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A TOUR OF THE THEORY OF ABSOLUTELY MINIMIZING

FUNCTIONS

GUNNAR ARONSSON, MICHAEL G. CRANDALL, AND PETRI JUUTINEN

Abstract. These notes are intended to be a rather complete and self-con-
tained exposition of the theory of absolutely minimizing Lipschitz extensions,
presented in detail and in a form accessible to readers without any prior knowl-
edge of the subject. In particular, we improve known results regarding exis-
tence via arguments that are simpler than those that can be found in the
literature. We present a proof of the main known uniqueness result which is
largely self-contained and does not rely on the theory of viscosity solutions. A
unifying idea in our approach is the use of cone functions. This elementary
geometric device renders the theory versatile and transparent. A number of
tools and issues routinely encountered in the theory of elliptic partial differ-
ential equations are illustrated here in an especially clean manner, free from
burdensome technicalities - indeed, usually free from partial differential equa-
tions themselves. These include a priori continuity estimates, the Harnack
inequality, Perron’s method for proving existence results, uniqueness and reg-
ularity questions, and some basic tools of viscosity solution theory. We believe
that our presentation provides a unified summary of the existing theory as
well as new results of interest to experts and researchers and, at the same
time, a source which can be used for introducing students to some significant
analytical tools.

Introduction

The subject of this paper is the study of existence, uniqueness and regularity
properties of the best possible Lipschitz extensions of scalar functions. This seem-
ingly elementary real analysis problem, described in detail below, conceals within
itself a rich mathematical theory which has numerous applications and offers a tech-
nically uncomplicated passage to the world of fully nonlinear elliptic partial differ-
ential equations and modern calculus of variations. In fact, the extension problem
and its associated Euler-Lagrange equation play the same fundamental role in the
theory of calculus of variations of L∞ functionals as the classical Dirichlet integral
and the Laplace equation do in the calculus of variations of L2 functionals. Our
approach to the extension problem, however, is not based on partial differential
equations. On the contrary, we proceed more in the spirit of the problem itself,
relying on very basic geometrical and analytical tools, and in a manner that does
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not require heavy prerequisites or familiarity with any external theories. As a re-
sult, our arguments become versatile and can be readily extended to more general
settings. Moreover, it will be clear that this approach bears a strong resemblance
to the use of the mean value inequalities in connection with the study of harmonic
functions, and we feel it adds a new, very geometric, aspect to the theory of calculus
of variations of L∞ functionals and their Euler-Lagrange equations.

In order to provide the reader with a comprehensive and detailed view of the
contents and methods of this paper, we must start from the very beginning. The
origin of the theory we are about to present lies in the classical problem of extending
Lipschitz continuous functions. To describe this extension problem in a simple
setting, let us suppose we are given a function f :∂U → R, defined on the boundary
of a proper open subset U of Rn, such that its Lipschitz constant Lf (∂U), that is,
the least constant L ∈ [0,∞] for which

(0.1) |f(x) − f(y)| ≤ L|x − y| for x, y ∈ ∂U

holds, is finite. In (0.1), the “| · |” on the left is the absolute value in R, while on the
right it can be any given norm on Rn. The task is to find a Lipschitz continuous
extension, call it u, of f to U so that u is continuous on the closure of U and Lu(U)
is as small as possible. Obviously, Lu(U) cannot be smaller than Lf (∂U) since it is
required that u be a continuous extension of f , i.e., u = f on ∂U . Thus the best
one could hope for is Lu(U) = Lf (∂U), and this is indeed achieved by the explicit
extensions

Ψ(f)(x) = inf
y∈∂U

(f(y) + Lf (∂U)|x − y|),

Λ(f)(x) = sup
y∈∂U

(f(y) − Lf (∂U)|x − y|),

which may be found1 in McShane [55] and Whitney [63]. If u is any solution of
the extension problem, then Λ(f) ≤ u ≤ Ψ(f); for this reason Ψ(f) is called the
maximal extension of f and Λ(f) is the minimal extension. The verifications of
statements about Λ(f), Ψ(f) made in this introduction are outlined in Section 1.2
below.

These extremal Lipschitz extensions fail to obey comparison and “stability” prin-
ciples. More precisely, the relation f1 ≤ f2 on ∂U does not, in general, imply either
Ψ(f1) ≤ Ψ(f2) or Λ(f1) ≤ Λ(f2) in U , and Ψ(Ψ(f)|∂V ) may differ from Ψ(f) in an
open subset V of U . In particular, since it can happen that LΨ(f)(V ) is larger than
LΨ(f)(∂V ) for some V , a repeated application of the operator Ψ (or Λ) in a subset
can decrease the local Lipschitz constant. Hence it might be possible to “improve”
the properties of an extension by applying either Ψ or Λ indefinitely.

The above discussion raises the following question: is it possible to find a “canoni-
cal” Lipschitz extension that would enjoy comparison and stability properties? And
furthermore, could this special extension be unique once the boundary data is fixed?
If such functions exist, they must satisfy

(0.2) Lu(∂V ) = Lu(V ) for any open V ⊂⊂ U,

because otherwise the stability would not hold: for example, the function ũ which
agrees with u on U \ V and with Λ(u|∂V ) in V would be “better” than u. This

1These extensions are also attributed to Banach [11] in [34], which also treats “localized”
versions of Lipschitz continuity.
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observation, first appearing in the much cited works of Aronsson [3]-[5], can be
taken as a starting point for a more refined study of the extension problem.

A continuous, real-valued function u defined in U is called absolutely minimizing
if (0.2) holds for every V ⊂⊂ U , i.e., if u has the least possible Lipschitz constant
in every open set whose closure is compact and contained in U . Observe that in
the definition of “absolutely minimizing”, there is no a priori Lipschitz regularity
assumed. Moreover, in the definition, any reference to a function to be extended
has been removed, thereby initially decoupling the notion of minimization from the
extension problem.

The McShane-Whitney operators provide a natural device for attempting to con-
struct absolute minimizers since they can be used to reduce the Lipschitz constant
in subdomains where it is not optimal. This idea does indeed work and it was
used by Aronsson [5] to provide the first existence result for absolute minimizers.
However, in these notes we will employ an even more concrete and elementary ap-
proach which can be motivated by the observation that the functions Ψ(f) and
Λ(f) themselves are defined via geometrically very simple elements, “cones”; here
the functions

x 7→ f(y) ± Lf (∂U)|x − y|.
Unlike the McShane-Whitney extensions, cones always satisfy (0.2) outside the
vertex point, and they can be regarded as “fundamental solutions” of the problem.
In this context, roughly speaking, the usual convolution with fundamental solutions
is replaced by maximization and minimization procedures. Moreover, cones are
defined purely in terms of the norm that is being used, and it is the norm that
determines exact Lipschitz constants. Thus we are not introducing any ingredients
not already present.

It turns out that all the absolute minimizers can be detected by checking the
validity of a property that we call comparison with cones. The introduction of this
notion helps us to streamline the existence theory and make it more transparent. In
Section 3 we present a more general existence theorem than is currently available in
the literature using this method. The uniqueness question is treated in Section 6.
Here, for the first time, the uniqueness results known to date are presented without
invoking any substantial external theories. In this regard, the first uniqueness proof
was given by Jensen [47], who used “viscosity solution” theory and the theory of
Sobolev spaces, and the second by Barles and Busca [12], who used clever new
arguments which circumvented the need to employ results on Sobolev spaces. The
proof in Section 6 invokes neither viscosity solution theory nor results on Sobolev
spaces. However, it amounts to introducing the relevant tools of viscosity solution
theory, along with analogues of key arguments of [12], without introducing the
viscosity solution theory itself. This rendering, which we hope will make the proof
widely accessible, is possible due to the use of basic results obtained herein for
functions that enjoy comparison with cones.

The discussion above has been quite elementary. However, it turns out that the
problem it introduces provides an archetypal example for more general theories.
This greatly enhances interest in understanding it in all possible detail. In par-
ticular, there is an associated degenerate elliptic equation, which is as yet poorly
understood, even in the case of the Euclidean norm. Moreover, the problem is also
an archetype in the theory of minimization of L∞ functionals. We sketch these
connections below.
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Since the works [3]-[5], the theory of absolute minimizers has been advanced by
a number of authors. The most popular line of research has risen from the idea,
again due to Aronsson [5], of interpreting the Lipschitz extension problem as a
formal limit, as p → ∞, of the more classical variational problem of minimizing the
functional

(0.3) Ip(v, U) =

∫

U

|Dv|p dx, 1 < p < ∞,

under given boundary conditions; see, e.g., [18], [47]. Here Dv = (vx1
, . . . , vxn

)
denotes the gradient of v. This approach, in the case of the Euclidean norm,
leads to a reformulation of the original problem in which (0.2) is replaced by the
requirement

(0.4) ess sup
x∈V

|Du(x)| ≤ ess sup
x∈V

|Dv(x)|

for all V ⊂⊂ U and “sufficiently regular” v satisfying v = u on ∂V . Indeed,
minimizing Ip(v, U) (subject to v = f on ∂U) is the same as minimizing the Lp

norm of |Dv|, which tends to the L∞ norm as p → ∞. Due to the set additivity
of Ip, a minimizer of Ip(·, U) also minimizes Ip(·, V ) for any V ⊂⊂ U (subject to
its own boundary values), and hence it is automatically an “absolute minimizer”
of (0.3). It is natural to require that this should hold also in the limit case, and
that is precisely what is stated in (0.4). However, it is not clear at all that (0.4) is
equivalent to (0.2). If U is convex, then

(0.5) Lv(U) = ess sup
U

|Dv|

for any locally Lipschitz continuous function v. But if U is not convex, then Lv(U)
need not even be finite if ess supU |Dv| is, say, 1. The equivalence, which may
not be generally appreciated, is established in Section 4 without reference to the
approximation by the functional Ip. Again, in the discussion above, it was assumed
that | · | is the Euclidean norm, as it was in the references mentioned. See Section 8
concerning other norms.

The approximation procedure discussed above has the advantage of providing a
route to the correct “Euler-Lagrange” equation for our problem. Namely, a function
u for which Ip(u, U) ≤ Ip(v, U) if v = u on ∂U should satisfy

lim
t→0

Ip(u + tφ, U) − Ip(u, U)

t
= 0

for smooth functions φ vanishing off a compact subset of U . This leads to the
“p-Laplace” equation

(0.6) ∆pu := divergence(|Du|p−2Du) = 0,

which is to be understood in the sense of distributions or in the viscosity sense.
Notice that the classical case p = 2 yields the familiar Laplace equation ∆u = 0,
whose solutions are the harmonic functions. Taking the limit of (0.6) as p → ∞,
a somewhat subtle matter, one obtains a nonlinear and highly degenerate elliptic
equation,

(0.7) ∆∞u :=

n∑

i,j=1

uxi
uxj

uxixj
= 0 in U,
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known as the infinity Laplace equation. We derive this equation in Section 4.4
without reference to the approximation procedure, instead starting from the purely
geometric property of comparison with cones. The infinity Laplace equation played
a crucial role in the acclaimed original proof of uniqueness by Jensen [47], and it
has become a center of attention in this field. The price that has to be paid in this
approach is the loss of generality. The original extension problem makes sense in
any metric space, as do the cones.

In Section 4.4 we show that absolutely minimizing functions are precisely the
viscosity solutions of the infinity Laplace equation in the case of the Euclidean
norm. The appropriate equations are derived for other norms in Section 5. The
issue of the equivalence between “absolutely minimizing” and viscosity solutions
of an appropriate partial differential equation is not completely settled for general
norms. We mention again that uniqueness of absolutely minimizing extensions of
a function given on the boundary of a bounded open set into the set is proved for
the Euclidean norm in Section 6 without relying on the equivalence of absolutely
minimizing functions and viscosity solutions of (0.7).

Apart from the nice geometric interpretation, the theory of absolute minimizers
is interesting because it serves as an archetypal example of a problem in the calculus
of variations involving L∞ functionals of the form

ess sup
x∈Ω

F (x, u, Du).

This connection is evident from (0.4). These variational problems arise in many
contexts and provide often the most realistic framework for concrete physical prob-
lems. See, e.g., [13] for a list of possible applications. The systematic mathematical
study of L∞ functionals has been greatly influenced by the advances in understand-
ing the Lipschitz extension problem, and vice versa. Aronsson’s original work [5]
appeared after he had investigated L∞ functionals in the one dimensional case in
[3] and [4]. Recent progress in the theory of general L∞ functionals in [13], [14],
[28] and [65], as well as the treatment of some special examples in [50], [39], [44]
and [15], follow in spirit the decisive contribution of Jensen [47] on the Lipschitz
extension problem.

As a concrete application, we mention that absolutely minimizing extensions
have attracted some interest in image processing, beginning with papers by Caselles,
Morel and Sbert; see, e.g., [25]. The main usage of absolute minimizers here seems
to be for the interpolation of pictures with incomplete information (incomplete
or irregular sampling). This so-called AMLE model has attractive properties of
invariance, monotonicity and stability, essential for these applications. A recent
contribution to this field is [1], where the AMLE model is used for interpolation of
terrain elevation maps. These maps can, for instance, be obtained from satellites.
Comparisons are made with other methods of interpolation and the outcome is
favorable for the AMLE approach. Another application area in which these ideas
have been employed is the analysis of possible shapes of sandpiles; cf. [10] and [2].

Let us recapitulate the contents of these notes. We begin in Section 1 with a
more detailed discussion of the classical Lipschitz extension problem and absolute
minimizers, and substantiate the claims made in the beginning of this introduc-
tion. Section 2 deals with the comparison with cones property. We show that
it characterizes absolute minimizers and use it to obtain important a priori esti-
mates. Given these lemmas, the proof of our existence result in Section 3 is rather
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straightforward and simple. In Section 4, we turn to the equivalence of various
notions. In particular, as a special case of our results for general norms, we verify
that conditions (0.2) and (0.4) yield the same class of functions. This is done with
the aid of the auxiliary concept of strong absolute minimizers, which we define as
part of the preliminaries in Section 1.5. A new derivation of the infinity Laplace
equation (0.7) from the comparison with cones property is given, and subsequently
we prove that its viscosity solutions coincide with the absolute minimizers. A va-
riety of other equivalences are also proved. In particular, it is shown that, for all
norms, a function is absolutely minimizing in a set whenever every point has a
neighborhood in which this is true. That is, the concept is entirely local, a fact
which is not obvious. In Section 5 the analogue of the infinity Laplacian is derived
for general norms. Section 6 contains the proof of the uniqueness theorem. For the
convenience of the reader, all of its main ingredients are thoroughly discussed and
the presentation is virtually self-contained. Finally, in Section 7, the largely open
issue of the exact regularity of absolute minimizers is reviewed and known positive
results are presented.

We made several allusions to the “Euclidean norm” above. Let us clarify the
situation. In all of the results in the body of this work, the norm is “general” with
the following exceptions, which are presented for the case of the Euclidean norm:
the equivalence with viscosity solutions in Section 4.4, the uniqueness result of
Section 6 and the regularity result of Section 7. The results of Section 4.4 (properly
adapted), and Section 6 hold if the norm | · | is strictly convex, and the main result
(Theorem 7.1) of Section 7 is true if | · | is strictly convex and differentiable on the
complement of the origin. However, we preferred to make these results available
without requiring the reader to deal with the additional issue of the strict convexity
of norms and dual norms. It is, as of the moment, unsettled as to whether or not
the results of Section 4.4 (appropriately formulated) and Section 6 hold in general.
The results of Section 7 are false for general norms.

For completeness and the reader’s convenience, we have also included a short
appendix, Section 8, on the associated variational problems in Lp and the approxi-
mation procedure to which we referred above, and another on absolute minimizers
in general metric spaces, Section 9. The presentation in these last two sections is
somewhat formal and less self-contained than in the main text, with the aim of
giving the reader a rough idea of the nature of these topics.

Every section ends with a set of notes and comments. There we have included a
brief historical account of each of the topics treated in the section as well as some
relevant references; references are minimized in the main text. However, we do not
provide pointers to all of the papers listed in the bibliography, which we have made
as complete as we could for the reader’s convenience. Although we have made a
serious effort to find significant related papers and present each work properly, we
cannot claim that this introduction, the list of references and the notes ending each
section have completely succeeded in describing the history and the current status
of this beautiful theory.

We are indebted to Carl de Boor and Simeon Reich for suggestions which im-
proved this manuscript.
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1. Notation and other preliminaries

It will be assumed in succeeding sections that the reader is familiar with the
material of this section except as noted. The presentation is informal and will be
called on later via the phrase “by Section 1.m” (rather than “by Theorem 1.j”,
etc.). Concepts introduced above are revisited, displayed and discussed in more
detail.

1.1. Notation. Throughout this paper U, V, W always denote open subsets of Rn;
∂U denotes the boundary of U and U is the closure of U . The coordinates of x ∈ Rn

are denoted by xj ; x = (x1, x2, . . . , xn). The notation V ⊂⊂ U means that V is a
compact subset of U .

If a ∈ R, then |a| is the absolute value of a. If x ∈ Rn, then |x| is the “norm”
of x. We did not say “Euclidean norm”, for | · | can in fact be any norm on Rn in
most of this work. However, most of the time the reader can assume that | · | is the
Euclidean norm if it pleases the reader to do so.

An expression of the form Y := X indicates that Y is defined to be X . If x ∈ Rn,
then

dist (x, ∂U) := inf{|x − y| : y ∈ ∂U}
is the distance from x to ∂U .

If x, y ∈ Rn, then

〈x, y〉 :=
n∑

j=1

xjyj

is the usual inner-product of x and y. It is not true that 〈x, x〉 = |x|2 if | · | is not
the Euclidean norm. However, if | · |∗ is the norm dual to | · |, that is,

|x|∗ := max{〈x, y〉 : y ∈ R
n, |y| = 1},

then

(1.1) |〈x, y〉| ≤ |x|∗|y|.
The open ball of radius r and center x ∈ Rn is denoted by Br(x):

Br(x) := {y ∈ R
n : |x − y| < r};

note that this ball is defined via the metric induced by the norm in use.
If K ⊂ Rn and g :K → R, then Lg(K) is the least constant L ∈ [0,∞) for which

|g(x) − g(y)| ≤ L|x − y| for x, y ∈ K.

If there is no such constant L, we put Lg(K) = ∞. If Lg(K) < ∞, then g is
Lipschitz continuous (on K). If Lg(K) ≤ L, then L is “a Lipschitz constant for g”.

The set of continuous real-valued functions on K is denoted by C(K). Ck(U)
is the subset of C(U) consisting of those functions which are k times continuously
differentiable in U .

If X, Y are real, symmetric n × n matrices, then X ≥ Y (X > Y ) means
〈Xx, x〉 ≥ 〈Y x, x〉 (respectively, 〈Xx, x〉 > 〈Y x, x〉) for x ∈ Rn \ {0}.

The line segment joining two points w, z ∈ Rn is denoted by [w, z]:

[w, z] := {w + t(z − w) : 0 ≤ t ≤ 1}.
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1.2. The Lipschitz Extension Problem. Let K ⊂ Rn and f :K → R be Lips-
chitz continuous. In contrast with the introduction, K need not be the boundary
of an open set U . If “f” represents some partial information available only on
K and we want to infer information outside of K, that is, we seek to extend f
to Rn \ K, it seems reasonable to ask if this can be done without increasing the
Lipschitz constant. That is, we ask if there exists a u ∈ C(Rn) satisfying

(1.2) u = f on K and Lu(Rn) = Lf (K).

If y, z ∈ K, x ∈ Rn, then any such u clearly satisfies

f(z) − Lf (K)|x − z| ≤ u(x) ≤ f(y) + Lf (K)|x − y|
since f(z) = u(z), f(y) = u(y). Moreover, if x ∈ K, these two inequalities become
equalities upon choosing z = y = x. We add two more simple observations to the
preceding ones:

(i) f(z)− Lf (K)|x − z| ≤ f(y) + Lf (K)|x − y| for x ∈ R
n, y, z ∈ K.

(ii) The infimum and supremum of a family of functions with a fixed Lipschitz

constant have, if finite, the same Lipschitz constant.

Combining these observations, one concludes that

Λ(f)(x) := sup
y∈K

(f(y) − Lf (K)|x − y|)

Ψ(f)(x) := inf
y∈K

(f(y) + Lf (K)|x − y|)

define solutions Λ(f), Ψ(f) of (1.2) such that if u is any other solution, then Λ(f) ≤
u ≤ Ψ(f) in Rn. Clearly, solutions of (1.2) are unique if and only if Λ(f) = Ψ(f)
on Rn. This rarely happens.

Example 1.1. Let n = 1, K = {−1, 0, 1}, f(−1) = f(0) = 0, f(1) = 1. Then
Lf (K) = 1. A moment’s thought shows that Ψ(f), Λ(f) are as indicated in Fig-
ure 1.1

Figure 1.1.

Remark 1.2. In Section 4 we will have occasion to use the notations Λ(f), Ψ(f)
when f is not necessarily Lipschitz continuous. In this case we put Λ(f) ≡ −∞
and Ψ(f) ≡ +∞.
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1.3. Absolutely Minimizing Functions and Another Extension Problem.
Clearly, there are many other solutions of (1.2) in Example 1.1 besides the ones
pictured; maybe the “best” one is given by

u(x) = 0 for x ≤ 0, u(x) = x for 0 ≤ x ≤ 1, and u(x) = 1 for 1 ≤ x.

Why do we prefer this solution? Roughly speaking, because it locally varies “as little
as possible” among all the potential solutions. In particular, it has the property
(0.2), which we restate here: if V ⊂⊂ R \ K, then

(1.3) Lu(V ) = Lu(∂V ).

The reader should think through this claim. Note that neither Λ(f) nor Ψ(f) has
this property, while the function ũ(x) = 0 if x ≤ 0 and ũ(x) = x if 0 ≤ x is a second
extension of f with the same Lipschitz constant and the property (1.3). Moreover,
û(x) = 0 if x ≤ 0, û(x) = x if 0 ≤ x ≤ 1, û(x) = 2x− 1 if x ≥ 1 is another function
agreeing with f on K which satisfies (1.3), but it does not satisfy Lu(R) = Lf (K).

We formalize the definition of “absolutely minimizing”:

Definition 1.3. Let U ⊂ Rn. Then u ∈ AM(U) if u ∈ C(U) and (1.3) holds for
every V ⊂⊂ U .

Here “AM” stands for “absolutely minimizing”. The modifier “absolutely” refers
to the arbitrary choice of V in (1.3). It is, of course, the Lipschitz constant that is
being minimized, in the sense that it is as small as it can be on each V , given the
values on ∂V .

The example above also illustrates another remark made in the introduction. If
g is such that g(−1) = 0, 0 < g(0) < 1, and g(1) = 1, then the reader can quickly
verify that Ψ(f) 6≤ Ψ(g) 6≤ Ψ(f) even though f ≤ g.

