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A Tower-Based Radar Study of Temporal

Coherence of a Boreal Forest at P-, L-, and

C-Bands and Linear Cross Polarization
Albert R. Monteith , Member, IEEE, and Lars M. H. Ulander , Fellow, IEEE

Abstract— Cross-polarized temporal coherence observations of
a boreal forest, acquired using a tower-based radar, are presented
in this article. Temporal coherence is analyzed with respect to
frequency, temporal baseline, time of day of observation, season,
meteorological variables, and biophysical variables. During the
summer, P- and L-band temporal coherence exhibited diurnal
cycles, which appeared to be due to high rates of transpiration
and convective winds during the day. During the winter, freeze-
thaw cycles and precipitation resulted in decorrelation. At tem-
poral baselines of seconds to hours, a high temporal coherence
was observed even at C-band. The best observation times of the
day were midnight and dawn. Temporal coherence is the main
limitation of accuracy in interferometric and tomographic forest
applications. The observations from this experiment will allow for
better spaceborne SAR mission designs for forest applications,
better temporal decorrelation modeling, and more accurate
forest parameter estimation algorithms using interferometric and
tomographic SAR data.

Index Terms— BorealScat, boreal forest, C-band, coherence,
decorrelation, L-band, P-band, tower.

I. INTRODUCTION

TEMPORAL coherence is the complex correlation coeffi-

cient between two coherent radar observations acquired

at different times with the same observation geometry. Tem-

poral coherence is a measure of observation quality for inter-

ferometric and tomographic synthetic aperture radar (SAR)

applications and a source of information about the observed

scene [1]–[5]. A reduction in temporal coherence (temporal

decorrelation) is caused by natural and anthropogenic changes

in the geometry or dielectric properties of the scatterers within

a resolution cell between two observations [6], [7]. Temporal

decorrelation in interferometric and tomographic SAR obser-

vations is a major limitation to the estimation accuracy of
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forest parameters, such as tree height and above-ground forest

biomass [8]–[11].

The choice of radar parameters affects the temporal coher-

ence. Temporal decorrelation of forest scenes is more severe in

high-frequency observations (e.g., C-band: 5400 MHz), which

are sensitive to the random movements of unstable scatterers,

such as leaves, needles, twigs, and branches. It is generally

accepted that temporal coherence decreases as the tempo-

ral baseline (time interval between observations) increases

because of more meteorological and anthropogenic influences.

Therefore, the choice of center frequency and orbital revisit

intervals of a spaceborne SAR affects the observed temporal

coherence and determines which applications are feasible.

The most common spaceborne implementation of SAR

interferometry is by repeated passes over the same scene.

Repeat-pass interferometry and tomography will be featured

in ESA’s upcoming BIOMASS mission for which the pri-

mary objective of the mission is to determine the worldwide

distribution of forest above-ground biomass [12]. Approx-

imately 36.7% of the boreal forest carbon stock, mainly

in Europe and North America, will not be covered due to

P-band (435 MHz) transmission regulations [13]. While these

regions have well-developed national forest inventory systems,

BIOMASS observations are valuable in the remaining Russian

boreal forests. BIOMASS will become the spaceborne SAR

operating at the lowest center frequency ever [14]. Such a

low frequency makes both repeat-pass SAR interferometry

(three-day temporal baseline) and tomography (seven passes at

three-day intervals) possible. In a tropical forest, it was found

that the choice of observation time of day has an impact on

the temporal coherence. Temporal coherence was lower during

daytime due to higher wind speeds and high evapotranspiration

rates [15]. Overpass times of 6 A.M. and 6 P.M. were chosen

for BIOMASS to minimize both temporal decorrelation and

ionospheric phase scintillations [12], [16].

Currently, the spaceborne SARs with the lowest center

frequency (L-band: 1270 MHz) are ALOS-2 (PALSAR-2)

and SAOCOM-1A/B. ALOS-2 is in a 12 A.M./12 P.M. polar

orbit with a revisit time of 14 days. The L-band successor

to ALOS-2, ALOS-4 (PALSAR-3), will have the same orbit.

The SAOCOM-1 constellation has a revisit time of eight days.

The upcoming L- and S-band SAR, NISAR, will have a dawn-

dusk polar orbit with a revisit time of 12 days. The Copernicus

High Priority L-band mission, ROSE-L, is planned to consist

of two SAR platforms with a global revisit time of six
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days [17]. The X-band constellation consisting of TanDEM-X

and PAZ allows repeat-pass observations at intervals of at least

four days [18]. These long revisit times limit the usefulness

of the observations for interferometric forest applications.

Most forest applications favor the shortest possible temporal

baseline. This comes at the cost of reduced coverage, which

is a driver in many other applications. One solution to this

problem is to use multiple SAR platforms.

Temporal decorrelation can be eliminated with an instanta-

neous interferometer, such as TanDEM-X and the proposed

L-band mission Tandem-L [19], [20]. Several companion

missions extending Sentinel-1 to single-pass interferometry

have been proposed [21]–[23]. However, an instantaneous

interferometer is not the ideal configuration for all applica-

tions. Observations of ocean currents benefit from temporal

baselines of milliseconds [24]. Satellite overpasses separated

by seconds may also be more favorable than single-pass

interferometers for reducing the risk of collisions. Multiple

SAR platforms in the same orbit with orbital phase shifts

have been implemented, such as the ERS 1/2 tandem phase

(one-day temporal baseline), Sentinel-1A/B (six-day temporal

baseline), and COSMO-SkyMed (<12-h temporal baseline).

The long integration times of geosynchronous and geosta-

tionary SARs, such as the C-band ESA Earth Explorer

10 candidate, Hydroterra, require high coherence over tem-

poral baselines of minutes to hours [25], [26]. All these

SAR missions encompass a wide range of possible temporal

baselines.

