffusion Eqnz z) d=r r r

r
r  (27)

where the left-hand side of the above is a discretization of the 

derivative operator .
( )

t

z t

2

2r

Returning to the diffusion estimate (21), the bias in the esti-

mate after k iterations is

( ) ( ) ( ) .bias E z z E W y z W z z W I zk k
k k k

= - = - = - = -t

Recalling that the matrix W has a unit eigenvalue correspond-

ing to a (constant) vector, we note that since W I
k
-  has the 

same eigenvectors as W, the above sequence of estimators pro-

duce unbiased estimates of constant images.
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The squared magnitude of the bias is given by

 ( ) .Ibias W zk
k2

= -

2
 (28)

As before, writing the image z in the column space of V as 

,z Vb=  we have 

 .b)1= -(m== ( ) ( )bias W I z V S I bk
k k

i
k

i

i

n
2 2 2 2 2

1

- -

=

/  (29)

As k grows, so does the magnitude of the bias, ultimately con-

verging to .bb
2

1
2

-  This behavior is consistent with what is 

observed in practice; specifically, increasing iterations of diffu-

sion produce more and more blurry (biased) results. Next, we 

derive the variance of the diffusion estimator 

( ) ( ) ( ) ( ) ,cov cov covz W y W e W Wk
k k k k T2

v= = =t

which gives

( ) ( ( )) .var z tr cov zk k i
k

i

n
2 2

1

v m= =

=

t t /

As k grows, the variance tends to a constant value of .
2
v  Overall, 

the MSE is given by

 ( ) ( ) .b1MSE bias var zk k k i
k

i i
k

i

n
2 2 2 2 2

1

m v m= + = - +

=

t /  (30)

Diffusion experiments for denoising three types of patches 

(shown in Figure 8) are carried out to illustrate the evolution 

of MSE. The variance of input (Gaussian) noise is set to 

.25
2
v =  Filters based on both LARK [9] and NLM [7] esti-

mated from the latent noise-free patches are tested, and the 

Sinkhorn algorithm (see “Symmetric Approximation of W and 

its Properties”) is implemented to make the filter matrices 

doubly stochastic. Predicted ,MSEk  ( ),var zkt  and bias k
2 

according to (30) through the diffusion iteration are shown in 

Figure 9 (LARK) and Figure 10 (NLM), where we can see that 

diffusion monotonically reduces the estimation variance and 

increases the bias. In some cases [such as Figure 9(a) and (b)] 

diffusion further suppresses MSE and improves the estimation 

performance. True MSEs for the standard (asymmetric) filters 

(a) (b) (c)

[FIG8] Example patches: (a) flat, (b) edge, and (c) texture.
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[FIG9] Parts (a)–(c) show plots of predicted MSEk, ( )var zkt  and biask
2 using (30) for LARK [9] filters in diffusion process.
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and their symmetrized versions computed by Monte-Carlo 

simulations are also shown, where in each simulation 100 

independent noise realizations are averaged. We see that the 

estimated MSEs of the symmetrized filters match quite well 

with the predicted ones (see Figures 11 and 12). The asymmet-

ric filters, meanwhile generate slightly higher MSE, but 

behave closely to the symmetrized ones especially in regions 

around the optimal MSEs.

In the next set of Monte-Carlo simulations, we illustrate 

the effect of W being computed from clean versus noisy 

images (see Figures 4 and 5). Noise variance . ,0 52
v =  which 

is relatively small, simulating the situation where “prepro-

cessing” has been applied to suppress estimation variance. It 

can be observed that the MSEs estimated from Monte-Carlo 

simulations are quite close to the ones predicted from the 

ideal filters, which confirms the assumption in the section 

“The Martix Formulation and its Properties” that the filter 

matrix W can be treated as deterministic under most 

circumstances.