Looking at the simple picture above, it seems natural to consider also the exten-
sion problem from K to the interval [−1, 1] rather than to all of R, as we may only
be interested in the interval. This leads to the following problem: let U ⊂ Rn and
f ∈ C(∂U). Find u with the following properties:

(BVP) u ∈ C(U ) ∩ AM(U) and u(x) = f(x) for x ∈ ∂U.

Note that (BVP) does not assume that f itself is Lipschitz continuous. This is
one of the reasons that the relationship between our original remarks about the
Lipschitz extension problem (1.2) and (BVP) were not entirely clear. If the f in
(BVP) is Lipschitz continuous and Rn = U ∪ ∂U , does a solution of (BVP) also
solve (1.2)? Not in general; we gave an example above. However, if U is bounded,
we will see in Section 4 that solutions of (BVP) do satisfy Lu(U) = Lf (∂U).

1.4. Cone Functions. A cone function is one of the form C(x) := a|x − z| + b
where a, b ∈ R and z ∈ Rn. We say that a is the slope of C and z is the vertex of C.
The McShane-Whitney extensions are formed by infs and sups over cone functions
with vertices in the set where function values are given, a fact which hints at their
utility.

Cone functions provide very important examples of absolutely minimizing func-
tions. We show that if C is a cone function with vertex z, then

(1.4) C ∈ AM(Rn \ {z}).
This follows from the observations that |a| = LC(Rn) and that for any W ⊂ (Rn \
{z}) and y ∈ W, we can choose two distinct points y∗, y∗∗ ∈ ∂W located on the
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Figure 1.2.

half-line with end point z passing through y so that the Lipschitz constant of C
restricted to these two points is also |a|. The picture is as shown in Figure 1.2.
One has |C(y∗) − C(y∗∗)| = |a||y∗∗ − y∗|.

Cone functions also have the following property: if W ⊂⊂ Rn, C is a cone
function with vertex z /∈ W and slope a, and u ∈ C(W ) satisfies u = C on ∂W
and Lu(W ) = |a|, then u ≡ C on W . To establish this, we show that y ∈ W and
u(y) 6= C(y) is impossible. To rule out u(y) > C(y) when a ≥ 0, assume it and let
y∗, y∗∗ be as in Figure 1.2. Then

u(y) − u(y∗) = u(y) − C(y∗) > C(y) − C(y∗) = a|y − y∗|,
which shows that Lu(W ) > a, a contradiction. If a < 0, one uses the point y∗∗

in place of y∗ in a similar way. To rule out u(y) < C(y), the previous argument
applies to −u, −C.

Cone functions will play a prominent role in the rest of this paper.

1.5. Another Kind of Absolutely Minimizing Function. The material in this
subsection is not needed until Section 4. The reader may skip it until it is needed.

If u ∈ C(U), the function

Tu(x) := lim
r↓0

Lu(Br(x)) = inf {Lu(Br(x)) : 0 < r < dist (x, ∂U)}

is well-defined on U if we allow the value +∞.
Roughly speaking, Tu(x) is the Lipschitz constant of u “at x”. It is the smallest

number with the property that for ǫ > 0 there is an rǫ > 0 such that Tu(x) + ǫ
is a Lipschitz constant for u on Brǫ

(x). We claim that x → Tu(x) is upper-
semicontinuous. To see this, note that Tu(x) < M implies Lu(Br(x)) < M for
some r > 0. For y ∈ Br(x) and s + |x − y| ≤ r, we have Bs(y) ⊂ Br(x) and then
Lu(Bs(y)) ≤ Lu(Br(x)). Hence Tu(y) < M . This shows that {x ∈ U : Tu(x) < M}
is open, establishing the upper-semicontinuity.

Definition 1.4. Let u ∈ C(U). Then u is strongly absolutely minimizing (equiva-
lently, u ∈ AMS(U)) if for every V ⊂⊂ U and v ∈ C(V ) such that u = v on ∂V ,
one has

sup
x∈V

Tu(x) ≤ sup
x∈V

Tv(x).
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It will be seen in Section 4 that AM(U) = AMS(U). The inclusion AMS(U) ⊂
AM(U) is relatively easy to establish, while the inclusion AM(U) ⊂ AMS(U) is
more difficult. This is the reason for our use of the descriptor “strong”.

The function Tu is closely related to the gradient Du of u. We say that u is
differentiable at x0 ∈ U if there exists p ∈ Rn such that

(1.5) u(x) = u(x0) + 〈p, x − x0〉 + o(|x − x0|)
as x → x0. Here the “little o” notation has its usual meaning. When (1.5) holds,
then p is clearly uniquely determined, and we write Du(x0) := p. That is, Du(x0)
is the one and only vector providing a first order Taylor expansion for u around
x0 when there is such an expansion. By Rademacher’s theorem (see, e.g., [36]),
Lipschitz continuous functions are differentiable almost everywhere in this sense.
We leave it as an exercise for the reader to show that if V ⊂ U , then

sup
x∈V

Tu(x) = ess sup
x∈V

|Du(x)|∗

whenever the left-hand side is finite; here | · |∗ is the norm dual to | · | as explained
in Section 1.1 above.

1.6. Notes. The idea of “absolute minimizers” first arose in Aronsson [3], [4], where
it appeared in the study of certain minimization problems for functionals of the type

I(f) = sup
x

F (x, f(x), f ′(x)).

In connection with the Lipschitz extension problem, it was introduced in [5] in the
form used in this work. Various adaptations of the concept have since been used in
[18], [47], [64], [57], [49] and [29] to investigate the extension problem in different
settings. Moreover, an “absolute minimizer” has become a standard notion of a
minimizer in the theory of the calculus of variations of L∞ functionals; see [13],
[14], [28], [27] and [65] and the references therein.

Our formulation of the notion of a strong absolute minimizer appears explicitly
for the first time in this work. It is essentially a reformulation of (0.4) written in
a simpler and more general form, without the aid of measure and differentiation
theory.

Needless to say, the Lipschitz extension problem makes sense in much wider
generality than described above. For example, one can investigate mappings u :
X → Y between two metric spaces (X, dX) and (Y, dY ) and pose the same questions
asked above regarding existence and uniqueness of various types of extensions. The
case in which the target space (Y, dY ) is R equipped with the Euclidean metric is,
as regards existence, fairly well understood; see [57], [49]. This is mainly due to the
fact that the McShane-Whitney extensions and Perron’s method work just as well
in this generality; see Section 9. However, far less is known in the vector-valued
case Y = Rn, n ≥ 2, with the Euclidean distance. A famous theorem of Kirszbraun
(see, e.g., [37]) provides an extension of a given Lipschitz function with the same
Lipschitz constant in this case. However, as far as we know, there are no existence
results for absolute minimizers in the vector-valued case except when X = R, which
is treated by Barron, Jensen and Wang [13].

2. Comparison with cones

We begin this section by rewriting the condition that u be absolutely minimizing
in terms of another concept, called “comparison with cones”. After defining the
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notions of comparison with cones and examining the relationships between these
and the concept of an absolutely minimizing function, we establish consequences
of comparison with cones that are prominent tools in the rest of this work. In
particular, a small selection of results from Section 2.2, as indicated therein, is all
that is needed for the proof of the existence theorem in Section 3. With these
preliminaries in hand, the existence proof is short and elegant. The remaining
results of Section 2.2 and Sections 2.3, 2.4 and 2.5 play roles in Sections 4, 6 and 7.
Taken together, the results of this section provide the known fundamental estimates
that flow from comparison with cones.

2.1. The Notions and the Equivalence. We begin by deriving some properties
of u ∈ AM(U). These properties are then used to define a class of functions, and
subsequently it is shown that this class coincides with AM(U). Moreover, this
equivalence naturally splits “absolutely minimizing” into the conjunction of two
“one-sided” notions, which is essential for the existence proof in Section 3.

Proposition 2.1. Let u ∈ C(U). Then u ∈ AM(U) iff for every V ⊂⊂ U, a ∈ R

and z ∈ Rn \ V we have

(2.1) u(x) − a|x − z| ≤ max
w∈∂V

(u(w) − a|w − z|) for x ∈ V

and

(2.2) u(x) − a|x − z| ≥ min
w∈∂V

(u(w) − a|w − z|) for x ∈ V.

The following terminology will be much used.

Definition 2.2. If u ∈ C(U), then u enjoys comparison with cones from above
(respectively, below) in U if (2.1) (respectively, (2.2)) holds when V ⊂⊂ U , a ∈ R

and z /∈ V . If u ∈ C(U) and enjoys comparison with cones from above and from
below in U , then u enjoys comparison with cones in U .

For simplicity in writing, we often abbreviate “u enjoys comparison with cones
from above (below) in U” to

u ∈ CCA(U) and, respectively, u ∈ CCB(U).

Note that u ∈ CCA(U) iff −u ∈ CCB(U). Of course,

CC(U) = CCA(U) ∩ CCB(U).

Here is the proof of Proposition 2.1.

Proof. First, let V ⊂⊂ U , x ∈ V, and u ∈ C(U) enjoy comparison with cones in U .
We claim then that

(2.3) Lu(∂(V \ {x})) = Lu(∂V ).

To see this, we need only check that for z ∈ ∂V , x ∈ V ,

(2.4) u(z) − Lu(∂V )|x − z| ≤ u(x) ≤ u(z) + Lu(∂V )|x − z|.
As each of the above inequalities holds for x ∈ ∂V and u enjoys comparison with
cones, the inequalities indeed hold if x ∈ V . Let x, y ∈ V . Using (2.3) twice,

Lu(∂V ) = Lu(∂(V \ {x})) = Lu(∂(V \ {x, y})).
Since x, y ∈ ∂(V \ {x, y}), we have |u(x) − u(y)| ≤ Lu(∂V )|x − y|, and hence
u ∈ AM(U).
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Suppose now that u ∈ AM(U). We want to show that u then enjoys comparison
with cones from above. Assume that V ⊂⊂ U , z /∈ V and set

(2.5) W = {x ∈ V : u(x) − a|x − z| > max
w∈∂V

(u(w) − a|w − z|)}.

We want to show that W is empty. If it is not empty, then it is open and

(2.6) u(x) = a|x − z| + max
w∈∂V

(u(w) − a|w − z|) =:C(x) for x ∈ ∂W.

Therefore u = C on ∂W and Lu(W ) = LC(∂W ) since u ∈ AM(U). But then u = C
in W by Section 1.4, which is a contradiction.

The claim concerning comparison with cones from below follows upon applying
the previous case to −u. �

Remark 2.3. We note that in the proof above it was shown that if u does not enjoy
comparison with cones from above in U , then there is a nonempty set W ⊂⊂ U
and a cone function C(x) = a|x − y| + b with y /∈ W such that u = C on ∂W and
u > C in W . The negation of u ∈ CCB(U) has the corresponding formulation.

Example 2.4. It follows from (1.4) and Proposition 2.1 that if u(x) := ã|x − y|,
then u enjoys comparison with cones in Rn \{y}. For brevity, we simply say “cones
enjoy comparison with cones” to refer to this fact.

In fact, if ã ≥ 0, then u enjoys comparison with cones from above in Rn. We
may suppose that ã > 0. If the assertion were false, then by Remark 2.3 there
would exist a nonempty set W ⊂⊂ Rn and a cone function C(x) = a|x − z| + b
with z /∈ W such that ã|x − y| = C(x) on ∂W and ã|x − y| > C(x) in W . We
already know this is impossible if y /∈ W . If y ∈ W , let y∗, y∗∗ be as in Figure 1.2.
Assume that a ≥ 0; then, using y∗ ∈ ∂W , ã > 0, and |y − z| > |y∗ − z|, we have
C(y) ≥ C(y∗) and

0 = ã|y∗ − y| − C(y∗) > ã|y − y| − C(y),

which contradicts y ∈ W . If a < 0, we select y∗∗ in place of y∗ and reach a similar
conclusion.

Observe that if ã > 0, then u does not enjoy comparison with cones from below
in any open set containing the vertex y. On the other hand, if ã ≤ 0, applying the
above to −u we see that u enjoys comparison with cones from below in Rn.

Example 2.5. If n = 1 and U is an interval, then u ∈ CCA(U) if and only if u
is convex. This is clear from the definition: the condition that the “secant line”
joining two points on the graph of u always lies above the graph is equivalent to
u ∈ CCA. Thus AM(U) consists of linear functions.

In fact, in any dimension and with any norm, linear functions are in AM(U).
We leave the proof for the reader here, but it is also a special case of Example 4.2.
In view of Lemma 2.12 below, the supremum of a family of linear functions will lie
in CCA. Thus convex functions enjoy comparison with cones from above in any
dimension and with any norm.

2.2. First Consequences. In this section we derive a simple Lipschitz continuity
estimate (Lemma 2.9), which follows from a “Harnack inequality”, and show that
the supremum of a family of functions which enjoy comparison with cones from
above also has this property (Lemma 2.12). These facts are needed for the existence
proof in Section 3. The result (2.8) of the next lemma is used to derive the Lipschitz
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continuity estimate. Results in this section not just mentioned are not needed until
later and may be set aside for now if one is eager to get to the existence proof.

Lemma 2.6. Let u ∈ CCA(U) and y ∈ U . Then

(2.7) max
{w:|w−y|=r}

u(w) = max
{w:|w−y|≤r}

u(w) for 0 ≤ r < dist (y, ∂U).

Moreover,

(2.8) u(x) ≤ u(y) + max
{w:|w−y|=r}

(
u(w) − u(y)

r

)
|x − y|

for |x − y| ≤ r < dist (y, ∂U) and the function

(2.9) g+(r) := max
{w:|w−y|≤r}

u(w) = max
{w:|w−y|=r}

u(w) is convex

on the interval 0 ≤ r < dist (y, ∂U).
Finally,

(2.10) S+(y, r) := max
{w:|w−y|=r}

(
u(w) − u(y)

r

)

is nonnegative and nondecreasing in r, 0 < r < dist (y, ∂U).

Proof. Assume u ∈ CCA(U). The cone function on the right side of (2.8) bounds
u above on the boundary of the set {x : 0 < |x − y| < r}, whence (2.8) holds as
claimed. This is all that is needed from this lemma for the proof of Lemma 2.9; per
the opening remarks of this section, the rest may be put aside for now. However,
this is one story, so the reader may prefer to continue.

To continue, let us notice that (2.7) follows from (2.1) with a = 0 and V = Br(y),
and that the relation (2.7) implies that S+ in (2.10) is nonnegative. We turn to
(2.9). We claim that for 0 ≤ s < r < dist (y, ∂U),

(2.11) u(x) ≤ g+(s) +
g+(r) − g+(s)

r − s
(|x − y| − s) for s ≤ |x − y| ≤ r.

Indeed, by the definition of g+, the cone function on the right bounds u above on
the boundary of the annular region s < |x − y| < r, whence (2.11). If

τ = λs + (1 − λ)r where λ ∈ [0, 1],

we thus have

(2.12) u(x) ≤ g+(s) +
g+(r) − g+(s)

r − s
(τ − s) for 0 ≤ |x − y| ≤ τ,

as u(x) ≤ g+(s) for |x − y| ≤ s. Maximizing the left-hand side of (2.12) over
|x − y| ≤ τ yields g+(τ) and, rearranging the result, (2.12) becomes

g+(τ) ≤ (1 − λ)g+(r) + λg+(s),

thereby exhibiting the convexity of g+.
For later use, we give two proofs of the monotonicity of S+. First, from (2.8)

itself it follows that if 0 < |x − y| ≤ r, then

u(x) − u(y)

|x − y| ≤ max
{w:|w−y|=r}

(
u(w) − u(y)

r

)



454 GUNNAR ARONSSON, MICHAEL G. CRANDALL, AND PETRI JUUTINEN

and one can maximize over x, |x−y| = s ≤ r, to find S+(y, s) ≤ S+(y, r). Secondly,
since g+ is convex, if 0 < s ≤ r, in view of (2.7), (2.9) and g+(0) = u(y),

S+(y, s) =
g+(s) − g+(0)

s
≤ g+(r) − g+(0)

r
= S+(y, r).

�

Remark 2.7. The notation S+(y, r) is a mnemonic for the maximum slope of the line
segments joining the point (y, u(y)) in the graph of u with points (w, u(w)) where
w is on the sphere of radius r and center y. By the monotonicity of S+ asserted
by the lemma, this is the same as the maximum of the slopes joining (y, u(y)) to
points in the graph over the ball with radius r and center y. We prefer to exhibit
this quantity in terms of w on the sphere for later purposes.

Remark 2.8. If u ∈ CCB(U), then −u ∈ CCA(U) and applying the results of
Lemma 2.6 to −u yields:

(2.13) min
{w:|w−y|=r}

u(w) = min
{w:|w−y|≤r}

u(w),

(2.14) g−(r) := min
{w:|w−y|≤r}

u(w) = min
{w:|w−y|=r}

u(w)

is concave,

u(x) ≥ u(y) + min
{w:|w−y|=r}

(
u(w) − u(y)

r

)
|x − y|

for |x − y| ≤ r, and, finally,

(2.15) S−(y, r) := min
{w:|w−y|=r}

(
u(w) − u(y)

r

)

is nonpositive and nonincreasing in r, all on 0 < r < dist (y, ∂U). This is a general
phenomenon; all consequences of “one-sided” assumptions appearing herein imme-
diately imply a corresponding result if these assumptions are satisfied by −u in
place of u. We often will not stop to formulate the corresponding result in what
follows, leaving this to the reader.

Lemma 2.9. Let u ∈ C(U) satisfy (2.8). If z ∈ U , x, y ∈ BR(z) and R <
dist (z, ∂U)/4, then

(2.16) |u(x) − u(y)| ≤
(

sup
B4R(z)

u − sup
BR(z)

u

)
|x − y|

R
.

Proof. Assume first that u is nonpositive, that is, u ≤ 0. Let d(y) = dist (y, ∂U),
use u(w) ≤ 0 and let r ↑ d(y) in (2.8) to find

(a) u(x) ≤ u(y)

(
1 − |x − y|

d(y)

)
; equivalently,

(b) u(x) − u(y) ≤ −u(y)

( |x − y|
d(y)

)
.

(2.17)

If z ∈ U and 4R < dist (z, ∂U) and x, y ∈ BR(z), then d(y) ≥ 3R and |x− y| ≤ 2R.
Thus (2.17) (a) implies u(x) ≤ u(y)/3 for x, y ∈ BR(z) and so

(2.18) sup
BR(z)

u ≤ inf
BR(z)

u/3 for R < dist (z, ∂U)/4.
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This is a “Harnack inequality”.
Estimates on the modulus of continuity follow from the Harnack inequality. As-

suming first that u ≤ 0 and using (2.18) in (2.17) (b), we find

u(x) − u(y) ≤ −u(y)

( |x − y|
d(y)

)
≤ − inf

BR(z)
u

( |x − y|
3R

)

≤ − sup
BR(z)

u

( |x − y|
R

)(2.19)

for x, y ∈ BR(z), R < d(z)/4.
If u is not nonpositive, then (2.19) holds with u replaced by u − supB4R(z) u

(clearly if u enjoys comparison with cones from above, then so does u+constant).
The outcome of this replacement, since x and y can be interchanged, is (2.16). �

Remark 2.10. If one dislikes working with nonpositive functions, recall Remark 2.8.
Since u ∈ CCA(U) satisfies (2.8) by Lemma 2.6, it will obey the Lipschitz esti-
mate; likewise for u ∈ CCB(U) with appropriate changes via Remark 2.8. Finally,
Lemma 2.9 is valid if u is merely upper-semicontinuous, as the reader can easily
see.

Remark 2.11. The estimate (2.16) implies that if u ∈ CCA(U) and E ⊂ U is
compact, then Lu(E) < ∞. To see this quickly, assume otherwise. Then for each
j = 1, 2, . . . there exists xj , yj in E such that |u(xj) − u(yj)| > j|xj − yj |. Since
u is continuous, it is bounded on E, and then we have |xj − yj| → 0 as j ↑ ∞.
Since E is compact, passing to subsequences if necessary, we can assume that
xj , yj → z ∈ E. However, then for j large enough we can assume that xj , yj ∈
BR(z) where 4R < dist (z, ∂U). The estimate (2.16) now yields a contradiction to
|u(xj) − u(yj)| > j|xj − yj | for large j.

Lemma 2.12. Let F ⊂ C(U) be a family of functions that enjoy comparison with
cones from above in U . Suppose

(2.20) h(x) = sup
v∈F

v(x)

is finite and locally bounded above in U . Then h ∈ C(U), and it enjoys comparison
with cones from above in U .

Proof. First, choose v0 ∈ F and notice that we may replace F by

F̂ = {max(v, v0) : v ∈ F}

in (2.20) without changing h. Moreover, F̂ ⊂ CCA(U) (see below). We are reduced
to the case in which the functions in F are all locally bounded above (by h) and
below (by v0). The continuity of h now follows from Lemma 2.9, which implies that
F is locally equicontinuous. Suppose that V ⊂⊂ U and z 6∈ V . For v ∈ F we have,
by assumption and the definition of h,

(2.21) v(x) − a|x − z| ≤ max
w∈∂V

(v(w) − a|w − z|) ≤ max
w∈∂V

(h(w) − a|w − z|)

for x ∈ V . Taking the supremum over v ∈ F on the left hand side, we find that h
enjoys comparison with cones from above. �
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2.3. Local Maxima Imply Locally Constant. This small section establishes
that if u satisfies a weakened variant of the consequence (2.8) of u ∈ CCA(U), then
u is constant in some neighborhood of a local maxima point. This observation adds
a little bit of insight into the structure of absolutely minimizing functions, and it
is needed in the proof of uniqueness in Section 6. In addition, (2.7), which was
deduced from u ∈ CCA(U) in the course of proving Lemma 2.6, is seen to be a
consequence of either (2.8) or (2.9). In Section 4 we will see that, in fact, each of
(2.8) and (2.9) is equivalent to u ∈ CCA(U).

Suppose, without assuming u ∈ CCA(U), that g+ as defined in Lemma 2.6 is
convex. Then, by convexity, g+(τ) − g+(0) ≤ (g+(r) − g+(0))(τ/r) for 0 ≤ τ ≤ r.
This may be restated as the weakened variant of (2.8):

(2.22) u(x) ≤ u(y) + max
{w:|w−y|≤r}

(
u(w) − u(y)

r

)
|x − y|

for y ∈ U and |x − y| ≤ r < dist (y, ∂U). The only difference between (2.22) and
(2.8) is that the max on the right is taken over the solid ball {w : |w − y| ≤ r}
instead of the sphere {w : |w − y| = r}. Thus (2.22) follows from either (2.8) or
(2.9), both of which are in turn consequences of u ∈ CCA(U).

Lemma 2.13. Let U be connected, u ∈ C(U) and (2.22) hold for x, y ∈ U with
|x − y| ≤ r < dist (y, ∂U). Let x̂ ∈ U and u(x̂) ≥ u(w) for w ∈ U . Then u ≡ u(x̂)
in U .