Temporal decorrelation in forest observations has been

attributed to the influence of wind, freeze-thaw cycles, rain,

snow, soil moisture content, tree growth, and vegetation mois-

ture content on the radar echoes [27], [28]. Different environ-

mental variables cause temporal decorrelation over different

timescales [11]. Long-frozen periods during the winter have

been found to be good conditions for forest parameter esti-

mation in boreal forests using L-band and C-band repeat-pass

coherence observations [29], [30]. During unfrozen conditions,

temporal decorrelation occurred readily due to soil moisture

changes, rain, wind, growth-related changes, and variations

in tree water content. In [31], it was observed that acqui-

sitions separated by freezing, thawing, and also acquisitions

acquired during temperatures above 0 ◦C resulted in very

low coherences at C-band for temporal baselines of three or

more days. Even for temporal baselines of one day, weather

effects, such as rain, strong wind, inhomogeneous melting of

snow, and freezing in between interferometric ERS-1/2 C-band

acquisitions, caused severe decorrelation [32]. In [33], P- and

L-band observations from a tower-based radar in a tropical

forest were analyzed to characterize the temporal coherence

in terms of observation time of day, polarization, and season

(wet/dry). The main sources of decorrelation were identified

to be changes in tree water content, convective winds, and

rainfall. The sensitivity of temporal coherence to tree water

content variations was supported by electromagnetic model

results [34]. A C-band extension to this experiment showed

that the temporal coherence can exhibit diurnal cycles due to

convective winds and, to a greater extent, high evapotranspira-

tion rates during the day [35], [36]. Temporal coherence is also

dependent on polarization. Polarizations that are more sensi-

tive to scattering off stable structures, such as the ground and

trunks (e.g., HH and VV), are expected to undergo less tempo-

ral decorrelation than polarizations that are sensitive to smaller

structures in the upper canopy (e.g., HV and VH) [28], [37].

Existing models of temporal coherence do not capture the

dependence on meteorological variables, moisture changes,

time of day, or seasons [6], [11], [25]. Dielectric fluctuations

have been incorporated in a coherence model at L-band [38],

though based on assumptions that lack in situ observational

support. The dependence of temporal coherence on the tem-

poral baseline in coherence models is also assumed to be

monotonically decreasing, which is not always the case [35],

[39]. Regarding boreal forests, the lack of a comprehensive

understanding of temporal coherence limits the effectiveness

of spaceborne SAR mission designs and the performance of

forest parameter estimation algorithms. Temporal coherence

is difficult to characterize using airborne and spaceborne SAR

data due to temporal sparsity and the influence of geometric

and volume decorrelation [28]. Temporally dense, multiannual,

zero-spatial baseline observations are necessary for gaining

a better understanding of temporal decorrelation in boreal

forests.

In this study, tower-based radar observations of a boreal for-

est stand were analyzed to characterize the temporal coherence

in terms of the following:
1) frequency (P-, L-, and C-bands);

2) temporal baseline (seconds to weeks);

3) observation time (dawn, dusk, noon, and midnight);

4) season (summer and winter);

5) meteorological and biophysical variables.

Only cross-polarized observations were considered in this

study. Cross-polarized observations are expected to have the

lowest coherence of all linear polarization combinations. This

is because cross-polarized observations originate mainly from

depolarizing scatterers that include less stable structures, such

as branches. Cross-polarized observations have also been

shown to have the closest correlation with forest proper-

ties [40] and are always available in the dual-pol mode used

to acquire most spaceborne SAR images. Observations were

made from a static tower platform (zero-spatial baseline),

and thus, measurements were not influenced by geometric or

volume decorrelation. Decorrelation introduces multiplicative

noise in SAR measurements, which decreases the accuracy

of forest parameters estimated from interferometric or tomo-

graphic SAR data. The sensitivity of an estimated parameter

to this noise depends on the application and algorithm used.

Nevertheless, a temporal coherence below 0.8 is typically

a significant source of estimation error [33] and is here

adopted as a threshold for distinguishing between high and

low coherence.

This work is part of the BorealScat radar tower experi-

ment [41]. The main goal of the experiment is to study how

radar observations of a boreal forest vary with time. Previous

studies have focused on temporal variations in forest backscat-

ter [39], [42]. In the present study, the phase information

measured using this coherent radar is included by focusing

on the temporal coherence of BorealScat radar observations.
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Fig. 1. Illustration (to scale) of the observation geometry in the image plane.
The blue region is illuminated by the P- to L-band antennas with a gain of
at least −3 dB relative to the maximum antenna gains (6 dBi). The yellow
region is illuminated by the C-band antennas with a gain of at least −3 dB
relative to the maximum antenna gains (18 dBi).

First, the experiment setup, observation scheme, and

coherence estimation methods are described in Section II.

In Section III, temporal coherence results are presented in the

order of decreasing temporal baseline. We report the results in

terms of median performance, with selected cases presented

at the end.

II. METHOD

A. Radar Measurements

The observed scene is a dense, homogeneous forest stand

consisting of mature Norway spruce (Picea abies (L.) Karst)

with tree heights of 25–27 m. The mossy forest floor is flat and

has little understory. The site is located in the Remningstorp

experimental forest in southern Sweden. The radar instrument

consists of a 20-port vector network analyzer (VNA) con-

nected to an array of 30 antennas mounted at the top of a 50-m

high tower overlooking the forest. Fig. 1 shows the observation

geometry in the vertical imaging plane. Note that C-band

observations are focused on a smaller region close to the tower,

whereas P- and L-band observations are acquired over a larger

region. The system is designed for tomographic imaging at P-,

L-, and C-bands at all linear polarization combinations.

For acquiring a single tomogram, several transmit–receive

measurements are taken between antennas in the array. Two

columns (one for transmitting and the other for receiving)

of five antennas each contribute to a single tomographic

image. The same linearly polarized antennas are used for

P- and L-bands. For the P- to L-band array measurements,

there are four columns in total (20 antennas), giving both a

vertically and horizontally polarized column for transmission

and reception. For C-band, dual-polarized antennas were used,

needing only two columns of antennas (ten antennas) for fully

polarimetric measurements. Thus, there are 30 antennas in

total. The array geometry for cross-polarized measurements is

shown in Fig. 2. For analysis purposes, the transmit–receive

combinations may be approximated as virtual antenna posi-

tions located halfway between each transmitting and receiving

Fig. 2. Geometric configuration (to scale) of antennas in the two arrays
for cross-polarized measurements. Positions of virtual monostatic antennas
corresponding to the bistatic measurements are also shown. The arrays are
viewed from the front in the opposite direction of boresight. The P-/L-band
array is vertically mounted, but the C-band array is tilted 50◦ (depression
angle) from the vertical.