To further analyze the change of MSE in the diffusion pro-

cess, let us consider the contribution of MSE in each compo-

nent (or mode) separately 

 ,MSE MSE
( )

k k

i

i

n

1

=

=

/  (31)

where MSE
( )
k

i
 denotes the MSE of the ith mode in the kth diffu-

sion iteration, which is given by 

 ( ) .b1MSE
( )
k

i

i
k

i i
k2 2 2 2

m v m= - +  (32)

Equivalently, we can write

 ( ) ,1MSE
MSE

snr
( )

( )

k

i k

i

i i
k

i
k

2

2 2

v
m m= = - +  (33)

where snri
bi
2

2

=
v

 is defined as the signal to noise ratio in the ith 

mode.

One may be interested to know at which iteration MSE
( )
k

i
 is 

minimized. As we have seen experimentally, with an arbitrary 
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[FIG10] Parts (a)–(c) show plots of predicted ,MSEk  ( )var zkt  and biask
2 using (30) for NLM [7] filters in diffusion process.
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[FIG11] Parts (a)–(c) show plots of predicted MSE and Monte-Carlo estimated MSE in diffusion process using LARK [9] filters. In the 
Monte-Carlo simulations, results for row-stochastic (asymmetric) filters and their symmetrized versions are both shown.
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filter W, there is no guarantee that even the very first iteration 

of diffusion will improve the estimate in the MSE sense. The 

derivative of (33) with respect to k is

 ( ) .log
k

2 1
MSE

snr snr

( )
k

i

i
k

i i i
k

i
2

2
m m m= + -6 @  (34)

For ,i 2$  since ,1<im  we note that the sign of the derivative 

depends on the term inside the brackets, specifically, 

( ) .1snr snri i
k

im+ -  To guarantee that in the kth iteration the 

MSE of the ith mode decreases (i.e., negative derivative), we 

must have 

 ( ) .q k1 0 0for anysnr snri i
q

i 2 1#m+ -  (35)

In fact, the condition

 ( )1 0snr snri i
k

i 2m+ -  (36)

guarantees that the derivative is always negative for ( , )q k0!  

because given any scalar ( , )t 0 1
k

q
!=  

 

( )

( )

1 0
1

1
1

snr snr
snr

snr

snr snr
snr

snr
snr

i i
k

i i
tk

i

i t

i i
tk

i

i

i t

i

1

& &2 2

2 2

m m

m

+ -
+

+
+

-

`

`

j

j
. 

(37)

The condition (36) has an interesting interpretation. Rewriting 

(36), we have 

 ( ) ,log log1
1
1

snri
i

i

1
m

+
-

e

l
c m

1 2 3444 444

 (38)

where i i
k

m m=l  denotes the ith eigenvalue of .W
k  The left-hand 

side of the inequality is Shannon’s channel capacity [56] of the 

ith mode for the problem .y z e= +  We name the right-hand 

side expression ie  the entropy of the ith mode of the filter Wk. 

The larger ie , the more variability can be expected in the output 

image produced by the ith mode of the denoising filter. The 

above condition implies that if the filter entropy exceeds or 

equals the channel capacity of the ith mode, then the kth itera-

tion of diffusion will in fact produce an improvement in the cor-

responding mode. One may also be interested in identifying an 

approximate value of k for which the overall MSEk is mini-

mized. This depends on the signal energy distribution ({ }bi
2 ) 

over all the modes, which is generally not known, but for which 

we may have some prior in mind. But for a given mode i, the 

minimum MSE
( )i  is achieved in the k*th iteration, where

 .log logk
1snr

snr*

i

i
im=

+
` j  (39)

Of course, in practice we can seldom find a single iteration 

number k* minimizing MSE
( )i  for all the modes simultane-

ously; but in general, the take-away lesson is that optimizing a 

given filter through diffusion can [under proper conditions 

(38)] make its corresponding eigenvalues closer to those of an 

ideal Wiener filter that minimizes MSE.