Proof. The set {x ∈ U : u(x) = u(x̂)} is obviously closed in U . We show then that
it is also open; since U is assumed to be connected, the result follows. It suffices
to show that u is constant on some ball containing x̂. If z ∈ U and |z − x̂| ≤ s <
dist (z, ∂U), (2.22) with x = x̂, y = z and r = s yields

u(x̂) ≤
(

1 − |x̂ − z|
s

)
u(z) +

(
max

{w:|w−z|≤s}
u(w)

) |x̂ − z|
s

≤
(

1 − |x̂ − z|
s

)
u(z) + u(x̂)

|x̂ − z|
s

provided that u(w) ≤ u(x̂) for |w−z| ≤ s. This last condition holds, by assumption,
in a neighborhood of x̂. Thus for the z’s satisfying all of the above requirements,
which clearly cover a neighborhood of x̂, u(z) ≤ u(x̂) ≤ u(z). �

Remark 2.14. Lemma 2.13 implies that if u satisfies (2.22) (in particular, if u ∈
CCA(U)) and has a local maximum at some point x̂ ∈ U , then it is constant in any
connected neighborhood of x̂ for which x̂ is a maximum point. In particular, (2.7)
holds. However, u need not be constant in U even if U is connected. The function
u(x) = max(x, 0) in R belongs to CCA(R) (Example 2.5), but it is not constant
even though -1 is a point of local maximum.

2.4. Second Consequences. In this section we derive further consequences of
(2.8), which we restate here for convenience:

(2.23) u(x) ≤ u(y) + max
{w:|w−y|=r}

(
u(w) − u(y)

r

)
|x − y|
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for y ∈ U , |x − y| ≤ r < dist (y, ∂U). It follows from the end of the proof of
Lemma 2.6 and Lemma 2.13 that if (2.23) holds, then

(2.24) S+(y, r) := max
{w:|w−y|=r}

(
u(w) − u(y)

r

)

is nonnegative and nondecreasing in r for 0 < r < dist (y, ∂U). The limit

(2.25) S+(y) := lim
r↓0

S+(y, r) = inf
0<r<dist (y,∂U)

S+(y, r)

is therefore well-defined, finite and nonnegative. We have:

Lemma 2.15. Let u ∈ C(U) satisfy (2.23) and y ∈ U .

(i) S+(y, r), as given by (2.24), is nonnegative and nondecreasing in r,
0 < r < dist (y, ∂U).

(ii) S+(y), as given by (2.25), is upper-semicontinuous in y ∈ U .
(iii) If [w, z] ⊂ U , then

(2.26) |u(w) − u(z)| ≤
(

max
y∈[w,z]

S+(y)

)
|z − w|.

(iv) S+(y) = Tu(y) where Tu(y) is defined in Section 1.5.
(v) If −u also satisfies (2.23) together with u, then

0 ≥ S−(y) = lim
r↓0

S−(y, r) = −S+(y) for y ∈ U

where S−(y, r) is defined in (2.15).

The reader will note the dual use of S+ in (2.24) and (2.25), the distinction being
made only by the number of arguments displayed. We also recall here Remark 2.7.

Proof. Point (i) was established in the remarks preceding the lemma. We now
invoke Lemma 2.9 and Remark 2.11 to assert that if (2.23) holds, then u is Lipschitz
continuous on any compact subset of U . Let [w, z] ⊂ U . By the local Lipschitz
continuity, g(t) := u(w+ t(z−w)) is Lipschitz continuous in t ∈ [0, 1]. Fix t ∈ (0, 1)
and observe that (2.23) with x = w + (t + h)(z −w) and y = w + t(z −w) implies,
for small h > 0,

g(t + h) − g(t)

h
=

u(w + (t + h)(z − w)) − u(w + t(z − w))

h

≤ S+(w + t(z − w), h|z − w|)|z − w|.
The last inequality follows from the definition of S+. Sending h ↓ 0 we find

g′(t) ≤ S+(w + t(z − w))|z − w| ≤
(

sup
y∈[w,z]

S+(y)

)
|z − w|

at any point of differentiability of g. Thus

(2.27) u(z) − u(w) = g(1) − g(0) =

∫ 1

0

g′(t) dt ≤
(

sup
y∈[w,z]

S+(y)

)
|z − w|.

Interchanging z and w we arrive at (2.26) with “sup” in place of “max”. The
upper-semicontinuity of S+, which is proved below, allows the “sup” to be replaced
by “max”.
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Now

S+(y, r) = max
|w−y|=r

(
u(w) − u(y)

r

)
≤ Lu(Br(y))

and therefore S+(y) ≤ Tu(y). On the other hand, using (2.27) and the monotonicity
of S+(y, r) in r and the continuity in y, we obtain, if s > 0 is small,

Tu(y) = lim
r↓0

Lu(Br(y)) ≤ lim
r↓0

sup
w∈Br(y)

S+(w)

≤ lim
r↓0

sup
w∈Br(y)

S+(w, s) = S+(y, s).

The remaining inequality, Tu(y) ≤ S+(y), follows upon sending s ↓ 0. We have
proved S+(y) = Tu(y); the upper-semicontinuity of S+ follows from that of Tu,
which is proved in Section 1.5.

The assertions regarding S− follow from T(−u) = Tu. �

Remark 2.16. If v ∈ C(U) and [w, z] ⊂ U , then the analog

(2.28) |v(w) − v(z)| ≤
(

max
y∈[w,z]

Tv(y)

)
|z − w|

of (2.26) holds. The proof mimics the one above.

Remark 2.17. Since S+(y, r) decreases to S+(y) = Tu(y), it follows that

Tu(y) ≤ max
{w:|w−y|=r}

(
u(w) − u(y)

r

)
≤ 2

supBr(y) |u|
r

for r < dist (y, ∂U),

and, if u ≤ 0, then Tu(y) ≤ −u(y)/r. Letting r ↑ dist (y, ∂U) then yields

Tu(y) ≤ −u(y)

dist (y, ∂U)
.

We also remark that Tu(y) ≥ |Du(y)|∗ if u is differentiable at y. With this sub-
stitution in the inequality above, this is also sometimes referred to as a “Harnack
inequality”.

2.5. The Increasing Slope Estimate. Essential use is made of the following
lemma in Sections 4 and 7.

Lemma 2.18. Let u ∈ C(U) and (2.23) hold. If x0, x1 ∈ U , 0 < |x1 − x0| <
dist (x0, ∂U), and

(2.29) u(x1) − u(x0) = S+(x0, |x1 − x0|)|x1 − x0|,
equivalently,

u(x1) = max{u(w) : |w − x0| = |x1 − x0|},
then, for 0 < s < dist (x0, ∂U) − |x1 − x0|,
(2.30) 0 ≤ S+(x0, |x1 − x0|) ≤ S+(x1) ≤ S+(x1, s).

Proof. The first inequality just recalls that 0 ≤ S+, and the last inequality recalls
the monotonicity of S+ (Lemma 2.15). What follows below will be transparent to
the reader upon recalling Remark 2.7 and drawing a sketch.

First, we use, by assumption, that

(2.31) u(x) ≤ u(x0) + S+(x0, |x1 − x0|)|x − x0| for |x − x0| ≤ |x1 − x0|.
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Put

(2.32) xt = x0 + t(x1 − x0) for 0 ≤ t ≤ 1

and x = xt in (2.31) to find, via (2.29),

u(xt) ≤ u(x0) + S+(x0, |x1 − x0|) t|x1 − x0|
= u(x0) + t(u(x1) − u(x0)).

(2.33)

Thus

u(x1) − u(xt) ≥ (1 − t)(u(x1) − u(x0))

= |x1 − xt|S+(x0, |x1 − x0|)
(2.34)

and therefore

(2.35) S+(xt, |x1 − xt|) = S+(xt, (1 − t)|x1 − x0|) ≥ S+(x0, |x1 − x0|).
Next we assume that 0 < s < dist (x1, ∂U); then

|xt − x1| < s < dist (xt, ∂U)

if t is near 1, and then, by (2.35) and the monotonicity of S+,

S+(xt, s) ≥ S+(xt, |x1 − xt|) ≥ S+(x0, |x1 − x0|).
Letting t ↑ 1 in the inequality of the extremes above yields

S+(x1, s) ≥ S+(x0, |x1 − x0|).
Letting s ↓ 0, we arrive at (2.30). �

We note for future reference, while the proof is fresh, that if we choose x2 so
that |x2 − x1| = s and u(x2)− u(x1) = S+(x1, s)|x2 − x1|, then the final inequality
above can be written

u(x2) − u(x1)

|x2 − x1| = S+(x1, |x2 − x1|)

≥ S+(x0, |x1 − x0|) =
u(x1) − u(x0)

|x1 − x0| .

(2.36)

2.6. A Sharper Harnack Inequality. Here, just for fun, we sharpen the Harnack
inequality (2.18) that appeared in the course of proving Lemma 2.9. Recall that it
is assumed that u ≤ 0. Assume now that R = d(z) := dist (z, ∂U) and r < R. Let
x, y ∈ Br(z), let m be a positive integer and define

xj = x + j
y − x

m
for j = 0, 1, . . . , m.

As |xj+1 − xj | = |x − y|/m < d(xj+1) as soon as m is large and d(xj) ≥ R − r, we
use (2.17)(a) to assert that

u(xj) ≤ u(xj+1)

(
1 − |x − y|

m(R − r)

)
.

Iterating this relation, we conclude

u(x) = u(x0) ≤ u(xm)

(
1 − |x − y|

m(R − r)

)m

= u(y)

(
1 − |x − y|

m(R − r)

)m

→ u(y)e−
|x−y|
R−r
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or

(2.37) u(x) ≤ u(y)e−
|x−y|
R−r for x, y ∈ Br(z), 0 < r < R, BR(z) ⊂ U.

In what way is this sharper than, for example, (2.18), which corresponds to
r = R/4? First of all, it is valid for all r < R. To compare with (2.18), we take
R = 4r, and then (2.37) implies

sup
Br(z)

u ≤ exp(−2/3)

(
inf

Br(z)
u

)

and exp(−2/3) = .5134 . . . > 1/3. Again, if the reader prefers to deal with nonneg-
ative u ∈ CCB, replace u by −u above to find the correct inequalities.

2.7. Notes. The equivalence of comparison with cones and “absolutely minimiz-
ing” was first made explicit in Crandall, Evans and Gariepy [29] in the case of the
Euclidean norm. Jensen [47] had previously shown that viscosity solutions enjoy
comparison with cones by a similar method, and the full proof of this in [29] is a
simplification of other arguments in [47]. Crandall et al. showed that viscosity sub-
and supersolutions of the infinity Laplace equation (0.7) may be characterized by
a comparison principle with appropriate cones and demonstrated how comparison
with cones directly implies the strong absolutely minimizing property (0.4). We
improve and generalize their presentation of this last result in our Section 4. Sub-
sequently, this framework was used to analyze the very subtle issue of regularity
[30]. The main result of [30] is presented in Section 7. The full equivalence of
comparison with cones and absolutely minimizing proved above for general norms
is new. The straightforward proof of Proposition 2.1, free of viscosity solutions and
differential equations, is inspired by some arguments in [5] and [49]. See [26] and
[40] for further generalizations.

Most of the key estimates of this section are generalizations of related arguments
in [29]. The role of convexity did not appear there; however L. C. Evans noticed
the convexity of g+ during the preparation of [30], although no use was made of
it at that time. The convexity in the case of the Euclidean norm is also noted in
[17]. See also the notes to Section 4. An exception is the result Lemma 2.13, which
appears here for the first time in this context. Via the viscosity solution theory of
the infinity Laplace operator, this point appeared for regularizations of functions
enjoying comparison with cones from above in the case of the Euclidean norm in
[12] in the course of proofs of their results. As mentioned before, the function Tu,
which plays a simplifying role in this work, appears herein for the first time.

The first version of the Harnack inequality, proved for smooth solutions of the
infinity Laplace equation (0.7), is due to Evans [35]. The estimate (2.37) was
obtained by Lindqvist and Manfredi in [51] with the aid of the corresponding result
for the solutions of the approximating Lp problems. It was originally stated for
viscosity solutions but later extended to cover subsolutions as well [52], [48]. A
simple proof of the Harnack inequality, yielding a somewhat weaker estimate, was
given by Bhattacharya [16] using comparison with cones. All these results were
in the case of the Euclidean norm. We obtained the sharper estimate with an
elementary and straightforward argument, valid for any norm in Rn.
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3. Existence

The existence theorem to be proved in this section is:

Theorem 3.1. Let U be an open subset of Rn, 0 ∈ ∂U , and f ∈ C(∂U). Let
A±, B± ∈ R, A+ ≥ A−, and

(3.1) A−|x| + B− ≤ f(x) ≤ A+|x| + B+ for x ∈ ∂U .

Then there exists u ∈ C(U ) ∩ AM(U) such that u = f on ∂U and which further
satisfies

(3.2) A−|x| + B− ≤ u(x) ≤ A+|x| + B+ for x ∈ U .

The assumption 0 ∈ ∂U is not restrictive, as it can always be arranged by a
translation. Alternatively, one can replace |x| in (3.1) and (3.2) by |x − z| where
z ∈ ∂U .

In order to apply Lemma 2.12 and construct the function u whose existence is
asserted in Theorem 3.1 using “Perron’s method”, we need to find a nonempty,
locally uniformly bounded family of functions enjoying comparison with cones from
above and having the right kind of boundary behavior. For this purpose, we define
h, h :Rn → R by

h(x) = sup{C(x) : C(x) = a|x − z| + b, a < A−, z ∈ ∂U, C ≤ f on ∂U},
h(x) = inf{C(x) : C(x) = a|x − z| + b, a > A+, z ∈ ∂U, C ≥ f on ∂U}.

The important properties of h and h needed in the existence proof are collected
below.

Lemma 3.2. The functions h and h are well defined, continuous, and h ≥ h on
Rn. Moreover,

(3.3) A−|x| + B− ≤ h(x) ≤ h(x) ≤ A+|x| + B+ for x ∈ R
n

and

(3.4) h = h = f on ∂U.

Finally, h ∈ CCA(U) and h ∈ CCB(U).

Proof. We first show that h is well-defined in the sense that there are functions
with the properties of the C appearing in its definition. For a fixed z ∈ ∂U and
ǫ > 0, let δ > 0 be such that f(x) < f(z) + ǫ for all x ∈ Bδ(z) ∩ ∂U . Choose
a > max{A+, 0} so that

f(z) + ǫ + aδ > max
|x−z|≤δ

(A+|x| + B+)(3.5)

and, if z 6= 0,

f(z) + ǫ + a|z| > B+.(3.6)

Clearly, this is possible. We claim then that

(3.7) C(x) = f(z) + ǫ + a|x − z| ≥ C+(x) := A+|x| + B+ in R
n \ Bδ(z),

and therefore C ≥ f on ∂U . To establish (3.7), notice that a > A+ implies the set

W := {x ∈ R
n \ Bδ(z) : C(x) < C+(x)}

is open and bounded. We claim that W is empty. To see this, first notice that

Bδ(z) ∩ W = ∅ by (3.5). It follows that C = C+ on ∂W . As W contains neither z
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nor 0 (here is where we need (3.6)), C ≡ C+ in W by Section 1.4. Hence W is empty.
We have shown that h is well defined. We also note here that C(z) = f(z) + ǫ,

and from this it follows that h(z) = f(z), so (3.4) holds for h. Moreover, for ǫ > 0,
we may clearly take C(x) = (A+ + ǫ)|x| + B+, which implies h ≤ C+, as in (3.3).
Analogous arguments show that h also is well defined and h ≥ A−|x| + B−.

To see that h ≤ h, we take any two cones C(x) = a|x−z|+b and C(x) = a|x−z|+b
appearing in the definitions of h and h, respectively. Since C ≤ f ≤ C on ∂U ,
z, z ∈ ∂U and a > A+ ≥ A− > a, the set where C > C is bounded contains
neither vertex and the two cones agree on the boundary. Arguing as above, we
conclude that the set is empty and so C ≤ C throughout Rn. This readily implies
h ≤ h in Rn. In particular, h and h are locally bounded, and thus the fact that
h (respectively, h) enjoys comparison with cones from above (below) follows from

Lemma 2.12. Moreover, in light of Lemma 2.9, h and h are continuous in U .
It remains to be checked that h and h are continuous on ∂U . Since h is upper

semicontinuous (as an infimum of continuous functions) and h is lower semicontin-
uous in Rn, we obtain, using (3.4) and h ≤ h, that

(3.8) f(x) ≤ lim inf
y→x

h(y) ≤ lim inf
y→x

h(y) ≤ lim sup
y→x

h(y) ≤ f(x)

for all x ∈ ∂U . This shows the continuity of h, and h is treated analogously. �

We need one final lemma before completing the proof of Theorem 3.1.

Lemma 3.3. Suppose u ∈ C(U) enjoys comparison with cones from above on U
but u does not enjoy comparison with cones from below on U . Then there exists a
nonempty set W ⊂⊂ U and a cone function C(x) = a|x − z| + b with z 6∈ W such
that u = C on ∂W , u < C on W , and the function û defined by

(3.9) û = u on U \ W and û = C on W

satisfies û ∈ CCA(U). Moreover, if u is Lipschitz continuous in U , then so is û
and Lû(U) ≤ Lu(U).

Proof. By Remark 2.3, there exist W and C satisfying the conditions of the lemma.
Let û be given by (3.9). The point here is that û then enjoys comparison with cones

from above in U . Suppose not. Then, by Remark 2.3, there exist W̃ ⊂⊂ U and

C̃(x) = b̃ + ã|x − z̃|, z̃ 6∈ W̃ , such that û = C̃ on ∂W̃ while û > C̃ in W̃ . As

u ∈ CCA(U) and u ≤ û = C̃ on ∂W̃ , we have u ≤ C̃ in W̃ . This implies that

W̃ ⊂ W . Thus on ∂W̃ , C̃ = û = C, which implies, via Section 1.4, that C̃ ≡ C ≡ û

in W̃ . Hence W̃ = ∅, and we have reached a contradiction.
Finally, since

Lû(W ) = LC(∂W ) = Lu(∂W ) ≤ Lu(U),

it is easy to see that Lû(U) = max{Lû(W ), Lû(U \ W )} ≤ Lu(U). �

We complete the proof of Theorem 3.1. Define

(3.10) u(x) := sup{v(x) : h ≤ v ≤ h and v ∈ CCA(U)}.
Observe that, by Lemma 3.2, the set on the right includes h, so u is well defined,
and, moreover, it enjoys comparison with cones from above by Lemma 2.12. By
(3.4) u ∈ C(U) and u = f on ∂U . Thus either u enjoys comparison with cones,
and then u ∈ AM(U) and we are done, or u does not enjoy comparison with cones
from below. If u /∈ CCB(U), Lemma 3.3 provides a larger û enjoying comparison
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with cones from above and agreeing with u off a nonempty set W ⊂⊂ U on which
û = C > u. Clearly h ≤ û. We claim that also û ≤ h in U , which contradicts
the definition of u. To see that û ≤ h, assume this is false. Then the set on which
û > h, call it W ∗, is clearly contained in W , where û = C. Thus h = C on ∂W ∗

and, since h enjoys comparison with cones from below, h ≥ C in W ∗. But then W ∗

is empty, a contradiction.

Remark 3.4. Let us take a closer look at the nature of Theorem 3.1. The proof
really consists of two parts. The first is the construction of h and h which satisfy
h, h ∈ C(U), h ≤ h, h ∈ CCA(U), h ∈ CCB(U) and h = h = f on ∂U . The second
is a proof that whenever one has a pair h, h with these properties, then u given by
(3.10) satisfies u ∈ C(U ) ∩ AM(U) and u = f on ∂U .

As regards the construction of h, h, one should realize that for given f and
U , various choices can be available for A± and B±. Moreover, the solution “con-
structed” in the proof of the theorem depends on this choice. For an extreme
example, if U = Rn \ {0} and f(0) = 0, we can take A± = B± = 0. Then the
procedure constructs u ≡ 0. However, we can also take A± = −1, B± = 0, and the
solution constructed is then u(x) ≡ −|x|. In particular, if the boundary data f is
bounded, then there is a bounded u ∈ C(U) ∩ AM(U) such that u = f on ∂U and

(3.11) inf
∂U

f ≤ u ≤ sup
∂U

f.

This follows simply upon taking A+ = A− = 0, B+ = sup f , and B− = inf f .
However, if U is unbounded, the example above shows that it is certainly not true
that every u ∈ AM(U) with u = f on ∂U satisfies (3.11).

Another important case is when f is Lipschitz continuous. Then we may choose
as h and h the McShane-Whitney extensions of f :

Ψ(f)(x) = inf
y∈∂U

(f(y) + Lf (∂U)|x − y|),

Λ(f)(x) = sup
y∈∂U

(f(y) − Lf (∂U)|x − y|),

to find that

u(x) := sup{v(x) : Λ(f) ≤ v ≤ Ψ(f), v ∈ CCA(U) and Lv(U) = Lf (∂U)}
satisfies u ∈ AM(U), u = f on ∂U and

(3.12) Lu(U) = Lf (∂U).

Indeed, the constraint Lv(U) = Lf (∂U) is preserved both by taking a supremum
and by the construction of Lemma 3.3 used above. See also Theorem 4.1 and
Section 9. Again, (3.12) is not true for an arbitrary u ∈ AM(U) with u = f on ∂U
if U is unbounded. In fact, even the stringent condition f ≡ 0 does not guarantee
the weaker property of Lipschitz continuity of such a u. (See Example 4.12 below
and note that u(x, y) = 0 on the line y = x.) On the other hand, if U is bounded,
then Lu(U) = Lu(∂U) for every u ∈ AM(U)∩C(U ), as is shown in the next section
(Remark 4.8).

3.1. Notes. The first result regarding the existence of u ∈ AM(U), originally for-
mulated in the case of a bounded open set U with given Lipschitz continuous data
on the boundary, also goes back to Aronsson [5]. His implementation of Perron’s
method, appearing already in [3] and [4], can be used to produce a solution to the
extension problem in a fairly abstract setting, as noted in [57], [49] and [27]. The
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more concrete variant used in this paper can be used for this purpose as well. We
note again that Theorem 3.1 is considerably more general than results currently
available in the literature.

Another popular approach to existence, also proposed in [5], uses an approxima-
tion procedure involving calculus of variations problems with Lp functionals. The
idea has been made precise in [18]; see also [47], [64], [50], [39], [48], [19], [20], [13],
[54] for further results. This approach requires much deeper prerequisites and, at
first glance, seems to provide a solution to a different “absolute minimization” prob-
lem. We settle this ambiguity in the next section and discuss the approximation
procedure in Section 8.