TABLE I

SIGNAL PARAMETERS AND ANTENNA SPECIFICATIONS

FOR EACH FREQUENCY BAND

antenna element. The array configuration results in a vertical

array of such equivalent virtual monostatic antenna elements.

This vertical aperture provides resolution in elevation, whereas

the signal bandwidth provides resolution in range. Signal

parameters and antenna specifications are listed in Table I for

each frequency band. The array does not have a horizontal

aperture. Resolution in the cross-range, or azimuth, direction

is limited by the antenna beamwidth in the azimuth direction.

At P- and L-bands, this beamwidth is at least 60◦. As a

result, reflections over a height interval (determined by the

elevation resolution) from many trees are integrated into the

azimuth direction. This is not a problem because the ground

is flat and the forest can be considered homogeneous since

many trees contribute to the backscatter within the azimuth

beamwidth. At C-band, a higher antenna gain was desired to

compensate for higher cable losses at C-band. This larger gain

came at the cost of narrower beamwidths in elevation and,

especially, azimuth, as detailed in Table I. Further details of

the instrument design can be found in [41].

B. Measurement Duration

For a VNA radar, the measurement time is proportional to

the signal bandwidth, assuming a fixed unambiguous range.
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The measurement time for acquiring a tomogram is 40, 180,

and 140 ms for P-, L-, and C-bands, respectively. Temporal

decorrelation during these measurement times can be assumed

negligible for P- and L-bands for the range of wind speeds

observed in this experiment. This is not the case at C-band,

where small random movements of a wind-blown canopy

can result in large Doppler shifts. Continuous-wave Doppler

measurements from the radar tower, similar to those in [43],

showed that the C-band coherence decreases to 0.8 within

the tomographic measurement time of 140 ms for a mean

wind speed between 10 and 11 m/s. For wind speeds above

11 m/s, the correlation time (here defined as the temporal

baseline giving a coherence of 0.8) is less than the C-band

tomographic image acquisition time, making tomographic

images significantly affected by temporal decorrelation. The

minimum correlation time that can be measured at C-band

using tomographic imaging is, thus, 140 ms. This occurs at

relatively high wind speeds for this region, which would result

in low coherences even for a perfect instrument. To summarize,

each tomogram provides a reliable snapshot of the forest scene,

except for C-band acquisitions acquired during high wind

speeds.

C. Tomographic Image Formation

This section summarizes the tomographic image formation

procedure, including calibration, which is described in detail

in [44]. For a transmit–receive antenna pair, the VNA measures

a frequency-domain signal SMeas( f ). The frequency f extends

over the signal bandwidth in steps of 0.5 MHz. VNA radar

measurements are susceptible to a strong mutual antenna

coupling component, which must be suppressed for narrow

bandwidth measurements (such as the 30-MHz bandwidth

P-band measurements) to avoid interference between reflec-

tions from the forest scene and sidelobes originating from

the strong mutual coupling response near the antennas. The

root MUltiple Signal Classification (MUSIC) algorithm was

used to separate the strong, impulse-like spectral component of

the mutual antenna coupling from the noise-like forest reflec-

tions [44]. The root MUSIC algorithm finds the frequencies

(ranges in this application) of strong sinusoidal components in

SMeas( f ) that have been separated from the background noise

and clutter. These sinusoidal components form the estimated

mutual coupling component ξ̂Coupling( f ), which was subtracted

from the measured signal in the frequency domain according to

SCal( f ) = SMeas( f ) − ξ̂Coupling( f ). (1)

The mutual coupling contribution is suppressed in the cal-

ibrated frequency-domain signal SCal( f ). After applying a

Hamming window WR( f ) to suppress sidelobes in range,

the inverse discrete Fourier transform (iDFT) was used to

obtain a range profile

x(R) = iDFT{WR( f )SCal( f )} (2)

where R is the one-way range from the midpoint between the

transmitting and receiving antennas. Having suppressed the

mutual coupling component in the frequency domain, side-

lobes from the strong impulse-like mutual coupling component

do not appear in the range profile x(R). This procedure is

repeated for all 25 combinations of five transmitting and five

receiving antennas contributing to a tomographic image, which

is computed as

I (p) =
1

H (p)

5
∑

m=1

5
∑

n=1

W mn
Arrayxmn

(

Rmn
p /2

)

Ĉmn
e j2π fc Rmn

p /c0 (3)

where p is a pixel location on the image plane, m is the index

of the receiving antenna, n is the index of the transmitting

antenna, W mn
Array is a window function for suppressing side-

lobes in elevation, Rmn
p is the two-way antenna-pixel-antenna

distance, j =
√

−1, fc is the center frequency, and c0 is the

speed of light in a vacuum. Ĉmn is a factor compensating for

magnitude and phase imbalances between antenna pairs and is

estimated using the range profile response of a trihedral corner

reflector. For P- and L-band, a large corner reflector with short

sides of 5 m was placed in an open field beyond the forest.

For C-band, a smaller reflector was placed near the base of the

tower. The factor H (p) normalizes pixel values for differences

in their impulse responses and antenna gains across the image

plane [44].

D. Regions of Interest in Tomograms

To increase the number of independent samples, regions of

interest were selected from the complex-valued tomographic

images for coherence estimation. The regions were selected to

be representative of the typical incidence angles of spaceborne

SARs (20◦–55◦). Examples of single-look tomographic images

with their regions of interest are shown in Fig. 3. The P-band

reflection originates mainly from the upper canopy, with some

ground-level scattering. The L- and C-band reflections are

dominated by upper canopy scattering. This is because the

forest is dense, with very few gaps allowing line-of-sight

observation of the ground. The ground is visible at P-band

because electromagnetic waves penetrate the canopy more

easily compared at L- and C-bands.