Another interesting question is this: given a particular W, 

how much further MSE reduction can be achieved by imple-

menting diffusion? For example, can we use diffusion to 

improve the 3-D collaborative Wiener filter in BM3D [48]? Let 

us assume that this filter has already approximately achieved 

the ideal Wiener filter condition in each mode, specifically

 .
1snr

snr*
i

i

i
.m

+
 (40)

Then we can see that 

 ( ) ( ) ,k1 0 1for anysnr snr
*

i i
k

i 1 2m+ -  (41)

which means for all the modes, diffusion will definitely worsen 

(increase) the MSE. In other words, multi-iteration diffusion is 

not useful for filers where the Wiener condition has been 

(approximately) achieved.
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[FIG12] Parts (a)–(c) show plots of predicted MSE and Monte-Carlo estimated MSE in diffusion process using NLM [7] filters. In the 
Monte-Carlo simulations, result for row-stochastic (asymmetric) filters and their symmetrized versions are both shown.



 IEEE SIGNAL PROCESSING MAGAZINE [121] JANUARY 2013

TWICING, 2, -BOOSTING, REACTION-DIFFUSION,  

AND BREGMAN ITERATIONS

An alternative to repeated applications of the filter W is to con-

sider the residual signals, defined as the difference between the 

estimated signal and the measured signal. The use of the residu-

als in improving estimates has a rather long history, dating at 

least back to the work of John Tukey, who, in his landmark book 

[54], termed the idea twicing. More recently, the idea has been 

proposed in the applied mathematics community for application 

to image restoration problems under the rubric of Bregman 

iterations [52]. And in the machine learning and statistics liter-

ature, [53] recently proposed the idea of 2, -boosting, which may 

be viewed as an ( 2, ) regression counterpart of the more familiar 

notion of boosting in classification, originally proposed by 

Freund and Schapire [57]. All of the aforementioned ways of 

looking at the use of residuals are independently quite rich and 

worth exploring on their own. Indeed, for a wide-angle view of 

the boosting approach to regression and regularization, and its 

connections to functional gradient descent interpretations, we 

can refer the interested reader to the nice treatment in [58]. 

The general idea of Bregman divergence, and its use in solving 

large-scale optimization problems is also a very deep area of 

work, for which we can refer the interested reader to the book 

[59] in which both the foundations and some applications to 

signal processing are discussed. Also, in [60], the ideas of 

Bregram divergence and boosting are connected. More general 

inverse problems such as deconvolution can also be addressed 

in this framework. We give a very brief hint of this direction in 

“Extensions to More General Restoration Problems.”

In whatever guise, the basic notion—to paraphrase Tukey—

is to use the filtered residuals to enhance the estimate by adding 

some “roughness” to it. Put another way, if the residuals con-

tain some of the underlying signal, filtering them should 

recover this leftover signal at least in part.

Formally, the residuals are defined as the difference between 

the estimated signal and the measured signal: ,r y zk k 1= - -
t  

where here we define the initialization .z Wy0 =t  Note that this 

initialization is a once-filtered version of the noisy data using 

some initial filter W, and different from (z y0 = ) used in the dif-

fusion iterations. With this definition, we write the iterated 

estimates as

 ( ) .z z Wr z W y zk k k k k1 1 1= + = + -- - -
t t t t  (42)

These estimates also trade off bias against variance with increas-

ing iterations, though in a fundamentally different way than the 

diffusion estimator we discussed earlier. Indeed, we immediately 

notice that this iteration has a very different asymptotic behav-

ior than diffusion. Specifically, as ,k " 3  the estimate here 

tends back toward the original data y, whereas the diffusion 

tends to a constant!

For an intuitive interpretation, note that for ,k 1=  the 

(residual) iteration above gives

( ) ( ) .2z z W y z Wy W y Wy W W y1 0 0
2

= + - = + - = -t t t ^ h

This first iterate z1t  is in fact precisely the original “twicing” esti-

mate of Tukey [54]. More recently, this particular filter has been 

suggested (i.e., rediscovered) in other contexts. In [39], for 

instance, Coifman et al. suggested it as an ad hoc way to enhance 

the effectiveness of diffusion. The intuitive justification given [5] 

was that 2 2W W I W W
2

- = -^ ^h h  can be considered as a two-

step process; specifically blurring, or diffusion (as embodied by 

W), followed by an additional step of inverse diffusion or sharp-

ening (as embodied by .2I W- ) As can be seen, the ad hoc sug-

gestion has a clear interpretation here. Furthermore, we see that 

the estimate z1t  can also be thought of as a kind of nonlinear, 

adaptive unsharp masking process, further clarifying its effect. 