4. Equivalences

In this section we show that the condition that u be absolutely minimizing
is equivalent to a number of other criteria besides comparison with cones. One
of these replaces the requirement that for each V ⊂⊂ U u minimizes the Lips-
chitz constant Lu(V ) among functions which agree with u on ∂V (aka “u is ab-
solutely minimizing”) with minimizing the functional supx∈V (Tu(x)) (aka “u is
strongly absolutely minimizing”; see Section 1.5). This is equivalent to minimizing
ess supx∈V (|Du(x)|∗). Another important criterion, which is presented here in the
case where | · | is the Euclidean norm, is that u should be a “viscosity solution”
of the infinity Laplace equation (0.7) (the definition of which is criterion (g) of
Theorem 4.1 below; see also Definition 4.10). This criterion is useful for showing
that specific functions are absolutely minimizing.

4.1. Formulation of the Equivalences. Theorem 4.1 lists the equivalences men-
tioned above as well as a number of others. The theorem is intended to display
in one place all of the kinds of equivalences of importance to us and others which
merely illuminate the situation. Thus it repeats facts already proved (e.g., that u is
absolutely minimizing if and only if it enjoys comparison with cones). For purposes
of comparison of the conditions, the statement uses the definitions rather than the
names already given. Of course, providing this stand-alone panorama of equiva-
lences comes with a loss of elegance, but it is worth the price. The various conditions
are discussed after the statement. Theorem 4.1 is followed by Proposition 4.4, which
consists of “one-sided” equivalences corresponding to the “two-sided” versions in
the theorem. The last result formulated in this section, Proposition 4.5, implies
that all the conditions considered herein are completely local; that is, if every point
of a set has a neighborhood in which they hold, then they hold on the set itself.

Theorem 4.1. Let u ∈ C(U). Then the following conditions, when imposed for
every V ⊂⊂ U , are equivalent:

(a) If L ∈ [0,∞] and

|u(w) − u(z)| ≤ L|w − z| for w, z ∈ ∂V,

then

|u(x) − u(y)| ≤ L|x − y| for x, y ∈ V.

(b) If x ∈ V , then Λ (u|∂V ) (x) ≤ u(x) ≤ Ψ (u|∂V ) (x).
(c) If a ∈ R and C(x) = a|x − z| where z 6∈ V , then for x ∈ V

min
w∈∂V

(u(w) − C(w)) ≤ u(x) − C(x) ≤ max
w∈∂V

(u(w) − C(w)).
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(d) If v ∈ C(V ) satisfies v = u on ∂V , then

sup
x∈V

(Tu(x)) ≤ sup
x∈V

(Tv(x)).

The next two conditions are also equivalent to the above and do not involve the “test
set” V :

(e) If y ∈ U , then

(i) g+(r) = max
|w−y|≤r

u(w) is convex for 0 ≤ r < dist (y, ∂U) and

(ii) g−(r) = min
|w−y|≤r

u(w) is concave for 0 ≤ r < dist (y, ∂U).

(f) If y ∈ U and |x − y| ≤ r < dist (y, ∂U), then

(i) u(x) ≤ u(y) + max
|w−y|=r

(
u(w) − u(y)

r

)
|x − y| and

(ii) u(x) ≥ u(y) + min
|w−y|=r

(
u(w) − u(y)

r

)
|x − y|.

In the case that | · | is the Euclidean norm, the following condition is also equivalent
to those above:

(g) If φ ∈ C2(U) and u − φ has a local maximum at x̂ ∈ U , then

∆∞φ(x̂) :=

n∑

i,j=1

φxi
(x̂)φxj

(x̂)φxixj
(x̂) ≥ 0;

and if u − φ has a local minimum at x̂ ∈ U , then ∆∞φ(x̂) ≤ 0.

Remark 4.2. Condition (a) is a restatement of the definition of u ∈ AM(U). Condi-
tion (b) reintroduces the McShane-Whitney extensions, showing that they are “still
around” and can be used to determine if a function is absolutely minimizing. They
also reappear in an essential way in the appendix Section 9. As regards (b), the
reader should recall Remark 1.2. Condition (c) is a restatement of the definition
of u ∈ CC(U). Condition (d) is a restatement of the definition of u ∈ AMS(U).
Conditions (e) and (f) are closely related and were derived from (c) in Lemma 2.6
(upon applying Remark 2.8). One interesting aspect of these conditions is that they
follow from comparisons with cones where V is the annulus between two concentric
spheres or merely a punctured ball. In particular, via (f), comparison with cones
on punctured balls is sufficient to imply absolutely minimizing. The formulation of
(e) is elegant and supplies geometrical intuition. The viscosity solution characteri-
zation of (g) shows, in the case of the Euclidean norm, that the property of being
absolutely minimizing is completely local. This is true in general via Proposition
4.5 below; however, the proof of this fact in the general case has a different flavor.

Example 4.3. We give one example of the use of (e) to verify that an important
class of functions is absolutely minimizing. Suppose that u ∈ C1(U) and solves the
“eikonal” equation

(4.1) |Du(x)|∗ = 1 for x ∈ U,

where | · |∗ is the norm dual to | · |. We claim then that

(4.2) g+(r) = max
|w−y|≤r

u(w) = u(y) + r, g−(r) = min
|w−y|≤r

u(w) = u(y) − r.
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Thus u ∈ AM(U) by (e). Since

u(z) − u(x) =

∫ 1

0

d

dt
u(x + t(z − x)) dt

=

∫ 1

0

〈Du(x + t(z − x)), z − x〉 dt

≤
∫ 1

0

|Du(x + t(z − x))|∗|z − x| dt = |z − x|,

it is clear that g+(r) is Lipschitz continuous with constant 1. Fix 0 ≤ r and
let |wr − y| ≤ r and g+(r) = u(wr). Choose p ∈ Rn such that |p| = 1 and
〈Du(wr), p〉 = 1. Then, for h > 0,

g+(r + h) ≥ u(wr + hp) = u(wr) + h〈Du(wr), p〉 + o(h) = g+(r) + h + o(h).

Thus (g+(r+h)−g+(r))/h ≥ 1+o(1). Since g+(r) is also Lipschitz with constant 1,
we conclude that its derivative is 1 almost everywhere, verifying the first assertion
of (4.2). The proof for g− is analogous.

The simplest examples of solutions to (4.1) are nonconstant affine functions.
Another important class of C1 solutions to the eikonal equation, when | · | is the
Euclidean norm, is provided by the distance functions to convex sets. Considering
distance functions to line segments in the plane, we see that these functions are C1

but are not necessarily C2. Cone functions are constant multiples of the distance
functions to points.

If | · | is not the Euclidean norm, then even cone functions are not C1 away
from their vertices. For example, if |x| = |x1| + |x2| + . . . + |xn|, then |x| is not
differentiable at any point of any plane xj = 0. Nonetheless, if K ⊂ Rn is convex,
then

u(x) = dist (x, K) ∈ AM(Rn \ K).

This follows from the fact that u satisfies (e), the simple verification of which we
leave to the reader. Note that if u is Lipschitz and satisfies (4.1) almost every-
where in Rn, then it need not be absolutely minimizing in Rn. Cone functions are
examples.

The various equivalent conditions of Theorem 4.1, with the possible exception of
(d), split in a natural way into two one-sided conditions, and the corresponding one-
sided conditions are also equivalent. Moreover, even (d) has a one-sided analogue.
Once the equivalences of the one-sided conditions are established, Theorem 4.1
follows quickly. Two-sided results are typically obtained by applying the one-sided
result to u and −u. Here are the one-sided versions:

Proposition 4.4. Let u ∈ C(U). Then the following conditions, when imposed for
every V ⊂⊂ U , are equivalent:

(a) If L ∈ [0,∞], z ∈ ∂V and

u(w) ≤ u(z) + L|w − z| for w ∈ ∂V,

then

u(x) ≤ u(z) + L|x − z| for x ∈ V.

(b) If x ∈ V , then u(x) ≤ Ψ (u|∂V ) (x).
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(c) If a ∈ R and C(x) = a|x − z| where z 6∈ V , then for x ∈ V

u(x) − C(x) ≤ max
w∈∂V

(u(w) − C(w)).

(d) If v ∈ C(V ) satisfies v = u on ∂V and v ≤ u in V , then

sup
x∈V

(Tu(x)) ≤ sup
x∈V

(Tv(x)).

The next two conditions are also equivalent to the above and do not involve the
general “test set” V :

(e) If y ∈ U , then

g+(r) = max
|w−y|≤r

u(w) is convex for 0 ≤ r < dist (y, ∂U).

(f) If x, y ∈ U and |x − y| ≤ r < dist (y, ∂U), then

u(x) ≤ u(y) + max
|w−y|=r

(
u(w) − u(y)

r

)
|x − y|.

In the case that | · | is the Euclidean norm, the following condition is also equivalent
to those above:

(g) If φ ∈ C2(U) and u − φ has a local maximum at x̂ ∈ U , then

∆∞φ(x̂) :=
n∑

i,j=1

φxi
(x̂)φxj

(x̂)φxixj
(x̂) ≥ 0.

Gloriously, there is more.

Proposition 4.5. Let u ∈ C(U). Assume that for each x ∈ U there is a neighbor-
hood V ⊂⊂ U of x such that u ∈ CCA(V ). Then u ∈ CCA(U).

It follows that all of the conditions of Theorem 4.1 and Proposition 4.4 are
completely local; they hold in U iff they hold in some neighborhood of every point
in U .

We launch into the proofs. Given the complexity of the statements, it is not
surprising that the proofs will take some time. The arguments are packaged as
follows. First, the discussion of the viscosity solution characterizations is deferred
until Section 4.4. The following Section 4.2 treats the other equivalences asserted
in Proposition 4.4 and ends with the proof of Proposition 4.5. It is followed by
Section 4.3, which contains the proofs of the “nonviscosity” assertions of Theo-
rem 4.1. In Section 5 the equation corresponding to the infinity Laplacian in the
more complex situation of general norms is discussed. In Section 5 the reader will
see why the viscosity solution characterization is not asserted in general (although,
suitably stated, it holds for “nice” norms; see Remark 6.7).

4.2. Proof of the One-Sided Equivalences (a)-(f). Here is a road map of the
sequence of implications we will establish:

The Road Map

(i) (a) =⇒ (b), (ii) (c) =⇒ (a), (iii) (c) =⇒ (f),
(iv) (c) =⇒ (e), (v) (e) =⇒ (f), (vi) (b) =⇒ (c),
(vii) (d) =⇒ (c), (viii) (f) =⇒ (d).
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We could eliminate (iii) and have a minimal set of 7 implications needed to
establish the equivalence of the 6 criteria, but we would not save any work by doing
so. The following implications are obvious or have already been established:

(i) (obvious), (ii) (obvious), (iii) (Lemma 2.6),

(iv) (Lemma 2.6), (v) (proof of Lemma 2.6 and Lemma 2.13).

We now prove (vi): (b) =⇒ (c). Suppose that (b) holds, but u /∈ CCA(U).
Then, by Remark 2.3, there is a nonempty set W ⊂⊂ U and a cone function
C(x) = a|x − z| + b with z /∈ W such that u = C on ∂W but u > C on W .
By (b), u ≤ Ψ (C|∂W ) in W . However, by Section 1.4, Ψ (C|∂W ) = C, since it
is an extension with the same Lipschitz constant. Thus u ≤ C in W , which is a
contradiction.

We now prove (vii). To show that (d) implies (c) (equivalently, u ∈ CCA(U)),
assume that u /∈ CCA(U). Then, by Remark 2.3, there exists a nonempty W ⊂⊂ U
and a cone function C(x) = a|x − y| + b with y /∈ W such that

(4.3) u = C on ∂W and u > C in W.

By (d) with v = C, Tu(x) ≤ Tv(x) = |a| in W . By Remark 2.16, we then have

(4.4) |u(z) − u(w)| ≤ |a||z − w| if [w, z] ⊂ W.

Clearly, by continuity, 4.4 continues to hold if [w, z] \ {z, w} ⊂ W . We claim that
in fact (4.4) holds for all z, w ∈ W . When this is established, we are done, for
then Lu(W ) = LC(W ) and u = C on ∂W implies u = C in W by Section 1.4, a
contradiction to (4.3).

Let z, w ∈ W and [w, z] \ {z, w} 6⊂ W . Then there will be y∗, y∗∗ ∈ ∂W ∩ [w, z]
such that [w, y∗] \ {y∗} ⊂ W , [y∗∗, z] \ {y∗∗} ⊂ W and

|w − z| = |w − y∗| + |y∗ − y∗∗| + |y∗∗ − z|.
That is, y∗ (y∗∗) is the first (respectively, last) point of intersection of the line
segment from w towards z with ∂W . Then

|u(w) − u(z)| ≤ |u(w) − u(y∗)| + |u(y∗) − u(y∗∗)| + |u(y∗∗) − u(z)|
≤ |a||w − y∗| + |C(y∗) − C(y∗∗)| + |a||y∗∗ − z|
≤ |a||w − y∗| + |a||y∗ − y∗∗| + |a||y∗∗ − z| = |a||w − z|.

We have used (4.4) and the comment following it on [w, y∗] and [y∗∗, z] as well as
u = C on ∂W .

Remark 4.6. Observe that the argument above shows that if u ∈ C(V ) and

|u(x) − u(y)| ≤ Lu(∂V )|x − y|
whenever [x, y] ⊂ V , then Lu(V ) = Lu(∂V ).

The remaining implication, (viii) of the road map, will use the tool provided
by Proposition 4.7 below. We state the proposition, then use it to establish (viii).
The generality provided by the parameter δ in the proposition plays no role in this
work; it is for future reference.

Proposition 4.7. Let U be bounded and u ∈ C(U) satisfy Proposition 4.4 (f),
x0 ∈ U , S+(x0) > 0 and δ > 0. Then there is a sequence of points {xj}∞j=1 ⊂ U
and a point x∞ ∈ ∂U with the following properties:

(i) |xj − xj−1| ≤ δ for j = 1, 2, . . . .
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(ii) [xj−1, xj ] ⊂ U for j = 1, 2, . . . .
(iii) S+(xj) ≥ S+(xj−1) for j = 1, 2, . . . .
(iv) x∞ = limj→∞ xj .
(v) u(x∞) − u(x0) ≥ S+(x0)

∑∞
j=1 |xj − xj−1|.

We prove (viii) of the road map, (f) =⇒ (d). Assume that (f) holds but (d)
does not. Then there are V ⊂⊂ U , v ∈ C(V ) and x0 ∈ V for which

(4.5) u ≥ v in V, u = v on ∂V and Tu(x0) > sup
x∈V

Tv(x).

Take the point x0 of (4.5) as the x0 of Proposition 4.7 and take U of the propo-
sition to be the V of (4.5). Recall Tu(x0) = S+(x0) by Lemma 2.15. Let xj be
provided by the proposition; in particular, x∞ ∈ ∂V . Then, via Proposition 4.7
(v), Remark 2.16 and (4.5),

u(x∞) − u(x0) ≥ S+(x0)

∞∑

j=1

|xj − xj−1|

> sup
V

Tv




∞∑

j=1

|xj − xj−1|


 ≥

∞∑

j=1

|v(xj) − v(xj−1)|

≥
∞∑

j=1

(v(xj) − v(xj−1)) = v(x∞) − v(x0).

(4.6)

Since u = v on ∂V , u(x∞) = v(x∞), and the above implies u(x0) < v(x0), contra-
dicting (4.5).

We proceed with the proof of Proposition 4.7, the notation and assumptions
of which are now adopted. Let x0 ∈ U and S+(x0) > 0. Iteratively define xj ,
j = 1, 2, . . . so that

(4.7) |xj − xj−1| = min
(
δ, dist (xj−1, ∂U)/2

)

and

(4.8)
u(xj) − u(xj−1)

|xj − xj−1| = S+(xj−1, |xj − xj−1|).

By (2.30) of Lemma 2.18,

(4.9) S+(xj−1, |xj − xj−1|) ≥ S+(xj−2, |xj−1 − xj−2|)
for j = 2, 3, . . . . Indeed, compare this statement with the redisplay (2.36) of the
required part of (2.30). Thus, by the construction,

u(xj) − u(xj−1) = |xj − xj−1|S+(xj−1, |xj − xj−1|)
≥ |xj − xj−1|S+(x0, |x1 − x0|)
≥ |xj − xj−1|S+(x0).

These inequalities may be summed from j = 1 to m to find

(4.10) u(xm) − u(x0) ≥ S+(x0)

m∑

j=1

|xj − xj−1|.
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Since u is bounded in U and S+(x0) > 0 by assumption, (4.10) implies that {xj}
is Cauchy and converges to a limit xj → x∞ ∈ U ; moreover, x∞ ∈ ∂U by (4.7).
Passing to the limit m → ∞ in (4.10) and using u ∈ C(U), we obtain

(4.11) u(x∞) − u(x0) ≥ S+(x0)
∞∑

j=1

|xj − xj−1|.

We have now completed the road map and therefore have proved that (a)-(f) of
Proposition 4.4 are equivalent.

The work of this section is completed by proving Proposition 4.5. We just sketch
the proof. Under the assumptions of Proposition 4.5, if y ∈ U , the function

g+(r) = max
{w:|w−y|≤r}

u(w)

will be convex for 0 ≤ r ≤ δ where δ is a (possibly small) positive number. This is
because u ∈ CCA(Bδ(y)) for some δ > 0, and we have the equivalence of (c) and
(e) in Proposition 4.1. Let R be the largest number satisfying 0 < R ≤ dist (y, ∂U)
such that g+(r) is convex on [0, R). If R = dist (y, ∂U), we are done. Assuming
that R < dist (y, ∂U), we will derive a contradiction. By compactness and the
assumptions, there is some number 0 < κ < dist (y, ∂U)−R such that for |w−y| = R

g+
w (r) = max

{z:|z−w|≤r}
u(z)

is convex on [0, κ]. Then

(4.12) g+(R + s) = max
{w:|w−y|=R}

g+
w (s)

for 0 ≤ s ≤ κ (we are implicitly using Lemma 2.13). As the supremum of convex
functions is convex, g+(R + s) is convex in s for 0 ≤ s ≤ κ. One easily sees that
g+(r) is then convex on 0 ≤ r ≤ R + κ if and only if the left derivative of g+(r)
at r = R is less than or equal to the right derivative of g+(r) at r = R. But if
w, |w − y| = R, is chosen so that g+(R) = u(w), the right derivative of g+

w(s) at
0, which is less than or equal to the right derivative of g+(r) at r = R by (4.12),
enjoys the desired estimate by (the proof of) Lemma 2.18. Using the equivalence
of (c) and (e), we are done.

4.3. Proof of the Two-Sided Equivalences (a)-(f). The equivalence of (a),
(b), (c), (e) and (f) of Theorem 4.1 follows immediately from the equivalences es-
tablished for Proposition 4.4. For example, let us show that Theorem 4.1 (f) implies
Theorem 4.1 (c). If Theorem 4.1 (f)(i) holds, then u ∈ CCA(U) by Proposition 4.4.
If Theorem 4.1 (f)(ii) holds, then −u satisfies condition (f)(i) in place of u and thus
−u ∈ CCA(U), which is the same as u ∈ CCB(U). All the two-sided conditions are
implied by the one-sided conditions of Proposition 4.4 applied to both u and −u,
although a couple of minor arguments are required. To show that Proposition 4.4
(a) for u and −u implies Theorem 4.1 (a) for u, one employs the argument in the
proof of Proposition 2.1. To show that Proposition 4.4 (d) for u and −u implies
Theorem 4.1 (d), we proceed as below.

Let u and −u both satisfy Proposition 4.4 (d). Let v ∈ C(V ), u = v on ∂V .
Then by the assumptions, on the sets V + = {x ∈ V : u(x) > v(x)} and V − = {x ∈
V : −u(x) > −v(x)} we have
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Tu(x) ≤ sup
V +

Tv ≤ sup
V

Tv for x ∈ V +,

Tu(x) = T(−u)(x) ≤ sup
V −

Tv ≤ sup
V

Tv for x ∈ V −.
(4.13)

Thus if Tu(x0) > supV Tv at some point x0 ∈ V , it must be that u(x0) = v(x0).
Assuming this, choose a small r > 0 and x1, |x1−x0| = r, such that u(x1) maximizes
u on the sphere of radius r about x0. Then, using S+(x0) = Tu(x0),

u(x1) − u(x0) = S+(x0, |x1 − x0|)|x1 − x0|
≥ S+(x0)|x1 − x0| > sup

V
Tv|x1 − x0|

≥ v(x1) − v(x0) = v(x1) − u(x0).

Thus x1 ∈ V +. On the other hand, using Lemma 2.18,

Tu(x1) = S+(x1) ≥ S+(x0) = Tu(x0) > sup
V

Tv,

contradicting (4.13).

Remark 4.8. Suppose U is bounded, u ∈ C(U) ∩ AM(U) and Lu(∂U) < ∞. Then
Lu(U) = Lu(∂U). Indeed, the proof of (viii) of the road map applied to both u
and −u shows that Tu(x) ≤ Lu(∂U) for x ∈ U ; the function v in the proof of (viii)
can in this case be any function for which Lv(U) = Lu(∂U). We combine this with
Remarks 4.6 and 2.16 to verify the assertion. We recall that this claim is not true
for unbounded sets U by the examples of Section 1.3.

4.4. Viscosity Solutions and the Infinity Laplace Operator in the Eu-
clidean Norm. We begin by quickly deriving the infinity Laplace equation (which
is defined below) from simple considerations of comparison with cones, independent
of the concept of viscosity solutions (also defined below). Let u :U → R satisfy

(4.14) u(x) ≤ u(y) + sup
{w:|w−y|=r}

(
u(w) − u(y)

r

)
|x − y|

whenever y ∈ U and |x−y| ≤ r < dist (y, ∂U). By Proposition 4.4 this is equivalent
to u ∈ CCA(U).

Suppose that | · | is the Euclidean norm:

(4.15) |x|2 =

n∑

j=1

x2
j .

Suppose that u is twice differentiable at y in the sense that there is a point p ∈ Rn

and a symmetric n × n matrix X such that

(4.16) u(x) = u(y) + 〈p, x − y〉 +
1

2
〈X(x − y), x − y〉 + o(|x − y|2)

as x → y. We claim then that

(4.17) 〈Xp, p〉 ≥ 0.

Just as we defined Du in the pointwise sense in Section 1.5, when (4.16) holds
the point p and the matrix X are uniquely determined and we define Du(y) := p,
D2u(y) := X . D2u is the Hessian of u. We can then rewrite (4.17) as ∆∞u(y) ≥ 0
via the definition

(4.18) ∆∞u = 〈D2uDu, Du〉 = uxi
uxj

uxixj
,
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where the summation convention is employed.
We will prove (4.17) assuming, without loss of generality, that y = 0 and p 6= 0

((4.17) is trivial if p = 0). Using (4.16) in (4.14) and writing w = rω where |ω| = 1,
we are led to

(4.19) 〈p, x〉 +
1

2
〈Xx, x〉 + o(|x|2) ≤

(
sup

{ω:|ω|=1}

(
〈p, ω〉 +

r

2
〈Xω, ω〉

)
+ o(r)

)
|x|.