As detailed in Section II-A, different signal parameters and

array geometries are used for the frequency bands, resulting

in large differences in the image resolutions. The slant-range

resolution is determined by the signal bandwidth (specified

in Table I). The elevation resolution is determined by both

the vertical aperture of the array in relation to the wavelength

and the angle off the array boresight. The image resolution

varies across the image, as shown in Fig. 4. Even though

the same antenna array is used for P- and L-band measure-

ments, the L-band images have a finer resolution because of:

1) a wider signal bandwidth and 2) a larger vertical array

aperture relative to the signal wavelength. Being aperture

limited (unlike beamwidth limited as is the case in SAR),

the elevation (or cross-range) resolution degrades as the angle

off boresight increases, producing the streaks near the ground

in the L-band tomogram. The C-band tomograms have a

fine resolution because the array was optimized (in terms of

array aperture and tilt angle) for high-resolution forest canopy

observations at C-band only. The C-band region of interest

does not include the ground since the ground contribution is

so weak (due to canopy attenuation) that it is dominated by



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MONTEITH AND ULANDER: TOWER-BASED RADAR STUDY OF TEMPORAL COHERENCE OF A BOREAL FOREST 5

Fig. 3. Top image is a section of a terrestrial LiDAR point cloud near
the imaging plane. The lower three images are cross-polarized tomographic
images acquired at midnight on June 1, 2018. The white rectangles indicate
the regions of interest used for coherence estimation. The dashed line indicates
the ground level. The pixel intensities in each tomographic image have been
normalized relative to the maximum pixel intensity in the image, making them
in units of normalized reflectivity.

Fig. 4. Tomographic image resolutions within the regions of interest shown
in Fig. 3. Resolution is defined as the distance between −3-dB power points
(relative to the maximum) of an impulse response in the horizontal and vertical
directions. The same color scale is used across each row.

Fig. 5. Timeline of the measurement sequence. Every 5 min, a burst of
four tomographic observations were made. Four tomograms for each polar-
ization were thus acquired every 5 min. This figure is reproduced from [42]
under the Creative Commons BY 4.0 license (https://creativecommons.org/
licenses/by/4.0/).

imaging sidelobes and noise. There is also a trihedral corner

reflector on the ground in the C-band images.

E. Temporal Baselines

The measurement sequence consists of a burst of four

tomographic measurements repeated every 5 min. This mea-

surement sequence is shown in Fig. 5. The four tomographic

measurements in a burst are separated by 5 s. This allows

the investigation of temporal changes in radar observations at

intervals of 5, 10, and 15 s and multiples of 5 min. These were

the temporal baselines investigated in this study. This mea-

surement sequence has been running since September 2017.

The main two periods studied are a hot and dry summer



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Fig. 6. Meteorological variables and volumetric soil moisture content (VWC)
of the summer 2018 period (June 1, 2018–September 1, 2018).

(June 1, 2018 to September 1, 2018) and a wet and windy win-

ter (November 1, 2019–February 1, 2020). Selected examples

of temporal coherence from other periods are also presented.

All times in this article are local solar times (UTC+54.5 min),

which are most relevant for studying the effects of diurnal

weather patterns on forest scattering.

F. Ancillary Measurements

An on-site weather station measured air temperature, pres-

sure and humidity, wind speed, and precipitation using a

heated rain gauge. This rain gauge cannot distinguish between

rain and snow. Wind speed was sampled at intervals of 5 s

at a height of 50 m (20 m above the canopy) and averaged

over 10 min. Soil moisture was measured in the forest at a

single depth within the top 30 cm of the soil. Campbell Sci-

entific CS650 time-domain reflectometry probes were used for

measuring soil moisture. While multiple soil moisture probes

were installed, data from only one were used in this study.

This was due to technical problems. Winters in this region

are characterized by frequent freeze-thaw cycles and little

snow cover. Meteorological variables and soil moisture content

for the main two periods analyzed in this article are shown

in Figs. 6 and 7. Measurements of incoming solar radiation,

xylem sap flow, and stem radius were included in the final

months of the experiment. Sap flow sensors (Implexx Sense)

and point dendrometers (Natkon ZN12-T-2WP) were installed

at approximately breast height on three trees. The xylem sap

flow rate is closely related to the rate of transpiration [45],

and variations in the stem radius are related to variations of

the stem water content [46].

G. Coherence Estimation

The complex coherence between two bursts, separated by

a temporal baseline of a multiple of 5 min, was estimated

Fig. 7. Meteorological variables and volumetric soil moisture content (VWC)
of the winter 2019/2020 period (November 1, 2019–February 1, 2020).

according to

ρ =
∑4

k=1

∑P
p=1 I k

t1(p)I k
t2(p)∗

√

∑4
k=1

∑P
p=1

∣

∣I k
t1(p)

∣

∣

2 ∑4
k=1

∑P
p=1

∣

∣I k
t2(p)

∣

∣

2
(4)

where k is the index of the measurement in a burst, p is

the tomographic image pixel index in the region of interest,

P is the number of pixels in a region of interest, I (p) is

a tomographic image, t1 is the time of the first observation

(reference/master), and t2 is the time of the second observation

(slave). The temporal baseline is equal to t2 − t1. The

summation over k in (4) implies that all four measurements

in a burst are used when estimating the coherence when

the temporal baseline is a multiple of 5 min. This is done

to maximize the number of samples in the estimate. When

estimating the coherence for temporal baselines of 5, 10, and

15 s (between measurements in a burst), the summation over

k is not included.

Interpretation of the results presented in this article requires

consideration of the coherence estimation accuracy. Coherence

estimates computed using (4) have an associated estima-

tion bias and variance that are dependent on the true value

of the coherence and the number of independent samples

(looks) [47]. The estimated coherence is also reduced by

thermal noise by an amount that is dependent on the signal-

to-noise ratio (SNR) [1].