In [61], this procedure and its relationship to the Bregman itera-

tions were studied in detail. For the sake of completeness, we 

also mention in passing that in the nonstochastic setting and 

where W is rank one, the residual-based iterations (42) are 

known as matching pursuit [62]. This approach has found many 

applications and extensions for fitting overcomplete dictionaries. 

Many of the ideas discussed in the context of denoising here can 

be extended to more general image restoration problems. As a 

simple example, we briefly note the case where the measure-

ment model includes a linear distortion such as blur, expressed as 

follows:

 .y Az e= +  (S8)

One approach would be to employ the framework of the resid-

ual iterations defined earlier. More specifically, define

 ( ),z z A W y Azk k
T

k1 = + -+
t t t  (S9)

where we observe that the term ( )W y Azk- t  is filtering (i.e., 

denoising) the residuals from the measurement model in a spa-

tially adaptive, nonparametric manner using W. The operator AT 

is the adjoint to the blur, and applied to these filtered residuals, 

acts as a “backprojection” operation. The asymptotic behavior of 

this iterative process is interesting. Specifically, as ,k " 3

 A Wy A WAzT T
= 3

t  (S10)

or equivalently

 .z A WA A WyT T1
=3

-

t ^ h  (S11)

Without the adaptive weights in W, this asymptotic solution is the 

familiar (global) least squares solution, which is unstable due to the 

direct inverse. The inclusion of the kernel weights, and stopping the 

process after a finite number of iterations can result in a stabilized 

solution with smaller MSE. The analysis of the stability and statisti-

cal characteristics of such estimates, along with the choice of the 

optimal stopping point will require in depth understanding of the 

spectrum of the operator ,A W
T  much in the same way as we did 

with the spectrum of W in the denoising framework.

EXTENSIONS TO MORE GENERAL RESTORATION PROBLEMS 
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To further understand the iteration (42) in comparison to 

the earlier diffusion framework, consider again a very similar 

algebraic manipulation of (42)

 ( ),z z W y zk k k1 1= + -- -
t t t  (43)

 ,I W z Wyk 1= - +-
t^ h  (44)

 ( ) .z z I W z z zk k k k1 1 0 1- = - + -- - -
t t t t t^ h  (45)

Redefining the graph Laplacian [note that this definition of the 

graph Laplacian differs by a negative sign from the earlier one 

in (26)]

,I W D I L D D DL
/ / / /1 2 1 2 1 2 1 2

- = - =
- -^ h

with a change of variable ,z D z
/

k k
1 2

=r t  we can write

 

L ( ),

( )
( ) ( ( ) ( )) .

t

t
t t0

z z z z z

z
z z z

k k k k1 1 0 1

2

diffusion reaction term

diffusion
reaction term

1

2

2
d

- = + -

= + -

- - -r r r r r

r
r r r

1 2 34444 4444 1 2 344 44

1 2 3444 444
1 2 3444 444

 

(46)

The above is a modified version of the diffusion equation studied 

earlier, where the modification takes the form of a “forcing” 

function, which is in fact the residual between the estimate at 

time t and a prefiltered version of the original data. This addi-

tional term reacts against the strict smoothing effect of the 

standard diffusion, and results in a nontrivial steady-state. Not 

coincidentally, the notion of a “biased” anisotropic diffusion [55] 

is essentially identical to the above formulation. More recently, 

Farbman et al. [63] proposed a variational formulation which 

also leads precisely to the present setup. This will become more 

clear as we discuss the connection to (empirical) Bayesian 

approaches in the section “Relationship to (Empirical) Bayes’ 

and Regularization Approaches.”