Dividing both sides by |x|, writing x̂ = x/|x| and using |x| ≤ r, we obtain

(4.20) 〈p, x̂〉 + |x|1
2
〈Xx̂, x̂〉 ≤ sup

{ω:|ω|=1}

(
〈p, ω〉 +

r

2
〈Xω, ω〉

)
+ o(r).

Letting x → 0 with x̂ = p̂, we find

|p| ≤ sup
{ω:|ω|=1}

(
〈p, ω〉 +

r

2
〈Xω, ω〉

)
+ o(r).(4.21)

When r = 0 the max on the right is achieved only at ω = p̂. Thus any maximum
point ωr for r > 0 satisfies ωr → p̂ as r → 0. Then we have

|p| ≤ 〈p, ωr〉 +
r

2
〈Xωr, ωr〉 + o(r)

≤ |p| + r

2
〈Xp̂, p̂〉 + o(r).

(4.22)

It follows that 〈Xp, p〉 ≥ 0. Similarly,

(4.23) u(x) ≥ u(y) + min
{w:|w−y|=r}

(
u(w) − u(y)

r

)
|x − y|

implies that 〈Xp, p〉 ≤ 0.
Altogether we have shown that if u ∈ AM(U) = CC(U) is twice differentiable

at a point y, then ∆∞u(y) = 0. For example, C(x) = a|x − z| + b is absolutely
minimizing in Rn \ {z}, so we learn that ∆∞C ≡ 0 in Rn \ {z}.
Remark 4.9. In the case of the Euclidean norm, one easily sees that if u is smooth,
then

∆∞u =
1

2
〈D(|Du|2), Du〉.

This provides a proof that C2 solutions of the eikonal equation (4.1) are absolutely
minimizing, but we already know that it suffices to have C1 regularity (Exam-
ple 4.2). More generally, we see that if u is C2, ∆∞u = 0 is equivalent to |Du|
being constant on gradient flow lines of u. That is, if γ is a curve in Rn such that

d

dt
γ(t) = Du(γ(t)),

then
d

dt
|Du(γ(t))|2 = 2∆∞u(γ(t)).

Thus, for example, the angular coordinate θ in plane polar coordinates satisfies
∆∞θ = 0.

We already know that u ∈ AM(U) does not imply that u is twice differentiable at
every point of U . The distance to a line segment in the plane provides an example
(see Example 4.3). We also have the example of cone functions, which are Lipschitz
continuous and C2 outside their vertices and satisfy ∆∞C = 0 except at the vertex,
but which are not absolutely minimizing in Rn.
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It is a happy and somewhat surprising fact that, nonetheless, the equation
∆∞u = 0, properly interpreted, characterizes the class of absolutely minimizing
functions. We restate the definition of a viscosity solution here in a manner differ-
ent from, but obviously equivalent to, the statement in Theorem 4.1.

Definition 4.10. A function u ∈ C(U) satisfies ∆∞u ≥ 0 in U in the viscosity
sense if V ⊂ U , v ∈ C2(V ) and ∆∞v(x) < 0 for x ∈ V , then u − v does not have
any local maximum points in V . Similarly, a function u ∈ C(U) satisfies ∆∞u ≤ 0
in U in the viscosity sense if V ⊂ U , v ∈ C2(V ) and ∆∞v(x) > 0 for x ∈ V , then
u−v does not have any local minimum points in V . Finally, u ∈ C(U) is a viscosity
solution of ∆∞u = 0 in U if ∆∞u ≥ 0 and ∆∞u ≤ 0 in U in the viscosity sense.

Example 4.11. Let u ∈ C2(U) satisfy ∆∞u = 0 in U . Then u is a viscosity
solution of ∆∞u = 0 in U . To see this, suppose V ⊂ U , v ∈ C2(V ), ∆∞v < 0 in
V . If Dv(x) = Du(x) and D2u(x) ≤ D2v(x) (as must be the case if u − v has a
local maximum point at x), it would follow that

0 > ∆∞v(x) = 〈D2v(x)Dv(x), Dv(x)〉
= 〈D2v(x)Du(x), Du(x)〉
≥ 〈D2u(x)Du(x), Du(x)〉
= ∆∞u(x) = 0,

a contradiction. Hence u− v cannot have a local maximum. Thus ∆∞u ≥ 0 in the
viscosity sense. The “other side” is analogous.

Conversely, if u ∈ C2(U) satisfies ∆∞u ≥ 0 in U in the viscosity sense, then
∆∞u(x) ≥ 0 for every x ∈ U . This follows immediately from the definition as
every point is a maximum point for 0 = u − u.

Example 4.12. We claim that u(x, y) := x4/3 − y4/3 is a viscosity solution of
∆∞u = 0 in R2. (As one of the authors objected to this notation, we mention
that we regard x4/3 = (x4)1/3 as well-defined for x ∈ R.) This is an important
example in the subject as it is, as of the moment, the least regular absolutely
minimizing function known in the case of the Euclidean norm. Up to this point, in
the case of the Euclidean norm, the least regular absolutely minimizing functions
that have been exhibited are the distance functions to convex sets. These functions
have locally Lipschitz continuous first derivatives. The current example has first
derivatives which are merely Hölder continuous with exponent 1/3.

A calculation verifies ∆∞u = 0 off the axes x = 0 and y = 0. However, u is not
twice differentiable on the axes. Hence, if v is twice continuously differentiable and
∆∞v < 0, then any local maximum (x0, y0) of u(x, y)− v(x, y) must be of the form
(0, y0) or (x0, 0). Assume, to illustrate, that u − v has a maximum at (0,1). Then

u(x, 1) − v(x, 1) = x4/3 − 1 − v(x, 1) ≤ u(0, 1)− v(0, 1) = −1 − v(0, 1)

for x near 0. Thus x4/3 ≤ v(x, 1) − v(0, 1), which cannot hold for a twice continu-
ously differentiable function v as x → 0.

The argument above did not use that ∆∞v < 0. We do need this to rule out (1, 0)
as a local maximum point of u − v. If (1,0) is a maximum point, then vy(1, 0) =
uy(1, 0) = 0 and therefore ∆∞v(1, 0) = v2

x(1, 0)vxx(1, 0). Hence vxx(1, 0) < 0. But
this contradicts

x4/3 − v(x, 0) ≤ 14/3 − v(1, 0)

for x near 1, as this implies vxx(1, 0) ≥ (4/3)(1/3).
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In view of these examples and the next result, C2 solutions of ∆∞u = 0 and
(x, y) 7→ x4/3 − y4/3 are absolutely minimizing.

Theorem 4.13. Let u ∈ C(U). Then u is absolutely minimizing in U if and only
if u is a viscosity solution of ∆∞u = 0 in U .

Proof. We will in fact show that u ∈ CCA(U) iff ∆∞u ≥ 0 in U in the viscosity
sense. The theorem then follows upon applying this result to −u to obtain “the
other side”.

Assume first that ∆∞u ≥ 0 in U in the viscosity sense. We claim then that
u ∈ CCA(U). If not, by Remark 2.3, there is a V ⊂⊂ U and a cone function
C(x) = a|x − z| + b with z /∈ V such that u = C on ∂V and u > C in V . Adding
a small constant to C, we can assume u < C on ∂V and still have {x ∈ V : u(x) >
C(x)} 6= ∅. Thus we have

(4.24) u < C on ∂V, {x ∈ V : u(x) > C(x)} 6= ∅.
If for each ǫ > 0 we can find a perturbation P ∈ C2(V ) such that |P | ≤ ǫ in V and

∆∞(C + P ) ≤ −δ < 0 in V,

we will be done. Indeed, since |P | ≤ ǫ, (4.24) implies that the maximum of the
function u− (C +P ) over V is attained in V if ǫ is sufficiently small. But in view of
∆∞(C +P ) < 0 in V , this contradicts the assumption that u is a viscosity solution
of ∆∞u ≥ 0.

Suitable perturbations can be explicitly constructed. Put P = −γ|x − z|2 and
γ > 0. Then C(x) + P (x) = G(|x − z|) where G(s) = as − γs2 + b. A direct
computation shows that

∆∞G(|x − z|) = G′′(|x − z|)G′(|x − z|)2,
so ∆∞(C + P )(x) = −2γ(2γ|x − z| − a)2. This is strictly negative in V if either
a ≤ 0 or if a > 0 and 0 < γ is sufficiently small. If γ is sufficiently small, we also
attain |P | ≤ ǫ in V .

It remains to see that u ∈ CCA(U) implies that ∆∞u ≥ 0 in the viscosity sense.
Assume not, so that there are V ⊂⊂ U and v ∈ C2(V ) such that ∆∞v < 0 in V
and u − v has a local maximum point in V . Without loss of generality, we may
assume that this point is 0. Then 0 ∈ V and for some r > 0,

(4.25) u(x) − v(x) ≤ u(0) − v(0) for |x| < r.

We seek z ∈ Rn \ {0} and a ≥ 0 such that C(x) = a|x − z| satisfies

(4.26) DC(0) = Dv(0) and D2C(0) > D2v(0).

Let us assume for a moment that C does satisfy (4.26). Elementary calculus then
implies that v − C has a strict maximum point at 0, for the gradient of v − C
vanishes at 0 and the Hessian is strictly negative. That is,

v(x) − C(x) < v(0) − C(0) for small |x| 6= 0.

Using this in conjunction with (4.25), we obtain

u(x) ≤ v(x) − v(0) + u(0) < C(x) − C(0) + u(0) for small |x| 6= 0.

The point is that u(x) < C̃(x) := C(x)−C(0)+u(0) on |x| = s if s > 0 is sufficiently

small, but u(0) = C̃(0), contradicting u ∈ CCA(U).
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It remains to show that C(x) = a|x − z| satisfying (4.26) can be constructed.
We compute

DC(0) = −a
z

|z| , D2C(0) =
a

|z| (I − ẑ ⊗ ẑ) ,

where for any nonzero vector ẑ = z/|z| is the direction of z and ẑ⊗ẑ is the projection
along ẑ. Thus DC(0) = Dv(0) amounts to

a = |Dv(0)| and ẑ = −D̂v(0).

Here we recall that

(4.27) ∆∞v(0) = 〈D2v(0)Dv(0), Dv(0)〉 < 0

so Dv(0) 6= 0. Using the information already determined about C, the remaining
condition D2C(0) > D2v(0) amounts to

(4.28)
|Dv(0)|

|z| (I − D̂v(0) ⊗ D̂v(0)) > D2v(0).

The problem has been reduced to showing that if |z| is sufficiently small, then (4.28)
holds. We leave to the reader the linear algebra exercise of showing that (4.27),
which is clearly necessary in order that (4.28) hold, is also sufficient to guarantee
(4.28) holds if |z| is sufficiently small. A proof may also be found in [33], from
which this presentation is taken. �

4.5. Notes. The proof of the equivalence between absolute minimizers and strong
absolute minimizers is to a large extent an adaptation of the original arguments
in [29] to the current setting. Here we separated out the one-sided implications of
Proposition 4.4, which did not appear in [29], but do rely on the ideas of proofs in
[29]. The proof of the more difficult one of the two implications, that AM(U) ⊂
AMS(U), is in spirit a discrete version of the reasoning used by Aronsson in [5],
Theorem 7.

The characterization using the convexity of the maximum over balls as a function
of the radius is presented here for the first time. However, beforehand, L. Caffarelli
remarked (in a personal communication) that, in the Euclidean case, this property
characterizes viscosity solutions of ∆∞u ≥ 0.

The other equivalences of this section appear here for the first time; this includes
the “local implies global” result in the absence of a viscosity solution formulation.
The one-sided version of condition (d) in Theorem 4.1 is the analogue of the concept
of “subextremal” or “subminimum” appearing in the classical calculus of variations;
see, e.g., [43] and [42].

There is an equivalence which we have not yet discussed. Roughly speaking, one
can replace “L|z−w|” and “L|x− y|” in Theorem 4.1 (a) by dV (z, w) and dV (x, y)
where dV is the distance between points measured using paths in V . It would take
time to explain the precise definitions, and the one-sided analogue is, at present, a
bit unsettled. Hence we have not included this alternative formulation. It is also
the case that if U is bounded and u ∈ C(U)∩AM(U), then supU Tu(x) is the least
Lipschitz constant for u|∂U with respect to dU .

The infinity Laplace equation (4.18) made its first public appearance in [5]. It
was originally derived as a formal limit, as p → ∞, of the Euler equations of
the approximating Lp problems, called p-Laplace equations, which explains the
name it has been given. See Section 8. The proof that the Euler equation (4.18)
can be obtained directly from the comparison with cones property is new. While
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this derivation did not, as presented, establish the equivalence between viscosity
solutions of the infinity Laplace equation and the class of functions enjoying com-
parison with cones, use of the tools in Section 6 allows this to be easily done. See
Remark 6.7.

Regarding Theorem 4.13, Aronsson [5] showed that u ∈ C2(U) is absolutely
minimizing if and only if it satisfies the infinity Laplace equation. Viscosity solutions
were first used in connection with the infinity Laplace operator in [18]. The validity
of the full statement of Theorem 4.13 is due to Jensen [47], although he did use a
different definition for the absolute minimizers. The proof presented above is taken
from [29], as modified in [33], and, unlike Jensen’s proof, it is independent of the
uniqueness results.

Our examples of absolutely minimizing functions so far are those explained in
Example 4.3 and Example 4.12. In the Euclidean case, these are due to Aronsson.
Example 4.12 belongs to a larger class of “singular solutions” constructed in [8] and
[9]. The solutions constructed by Aronsson include separated solutions of the form
rkf(θ) in the plane, where r, θ are polar coordinates. A nice case found in [9] is

u = rk exp(θ
√

k − k2) for 0 < k < 1. Example 4.12 is especially interesting, as it
shows that a variety of results for classical solutions to the infinity Laplace equation
are just false for viscosity solutions (and hence for absolutely minimizing functions).
The reader may consider the behavior of |Du| on the curves of gradient flow for
this example as an instance. Moreover, Aronsson [6] showed that the gradient of
nonconstant classical solutions of the infinity Laplace equation will never vanish
and global classical solutions of this equation are affine (both results being in R2).
Example 4.12 shows that both of these properties fail for general viscosity solutions.

5. The infinity Laplace operator in general norms

In Section 4.4 it was assumed that | · | is the Euclidean norm. One may ask
which of the results persist in the case of a general norm | · |. In this section we
explain how to derive, in the case of a general norm, the conditions corresponding
to ∆∞u = 0 in the Euclidean case. Details are provided in Example 5.3 for the
case of the “ℓq” norm on Rn. However, we stop short of rerunning the analysis of
the equivalence between viscosity solutions of the necessary conditions found and
comparison with cones, leaving this to the reader. In the language below, this is
true if J is single-valued. See Remark 6.7 for a different look at the question.

We first note that the arguments leading to (4.22) can be rerun with the following
modifications. Given y ∈ Rn, we define

(5.1) J(y) = {x ∈ R
n : |x| ≤ 1 and 〈y, x〉 = |y|∗}.

Here we use the dual norm | · |∗ defined in Section 1.1. We call J the “duality map”
(from (Rn, | · |∗) to (Rn, | · |)).2 It is easy to see that J(y) is always a nonempty,

closed and convex set. For example, J(0) = B1(0) no matter what the norm is,
while if | · | is the Euclidean norm and y 6= 0, then J(y) = {y/|y|}. In general, if
y 6= 0, then |x| = 1 if x ∈ J(y). If, as in the Euclidean case, J(y) is “single-valued”
for y 6= 0, that is, it is a singleton, we do not distinguish between the set J(y) and
its element.

2If you have met duality maps before, please refer to the notes to this section.
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Repeating the derivation of (4.22), but now requiring that x̂ ∈ J(p) as x → 0,
yields

|p|∗ ≤ 〈p, ωr〉 +
r

2
〈Xωr, ωr〉 + o(r)

≤ |p|∗ +
r

2
〈Xωr, ωr〉 + o(r),

(5.2)

where ωr is the unit vector maximizing the same expression as before. This time
all we can say about ωr is that all its limit points as r ↓ 0 lie in J(p). In this way,
at a point x of twice differentiability of either (a) u ∈ CCA(U) or (b) v ∈ CCB(U),
we find, respectively,

(a) 0 ≤ max
ω∈J(Du(x))

〈D2u(x)ω, ω〉 or (b) min
ω∈J(Dv(x))

〈D2v(x)ω, ω〉 ≤ 0.(5.3)

In combination, if u is absolutely minimizing and twice differentiable at a point x,
then

(5.4) min
ω∈J(Du(x))

〈D2u(x)ω, ω〉 ≤ 0 ≤ max
ω∈J(Du(x))

〈D2u(x)ω, ω〉.

In the event that the duality map is single-valued and u ∈ CC(U), at points of
twice differentiability of u where Du 6= 0, we therefore have the analogue

(5.5) 〈D2uJ(Du), J(Du)〉 = 0

of ∆∞u = 0. When Du = 0, this equation still holds if it is interpreted to mean
that X has both a nonnegative and a nonpositive eigenvalue.

Remark 5.1. We have scaled things differently in this section. In the Euclidean
case, J(Du) = Du/|Du| is the unit vector in the direction of Du when Du 6= 0 and
J(0) is the closed unit ball. Compared with the previous case, we have obtained
additional information when Du = 0. Note that with this scaling, J(λp) = J(p)
for λ > 0.

Example 5.2. The equivocal nature of (5.4) is not an artifact of the derivation.
For example, the function u(x, y) = x2 − y2 in R2 is absolutely minimizing for the
norm |(x, y)|∞ = max(|x|, |y|). This can be seen by using Theorem 4.1 (e) and
computations. However, using the computation of J in Example 5.3 below, it is
also easily seen that the “max” and “min” in (5.4) are necessary; it is not true that
〈D2u(x, y)ω, ω〉 = 0 for every ω ∈ J(Du(x, y)) when it is not single-valued and
Du(x, y) 6= 0.

Example 5.3. Let | · | = | · |q, where

|x|q :=
( n∑

i=1

|xi|q
)1/q

, if 1 ≤ q < ∞,

and
|x|∞ := max{|x1|, |x2|, . . . , |xn|}.

We will refer to | · |q as the ℓq-norm in Rn. For this family of norms, the duality
relations and the corresponding duality maps are easily found. First, if 1 < q < ∞,
then | · |∗q = | · |q∗ , where q∗ = q

q−1 is the Hölder conjugate of q, 1
q + 1

q∗ = 1. To see

this, note first that Hölder’s inequality

〈x, y〉 =

n∑

i=1

xiyi ≤
( n∑

i=1

|xi|q
)1/q( n∑

i=1

|yi|q
∗
)1/q∗
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implies

|y|∗q = max{〈x, y〉 : x ∈ R
n, |x|q = 1} ≤

( n∑

i=1

|yi|q
∗
)1/q∗

= |y|q∗ .

On the other hand, if we define x̄ by setting

x̄i = |y|−q∗/q
q∗ |yi|q

∗−2yi, i = 1, . . . , n,

then |x̄|q = 1 and

〈x̄, y〉 = |y|−q∗/q
q∗

n∑

i=1

|yi|q
∗

= |y|q∗ .

In this case J is single-valued, and it is given by

J(y) = |y|−q∗/q
q∗ (|y1|q

∗−2y1, . . . , |yn|q
∗−2yn)

for y 6= 0.
As expected, the cases q = 1 and q = ∞ require some additional care. If

| · | = | · |∞, then it is not hard to see that | · |∗∞ = | · |1. The relation

〈y, x〉 = y1x1 + · · · + ynxn = |y|1 = |y1| + |y2| + · · · + |yn|
coupled with |x|∞ = 1 determines xj = yj/|yj | =: sign(yj) when yj 6= 0. However,
if yj = 0, then xj can be any number in the interval [−1, 1]. We define sign(0) =
[−1, 1]. Thus, in this case,

J(y) = {x : xj ∈ sign(yj) for j = 1, 2, . . . , n},
where we identify sign(yj) and the singleton set with the element sign(yj) when
yj 6= 0.

On the other hand, if we take | · | = | · |1, then | · |∗1 = | · |∞. Indeed, in general
(| · |∗)∗ = | · |. If y 6= 0, the relation

〈y, x〉 = y1x1 + · · · + ynxn = |y|∞
coupled with |x|1 = 1 implies xj = 0 if |yj | 6= |y|∞, and xj = αjsign(yj) if |yj| =
|y|∞ where 0 ≤ αj ≤ 1 and

∑

j∈I(y)

αj = 1 where I(y) = {j : |yj | = |y|∞}.

Thus, in this case, if y 6= 0, then

J(y) = {x : |x|1 = 1, xj = 0 if j /∈ I(y) and sign(xj) = sign(yj) if j ∈ I(y)}.
Cones associated to ℓq norms for q = 1, 4

3 , 2, 4 and q = ∞ are illustrated in
Figure 5.1. Observe that for q = 1 and q = ∞ the cones are not smooth.

Remark 5.4. After seeing Example 5.3, one might be curious to know if there is a
“q-analogue” for every 1 < q < ∞ of the Euclidean absolute minimizer u(x, y) =
x4/3 − y4/3 displayed in Example 4.12. It turns out that the function

vq(x, y) = |x|α(q) − |y|α(q), α(q) =
2q

q + 1
,

is indeed an absolute minimizer for the norm | · |q, and v2 = u as it should be.
Moreover, the formal limit as q → ∞ of the vq’s is v∞(x, y) = x2 − y2, which was
seen to be an absolute minimizer for the norm | · |∞ in Example 5.2.
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Figure 5.1. ℓq-cones, q = 1, 4
3 , 2, 4,∞.

Remark 5.5. One way to verify that the duality map J is single-valued is to check
that the norm | · | is strictly convex. In other words, the unit sphere {x : |x| = 1}
contains no nontrivial line segments. Indeed, if J(y) is not a singleton for some
y 6= 0, then the unit sphere {x : |x| = 1} necessarily contains a line segment. This
follows because J(y) is convex and J(y) ⊂ {x : |x| = 1} for y 6= 0. Conversely, if
|x| = |y| = 1, |x/2 + y/2| = 1, and z 6= 0 and

〈x
2

+
y

2
, z〉 = |z|∗,

then, clearly, 〈x, z〉 = 〈y, z〉 = |z|∗ and [x, y] ⊂ J(z). Thus J is single-valued if and
only if | · | is strictly convex.

5.1. Notes. We mention that our definition of the “duality map” J (from (Rn,
| · |∗) to (Rn, | · |)) uses a “normalization” at variance with the most common one.
See, e.g., Reich [58].

The infinity Laplace equation and related problems for norms other than the
standard Euclidean one have been considered at least in [15] and [44]. However,
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these papers were primarily concerned with other issues and focused on particular
norms. Hence they did not treat the issues of this section in full generality. Related
equations, which go outside of the framework of this manuscript, are found in [13],
[22], [19], [28], [62] and [65]. Example 5.2 is new.