Each tomographic image provides a certain number of

looks, which is dependent on the antenna array geometry, sig-

nal bandwidth, and size of the region of interest. The number

of looks within the regions of interest was estimated by simu-

lating 500 tomographic images, each with a different realiza-

tion of a cloud of 5000 uniformly distributed point scatterers.

This simulation considered the same signal, antenna array con-

figuration, antenna patterns, and image formation algorithm as

in the actual measurement. The stepped-frequency continuous-

wave signal of a VNA lends itself well to frequency-domain

simulations. For each of the 500 images, the mean backscatter
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Fig. 8. Bias and standard deviation of the coherence magnitude estimate |ρ|
as a function of the true coherence magnitude assuming the estimated number
of looks provided by a region of interest (20 for P-band, 162 for L-band, and
22 for C-band). Methods for computing the bias and standard deviation are
given in [47]. Note that the curves for P- and C-bands are nearly overlaid.

over the regions of interest was estimated. The number of

looks was estimated as the ratio of the squared mean and

the variance of these backscatter estimates [48]. For a single

tomographic image, the number of looks provided by the

region of interest was estimated to be approximately 20 for

P-band, 162 for L-band, and 22 for C-band. The main reason

for the L-band number of looks being significantly higher than

that of P-band is the finer resolution of L-band images. These

are the minimum numbers of looks. The bias and standard

deviations of the coherence magnitude estimate |ρ| for the

minimum number of looks are shown in Fig. 8. There is a bias

of up to 0.2 and a standard deviation of up to 0.13 for low

coherences at P- and C-bands. L-band coherence estimates are

more accurate. During windy conditions, the trees will move

within a burst of four measurements, providing four nearly

independent tomographic snapshots of the forest. The number

of looks is then up to four times higher for temporal baselines

that are multiples of 5 min. This will decrease the bias and

standard deviation shown in Fig. 8. Under static (no wind)

conditions, all four tomograms in a burst would be equal and

the values in Fig. 8 will apply.

The estimated coherence ρ can be decomposed into a tem-

poral coherence factor ρtemporal and a thermal noise coherence

factor

ρthermal =
1

1 + SNR−1
(5)

such that

ρ = ρtemporal · ρthermal. (6)

The SNR was estimated from the power within the region

of interest PROI and the noise power Pnoise. Pnoise was esti-

mated from a region where no forest reflections, ambiguities,

or imaging sidelobes appear (beyond a ground range of 150 m

and a height of 50 m). Pixel values in this region are dom-

inated by thermal noise. Noise regions from approximately

1500 images were averaged to provide a reliable estimate

of Pnoise. The two image regions used to estimate PROI and

Pnoise were equal in area, and the same impulse response

weighting was applied to both regions. The SNR could then

be estimated as

SNR =
PROI − Pnoise

Pnoise

. (7)

Fig. 9. Thermal coherence for P-, L-, and C-bands during December 2019.
The dips in thermal coherence are caused by freezing temperatures which
decreases the backscattered power, thereby decreasing the SNR.

The SNR varies with time because the forest backscatter,

or equivalently PROI, changes with time. The SNR is lowest

during frozen conditions when the forest backscatter is at a

minimum. This effect is shown in Fig. 9 (December 1–4,

11, and 28, 2019), where frozen conditions cause dips in the

magnitude of the thermal noise coherence. The thermal noise

coherence magnitude |ρthermal| does not drop below 0.92 and

therefore does not significantly affect the estimated coherence

in this experiment. In the rest of this article, the magnitude of

the temporal coherence, |ρtemporal|, will simply be referred to

as the coherence.

III. RESULTS

The coherence observations are introduced in Section III-A

as temporal coherence matrices, which provide an overall view

of the data sets. Thereafter, in Sections III-B–III-E, the median

coherence is characterized in the order of decreasing temporal

baseline. Finally, in Section III-F, selected cases of coherence

time series are discussed.

A. Temporal Coherence Matrices

Temporal coherence matrices provide a representation of

how the temporal coherence varies for different temporal

baselines (t2−t1) and different reference times (t1). Temporal

coherence matrices for the two observation periods and all

three frequency bands are shown in Fig. 10. Values along the

diagonal have zero temporal baseline, giving a coherence of 1.

Note that this diagonal might not be visible due to the fine

sampling interval (1 h) in these plots. The temporal baseline

increases as one moves toward the right from the diagonal.

Different points along the diagonal represent different refer-

ence times, as given by the axis labels. Temporal coherence

matrices are symmetric, so to avoid redundancy, only the top

half of the matrices are shown.

In general, the P-band coherence was the highest, followed

by L-band coherence. During the summer, P-band coherence

remained high over the entire observation period, with only a

few short events decreasing the coherence. During the winter,

the P-band coherence also remained high for several months

but decreases significantly when the air temperature drops

below 0 ◦C (e.g., beginning of December 2019), causing

moisture in the forest structures to freeze. L-band coherence
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Fig. 10. (Top row) Temporal coherence matrices for the summer 2018 period and (bottom row) the winter 2019/2020 period. The sampling interval is 1 h
in these plots, which cannot be resolved by the pixel size in these images. White gaps are due to missing data.

during the summer appears as a grid in the temporal coherence

matrix because of diurnal cycles in coherence. The peak

coherence decreased to 0.2 within one to two months. During

the winter, L-band coherence was sometimes high along the

diagonal. This occurred during frozen conditions that lasted

for periods of hours to days. For both P- and L-bands,

the coherence returned to high values during negative air

temperatures whenever the master tomogram was acquired

during frozen conditions. The C-band coherence is generally

low for the long temporal baselines in Fig. 10.

The scatterplots in Fig. 11 show the likely causes of drops in

P-band coherence. During the summer, there is a clear negative

correlation between coherence and wind speed, suggesting that

wind-induced tree movement is the main cause of temporal

coherence drops in the summer. During the winter, the coher-

ence also drops as the wind speed increases. In addition,

the coherence drops significantly when the air temperature

drops below 0 ◦C (the reference measurement was taken

during unfrozen conditions).