The residual-based iterations also have fundamentally differ-

ent statistical properties than diffusion. To study the statistical 

behavior of the estimates, we rewrite the iterative process in 

(42) more explicitly in terms of the data y. We have [40] and [53] 

 ( ) .z W I W y I I W yk
j k

j

k
1

0

= - = - -
+

=

t ^^ h h/  (47)

Clearly the above iteration does not monotonically blur the 

data; but a rather more interesting behavior for the bias-

variance tradeoff emerges. Analogous to our earlier derivation, 

the bias in the estimate after k iterations is

.z-=z-( )E y=( )bias E z z I I W I Wk k
k k1 1

= - - - -
+ +

t ^^ ^h h h

The squared magnitude of the bias is given by

 ( ) .b1bias I W zk
k

i
k

i

i

n
2 1 2 2 2 2

1

m= - = -
+ +

=

^ h /  (48)

The behavior of the (decaying) bias in this setting is in stark 

contrast to the (increasing) bias of the diffusion process.

The variance of the estimator and the corresponding MSE are 

( )

,

cov z cov I I W y

I I W I I W

k
k

k k T

1

2 1 1
v

= - -

= - - - -

+

+ +

t ^^

^^ ^^

h h

h h h h

6 @

which gives

( ) ( ( )) ( ) .1 1var z tr cov zk k i
k

i

n
2 1 2

1

v m= = - -
+

=

t t ^ h/

As k grows, the variance tends to a constant value of 2
v . Overall, 

the MSE is

 

( )

( ) ( ) .b1 1 1

biasMSE var zk k k

i
k

i i
k

i

n

2

2 2 2 2 1 2

1

m v m

= +

= - + - -
+ +

=

t

^ h/
 (49)

Experiments for denoising the patches given in Figure 8 using 

the “twicing” approach are carried out, where the same doubly 

stochastic LARK and NLM filters used for the diffusion tests in 

Figures 9 and 10 are employed. Plots of predicted ,MSEk  ( )var zkt  

and bias k
2 with respect to iteration are illustrated in 

Figure 13 (LARK) and Figure 14 (NLM). It can be observed that 
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[FIG13] Parts (a)–(c) show plots of predicted MSEk, ( )var zkt  and biask
2 using (49) for LARK [9] filters in the twicing process.
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in contrast to diffusion, twicing monotonically reduces the esti-

mation bias and increases the variance. So twicing may in fact 

reduce the MSE in cases where diffusion fails to do so [such 

as Figure 9(c)]. True MSEs, for the asymmetric filters and their 

symmetrized versions, are estimated through Monte-Carlo 

simulations, and they all match very well with the predicted 

ones (see Figures 15 and 16).

Similar to the diffusion analysis before, we plot MSE result-

ing from the use of W filters directly estimated from noisy 

patches through Monte-Carlo simulations with noise variance 
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[FIG15] Parts (a)–(c) show plots of predicted MSE and Monte-Carlo estimated MSE in twicing process using LARK [9] filters. In the 
Monte-Carlo simulations, row-stochastic (asymmetric) filters and their symmetrized versions are all tested.
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[FIG14] Parts (a)–(c) show plots of predicted MSEk, ( )var zkt  and biask
2 using (49) for NLM [7] filters in twicing process.
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[FIG16] Parts (a)–(c) show plots of predicted MSE and Monte-Carlo estimated MSE in twicing process using NLM [7] filters. In the 
Monte-Carlo simulations, row-stochastic (asymmetric) filters and their symmetrized versions are all tested.
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. ,0 52
v =  and compare them with 

the predicted MSEs from the ide-

ally estimated filters. Again, the 

MSEs estimated from Monte-

Carlo simulations are quite close 

to the predicted data (see Figures 

6 and 7).