6. The uniqueness question

In this section we first assume that | · | is the Euclidean norm. However, after
studying the proof of the main result, Theorem 6.1 below, the reader can confirm
that it remains true if the duality map J is single-valued. The changes needed to
establish this are very minor, but on a first pass through the arguments we prefer
to avoid the additional notation needed for the general case. See Remark 6.6.

Theorem 6.1. Let U be bounded, | · | be the Euclidean norm, u ∈ CCA(U)∩C(U ),
v ∈ CCB(U) ∩ C(U) and u ≤ v on ∂U . Then u ≤ v in U .

Remark 6.2. In particular, if u, v ∈ AM(U) ∩C(U) = CC(U) ∩C(U) agree on ∂U ,
then u = v. In other words, when | · | is the Euclidean norm and U is bounded, the
solution of (BVP) (see Section 1.3) provided by Theorem 3.1 is unique. The result
also shows that if u, v are solutions of (BVP) with boundary values f, g, respectively,
and f ≤ g, then u ≤ v in U . These corollaries, and thus also Theorem 6.1, fail in
general if U is unbounded; see Section 1.3.

The proof is surprisingly subtle and complex. Some standard tools of viscosity
solution theory are used in the proof. However, we give an (almost) self-contained
presentation which does not refer to this theory. The tools employed are interesting
and some of them are elegant, so it seems to us to be useful to present them
clearly in this setting. The discussion is therefore considerably longer than it would
be if these tools were taken as known, but the utility of having a self-contained
presentation of this rich collection of ideas using the simplifications available in our
situation seems self-evident. In particular, a reader not versed in partial differential
equations can follow the flow of ideas here and learn, in this clear but nontrivial
example, something about the workings of viscosity solution theory.

To orient the reader, we present a preview of what is to follow. All known proofs
of Theorem 6.1 rely on the fact that u ∈ CCA(U) and v ∈ CCB(U) satisfy the
inequalities derived in Section 4.4 at points of second differentiability; in particular

(6.1) ∆∞v(x) ≤ 0 ≤ ∆∞u(x)

whenever x is a point at which both u and v have two derivatives in the pointwise
sense. Let us for a while assume that u, v ∈ C2(U) ∩ C(U), (6.1) holds and u ≤ v
on ∂U . First note that if we can prove u ≤ v in U under the stronger assumption
u − v ≤ −γ < 0 on ∂V where γ > 0, then we are done. Indeed, under the
assumptions of the theorem, u − γ ∈ CCA(U) ∩ C(U ), and ũ = u − γ satisfies
ũ − v ≤ −γ on ∂U . Then u − γ ≤ v in U implies u ≤ v in U upon letting γ ↓ 0.
Hence we hereafter assume that γ > 0 and

(6.2) u(x) − v(x) ≤ −γ < 0 on ∂U.

To derive a contradiction, we also assume that x0 ∈ U and

(6.3) M0 := u(x0) − v(x0) = max{u(x) − v(x) : x ∈ U} > 0.

Then, by elementary calculus,

(6.4) Du(x0) = Dv(x0) and D2u(x0) ≤ D2v(x0).
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Using (6.1), we also have

∆∞u(x0) = 〈D2u(x0)Du(x0), Du(x0)〉 ≥ 0,

∆∞v(x0) = 〈D2v(x0)Dv(x0), Dv(x0)〉 ≤ 0.

On the other hand, by (6.4),

〈D2u(x0)Du(x0), Du(x0)〉 = 〈D2u(x0)Dv(x0), Dv(x0)〉
≤ 〈D2v(x0)Dv(x0), Dv(x0)〉.

There is no contradiction between (6.1) and the above relation. However, there
would be a contradiction if one of the inequalities of (6.1) were strict at x0.

To attempt to attain a strict inequality, we try a change of dependent variable.
Let 0 < λ be sufficiently small so that 2λu < 1. Define w by w ≤ 1/λ and

(6.5) u(x) = w(x) − λ

2
w(x)2 =:G(w(x));

equivalently

(6.6) w =
1

λ

(
1 −

√
1 − 2λu

)
=:H(u).

Clearly, w ↓ u uniformly as λ ↓ 0. In view of (6.2) and (6.3), for small λ, w ≤ v on
∂U and the maximum of w − v over U is attained in U . Let us still denote such a
maximum point by x0.

Using (6.5), we find

Du = G′(w)Dw, D2u = G′(w)D2w + G′′(w)(Dw ⊗ Dw)

where p ⊗ q is the matrix defined by (p ⊗ q)z = 〈q, z〉p. Thus

0 ≤∆∞u = 〈D2uDu, Du〉
= 〈
(
G′′(w)(Dw ⊗ Dw) + G′(w)D2w

)
G′(w)Dw, G′(w)Dw〉

= G′′(w)G′(w)2|Dw|4 + G′(w)3〈D2wDw, Dw〉,
(6.7)

which implies

(6.8) ∆∞w = 〈D2wDw, Dw〉 ≥ −G′′(w)

G′(w)
|Dw|4 =

λ

1 − λw
|Dw|4.

Hence, if Dw(x0) 6= 0, we have a contradiction, as then ∆∞w(x0) > 0.
There are two main difficulties in turning the outline above into a proof. First,

there is the fact that we know that viscosity solutions of ∆∞u = 0 need not be twice
differentiable at every point (Examples 4.3 and 4.12). In fact, we do not even know
if they have one derivative; all we know about subsolutions is that they are locally
Lipschitz. Secondly, even at points where w above might have two derivatives, we
would not know that Dw 6= 0. To overcome these difficulties is a demanding task.
It involves:

• First u, v will be approximated by better functions which still satisfy the
hypotheses of the theorem (although U will change a bit). This is done
by a convexification process called “sup convolution” and provides new
functions u, v such that there is a constant K for which u(x) + (K/2)|x|2
and −v(x) + (K/2)|x|2 are convex. One says that u,−v are “semiconvex
with constant K”; one also says that v is “semiconcave with constant K”.
This approximation process is presented in Section 6.1.
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• Regularity properties of convex functions and elements of the associated
calculus of subdifferentials which will be presented. Of particular interest
is that a semiconvex function is differentiable at its points of local maximum
and, roughly speaking, the gradient is continuous at such a point. It is also
the case that semiconvex and semiconcave functions are twice differentiable
at almost all points so that the inequalities involving values of the infinity
Laplace operator as derived in Section 4.4 can be used at these points.
Finally, the points of twice differentiability may not include the maximum
points, but this can be corrected by “perturbed optimization” - arbitrarily
small linear perturbations can force this coincidence. The outline of the
convex analysis theory we need is presented in Section 6.2. The perturbed
optimization considerations appear in Section 6.3.

• Roughly speaking, the argument breaks into cases depending on whether
Dw vanishes at all points of maximum of w−v (or something close to w) or
not. If Dw is not zero at some maximum point of w−v where one has twice
differentiability, we are done. If it is zero—even more, if this is true for all
small translations of w—then Lemma 2.13 comes into play, showing interior
positive maxima force w− v to be constant, which is again a contradiction.
These considerations are also explained in Section 6.3.

For completeness of this orientation, we also recall the feature of the
infinity Laplace equation illustrated by the functions

u1(x) = |x|, u2(x) = x1.

Both functions are classical solutions of the infinity Laplace equation out-
side of the origin and u1 ≥ u2 everywhere. However, u1 = u2 exactly
on the half line |x| = x1. Thus the maximum of u2 − u1 over, say,
|x − (2, 0, . . . , 0)| ≤ 1 is 0, and 0 is attained at every point of the line
segment joining the antipodal points (1, 0, . . . , 0) and (3, 0, . . . , 0). That
is, it is not true that the existence of interior maxima forces differences of
classical solutions of the infinity Laplace equation to be constant.

We had better get going on the proofs. To reemphasize that U is to be bounded
throughout this section, we say it loudly:

U is bounded!

Here is some notation that will be used concerning “perturbations” of the set
U . We will have to both translate it and approximate it from inside. Translation
will be denoted by Uh and approximation from inside by Uδ where for h ∈ Rn and
0 < δ,

(6.9) Uh := {x − h : x ∈ U}, Uδ := {x ∈ U : dist (x, ∂U) > δ}.
While we will return to the use of w given by (6.5), for some time we will use it in
other ways. That is,

until otherwise said, w is not necessarily given by (6.5)!

Let w(x) := u(x + h). Clearly u enjoys comparison with cones from above in U
iff w enjoys comparison with cones from above on Uh. Operations on functions
w : U → R, which we will apply to u, v in Theorem 6.1 and which will require us
to “move inside” U a bit, are defined in the next section. Roughly speaking, before
we are done, U will be replaced by Uδ ∩ Uh for suitable δ, h.
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6.1. Properties of Sup-Convolution.

Definition 6.3. Let w : U → R be bounded and ǫ > 0. Then, for x ∈ Rn,

(6.10) wǫ(x) := sup
y∈U

(
w(y) − |x − y|2

2ǫ

)

and

(6.11) wǫ(x) := inf
y∈U

(
w(y) +

|x − y|2
2ǫ

)
.

Properties of uǫ (called the “sup-convolution” of u) are collected in the following
proposition. Corresponding properties of vǫ (the “inf-convolution” of v) follow
from obvious modifications in the proofs or from vǫ = −(−v)ǫ. These properties
will allow us to assume that u is semiconvex (see the comments following the proof
of the proposition) and v is semiconcave when proving Theorem 6.1.

Proposition 6.4. Let u : U → R satisfy |u(x)| ≤ A for x ∈ U . Then

(6.12) x 7→ uǫ(x) +
1

2ǫ
|x|2 is convex on R

n

and

(6.13) uǫ(x) ≥ u(x) for x ∈ U.

If also u ∈ CCA(U) and δ > 2
√

Aǫ, then

(6.14) uǫ ∈ CCA(Uδ).

Moreover,

(6.15) Luǫ(U) ≤ 2 supy∈U |y|
ǫ

.

Finally, if u ∈ C(U), then for δ > 0

(6.16) lim
ǫ↓0

uǫ(x) = u(x) uniformly for x ∈ Uδ.

Proof. We sketch the proofs. The assertion (6.12) holds because

uǫ(x) +
1

2ǫ
|x|2 = sup

y∈U

(
u(y) − |x − y|2

2ǫ
+

1

2ǫ
|x|2
)

= sup
y∈U

(
u(y) − 1

2ǫ
|y|2 +

1

ǫ
〈x, y〉

)
.

This exhibits the function in question as the supremum of linear (and hence convex)
functions. Moreover, each of these functions has sup{|y|/ǫ : y ∈ U} as a Lipschitz
constant on Rn, so uǫ(x) + (1/(2ǫ))|x|2 does as well. This proves (6.12) and (6.15)
(the latter upon inferring a Lipschitz constant for uǫ on U from the previous ob-
servation). To prove uǫ(x) ≥ u(x) if x ∈ U , note that since x ∈ U , y = x is one of
the choices of y in the supremum defining uǫ(x). In view of this, the supremum is
not altered if one restricts attention to those y’s yielding at least the value u(x), or

u(y) − |x − y|2
2ǫ

≥ u(x).
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Hence |x − y|2/(2ǫ) ≤ u(y) − u(x) ≤ 2A. Therefore, if x ∈ U , then

uǫ(x) = sup
{y∈U,|x−y|≤2

√
Aǫ}

(
u(y) − |x − y|2

2ǫ

)
.(6.17)

In consequence, if δ > 2
√

Aǫ and x ∈ Uδ, then

(6.18) uǫ(x) = sup
{|z|≤2

√
Aǫ}

(
u(x + z) − |z|2

2ǫ

)

as follows from writing z = y−x in (6.17). The assertion (6.14) is proved by noting
that x 7→ u(x + z) − |z|2/(2ǫ) is in CCA(Uδ) if u ∈ CCA(U) and then recalling

Lemma 2.12. It remains to explain (6.16). Since u is continuous, when δ > 2
√

Aǫ

and x ∈ Uδ, there is a point zx, |zx| ≤ 2
√

Aǫ such that

uǫ(x) = u(x + zx) − |zx|2
2ǫ

≥ u(x).

Thus

|zx|2
2ǫ

≤ u(x + zx) − u(x)

≤ sup{|u(x + h) − u(x)| : x, x + h ∈ U, |h| ≤ 2
√

Aǫ} =:ρ(ǫ)

where limǫ↓0 ρ(ǫ) = 0 by the uniform continuity of u on the compact set U . Finally,
there follows

|uǫ(x) − u(x)| =
∣∣u(x + zx) − |zx|2

2ǫ
− u(x)

∣∣

≤ |u(x + zx) − u(x)| + |zx|2
2ǫ

≤ 2ρ(ǫ),

establishing (6.16). �

When w : Rn → R, K ∈ R and

x 7→ w(x) +
K

2
|x|2

is convex, w is said to be “semiconvex with constant K”. Above, uǫ is semiconvex
with constant 1/ǫ. Similarly, vǫ is semiconcave with constant 1/ǫ.

We return to the proof of Theorem 6.1. The proof consists of deriving a contra-
diction to the assumptions (6.1), (6.2) and (6.3). In view of Proposition 6.4 (6.14),
(6.16) and (6.2), (6.3), we can replace u by uǫ, v by vǫ and U by Uδ with suitable
small δ > 0, ǫ > 0 and have all assumptions satisfied (although the constants γ,
M0 will be changed somewhat).

That is, we now assume u ∈ CCA(U) ∩ C(U ) is the restriction to U of a semi-
convex function on Rn, v ∈ CCB(U) ∩ C(U ) is the restriction to U of a function
semiconcave on Rn, and (6.1), (6.2), (6.3) hold. We seek a contradiction.

6.2. Elements of Convex Analysis. We will not use further notation to distin-
guish between u, as above, as a function on U and the semiconvex function on Rn

of which it is a restriction (similarly for v). Here are some elementary facts about
a continuous convex function w : Rn → R. The epigraph of w

epigraph (w) = {(x, r) : x ∈ R
n, r ≥ w(x)}
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is a closed convex subset of Rn+1, and hence at each boundary point (y, w(y)) there
is a supporting hyperplane. That is, there is a p ∈ Rn such that

(6.19) w(x) ≥ w(y) + 〈p, x − y〉 for x ∈ R
n.

There may be many such p’s (consider n = 1, w(x) = |x|, y = 0). The collection of
them all is called ∂w(y), the subdifferential of w at y. That is,

∂w(y) = {p ∈ R
n : (6.19) holds}.

If yj → y, pj → p, pj ∈ ∂w(yj), then passing to the limit in

w(x) ≥ w(yj) + 〈pj , x − yj〉 for x ∈ R
n,

we find p ∈ ∂w(y). This fact is referred to by saying that (the graph of) ∂w is
closed. In the event that ∂w(y) contains exactly one element p, we say that ∂w is
single-valued at y and write ∂w(y) = p. Since ∂w is closed, if it is single-valued at
y, then

(6.20) lim
r↓0

sup
x∈Br(y)

{|q − ∂w(y)| : q ∈ ∂w(x)} = 0.

This is called “partial continuity of the gradient”. In more detail, this holds because
if pj ∈ ∂w(xj) and xj → x, then the pj are bounded (because convexity of w
implies it is locally Lipschitz continuous; alternatively, we have already noted the
local Lipschitz continuity of the functions we are dealing with). The fact that ∂w
is closed then shows that every subsequence of the pj has a further subsequence
converging to ∂w(y), whence (6.20). Another fact is that if ∂w is single-valued at
y, then w is differentiable at y and Dw(y) = ∂w(y). Indeed, we have

w(x) ≥ w(y) + 〈∂w(y), x − y〉
and, for q ∈ ∂w(x),

w(y) ≥ w(x) + 〈q, y − x〉
= w(x) + 〈∂w(y), y − x〉 + 〈q − ∂w(y), y − x〉
= w(x) + 〈∂w(y), y − x〉 + o(|x − y|)

as x → y. The last estimate above used (6.20). Altogether, the two estimates imply

w(x) = w(y) + 〈∂w(y), x − y〉 + o(|x − y|)
as x → y, or Dw(y) = ∂w(y). Let us further note that (6.19) states that y is a
minimum of x 7→ w(x) − 〈p, x〉. Thus if w is differentiable at y, then Dw(y) = p
and if w is twice differentiable at y, then D2w(y) ≥ 0 (the n × n zero matrix).

What are the analogues of these facts for a semiconvex function u with semi-
convexity constant K? Let w(x) = u(x) + K|x|2/2, u(x) = w(x) − K|x|2/2. Then
(6.19) written in terms of u says

u(x) + K
|x|2
2

≥ u(y) + K
|y|2
2

+ 〈p, x − y〉 for x ∈ R
n.

A little algebra transforms this into

u(x) ≥ u(y) − K
|x − y|2

2
+ 〈p − Ky, x − y〉 for x ∈ R

n,

or

(6.21) u(x) ≥ u(y) − K
|x − y|2

2
+ 〈q, x − y〉 for x ∈ R

n,
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where q = p − Ky. We take (6.21) as the definition of q ∈ ∂u(y):

(6.22) ∂u(y) := {q ∈ R
n : (6.21) holds for x ∈ R

n}.
While the object defined involves K and the notation doesn’t reflect this, it is easy
to see that, given that u is semiconvex with some constant K and hence with any
larger constant, ∂u(y) is independent of whatever number is chosen to be “the”
semiconvexity constant. Simple modifications of the arguments for the convex case
show the partial continuity of the gradient holds in the semiconvex case as does
differentiability of u where ∂u is single-valued.

Let u be semiconvex with constant K on Rn and have a local maximum at x̂, so
that for some r > 0,

u(x) ≤ u(x̂) for |x − x̂| ≤ r.

If q ∈ ∂u(x̂) and |x − x̂| ≤ r, we also have

u(x) ≥ u(x̂) − K

2
|x − x̂|2 + 〈q, x − x̂〉

≥ u(x) − K

2
|x − x̂|2 + 〈q, x − x̂〉.

Thus 〈q, x − x̂〉 ≤ (K/2)|x − x̂|2, and this implies q = 0. Thus ∂u is single-valued
at a local maximum x̂ and ∂u(x̂) = 0. If u = u1 + u2 is a sum of two semiconvex
functions, x̂ is a local maximum of u and qj ∈ ∂uj(x̂), j = 1, 2, then it is easy to
see that q1 +q2 ∈ ∂u(x̂), so q1 = −q2. Since this is true for any such pair, it implies
there is only one pair q1, q2. Thus both ∂u1 and ∂u2 are single-valued at x̂ and
∂u1(x̂) = −∂u2(x̂). Let us also note that if u is semiconvex with constant K, then
at points of twice differentiability x̂,

D2

(
u(x) +

K

2
|x|2
)
|x=x̂ ≥ 0

or

D2u(x̂) ≥ −KI.

This is the reason “K/2” appears in the definition of semiconvexity.

6.3. The End Game. Recall now that we are assuming that u,−v are semiconvex,
Lipschitz on U , and all of (6.1), (6.2), (6.3) hold. Choose any δ > 0 sufficiently
small so that these assumptions hold with U replaced by Uδ (with, perhaps, a
slightly changed γ). If |h| < δ, then (Uδ)

h ⊂ U and the functions x → u(x+h) will
still satisfy their part of (6.1) on the new U (= old Uδ), and are semiconvex with
the same constant as u. Moreover, clearly,

M(h) := max
x∈U

(u(x + h) − v(x)) → M(0) = M0 > 0 as h → 0.

For any function w : U → R we set

Argmax(w) := {x ∈ U : w(x) = max
U

w}.

If w ∈ C(U), w < 0 near ∂U , while w(x) > 0 for some x ∈ U , Argmax(w) is
nonempty. We also abuse notation a bit by putting

Argmax(h) := {x ∈ U : M(h) = u(x + h) − v(x)} = Argmax(u(· + h) − v(·)).
Since −v is semiconvex, as is u, u(·+h) and v are both differentiable at every point
of Argmax(h) and their derivatives are equal at those points (Section 6.2).
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We now assume that U is connected. If it were not, we simply replace it by any
of its components containing a maximum point of u− v. The proof of Theorem 6.1
now splits into two cases:
Case (i). There exists a 0 < κ such that for |h| ≤ κ there exists xh ∈ Argmax(h)
such that Du(xh + h) = Dv(xh) = 0.
Case (ii). There exists h sufficiently small such that (6.2) holds for u(· + h),
M(h) > 0, and Du(x + h) 6= 0 holds at all points x ∈ Argmax(h).

Proof of Theorem 6.1 in Case (i). Note that M(h) is Lipschitz continuous in h.
Let xh have the meaning assigned in Case (i) above. For |h∗| < δ we then have

M(h) = u(xh + h) − v(xh) ≥ u(xh∗ + h) − v(xh∗)

= u(xh∗ + h∗ + h − h∗) − v(xh∗)

≥ u(xh∗ + h∗) − v(xh∗) + o(|h∗ − h|)
= M(h∗) + o(|h∗ − h|),

(6.23)

where the first inequality is due to the definition of xh, the second is due to
Du(xh∗ + h∗) = 0 and the last equality is due to the definition of xh∗ .

It follows that if M is differentiable at h∗, then DM(h∗) = 0. We rely on the
reader to supply the fact that a Lipschitz continuous function whose derivative is
0 wherever it exists is constant on connected components of its domain. Thus M
is constant on |h| ≤ κ. Now if x0 ∈ Argmax(0), we have

(6.24) u(x0) − v(x0) = M(0) = M(h) = u(xh + h) − v(xh) ≥ u(x0 + h) − v(x0),

which implies that x0 is a local maximum point of u. By Lemma 2.13 u is constant
in a neighborhood of x0. Since then, for y sufficiently small,

(6.25) u(x0) − v(x0) ≥ u(x0 + y) − v(x0 + y) = u(x0) − v(x0 + y),

x0 is a local minimum of v and then v is constant in a neighborhood of x0, as above.
But then the set {x : u(x) − v(x) = u(x0) − v(x0)} is open and closed, hence all of
U . This contradicts (6.2). �

Proof of Theorem 6.1 in Case (ii). Let |h| < δ be such that Du(x + h) 6= 0 for
any x ∈ Argmax(h). Since Argmax(h) is closed, we have partial continuity of the
gradient, and Du(· + h) does not vanish at any point of Argmax(h), there is a
neighborhood V of Argmax(h) such that Argmax(h) ⊂ V ⊂⊂ U and µ > 0 such
that if x ∈ V and u(· + h), v are both differentiable at x, then

(6.26) |Du(x + h)|, |Dv(x)| ≥ µ > 0.

Hereafter h is fixed, so we replace u(· + h) by u(·) and drop the h in the notation.
Now, with our new abuse of notation,

Argmax(h) = Argmax(u − v) := {x ∈ U : u(x) − v(x) = max
U

(u − v)}.