The diurnal cycles in radar observations during the summer

result in different temporal coherences depending on the time

of day of observations. Fig. 12 shows the temporal coherence

Fig. 11. Scatterplots of P-band temporal coherence during the summer (left)
and winter (right). The reference times are 00:00 on June 1, 2018 and
November 1, 2019, i.e., the plotted values come from the first rows in the
two P-band temporal coherence matrices in Fig. 10. Each point represents one
tomogram per hour. P-band coherence decreased due to strong winds in the
summer and due to both strong winds and freezing air temperatures during
the winter.

matrices for observations during only dawn (6 A.M.), noon

(12 A.M.), dusk (6 P.M.), and midnight (12 P.M.) for

P- and L-bands during the summer. Each pixel in a row is

separated by a temporal baseline of 24 h. The most significant
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Fig. 12. Temporal coherence matrices for acquisition taken only during
dawn (6 A.M.), noon (12 A.M.), dusk (6 P.M.), and midnight (12 P.M.) for
the P-band (top row) and L-band (bottom row).

improvement in coherence can be obtained for L-band obser-

vations when observing at dawn or midnight when wind

speeds and transpiration rates (causing dielectric changes) are

at their lowest. For dawn and midnight observations, high

L-band coherences were observed for several days. The L-band

coherence was much lower for noon and dusk observations.

Noon observations yielded the lowest coherences for both

P- and L-bands. An improvement in P-band coherence is also

observed for dawn and midnight observations compared with

other times of the day.

B. Temporal Baselines of Days to Weeks

A statistical representation of how the temporal coherence

evolves over temporal baselines of days to weeks can be

obtained by selecting samples in a row from the temporal

coherence matrices in Fig. 10 that are separated by multiples

of one day. Different rows can then be aligned such that the

reference times coincide. This gives several coherence esti-

mates for the same temporal baseline. The box plots in Fig. 13

show how the distribution of temporal coherence estimates

varies as a function of temporal baseline for 6 A.M. P-, L-,

and C-band observations during the summer. When the median

approaches 1, the distribution is skewed toward 1. Even though

the median is typically high for P-band, some samples can

be much lower. As observed for L-band, a median coherence

of 0.8 can mean that several observations have a coherence

close to 1. As the temporal baseline increases, the median

coherence decreases, and the distribution becomes less skewed

toward 1. At very low coherences, such as those for C-band

in Fig. 13, the distribution is skewed toward 0. This coherence-

dependent skewness is a result of the underlying Gaussian-like

process from which a finite number of independent samples

are used to estimate the coherence [47]. The median never

reaches 0 because of the positive bias at low coherences (see

Fig. 8). Only the median coherence will be reported from

here on. However, it is important to keep the behavior of the

distributions in mind.

The median temporal coherence for all three frequency

bands and both observation periods is shown in Fig. 14.

For a temporal resolution of one day, the coherence dropped

monotonically in all cases. P-band coherence was always

Fig. 13. Box plots of the P-, L-, and C-band temporal coherence over
temporal baselines of multiples of one day for 6 A.M. observations during
the summer. The box edges indicate the 25th and 75th percentiles. The
central mark indicates the median and the whiskers indicate the maximum
and minimum.

highest, followed by L-band and then C-band. The temporal

coherence was also higher during the summer than during the

winter for both P- and L-bands. This may be explained by

more frequent precipitation, higher wind speeds, and freeze-

thaw cycles during the winter compared with the summer.

C-band coherence was low for temporal baselines of one day

and more regardless of season. The P-band coherence was

high for all reference times, but during the summer, the highest

coherences were observed for 6 A.M. and 12 P.M. observations.

This is even clearer for L-band summertime coherence, where

the median dawn and midnight coherence is near 0.7 for

approximately five days. The observation time of day did not

significantly affect the coherence during the winter.

C. Temporal Baselines of Hours to Days

The median coherence over timescales of hours to days is

shown in Fig. 15. During the winter, the coherence decreases

monotonically for all frequency bands as the temporal base-

line increases. During the summer, diurnal cycles are seen

in all three frequency bands. These cycles are clearest for

6 A.M. and 12 P.M. reference times, after which the coherence

decreases during the day and increases again during the night

and morning. The recovery in temporal coherence after 24 h

is especially strong for L-band. Some coherence recovery

is also seen for C-band for 6 A.M. and 12 P.M. reference

times, although the median coherence is still low. For 12 P.M.
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Fig. 14. Median temporal coherence over temporal baselines of multiples of
one day. The title of each plot gives the observation time of day.

reference times during the summer, the L-band coherence

remains high for approximately 6 h (up to 6 A.M.), after which

it drops significantly before recovering again after a temporal

baseline of 24 h. A similar behavior is observed for C-band,

albeit with much lower coherence.

D. Temporal Baselines of Minutes to Hours

Fig. 16 shows a close-up of the coherence over 24 h

with a temporal resolution of 5 min. The P-band median

coherence was close to 1 throughout the first 24 h, with

summer coherences being slightly higher. The median L-

band coherence during the summer remained above 0.8 for

approximately 1 h after a 6 A.M. acquisition, recovering to and

remaining near 0.8 after 15 h (21:00). Even more favorable

L-band conditions were seen for 12 P.M. reference times

during the summer, where the median coherence remained

above 0.8 for 7 h (07:00), recovering again above 0.8 after

20 h (20:00). The median L-band coherence remained between

Fig. 15. Median temporal coherence over temporal baselines of hours to
days. The title of each plot gives the time of day of the reference observation.
Markers are placed at 6-h intervals.

0.5 and 0.7 for 12 A.M. and 6 P.M. reference times during

the summer and for all reference times during the winter. For

C-band observations during the summer, 12 P.M. reference

times yielded a median coherence above 0.8 for 1 h and

above 0.7 for 2 h. For 6 A.M. observations, the C-band median

coherence was between 0.5 and 0.7 during the first hour.