Here again, the contribution to 

MSEk of the ith mode can be written as 

 ( ) ( ) .b1 1 1MSE
( )
k

i
i

k
i i

k2 2 2 2 1 2
m v m= - + - -

+ +^ h  (50)

Proceeding in a fashion similar to the diffusion case, we can 

analyze the derivative of MSE
( )
k

i
 with respect to k to see whether 

the iterations improve the estimate. We have 
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(51)

Reasoning along parallel lines to the earlier discussion, the fol-

lowing condition guarantees that the kth iteration improves the 

estimate:

 ( ) ( ) .1 1 1snri i
k 1
2m+ -

+  (52)

Rewriting the above, we have

 ( ) ,log log1
1
1

snri
i

2
m

+
- l

c m  (53)

where now ( )1 1 m= - -i i
k 1

m
+

l  is the ith eigenvalue of 

( ) ,I I W
k 1

- -
+  which is the equivalent filter matrix for the kth 

twicing iteration. This is the reverse of the condition we derived 

earlier; specifically, here we observe that if the entropy does not 

exceed the channel capacity, then iterating with the residuals 

will indeed produce an improvement. This makes reasonable 

sense because if the filter removes too much detail from the 

denoised estimate, this “lost” detail is contained in the residu-

als, which the iterations will attempt to return to the estimate. 

Again, the minimum MSE
( )
k

i
 is achieved at the k*th iteration, 

where

 ) ,1-/ (log logk 1 1snr
*

i im=- + - l^ h  (54)

which is  when the i th eigenvalue of  the matrix 

( )I I W
*k 1

- -
+  becomes / ( ),1snr snri i+  the Wiener condition. 

In most cases we cannot optimize all the modes with a uni-

form number of iterations, but under proper conditions (53) 

twicing can make the eigenvalues closer to those of the ideal 

Wiener filter.

From the above analysis, we can see that it is possible to 

improve the performance of many existing denoising algo-

rithms in the MSE sense by implementing iterative filtering 

(see Figure 17). However, to choose either diffusion or twicing 

and to determine the optimal iteration number require prior 

knowledge (or estimation) of the 

latent signal energy { }bi
2  (or the 

SNR,) and this is an ongoing chal-

lenge. Research on estimating the 

SNR of image or video data with-

out a reference “ground truth” is 

of broad interest in the commu-

nity as of late [64]. In particular, 

this problem points to potentially important connections with 

ongoing work in no-reference image quality assessment [65] 

as well.

RELATIONSHIP TO (EMPIRICAL) BAYES’ 

AND REGULARIZATION APPROACHES

It is interesting to contrast the adaptive nonparametric frame-

work described so far with the more classical Bayesian estima-

tion approaches. Of course, Bayesian thinking requires that a 

“prior” be specified independently of the measured data, which 

characterizes the aggregate behavior of the underlying latent 

image of interest. In the context we have described so far, no 

specific prior information was used. Instead, data-dependant 

weights were specified in a least-squares framework, yielding 

locally adaptive filters. On the surface then, it may seem that 

there is no direct relationship between the two approaches. 

However, as we will illustrate below, specifying the kernel func-

tion or the corresponding weights is essentially equivalent to 

estimating a particular type of “prior” from the given data. (One 

cringes to call this estimate a “prior” any longer, but we will do 

so for lack of a better word.) This empirical Bayesian approach 

has in fact a long and useful history [66] in the statistics litera-

ture. Furthermore, another class of modern patch-based filter-

ing methods based on the empirical Bayesian framework were 

recently pioneered in [67] and extended in [68] and [69] based 

on the notion of “adaptive” (i.e., data-dependent) priors. In the 

same spirit, we illustrate below that an empirical version of the 

popular maximum a posteriori method has a data-dependent 

counterpart in the nonparametric techniques we described 

so far.