Now we invoke the change of variables (6.5), (6.6). We claim that w is semiconvex
on V because u is semiconvex. This is seen via the formal computation

(6.27) Dw = H ′(u)Du, D2w = H ′(u)D2u + H ′′(u)(Du ⊗ Du) ≥ H ′(u)D2u

since H is convex. Thus if D2u ≥ −KI, we have D2w ≥ −H ′(u)KI and H ′ ≥ 0 is
bounded on the range of u. A rigorous version of this is straightforward and left to
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the reader. Using (6.26), at any point of twice differentiability of w (equivalently,
u) in V , we have, via (6.26) and (6.8),

(6.28) ∆∞w ≥ λ

1 − λw
|Dw|4 ≥ λ

1 − λw
H ′(u)4µ4 ≥ β,

where β > 0 is a constant.
The discussion in this section has been self-contained up to this point, with the

exception of the statement that a Lipschitz continuous function whose derivative is
zero wherever it exists is locally constant. This was used in the proof of Case (i).
Now we have to call on deeper results. First, according to a theorem of Aleksandrov,
convex (and hence semiconvex) functions are twice differentiable in the pointwise
sense almost everywhere. Next, as applied here, it is known that, in view of the
semiconvexity, the Lebesgue measure of

(6.29)
⋃

|p|≤ǫ

Argmax(x 7→ w(x) − v(x) + 〈p, x〉)

is positive for each ǫ > 0. Moreover, if |p| and λ > 0 are sufficiently small, we have

(6.30) Argmax(x 7→ w(x) − v(x) + 〈p, x〉) ⊂ V.

Putting these facts together, we find that for each ǫ > 0, we have a p ∈ Rn and
a point x̂ ∈ V at which w, v are both twice differentiable and, using the necessary
conditions of calculus for a maximum point,

(6.31) |p| ≤ ǫ, Dw(x̂) + p = Dv(x̂) and D2w(x̂) ≤ D2v(x̂).

See the Notes to this section for further information.
Further, if (6.31) holds and K is a semiconvexity constant for w,−v, we have

(6.32) −KI ≤ D2w(x̂) ≤ D2v(x̂) ≤ KI.

We then have

〈D2w(x̂)(Dw(x̂) + p), Dw(x̂) + p〉 = 〈D2w(x̂)Dv(x̂), Dv(x̂)〉
≤ 〈D2v(x̂)Dv(x̂), Dv(x̂)〉 ≤ 0.

(6.33)

The last inequality is from (6.1) for v. On the other hand, using (6.28) and (6.32),
〈
D2w(x̂)(Dw(x̂) + p), Dw(x̂) + p

〉

= 〈D2w(x̂)Dw(x̂), Dw(x̂)〉 + 2〈D2w(x̂)Dw(x̂), p〉 + 〈D2w(x̂)p, p〉
≥ β − 2K|Dw(x̂)||p| − K|p|2.

(6.34)

As |Dw| is bounded on V , this is positive if |p| is sufficiently small, whence a
contradiction to (6.33). �

Remark 6.5. It has been mentioned several times that the presentation of the
uniqueness proof above did not invoke the notions of viscosity solution theory.
For those who know something of this theory, we point out why this was possible:
we derived the inequalities (6.1) at points of twice differentiability in Section 4.4
without reference to viscosity solutions. Moreover, we proved directly that the
sup-convolution of a function in CCA was again in CCA in Section 6.1.
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Remark 6.6. In order to prove the uniqueness Theorem 6.1 in the case of a norm
other than the Euclidean norm, one uses the inequalities proved in Section 5. If J
is single-valued, the arguments above all are valid with

∆|·|u = 〈D2uJ(Du), J(Du)〉
in place of ∆∞. However, the Euclidean norm is still to be used in defining the
sup-convolutions, etc. The key point is the analogue of (6.7) in this case. Since

〈(Dw ⊗ Dw)J(G′(Dw)Dw), J(G′(Dw)Dw)〉 = 〈(Dw ⊗ Dw)J(Dw), J(Dw)〉
= 〈Dw, J(Dw)〉2 = |Dw|2

by Remark 5.1, the analogue of 6.7 is

∆|·|w ≥ λ

1 − λw
|Dw|2

and the rest of the proof runs as before. A primary difficulty with the case in which
J is not single-valued is this: we cannot say at a point of maximum x0 of u − v at
which both u and v are differentiable that, necessarily,

“〈D2uJ(Du), J(Du)〉 ≥ 0 ≥ 〈D2vJ(Dv), J(Dv)〉”,

since we only have each inequality upon choosing the “right value” of the duality
mapping on each side and these values may differ even if u is smooth and u = v.
See Example 5.2.

Remark 6.7. Here is a fact about viscosity subsolutions of a degenerate elliptic
equation F (Du, D2u) ≤ 0 which is nonincreasing in D2u (see [32] for the terminol-
ogy). If u is semiconvex, then it is a viscosity subsolution iff F (Du(x), D2u(x)) ≤ 0
at each point x of twice differentiability of u. As shown above, if u ∈ CCA(U),
then uǫ ∈ CCA(Uδ). Thus uǫ satisfies ∆|·|u

ǫ ≤ 0 at points of twice differentiability
if J is single-valued. But then it is a viscosity solution of ∆|·|u

ǫ ≤ 0 and then so is
its limit u.

6.4. Notes. After the foundational papers of Aronsson, the uniqueness of abso-
lutely minimizing extensions remained as the most important open problem. The
issue was settled in Jensen’s influential work [47]; he proved the comparison princi-
ple for viscosity sub- and supersolutions. Jensen’s proof of the comparison principle
was rather indirect in the sense that the result was first established for two auxiliary
equations approximating (0.7) in a suitable manner. These approximations were
introduced to overcome the difficulties associated with vanishing gradients, and
Sobolev inequalities came into play in passage to the original equation. Moreover,
the arguments relied on the theory of variational problems in Lp. Jensen used the
change of variables employed above; this is a standard device for introducing strict-
ness. It was used, for example, by Crandall and Lions in [31] to prove uniqueness
for viscosity solutions of eikonal equations.

A more direct uniqueness proof, independent of the Lp theory, was found by
Barles and Busca [12]. Their main contribution was perhaps to introduce the
dichotomy of Cases (i) and (ii) and then to handle Case (i). We have used their
arguments to handle this case. The treatment of Case (ii) is standard from the
point of view of viscosity solution theory, although we have made our presentation
independent of that theory.
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Both the proof of Jensen and the one by Barles and Busca work for more gen-
eral equations than just the infinity Laplace equation, and their ideas have been
extended to various settings. See, for example, [64], [48], [19], [20], [50] and [62].

Finally, let us provide some references for the tools we employed in the proof.
The almost everywhere twice differentiability of convex functions, known as Alek-
sandrov’s theorem, can be found in [36] or [32]. The statement concerning the
Lebesgue measure of the set (6.29) is known as “Jensen’s lemma” owing to [46].
Jensen recognized that this sort of fact was valid for semiconvex functions. The
proofs are, however, basically the ones used in establishing the “Aleksandrov, Bakel-
mann, Pucci” maximum principle. See, for example, [23] or [41]. A proof and
further references are also available in [32].

7. Regularity

We note that the term “regularity” is a catch-all for properties speaking to the
modulus of continuity of a function, differentiability properties of it and estimates
on the size and continuity of derivatives. So far we have presented a variety of
results bearing on the regularity of an absolutely minimizing function. One is
the Lipschitz estimate of Lemma 2.9; another is the refinement of the Harnack
inequality presented in Section 2.6. The rough thrust of these estimates and others
herein is that if u ∈ CCA(U), then it is locally Lipschitz continuous and one can
estimate Tu(x) in terms of estimates of u itself. Local Lipschitz continuity implies
differentiability almost everywhere, and one can easily show that Tu(x) ≥ |Du(x)|∗
when u is differentiable at x. One might also regard Lemma 2.13 as speaking to
regularity in some way. All of these results are true under “one-sided” assumptions
and in any norm. In addition, we have Example 4.12, which shows that, when | · |
is the Euclidean norm, merely assuming u ∈ AM(U) cannot possibly imply more
than continuous differentiability of u in U and that Du is locally Hölder continuous
with exponent 1/3. It is not known, at the moment, that this is false. It is also not
known, at the moment, whether or not u ∈ AM(U) implies that u is differentiable
at every point of U in the case of the Euclidean norm except when n = 2. More
generally, taking u(x) = |x|, we recall that u is not differentiable at every point of
Rn\{0} unless | · | is differentiable; in particular | · |1, | · |∞ do not have this property.

As of this writing, the one and only regularity result known to us using the full
assumption u ∈ AM(U) which is valid in any dimension is Theorem 7.1 below.
The proof is given in the case of the Euclidean norm. Modifications extend the
arguments to norms which, together with their dual norms, are strictly convex.
The theorem is false for general norms, as the example u(x) = |x|∞ shows when
| · |∞.

Theorem 7.1. Let u ∈ AM(U) and x0 ∈ U . Let | · | be the Euclidean norm. If
λj > 0 satisfies λj ↓ 0, v ∈ C(Rn), and

(7.1) v(x) = lim
j→∞

u(λjx + x0) − u(x0)

λj

holds uniformly on compact subsets of Rn, then v is a linear function.

Remark 7.2. Since the initial preparation of this manuscript, it has been shown
by O. Savin [61] that if n = 2 is added to the assumptions of Theorem 7.1, then
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u ∈ C1(U). Savin began from an appealing reformulation of Theorem 7.1:

lim
r↓0

inf
{e∈Rn:|e|=Tu(0)}

sup
|x|≤r

|u(x + x0) − u(x0) − 〈e, x〉|
r

= 0.

After the proof of the theorem, the reader will easily see the two formulations are
equivalent.

Let us explain the significance of Theorem 7.1. If u is differentiable at x0 in the
sense of (1.5) of Section 1.5, then a computation shows that

u(λx + x0) − u(x0)

λ
= 〈Du(x0), x〉 + o(1)

as λ ↓ 0. Hence the same limit v is obtained in (7.1) no matter what sequence
λj ↓ 0 is used and v(x) = 〈Du(x0), x〉 is linear. We will shortly see that it is always
true that the functions vλ(x) := (u(λx + x0) − u(x0))/λ form a precompact family
in C(BR(0)) for R > 0 as soon as λ is sufficiently small. This depends only on the
local Lipschitz continuity of u. Thus, if λj is any sequence such that λj ↓ 0, then
there is a subsequence λjk

such that vλjk
will converge locally uniformly to a limit

v on Rn. The theorem asserts that v must be linear, which we have seen must be
the case if Du(x0) exists. However, we do not know if the limit v in (7.1) depends
on the particular sequence via which it is defined. If it does not, then it is easy
to see that Du(x0) exists and Du(x0) = Dv(0). Indeed, if v(x) = 〈p, x〉 no matter
which sequence is used, but Du(x0) does not exist, then there are an ǫ > 0 and a
sequence xj → 0 such that

(7.2)
|u(xj + x0) − u(x0) − v(xj)|

|xj | ≥ ǫ for j = 1, 2 . . . .

Putting λj = |xj | and ωj = xj/λj , (7.2) says
∣∣∣∣
u(λjω

j + x0) − u(x0)

λj
− v(ωj)

∣∣∣∣ ≥ ǫ for j = 1, 2 . . . .

Thus λj has no subsequence along which (u(λjx + x0) − u(x0))/λj converges uni-
formly to v(x) on |x| = 1.

Thus Theorem 7.1 provides positive, but not definitive, evidence that Du(x0)
exists. It remains an open problem to determine if absolutely minimizing functions
are everywhere differentiable. We turn to the proof.

Proof. First we dispose of the case

S+
u (x0) = Tu(x0) = 0.

We are using Lemma 2.15 (iv) and, during the current discussion, indexing S+ by
the function used to compute it. In this case,

|u(x) − u(x0)| ≤ Lu(Bλ(x0))|x − x0| for |x − x0| ≤ λ,

so u(x) = u(x0) + o(|x − x0|). This shows that Du(x0) exists and Du(x0) = 0.
Hereafter we assume that

L0 := S+
u (x0) = Tu(x0) > 0.
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If u ∈ CC(U), x0 ∈ U , Br0
(x0) ⊂⊂ U and ũ(x) = (u(r0x + x0) − u(x0))/(r0L0),

then ũ ∈ CC(B1(0)), ũ(0) = 0 and S+
ũ (0) = S+

u (x0)/L0 = 1. Hereafter, we simply
assume that

(7.3) u ∈ CC(B1(0)), u(0) = 0, S+
u (0) = 1.

Given (7.3), for λ > 0 the function

(7.4) vλ(x) :=
u(λx)

λ

satisfies vλ ∈ CC(B1/λ(0)), vλ(0) = 0 and for r < 1/λ,

Lvλ
(Br(0)) = Lu(Bλr(0)), max

|w|=r
vλ(w) =

max|w|=λr u(w)

λ
= rS+

u (0, λr).

Thus the family vλ is uniformly bounded and equicontinuous in each ball Br(0) as
λ ↓ 0. Therefore there exists a sequence λj ↓ 0 and v ∈ C(Rn) such that vλj

→ v
uniformly on every bounded set. Clearly v ∈ CC(Rn) (comparison with cones is
obviously preserved under uniform convergence). Putting λ = λj in the relations
above and passing to the limit then yields the first two claims below:

(7.5) Lv(Br(0)) ≤ Tu(0) = 1, max
|w|=r

v(w) = r, min
|w|=r

v(w) = −r.

Here we used the simple facts that Lipschitz constants are upper-semicontinuous
and maxima are continuous with respect to uniform convergence. The third relation
above is asserted without proof, but its proof is evident. Note that the first relation,
being valid for r > 0, implies Lv(R

n) ≤ 1.
The properties (7.5), valid for r > 0, together with v(0) = 0, guarantee that v is

linear. To see this, let x+
r , x−

r be any two points for which

(7.6) |x+
r |, |x−

r | = r and v(x+
r ) = r, v(x−

r ) = −r.

Until this point we have not used the assumption that | · | is the Euclidean norm.
Now we do: being points in the sphere of radius r about 0, unless x+

r = −x−
r we will

have |x+
r − x−

r | < 2r, in which case (7.6) is inconsistent with 2r = v(x+
r )− v(x−

r ) ≤
|x+

r − x−
r |. Here we used that Lv(Rn) ≤ 1. We have now proved that the points

x+
r , x−

r satisfying (7.6) are unique. This is because x+
r = −x−

r must hold for any
such pair.

Next we claim that v is linear on the line segment [x−
r , x+

r ]; that is,

(7.7) g(t) := v(tx+
r ) = v(−tx−

r ) = tr for − 1 ≤ t ≤ 1.

Indeed, g(−1) = −r = r(|−1+1|−1), g(1) = r = r(|1+1|−1), and r is a Lipschitz
constant for g. That is, g(t) agrees with the cone function t 7→ r(|t + 1| − 1) = rt
on the boundary of U = (−1, 1) and has the same Lipschitz constant, so (via
Section 1.4) g(t) ≡ tr. It follows that all the points x+

r , x−
r lie on the same line.

Let x2, . . . , xn be such that x+
1 , x2, . . . , xn is an orthonormal basis of Rn and

define f :Rn → R by

f(x1, y) := f(x1, y2, . . . , yn)= v(x1x
+
1 + y2x

2 + . . . + ynxn),
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where y = (y2, . . . , yn). Clearly, Lf (Rn) = Lv(R
n) = 1 and f(x1, 0) ≡ x1. We

claim then that f(x1, y) ≡ x1. To see this, first observe that

|y|2 + |x1 − s|2 ≥ |f(x1, y) − f(s, 0)|2

= |f(x1, y) − x1 + x1 − f(s, 0)|2

= |f(x1, y) − x1 + x1 − s|2

= |f(x1, y) − x1|2 + 2(x1 − s)(f(x1, y) − x1) + |x1 − s|2.

(7.8)

The first inequality above is due to Lf (Rn) ≤ 1. We conclude that

2(x1 − s)(f(x1, y) − x1) ≤ |y|2

where s is free. This can only be if f(x1, y)−x1 ≡ 0. It follows that v is linear. �

Remark 7.3. From the proof above, |Dv| = Tu(0) and the direction of Dv is the
limiting direction of wλj

, where wr is any point of maximum of u on {w : |w−x0| =

r}. Thus if Tu(x0) > 0, u is differentiable at 0 if and only if (wr −x0)/r has a limit
as r ↓ 0 which is independent of the choice of wr .

7.1. Notes. As explained above, the exact regularity of absolutely minimizing
functions is largely an open problem. Theorem 7.1 is the only positive result we
know of for a generic absolute minimizer. It originally appeared in [30]. Under
certain additional convexity and monotonicity assumptions, some results compen-
sating the missing continuity of the gradient have been established in [54]. We want
to point out that the lack of regularity in all of the examples we have presented in
this work is not due to the gradient being zero in any sense.

8. Appendix: Lp variational problems

As we have already mentioned several times, a popular technique for studying
absolute minimizers goes through an approximation process involving related vari-
ational problems in integral form. The purpose of this appendix is to sketch briefly
this approach and explain how it relates to the material in the main text. The dis-
cussion will be far less self-contained than in the preceding sections. In particular,
we need to appeal to several facts in functional analysis and the theory of Sobolev
spaces. The reader should compare the machinery used in this line of attack to
that of the previous sections.

For simplicity, it is assumed throughout this section that U is a bounded open
set. In addition, we suppose that the mapping x 7→ |x|2 is differentiable. By
convex analysis, this guarantees that the dual norm |x|∗ is strictly convex; that is,
if x, y ∈ Rn do not lie on a common ray through the origin, then

|tx + (1 − t)y|∗ < t|x|∗ + (1 − t)|y|∗ for all 0 < t < 1.

8.1. Sobolev spaces. For a smooth, real-valued function u ∈ C∞(U) and 1 < p <
∞, define

(8.1) ||u||1,p :=

(∫

U

|u(x)|p dx

)1/p

+

(∫

U

(|Du(x)|∗)p dx

)1/p

.

Here Du is the gradient of u, dx stands for the usual n-dimensional Lebesgue
measure and | · |∗ is the norm dual to | · | defined in Section 1.1. Then the Sobolev
space W 1,p(U) is defined as the completion of C∞(U) in the norm || · ||1,p. By the
theorem of Meyers and Serrin, u ∈ W 1,p(U) if and only if u and all its weak first
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order partial derivatives (in the sense of distributions) are elements of the Lebesgue
space Lp(U). W 1,p(U) is a reflexive Banach space for any p and a Hilbert space for
p = 2.

An important subspace of W 1,p(U) is the closure of C∞
0 (U), the set of smooth

compactly supported functions, in the norm || · ||1,p. It is denoted by W 1,p
0 (U), and

heuristically it consists of those Sobolev functions that vanish on ∂U . Furthermore,
for a given w ∈ W 1,p(U), we denote

W 1,p
w (U)= {u ∈ W 1,p(U) : u − w ∈ W 1,p

0 (U)}.
Since W 1,p

w (U) is closed and convex, it is also weakly closed by Mazur’s lemma. We
will need the following facts about Sobolev functions:

• If 1 < q ≤ p < ∞, then W 1,p(U) ⊂ W 1,q(U). This follows from Hölder’s
inequality and the boundedness of U .

• If u is Lipschitz continuous in U , then u ∈ W 1,p(U) for every p.
• There is a constant C depending on n, p and U such that

(8.2) ||u||1,p ≤ C

(∫

U

(|Du(x)|∗)p dx

)1/p

for all u ∈ W 1,p
0 (U). This is a special case of the Sobolev embedding

theorem.
• If u ∈ W 1,p(U) and p > n, then u is locally Hölder continuous in U .

Moreover, if u ∈ W 1,p
0 (U), then u is Hölder continuous in U and

(8.3) |u(x) − u(y)| ≤ C

(∫

U

(|Du(x)|∗)p dx

)1/p

|x − y|1−n/p

for all x, y ∈ U and for some constant C depending on n, p and U .

8.2. p-harmonic functions. We consider the problem of minimizing the func-
tional

(8.4) Ip(u) =

∫

U

(|Du|∗)p dx

in the affine subspace W 1,p
w (U). Since Îp := inf{Ip(u) : u ∈ W 1,p

w (U)} is finite, there

is a minimizing sequence vj such that Ip(vj) → Îp as j → ∞. In particular, by
(8.2), the sequence vj is bounded in W 1,p(U). Thus there exists up ∈ W 1,p(U) such
that, up to a subsequence, vj → up in the weak topology. As W 1,p

w (U) is weakly
closed, up ∈ W 1,p

w (U). On the other hand, by the weak lower semicontinuity of
norms,

Ip(up) =

∫

U

(|Dup|∗)p dx ≤ lim inf
j→∞

∫

U

(|Dvj |∗)p dx = lim inf
j→∞

Ip(vj) = Îp.

Thus up is a minimizer of (8.4) over W 1,p
w (U). Such a function is called a gener-

alized p-harmonic function with boundary values w; observe that the “boundary
values” are attained, at least a priori, only in the weak sense up − w ∈ W 1,p

0 (U).
By the regularity theory of elliptic partial differential equations, every p-harmonic
function is continuous. (Alternatively, the reader may as well suppose that p > n,
in which case every Sobolev function has a continuous representative.) The name
“generalized p-harmonic function” stems from the fact that if p = 2 and the norm
is Euclidean, we recover the ordinary harmonic functions.
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The property of being p-harmonic is local in the sense that u is p-harmonic
in U iff u is p-harmonic in V (with boundary values u) for every open V ⊂ U .
This follows easily from the set additivity of the functional Ip and the fact that if
v ∈ W 1,p

u (V ) for some open V ⊂ U , then the function

ũ =

{
u, in U \ V,
v, in V,

is in W 1,p
u (U). The reader should recall that this property is not true for the

minimal Lipschitz extensions and that imposing it led to the concept of absolute
minimizers.

The uniqueness of a p-harmonic function with given boundary values w follows
from the strict convexity of Ip. Indeed, let u1 and u2 be p-harmonic in U so that

u1 − u2 ∈ W 1,p
0 (U); that is, u1 = u2 on ∂U in the sense explained above. If the set

where u1 6= u2 has positive measure, then, by the strict convexity of | · |∗,

Îp ≤ Ip(
1
2 (u1 + u2)) <

1

2
(Ip(u1) + Ip(u2)) = Îp,

which is impossible. Thus u1 = u2 in U . As a rather immediate consequence of
the uniqueness, we note further that u1 ≤ u2 on ∂U (which really means that

max{u1 − u2, 0} ∈ W 1,p
0 (U)) implies u1 ≤ u2 on U . This follows by noting that if

the open set
V = {x : u1(x) > u2(x)}

were not empty, then we would have two distinct p-harmonic functions with the
same boundary values in V , violating the uniqueness. Observing further that u + c
is p-harmonic for any c ∈ R if u is, we conclude that the estimate

(8.5) sup
x∈U

(u1 − u2) = sup
x∈∂U

(u1 − u2)

is valid for p-harmonic functions u1, u2 ∈ W 1,p(U) ∩ C(U ).