For other reference times and during the winter, the C-band

coherence was poor on timescales of 5 min and longer.

E. Temporal Baselines of Seconds

Temporal coherence for temporal baselines as short as sec-

onds is dominated by wind-induced tree movement. Fig. 17

shows that above a certain threshold, coherence is correlated

with wind speed for a temporal baseline of 5 s. The wind

speed threshold and amount of decorrelation over such short

timescales depends on the frequency. Coherence estimates

become more scattered at higher wind speeds. This may be

due to a larger estimation variance for lower coherences (see

Fig. 8) or the mean wind speed may be less representative

of the instantaneous wind speed. The median coherence for

P-, L-, and C-bands for temporal baselines of 5–15 s is
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Fig. 16. Median temporal coherence over temporal baselines of minutes to
hours. The title of each plot gives the time of day of the reference observation.
Markers are placed at 1-h intervals.

shown in Fig. 18. The coherence was significantly higher

for 6 A.M. and 12 P.M. observations during the summer

due to the lower convective wind speeds and transpiration

rates during the night and early morning. For other reference

times and winter observations, there were little differences in

the median coherence. In all cases, the temporal coherence

decreased exponentially with increasing temporal baseline,

which is characteristic of temporal coherence models assuming

stationary stochastic scattering properties. L-band coherence

remained near 0.8, but the C-band coherence dropped to below

0.8 for temporal baselines as short as 5 s during the winter

and during summer days.

F. Temporal Coherence Time Series

The results presented thus far have provided a statistical

sense of how temporal coherence varies as a function of

temporal baseline, time of observation, season, and frequency.

In this section, examples of temporal coherence time series are

shown to gain a better understanding of how temporal coher-

ence is affected by meteorological and biophysical variables.

In the following coherence time series plots (see Figs. 19–23),

Fig. 17. Temporal coherence versus wind speed for a temporal baseline of 5 s
during the winter period. Above a certain threshold, wind speed (measured at
a height of 50 m) is correlated with coherence.

Fig. 18. Median temporal coherence over temporal baselines of multiples
of 5 s for the summer (left column) and winter (right column). The title of
each plot gives the time of day of the observation.

the coherence is computed relative to the starting time (first

value on the horizontal axis) of the presented time series.

This reference time (master acquisition time) for each plot

is specified in the figure caption.

In Fig. 19, large daytime drops in L- and C-band coher-

ence are seen, along with meteorological variables and
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Fig. 19. Time series showing diurnal cycles in temporal coherence during
the spring of 2020. The wind speed does not vary diurnally, suggesting that
the daytime drop in coherence is caused by tree water transport. The reference
time is 00:00 on April 22, 2020.

measurements of the tree sap flow and stem radius varia-

tions 1r . The wind speed during this period did not vary

diurnally and is, therefore, not the cause of the diurnal decor-

relation pattern seen in all frequency bands. A low temporal

coherence during the day coincided with a high sap flow rate

(high rate of transpiration), suggesting that tree water transport

within trees was the cause of decorrelation. The stem radius

variations were not in phase with temporal coherence cycles,

indicating that it was not the change in stem water content

that caused decorrelation, but instead the rate of change of

water content (sap flow rate). A change in crown water content

during transpiration is also a likely cause of decorrelation.

The effect of rainfall is shown in Fig. 20. Rain halts

transpiration and breaks the diurnal cycle. It caused large drops

in L- and C-band coherence but resulted in little decorrelation

at P-band. In the evening of April 28, 2020, the rain stopped,

but the P-band coherence did not recover to near 1 again. This

can be explained by the observed increase in soil moisture

content due to rainfall. L- and C-band coherence also did not

recover to high values, despite the low wind speeds toward the

end of the time series. This may be due to intercepted rainfall

or dielectric changes within the vegetation after rainfall.

Temporal coherence time series from the coldest period of

the experiment are shown in Fig. 21. C-band observations

are not available from this period. P- and L-band coherence

both dropped slowly during frozen conditions. This may be

due to increasing ice fractions in the soil and trees as frozen

conditions persist with time. P-band coherence recovered to

higher values than that of L-band after thawing and refreezing.

The wind speed increased above 5 m/s on several occasions

in Fig. 21, which tends to cause decorrelation at L-band

during nonfrozen conditions (see Fig. 17). This is not the

case in Fig. 21, indicating that frozen conditions increase the

number of gaps in the canopy of this dense forest, revealing

more ground that dominates the coherence.

Another example of coherence during frozen conditions is

shown in Fig. 22. P-band coherence appears more sensitive

Fig. 20. Time series showing how rainfall causes decorrelation at P-, L-,
and C-bands, interrupting diurnal cycles. The reference time is 00:00 on
April 25, 2020.

Fig. 21. Time series showing how coherence drops very slowly during long-
frozen periods and how the temporal coherence can recover after thawing and
refreezing. The reference time is 00:00 on February 22, 2018.

to temperature variations during frozen conditions. This can

be explained by greater sensitivity to the varying ice fractions

in tree stems and the soil as the temperature changes. The

ice fraction in inhomogeneous mixtures such as soil and

wood increase with decreasing temperature, resulting in a drop

in electric permittivity and change in scattering amplitude

[49]–[51]. The L-band coherence did not drop significantly

over this period. The largest change in L-band coherence was

on February 26, 2020, during which much of the snow on the

trees melted. This can be seen in photographs of the forest

taken by a camera on the tower. During the three-day period,

snow on the ground partially melted. It cannot be concluded

that the melting snow had a significant effect on temporal

coherence because the dielectric properties of the scene vary

as a function of air temperature, especially when near 0 ◦C.

The C-band coherence was very low during this period, most

likely because of the moderate wind speed during the reference

observation.
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Fig. 22. Time series showing the drop in coherence over a period during
which snow melts. P-band coherence appears more sensitive to temperature
variations during freezing conditions. The reference time is 04:00 on Feb-
ruary 26, 2020. The photographs were acquired by a camera on the tower
viewing the forest region observed by the radar.