A canonical Bayesian approach is to specify a prior for the 

unknown z, or to equivalently use a regularization func-

tional. The so-called maximum a posteriori (MAP) estimate 

is then given by the solution of the following optimization 

problem:

MAP: ( ),arg min
2
1

2
z y z zR

2

z

m
= - +t  (55)

where the first term on the right-hand side is the data-fidelity 

(log-likelihood) term, and the second (regularization, or log-

prior) term essentially enforces a soft constraint on the global 

structure and smoothness of the signal. In the MAP approach, 

the regularization term is a functional ( ),zR  which is typically 

(but not always) convex, to yield a unique minimum for the 

overall cost. Particularly popular recent examples include 

( ) ,z zR d=  and ( ) .z zR 1=  The above approach implicitly 

contains a global (Gaussian) model of the noise (captured by the 

SPECIFYING THE KERNEL FUNCTION 
OR THE CORRESPONDING WEIGHTS 

IS ESSENTIALLY EQUIVALENT 
TO ESTIMATING A PARTICULAR 

TYPE OF EMPIRICAL PRIOR FROM 
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quadratic data-fidelity term) and an explicit model of the signal 

(captured by the regularization term.)

Regardless of what choice we make for the regularization 

functional, this approach is global in the sense that the explicit 

assumptions about the noise and the signal constrain the 

degrees of freedom in the solution, hence limiting the global 

behavior of the estimate. This often results in well-behaved (but 

not always desirable) solutions. This is precisely the main 

motivation for using (local/nonlocal) adaptive nonparametric 

techniques in place of global regularization methods. Indeed, 

though the effect of regularization is not explicitly present 

in the nonparametric framework, its work is implicitly done by 

the design of the kernel function ( ),K $  which affords us local 

control, and therefore more freedom and often better adapta-

tion to the given data, resulting in more powerful techniques 

with broader applicability.

[FIG17] Denoising example using iterative LARK filtering: Parts (a)–(c) show input noisy patches; noise variance .25
2
v =  (d)–(f) show 

output patches by filtering once. Parts (g)–(i) show MSE optimized outputs: part (g) is the sixth diffusion output; (h) is the fourth 
diffusion output; and (i) is the third twicing output. 

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
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Another important advantage of the local nonpara-

metric methods is that the resulting algorithms inherently 

operate in relatively small windows, and can hence be effi-

ciently implemented and often easily parallelized. With global 

parametric and variational methods, the solutions are often 

implemented using large-scale global optimization tech-

niques, which can be hard (sometimes even impossible) to 

“kernelize,” for algorithmic efficiency [33].

Though we do not discuss them here, of course hybrid 

methods are also possible, where the first term in (55) is 

replaced by the corresponding 

weighted term (3), with regular-

ization also applied explicitly 

[70]. As we shall see below, the 

iterative methods for improving 

the nonparametric estimates 

(such as diffusion, twicing, etc.) 

mirror the behavior of SD itera-

tions in the empirical Bayesian case, but with a fundamental 

difference. Specifically, the corresponding implied regulariza-

tion functionals deployed by the nonparametric methods are 

significantly different, adapting directly to the given data.

To connect MAP to the nonparametric setting, we proceed in 

similar lines as Elad [3] by considering the simplest iterative 

approach: the SD method. The SD iteration for MAP, with fixed 

step size µ is

 ( ) ( ) .MAP: z z z y zRk k k k1 dn m= - - ++
t t t6 @  (56)

EMPIRICAL BAYES’ INTERPRETATION OF DIFFUSION

Let us compare the diffusion iterations (25) to the SD MAP iter-

ations above in (56). Specifically, we equate the right-hand 

sides of

 ( ) ( )z z z y zRk k k k1 dn m= - - ++
t t t t6 @ (57)

 z z W I zk k k1 = + -+
t t t^ h , (58)

which gives

( ) ( ) .z y z W I zRk k kdn m- - + = -t t t^ h6 @

Solving for ( )zR kd t  we obtain

 ( ) ( )
1

1
1

z W I y z I W yR k kd
nm

n
nm

= - - - - -t t^ ^ ^h h h . (59)

When W is symmetric, integrating both sides we have (to within 

an additive constant)

( ) ( ) .
2
1

1
1

z y z I W y z y I W zR .diff
T T

nm
n

nm
= - - - - + -^ ^ ^ ^h h h h  

  (60)

(Since the left-hand side of (59) is the gradient of a scalar-valued 

function, the right-hand side must be curl free. This is possible 

if and only if W is symmetric.) We observe therefore that the 

equivalent regularization term is a quadratic function of the 

data and residuals. In particular, the function ( )zR kdiffusion t  can 

be thought of as an estimated log-prior at each iteration as it 

depends on the data y, the last estimate ,zkt  and weights W, 

which are computed from the data. More specifically, the 

implied empirical Bayes’ “prior” would be

( ) ( )expp cz zR= -t t6 @,

where c  is a normalization 

constant. The empirical (MAP) 

Bayesian interpretation of the 

residual-based method follows 

similarly, but is somewhat sur-

prisingly more straightforward, as 

we illustrate below.