8.3. Connection to Lipschitz extensions. Let f : ∂U → R be so that Lf (∂U)

is finite, and let w : U → R be any Lipschitz continuous function satisfying w = f
on ∂U . Since w ∈ W 1,p(U) for any 1 < p < ∞, there exist p-harmonic functions
up ∈ W 1,p

w (U). By Hölder’s inequality and the definition of p-harmonic functions,
(∫

U

(|Dup(x)|∗)q dx

)1/q

≤ |U |1/q−1/p

(∫

U

(|Dup(x)|∗)p dx

)1/p

≤ |U |1/q−1/p

(∫

U

(|Dw(x)|∗)p dx

)1/p

≤ |U |1/q ess sup
x∈U

|Dw(x)|∗

for a fixed 1 < q < ∞ and p ≥ q. Here |U | denotes the Lebesgue measure of U . The
above estimate implies that {up}p≥q is bounded in W 1,q(U), and thus it contains
a weakly convergent subsequence, still denoted by (up), converging to a function
u ∈ W 1,q

w (U). We deduce using the weak lower semicontinuity of norms that

(8.6)

(∫

U

(|Du(x)|∗)q dx

)1/q

≤ |U |1/q ess sup
x∈U

|Dw(x)|∗.

The same reasoning can be repeated for q + 1, q + 2, . . . , so that in each step we
select the weakly convergent sequence as a subsequence of the previous one. Taking
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the diagonal sequence ensures that we have found a subsequence (upj
) such that

upj
→ u weakly in W 1,q(U) and (8.6) holds for any q < ∞. Hence, letting q → ∞,

(8.7) ess sup
x∈U

|Du(x)|∗ ≤ ess sup
x∈U

|Dw(x)|∗,

and this is true for any Lipschitz function w with w = f on ∂U . Observe further
that by using (8.3), (8.6) and Arzela-Ascoli, we may assume that upj

→ u uniformly
in U .

To see that u has also the corresponding absolutely minimizing property, let us
take V ⊂⊂ U and a Lipschitz function v on V such that u = v on ∂V . Then we can
repeat the above construction and find a sequence of p-harmonic functions (vpjk

)
on V , agreeing with v on ∂V , such that vpjk

→ ṽ and

(8.8) ess sup
x∈V

|Dṽ(x)|∗ ≤ ess sup
x∈V

|Dv(x)|∗.

By (8.5), since both vpjk
and upjk

are pjk
-harmonic in V , we have

sup
x∈V

|u(x) − ṽ(x)| ≤ sup
x∈V

|u(x) − upjk
(x)| + sup

x∈∂V
|upjk

(x) − vpjk
(x)|

+ sup
x∈V

|ṽ(x) − vpjk
(x)|.(8.9)

As upj
→ u and vpjk

→ ṽ uniformly in V and u = ṽ on ∂V , this implies that u = ṽ
in V . In particular,

(8.10) ess sup
x∈V

|Du(x)|∗ ≤ ess sup
x∈V

|Dv(x)|∗

for any Lipschitz continuous v ∈ C(V ) that agrees with u on ∂V . Hence, using
the results in Section 4, we have established that u is an absolute minimizer in
U . Moreover, if the duality map J is single-valued, it follows from the uniqueness
of absolute minimizers that the entire sequence {up} of generalized p-harmonic
functions converges uniformly to the absolute minimizer.

8.4. Euler-Lagrange equations. In order to derive the Euler-Lagrange equation
of (8.4), we make the additional assumption that the norm | · | is strictly convex.
Then by Remark 5.5 the duality map J from (Rn, | · |∗) to (Rn, | · |) is single-valued.

Let φ ∈ C∞
0 (U) be any “test function” and t ∈ R. Since

Ip(up) ≤ Ip(up + tφ),

that is, the function t 7→ Ip(up + tφ) has a minimum at t = 0, we infer

(8.11)

∫

U

(|Dup|∗)p−1〈J(Dup), Dφ〉 dx = 0.

Thus up satisfies the generalized p-Laplace equation

(8.12) −div((|Dv|∗)p−1J(Dv)) = 0

in the sense of distributions. Observe that by approximation, (8.11) holds also for

any φ ∈ W 1,p
0 (U).

If the dual norm | · |∗ is sufficiently smooth (and p ≥ 2), any p-harmonic function
u on U satisfies (8.12) in the viscosity sense. To see this, let ϕ ∈ C2(V ), V ⊂ U
open, be such that −div((|Dϕ|∗)p−1J(Dϕ)) > 0 in V . We want to show that u−ϕ
does not have any strict local maximum points in V . Suppose this is not the case,
and let z ∈ V be a strict maximum point such that u(z) = ϕ(z). Let ϕε = ϕ − ε
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for a small ε > 0. Then there is an open subset Vǫ ⊂ V containing z so that ϕε < u
on Vε and ϕε = u on ∂Vε. By using integration by parts and convexity, we obtain

0 <

∫

Vε

−div((|Dϕε|∗)p−1J(Dϕε))(u − ϕε) dx

=

∫

Vε

(|Dϕε|∗)p−1〈J(Dϕε), D(u − ϕε)〉 dx =
d

dt
Ip(ϕε + t(u − ϕε))|t=0

≤ Ip(u) − Ip(ϕε) = Ip(u) − Ip(ϕ),

which clearly contradicts the fact that u is p-harmonic. Hence u−ϕ does not have
any local maximum points in V , and u must be a viscosity solution to (8.12).

Finally, let us formally derive the infinity Laplace equation (4.18) as a limit, as
p → ∞, of the p-Laplace equations. If up ∈ C2(U) satisfies (8.12), then

−(|Dup|∗)p−1divJ(Dup) − (p − 1)(|Dup|∗)p−2〈D2upJ(Dup), J(Dup)〉 = 0,

which transforms into

−〈D2upJ(Dup), J(Dup)〉 =
1

p − 1
|Dup|∗divJ(Dup).

Assuming that up → u in C2(U) as p → ∞, we obtain

−〈D2uJ(Du), J(Du)〉 = 0,

that is, the limit function u satisfies the infinity Laplace equation on U . This
passage to the limit is routine in the theory of viscosity solutions, and we leave the
rigorous proof of it as an exercise for the reader.

8.5. Notes. Approximation of the Lipschitz extension problem by the sequence of
functionals (8.4) as p → ∞ and taking a limit of the corresponding Euler-Lagrange
equations were first proposed by Aronsson [5] and made completely rigorous, in
case of the Euclidean norm, in [18]. Since then these ideas have been successfully
employed in various settings and forms, e.g., in [13], [15], [19], [20], [39], [44],
[47], [48], [50], [51], [54], [59], [60], and [64]. The facts about Sobolev spaces and
functional analysis needed in order to prove the existence of p-harmonic functions
by the direct method in calculus of variations can be found in many textbooks,
see, e.g., [36] and [38]. For a more detailed account of the theory of p-harmonic
functions we refer the reader to [43]. The arguments in Sections 8.3 and 8.4 follow
mostly that in [18]; see also [47] and [48].

9. Appendix: Absolute minimizers in general metric spaces

Throughout the main text of this paper, we have confined ourselves to investi-
gating the Lipschitz extension problem only in the normed space (Rn, | · |). Yet
it is clear that the problem itself makes sense and is interesting in a much wider
context. For example, one can study various classes of Lipschitz extensions of a
given function f : A → R, where A is a closed subset of some metric space (X, d),
and try to develop a theory similar to what was described above in this generality.
On the other hand, it is also worthwhile to analyze how general and versatile the
ideas and methods we have used in the main text really are. The purpose of this
appendix is, roughly speaking, to combine these two goals. In particular, we will
sketch how a variant of the scheme that led to the existence in Rn can be used to
accomplish an analogous result in the case of a fairly general metric space (X, d). In
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this connection, we focus on the existence theory, since uniqueness and regularity
cause difficulties already in (Rn, | · |).

First, let us stay for a while in Rn and review which properties of norms were
needed in proving the existence result, Theorem 3.1. That is, we want to know
when the same proof yields an absolute minimizer if the norm | · | is being replaced
everywhere by a metric d. For starters, we note that a major role was played by
the fact that the comparison with cones property characterizes the set of absolute
minimizers, which in turn contains all cones whose vertex is outside the open set
under consideration. In (Rn, d), however, cones do not always enjoy comparison
with cones.

Example 9.1. In the case of the “snowflake” (R, | · |α), 0 < α < 1, the cones are
of the form

C(x) = b + a|x − x0|α, a, b ∈ R.

They do not enjoy comparison with cones, not even if we narrow down to cones
whose slope is, say, nonnegative. To see this, let

C0(x) = |x|α,

C1(x) = a|x + 1|α + b,

where a > 1 and b < 0 will be determined below. We are looking for an open
interval I ⊂ ]0,∞[ such that C0 = C1 at the end points of I, but C0(x) > C1(x) for
all x ∈ I. First, we have C0(0) < C1(0) if and only if b > −a. On the other hand,
C0(1) > C1(1) if b < 1 − a2α. So we choose

1 < a < (2α − 1)−1;

then −a < 1 − a2α, and hence it is possible to find b satisfying

−a < b < 1 − a2α.

These choices yield C0(0) < C1(0) and C0(1) > C1(1), and since a > 1, C1(x) is
larger than C0(x) for all x sufficiently large. This shows that the interval I with the
desired properties can be found, and because of that, cones do not enjoy comparison
with cones.

A quick look at Section 1.4 reveals that in (Rn, | · |), one thing we employed
in proving that cones enjoy comparison with cones was the existence of geodesics
penetrating through a given open set. This property holds for several metrics d in
Rn that are not induced by a norm, and it can be used for proving a statement
analogous to Proposition 2.1. After that, one could follow through the proofs
in Section 3 almost verbatim and establish existence. On the other hand, the
“snowflake” in Example 9.1 does not contain any nonconstant curves of finite length
and therefore does not have any nontrivial geodesics. If X 6= Rn, the situation of
course becomes much more complicated. New difficulties with the cones occur
already in the following simple example.

Example 9.2. Consider the unit sphere Sn−1 of Rn,

Sn−1 =
{

x ∈ R
n :

n∑

i=1

x2
i = 1

}
,

equipped with the natural geodesic metric d. In this metric space, nonconstant
cones are not absolutely minimizing. To see this, let C(x) = b+ad(x, x0) be a cone
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function. We may assume, without loss of generality, that b = 0, a = 1 and x0 is the
“north-pole” (0, . . . , 0, 1) ∈ Sn−1. If we choose V to be the southern hemisphere,
then C is constant on ∂V , which is just the equator. Clearly

LC(V ) = 1 6= 0 = LC(∂V ).

This reasoning shows also that the comparison with cones property does not charac-
terize absolute minimizers, because constant functions, which are of course absolute
minimizers, do not enjoy comparison with cones.

We regard the difficulties that emerged in the above example as mostly technical.
One can easily adjust the notion of comparison with cones so that it takes into
account the second singularity a cone has at the antipodal point relative to its
vertex and then proceed. However, this is by no means the only cautionary example
one has to deal with. As explained earlier, we are interested in finding a unified
approach that is applicable in a quite general setting without any case-specific
changes. One possibility is to use the McShane-Whitney extensions, and in the
following we briefly describe this technique. We do not intend to formulate and
prove the most general results possible, but our aim is to give the reader a rough
idea of the method.

Let us begin by fixing the setting and introducing some terminology. Let U
be a proper open subset of a path-connected metric space (X, d), and suppose
f : ∂U → R is a given Lipschitz continuous function; that is, there is L < ∞ such
that

|f(x) − f(y)| ≤ Ld(x, y) for all x, y ∈ ∂U.

As before, we are interested in finding the “best” possible extension of f to U . In
the definition of absolute minimizers below, we have waived the requirement that
the optimality of the Lipschitz constant is to be tested only in subsets with compact
closure. This choice fits better to the very general framework, since now we do not
need to worry about what compact sets could look like in different situations. As
a drawback we can handle, in general, only Lipschitz boundary data.

Definition 9.3. We say that u ∈ AM(U) if u is Lipschitz continuous in U and

Lu(V ) = Lu(∂V )

for every V ⊂ U .

Observe that since the space (X, d) is assumed to be path-connected, every
proper open subset of X has nonempty boundary. Let γ : [0, 1] → X be a continuous
path. We define its length ℓ(γ) by

ℓ(γ) := sup
{ k−1∑

i=0

d(γ(ti), γ(ti+1)) : 0 = t0 < t1 < · · · < tk = 1, k ∈ N

}

and call γ rectifiable if its length is finite. The metric space (X, d) is called a length
space, if

d(x, y) = inf{ℓ(γ) : γ : [0, 1] → X continuous, γ(0) = x, γ(1) = y}
for all x, y ∈ X . In a length space, Lipschitz functions have a useful “glueing”
property: if v : U → R satisfies Lv(V ) ≤ L and Lv(U \ V ) ≤ L for some open
V ⊂ U , then Lv(U) ≤ L. This is not true in general if the space is not a length
space; see [49]. The notion of “comparison with cones” played a central role in the
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proof of the existence result in Section 3. In the current framework, we replace
cones by the upper and lower McShane-Whitney extensions

Λ(f)(x) := sup
y∈∂V

(f(y) − Lf(∂V )d(x, y)),

Ψ(f)(x) := inf
y∈∂V

(f(y) + Lf(∂V )d(x, y)).

They have the same properties in any metric space as in Rn; that is, they are
Lipschitz constant preserving extensions of f and Λ(f) ≤ u ≤ Ψ(f) if u is any
other Lipschitz constant preserving extension. In what follows, we will employ
especially the latter property many times.

Definition 9.4. Let u be Lipschitz continuous in U . We say that u enjoys com-
parison with the upper extensions in U (abbreviated u ∈ CUE(U)) if u ≤ Ψ(u|∂V )
in V for every open V ⊂ U . Similarly, we say that u enjoys comparison with the
lower extensions in U (u ∈ CLE(U)) if u ≥ Λ(u|∂V ) in V for every V ⊂ U .

Observe that in the case (X, d) = (Rn, | · |) we have CCA(U) = CUE(U) by
Proposition 4.4. The counterpart for Proposition 2.1 is easily obtained.

Theorem 9.5. Let U ⊂ X be open. Then u ∈ AM(U) if and only if u enjoys
comparison with the lower and the upper extensions.

Proof. Assume first that u ∈ AM(U). Then Lu(V ) = Lu(∂V ) for each V ⊂ U , and
hence Λ(u|∂V ) ≤ u ≤ Ψ(u|∂V ) by the properties of McShane-Whitney extensions.
Consequently, u enjoys comparison with the lower and the upper extensions.

To prove the opposite direction, we may argue as in the proof of Proposition 2.1.
First, since u ∈ CUE(U) ∩ CLE(U), for any V ⊂ U and any x ∈ V, we have

u(z) − Lu(∂V )d(x, z) ≤ u(x) ≤ u(z) + Lu(∂V )d(x, z)

for all z ∈ ∂V , which implies Lu(∂(V \ {x})) = Lu(∂V ) for each x ∈ U . Using this
twice yields

Lu(∂(V \ {x, y})) = Lu(∂V )

for any x, y ∈ V . Since x, y ∈ ∂(V \{x, y}), we obtain |u(x)−u(y)| ≤ Lu(∂V )d(x, y),
and hence u ∈ AM(U). �

The existence theorem we prove reads as follows:

Theorem 9.6. Let (X, d) be a length space and U a proper open subset of X. If
f : ∂U → R is Lipschitz continuous, then there exists u ∈ AM(U) such that u = f
on ∂U and Lu(U) = Lf (∂U).

The general strategy for proving Theorem 9.6 is more or less the same as in
Section 3. We define

u(x) := sup{v(x) : Λ(f) ≤ v ≤ Ψ(f), v ∈ CUE(U) and Lv(U) = Lf (∂U)}.

The reader can check that the set of v’s on the right is nonempty, because Λ(f)
satisfies all the requirements. Thus u is well defined, and it is easy to see that u = f
on ∂U and Lu(U) = Lf (∂U). In other words, the only thing that requires a proof
is u ∈ AM(U). For this, we need to obtain “length space versions” of Lemma 2.12
and Lemma 3.3.
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Lemma 9.7. Suppose F is a uniformly Lipschitz continuous family of functions
which enjoy comparison with upper extensions in U , and let

(9.1) h(x) = sup
v∈F

v(x).

Then h enjoys comparison with upper extensions in U .

Proof. It is clearly enough to show that v ≤ Ψ(h|∂V ) for every v ∈ F and V ⊂ U .
Let us therefore fix V and v and consider the set

D = {x ∈ V : v(x) > Ψ(h|∂V )(x)}.
Our aim is to show that this set is necessarily empty. To this end, we define

w(x) =

{
Ψ(v|∂D)(x), if x ∈ D,
Ψ(h|∂V )(x), if x ∈ V \ D.

Since v = Ψ(h|∂V ) on ∂D, we have

(9.2) Lw(D) = Lv(∂D) ≤ LΨ(h|∂V )(V ).

On the other hand,

(9.3) Lw(V \ D) ≤ LΨ(h|∂V )(V ).

Since (X, d) is a length space, (9.2) and (9.3) together imply that

Lw(V ) ≤ LΨ(h|∂V )(V ) = Lh(∂V ).

Thus w is a Lipschitz extension of h to V and because Ψ(h|∂V ) is the largest such
extension, w ≤ Ψ(h|∂V ) in V . In particular, since v enjoys comparison with upper
extensions,

v ≤ Ψ(v|∂D) = w ≤ Ψ(h|∂V )

in D. This shows that D must be empty, and we are done. �

Lemma 9.8. Suppose u enjoys comparison with upper extensions in U but u does
not enjoy comparison with lower extensions in U . Then there exists a Lipschitz
continuous function û and a nonempty proper subset W ⊂ U such that û ∈ CUE(U),

(9.4) û = u on U \ W and û > u on W.

Proof. Let V ⊂ U be such that

W = {x ∈ V : u(x) < Λ(u|∂V )(x)}
is not empty and set

û(x) =

{
Λ(u|∂W )(x) if x ∈ W,
u(x) if x ∈ U \ W.

Using the facts that (X, d) is a length space and Λ(u|∂V ) is the smallest Lipschitz
extension, with the optimal Lipschitz constant, of u to V , and arguing as in the
proof of Lemma 9.7 above, we see that Λ(u|∂W ) ≥ Λ(u|∂V ) in W . Thus we need to
prove only that û enjoys comparison with upper extensions. To this end, we argue
by contradiction and suppose that there exists V̂ ⊂ U such that

Ŵ = {x ∈ V̂ : û(x) > Ψ(û|∂V̂ )(x)}
is not empty. Since (X, d) is a length space, we may as well assume that V̂ = Ŵ .

To conclude the proof, observe first that u ≤ Ψ(û|∂V̂ ) in V̂ . Indeed, if we let

D = {x ∈ V̂ : u(x) > Ψ(û|∂V̂ )},
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then

LΨ(u|∂D)(D) = Lu(∂D) ≤ LΨ(û|∂V̂ )(V̂ ) ≤ Lû(∂V̂ ),

and we have by the “glueing argument” and the maximality of the extension
Ψ(û|∂V̂ ) that Ψ(û|∂V̂ ) ≥ Ψ(u|∂D) in D. By the assumption that u ∈ CUE(U),

this implies u ≤ Ψ(û|∂V̂ ) in V̂ , which also shows that V̂ ⊂ W . But as Λ(u|∂W )
enjoys comparison with upper extensions in W and Ψ(û|∂V̂ ) = Ψ(Λ(u|∂W )|∂V̂ ) in

V̂ , we have

û = Λ(u|∂W ) ≤ Ψ(û|∂V̂ )

in V̂ , a contradiction. We conclude that û enjoys comparison with upper extensions
in U . �

Theorem 9.6 now follows immediately. Indeed, by Lemma 9.7, u ∈ CUE(U). If
u 6∈ CLE(U), we could use Lemma 9.8 to construct, without changing the boundary
values or increasing the Lipschitz constant, a function û ∈ CUE(U) such that û ≥ u
and û(x) > u(x) for some x ∈ U , which obviously contradicts the definition of
u. Hence u ∈ CUE(U) ∩ CLE(U), and it then follows from Theorem 9.5 that
u ∈ AM(U). �

9.1. Notes. Absolute minimizers in general metric spaces have been studied in [57]
and [49]. Both papers concentrate mainly on the existence, which is proved using
Perron’s method in conjunction with the ideas of Aronsson [3]-[5]. Our presenta-
tion above follows [49]. In the special case of a sub-Riemannian setting, absolute
minimizers and the associated generalized infinity Laplace equations have been con-
sidered in [19], [20], [21], [22] and [62]. The results obtained include uniqueness and
equivalence of absolute minimizers and viscosity solutions of the infinity Laplace
equation.

As explained in Section 8, an alternative way to show existence of absolute
minimizers in (Rn, | · |) goes via approximation by p-harmonic functions. Due to
the development of the theory of Sobolev spaces and nonlinear potential theory on
metric measure spaces, it is undoubtedly possible to generalize this approach to this
more abstract setting. However, such method would presumably produce “strong
absolute minimizers” as in the Euclidean case whose relationship with the absolute
minimizers defined in Definition 9.3 is not a priori clear.
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functionals, Ann. Inst. H. Poincaré Anal. Non Linéaire 18 (2001), no. 4, 495–517.
MR 1841130 (2002c:49020)

[15] Belloni, M., and Kawohl, B., The pseudo-p-Laplace eigenvalue problem and viscosity so-
lutions as p → ∞, ESAIM Control Optim. Calc. Var. 10 (2004), 28–52.

[16] Bhattacharya, T., An elementary proof of the Harnack inequality for non-negative infinity-
superharmonic functions, Electron. J. Differential Equations, No. 44 (2001), 8 pp. (electronic).
MR 1836812 (2002b:35071)

[17] Bhattacharya, T., On the properties of ∞-harmonic functions and an application to ca-
pacitary convex rings, Electron. J. Differential Equations, No. 101 (2002), 22 pp. (electronic).
MR 1938397 (2003j:35126)

[18] Bhattacharya, T., DiBenedetto, E., and Manfredi, J., Limits as p → ∞ of ∆pup = f

and related extremal problems, Some topics in nonlinear PDEs (Turin, 1989). Rend. Sem.
Mat. Univ. Politec. Torino 1989, Special Issue, 15–68 (1991). MR 1155453 (93a:35049)

[19] Bieske, T., On ∞-harmonic functions on the Heisenberg group, Comm. Partial Differential
Equations 27 (2002), no. 3-4, 727–761. MR 1900561 (2003g:35033)

[20] Bieske, T., Viscosity solutions on Grushin-type planes, Illinois J. Math. 46 (2002), no. 3,
893–911. MR 1951247 (2003k:35037)

[21] Bieske, T., Lipschitz extensions on generalized Grushin spaces, Michigan Math. J. (to ap-
pear).

[22] Bieske, T., and Capogna, L., The Aronsson-Euler equation for absolutely minimizing Lip-
schitz extensions with respect to Carnot-Carathéodory metrics, Trans. Amer. Math. Soc. (to
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