Fig. 23. Time series showing the drop in L- and C-band coherence
due to rainfall and a P- and L-band decorrelation due to freezing. During
nonfrozen conditions, P-band coherence remains high, but the strong winds
cause decorrelation at L- and C-bands. The reference time is 23:55 on
December 24, 2019.

The effect of freezing on coherence is shown in Fig. 23.

Soon after the reference observation, the L- and C-band

observations decorrelated due to rainfall. Surveillance cam-

era images confirmed that the measured precipitation was

rain. Thereafter, the temperature dropped below 0 ◦C

(December 27), causing further decorrelation at L-band and

significant decorrelation at P-band. After thawing, the P-band

coherence returned to high values, but the L- and C-band

coherence remained low because of the strong winds. The

strong winds also caused some decorrelation at P-band.

IV. DISCUSSION

The results demonstrate that the temporal decorrelation in

boreal forests is dependent on several environmental factors.

The P-band temporal coherence was observed to be high over

temporal baselines of several days and in some cases even

several weeks, during both seasons. In a dawn-dusk polar orbit,

the likelihood of severe temporal decorrelation in BIOMASS

observations is small. During the summer, 6 A.M. observations

were observed to be more stable than 6 P.M. observations.

During the winter, freezing and temperature variations during

freezing conditions caused decorrelation. P-band coherence

was not observed to be very sensitive to precipitation, and only

strong winds (mean wind speeds greater than about 6 m/s)

resulted in significant decorrelation. High transpiration rates

and tree water content variations did not appear to cause

significant decorrelation at P-band.

L-band temporal coherence was observed to be highly

dependent on the time of observations, season, and tempo-

ral baseline. The highest temporal coherences for temporal

baselines of up to a week were observed during the summer

for 6 A.M. and 12 P.M. acquisitions. This was mainly due to

wind and a high rate of transpiration during the day. Repeat-

pass missions, such as ALOS-2 and ALOS-4 in noon/night

polar orbits, therefore, have a high likelihood of acquiring

high coherence observations over a temporal baseline of one

week when considering ascending (nighttime) passes during

the summer. Daytime observations (12 A.M. and 6 P.M.)

and observations during the winter yielded, on average, poor

L-band coherences for temporal baselines of one day or

more. The poor L-band temporal coherence observed during

the winter was due to the frequent freeze-thaw cycles and

strong winds in this region, instead of long-frozen periods as

in previous boreal forest studies. For tandem configurations,

temporal baselines up to 3 h with overpasses during the night

or early morning are feasible. For temporal baselines of 5–15 s,

L-band temporal decorrelation was negligible during the night

and early morning during the summer. High transpiration rates

during the spring and summer appeared to cause significant

decorrelation at L-band. L-band coherence was also sensitive

to rainfall. During frozen conditions, L-band coherence was

observed to decrease slowly with time and was less sensitive

to subzero temperature variations than P-band. L-band coher-

ence was most sensitive to wind, with average wind speeds

approaching 10 m/s causing total decorrelation.

Very low temporal coherences were observed at C-band for

temporal baselines of one day or more. Repeat-pass interfero-

metric and tomographic applications at C-band are, therefore,

not feasible in the environmental conditions that were present

in this study. Some increase in coherence was observed after

approximately 24 h for night and dawn observations during

the summer, but the likelihood of high coherence observations

over such temporal baselines was still very low in this forest.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

C-band interferometry only becomes feasible over temporal

baselines of hours during the summer for night and early

morning overpasses. A high likelihood of C-band temporal

coherence can only be guaranteed for temporal baselines

on the order of seconds. This motivates the implementation

of C-band tandem missions flying in close formation. Total

decorrelation at C-band was observed after light rainfall and

wind speeds approaching 5 m/s.

Only cross-polarized observations were analyzed in this

study. Cross-polarized observations have been shown to be

very useful for forest parameter estimation but are the most

sensitive to temporal decorrelation of all the linear polarization

combinations. The results from this study can, therefore,

be considered to be of the worst case. Like-polarized data

(HH and VV) have also been collected in this experiment.

An analysis of the like-polarization data is possible, but

considered too extensive to include in the present article and

is therefore left for a future publication.

The exact effect of temporal decorrelation on SAR image

formation using long integration times, as is necessary in

geosynchronous SARs, remains to be investigated. Coherent

image formation includes coherent averaging effects, whereby

permanent scatterers (also called the dc component) are coher-

ently integrated over time. This effect may offer robustness

to temporal decorrelation during long integration times and

reduce defocusing of SAR images.

In this experiment, a single forest stand in southern Sweden

was observed. To also capture the temporal characteristics of

radar observations at higher latitudes, the experiment will be

relocated to a forest in northern Sweden. A complementary

ground-based SAR has also been established in Northern

Finland [52].

V. CONCLUSION

Temporal decorrelation is a major limitation in forest appli-

cations of interferometric and tomographic SAR data. To gain

a better understanding of the characteristics of temporal decor-

relation in boreal forests, tower-based observations with fine

temporal resolution and zero-spatial baseline were analyzed in

this study.

Temporal coherence at P-band was observed to be high

over temporal baselines of several days, and several weeks

for 6 A.M. summer observations, allowing repeat-pass inter-

ferometry and tomography. For L- and C-bands, the temporal

coherence was much more dependent on the time of day of

observation and the season. The best conditions resulting in the

highest temporal coherence at L-band were during the night

and early morning in the summer. Due to irregular weather

conditions at this site, there were no particularly favorable

conditions for repeat-pass L-band observations during the

winter. In general, the likelihood of high-quality interferomet-

ric observations at C-band for temporal baselines exceeding

a few seconds is low. This is a strong motivation for the

implementation of tandem L- and C-band missions flying in

close formation.

The results presented in this article are useful for the design

of future spaceborne SAR missions for high-quality interfero-

metric and tomographic observations. The results also present

a starting point for better temporal coherence modeling. These

efforts will lead to more accurate forest parameter estimates

using interferometric and tomographic SAR data.
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