EMPIRICAL BAYES’ INTERPRETATION  

OF THE RESIDUAL ITERATIONS

We arrive at the empirical Bayes’ interpretation of the residual 

iterations (42) in a similar manner. In particular, comparing 

(42) to the SD MAP iterations in (56) we have

 ( ) ( )z z z y zRk k k k1 dn m= - - ++
t t t t6 @ (61)

 ( ) .z z W y zk k k1 = + -+
t t t  (62)

Again, equating the right-hand sides, we get 

( ) ( ) ( ) .z y z W y zRk k kdn m- - + = -t t6 @

Solving for ( )zR kd t  we obtain

 ( ) .
1

z W I y zR k kd
nm

n= - -t t^ ^h h  (63)

With W symmetric, we have (to within an additive constant)

 ( ) .
2
1

z y z I W y zR
T

residual
nm

n= - - -^ ^ ^h h h  (64)

Therefore, the (implicit) regularization term is an adaptive 

function of the data and residuals. Once again, the empirically 

estimated prior is of the same form ( ) ( ) ,expp cz zR= -t t6 @  where 

( )zR t  is computed directly on the residuals y z- t of the filtering 

process at every iteration. It is especially interesting to note that 

this empirical prior is a quadratic form in the residuals alone 

where, not coincidentally, the matrix I Wn -  is closely related 

to the Laplacian operator defined earlier. This hints directly at 

the edge-preserving behavior of this type of iteration; a property 

not shared by the diffusion process, which monotonically blurs 

the data.

CONCLUSIONS

It has been said that in both literature and the arts, there are 

only seven basic plots (comedy, tragedy, etc.)—that all stories 
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ALGORITHMS INHERENTLY OPERATE IN 

RELATIVELY SMALL WINDOWS.
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are combinations or variations on 

these basic themes. Perhaps it is 

taking the analogy too far to say 

that an exact parallel exists in our 

field as well. But it is fair to argue 

that the basic tools of our trade in 

recent years have revolved around 

a small number of key concepts as well, which I tried to high-

light in this article.

 ■ The most successful modern approaches in image and 

video processing are nonparametric. We have drifted away 

from model-based methods, which have dominated signal 

processing for decades.

 ■ In one-dimensional signal processing, there is a long 

history of design and analysis of adaptive filtering algo-

rithms. A corresponding line of thought has only 

recently become the dominant paradigm in processing 

higher-dimensional data. Indeed, adaptivity to data is a 

central theme of all the algorithms and techniques dis-

cussed here, which represent a snapshot of the state of 

the art.

 ■ The traditional approach that every graduate student of 

our field learns is to carefully design a filter, apply it to the 

given data, and call it a day. In contrast, many of the most 

successful recent approaches involve repeated applications of 

a filter or sequence of filters to data, and aggregating the 

results. Such ideas have been around for some time in statis-

tics, machine learning, and elsewhere, but we have just 

begun to make careful use of sophisticated iteration and 

boosting mechanisms.

As I highlighted here, deep connections between techniques 

used commonly in computer vision, image processing, graph-

ics, and machine learning exist. The practitioners of these fields 

have been using each other’s techniques either implicitly or 

explicitly for a while. The pace of this convergence has quick-

ened, and this is not a coincidence. It has come about through 

many years of scientific iteration in what my late friend and col-

league Gene Golub called the “serendipity of science,” an apti-

tude we have all developed for making desirable discoveries by 

happy accident.
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