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Abstract

As the instruction issue width of superscalar proces-
sors increases, instruction fetch bandwidth requirements
will also increase. It will eventually become necessary to
fetch multiple basic blocks per clock cycle. Conventional in-
struction caches hinder this effort because long instruction
seguences are not always in contiguous cache locations.

Trace caches overcome this limitation by caching traces
of the dynamic instruction stream, so instructions that are
otherwise noncontiguous appear contiguous. In this paper
we present and evaluate a microarchitecture incorporating
atrace cache. The microarchitecture provides high instruc-
tion fetch bandwidth with low latency by explicitly sequenc-
ing through the program at the higher level of traces, both
in terms of (1) control flow prediction and (2) instruction
supply. For the SPEC95 integer benchmarks, trace-level se-
guencing improves performance from 15% to 35% over an
otherwise equally-sophisticated, but contiguous multiple-
block fetch mechanism. Most of this performance improve-
ment is dueto the trace cache. However, for one benchmark
whose performanceis limited by branch mispredictions, the
performancegainis duealmost entirely to improved predic-
tion accuracy.

Keywords: instruction cache, instruction fetching, multiple
branch prediction, superscalar processors, trace cache

1. Introduction

High performance superscalar processor organizations
divide naturally into an instruction fetch mechanism and an
instruction execution mechanism. These two mechanisms
are separated by instruction issue buffers, for example, issue
queues or reservation stations. Conceptually, the instruc-
tion fetch mechanism acts as a “producer” which fetches,
decodes, and dispatches instructions into the buffer. The in-
struction execution engine is the “consumer” which issues
instructions from the buffer and executes them, subject to
data dependence and resource constraints.

The instruction issue buffers are collectively called the
instruction window. The window is the mechanism for ex-
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posing instruction-level parallelism (ILP) in sequential pro-
grams: a larger window increases the opportunity for find-
ing data-independent instructions that may issue and exe-
cute in parallel. Thus, the trend in superscalar design is to
construct larger instruction windows, and provide wider is-
sue/execution paths to exploit the corresponding increase in
available ILP.

These trends place increased demand on the instruction
supply mechanism. In particular, the peak instruction fetch
rate should match the peak instruction issue rate, or the ben-
efit of aggressive ILP techniques are diminished.

In this paper, we are concerned with instruction fetch
bandwidth becoming a performance bottleneck. Current
fetch units are limited to one branch prediction per cycle
and can therefore fetch no more than one basic block per
cycle. Previous studies have shown, however, that the av-
erage size of basic blocks in integer codes is small, around
four to six instructions [30, 3]. While fetching a single ba-
sic block each cycle is sufficient for implementations that
issue at most four instructions per cycle, it is not for pro-
cessors with higher peak issue rates. If multiple branch pre-
diction [30, 3, 4, 26] is used, then the fetch unit can at least
fetch multiple contiguous basic blocks in a cycle. As will
be shown in this paper, fetching multiple contiguous basic
blocks is important, but the upper bound on fetch band-
width is still limited due to the frequency of taken branches.
Therefore, if a taken branch is encountered, it is necessary
to fetch instructions down the taken path in the same cycle
that the branch is fetched.

1.1. Thetrace cache

The job of the fetch unit is to feed the dynamic instruc-
tion stream to the decoder. A problem is that instructions
are placed in the cache in their compiled order. Storing
programs in this static form favors fetching code with in-
frequent taken branches or with large basic blocks. Neither
of these cases is typical of integer programs.

Figure 1(a) shows an example dynamic sequence of ba-
sic blocks as they are stored in the instruction cache. The
arrows indicate taken branches. Even with multiple branch
predictions per cycle, four cycles are required to fetch the



instructions in basic blocks ABCDE because the instruc-
tions are stored in noncontiguous cache locations.
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(a) Instruction cache. (b) Trace cache.

Figure 1. Storing a noncontiguous sequence of in-
structions.

It is for this reason that several researchers have pro-
posed a special instruction cache for capturing long dy-
namic instruction sequences [15, 22, 23, 24, 21]. This struc-
ture is called a trace cache because each line stores a shap-
shot, or trace, of the dynamic instruction stream. Referring
again to Figure 1, the same dynamic sequence of blocks that
appear noncontiguous in the instruction cache are contigu-
ous in the trace cache (Figure 1(b)).

The primary constraint on a trace is a maximum length,
determined by the trace cache line size. There may be
any number of other implementation-dependent constraints,
such as the number and type of embedded control trans-
fer instructions, or special terminating conditions for tuning
various performance factors [25].

A trace is fully specified by a starting address and a se-
quence of branch outcomes which describe the path fol-
lowed. The first time a trace is encountered, it is allocated a
line in the trace cache. The line is filled as instructions are
fetched from the instruction cache. If the same trace is en-
countered again in the course of executing the program, i.e.
the same starting address and predicted branch outcomes,
it will be available in the trace cache and is fed directly to
the decoder in a single cycle. Otherwise, fetching proceeds
normally from the instruction cache.

Other high bandwidth fetch mechanisms have been pro-
posed that are based on the conventional instruction cache
[30, 4, 3, 26]. Every cycle, instructions from noncontiguous
locations are fetched from the instruction cache and assem-
bled into the predicted dynamic sequence. This typically
requires multiple pipeline stages: (1) a level of indirection
through special branch target tables to generate pointers to
all of the noncontiguous instruction blocks, (2) a moderate
to highly interleaved instruction cache to provide simulta-
neous access to multiple lines, with the possibility for bank
conflicts, and (3) a complex alignment network to shift and
align blocks into dynamic program order, ready for decod-
ing/renaming.

The trace cache approach avoids this complexity by
caching dynamic instruction sequences themselves, rather
than information for constructing them. If the predicted dy-
namic sequence exists in the trace cache, it does not have

to be recreated on the fly from the instruction cache’s static
representation. The cost of this approach is redundant in-
struction storage: the same instructions may reside in both
the primary cache and the trace cache, and there is redun-
dancy among different lines in the trace cache.

1.2. Related prior work

Alternative High Bandwidth Fetch M echanisms

Four previous studies have focused on mechanisms to
fetch multiple, possibly noncontiguous basic blocks each
cycle from the instruction cache. These are the branch ad-
dress cache [30], the subgraph predictor [4], the collapsing
buffer [3], and the multiple-block ahead predictor [26].
Trace Cache Development

Melvin, Shebanow, and Patt proposed the fill unit and
multinodeword cache [18, 16]. The first work qualita-
tively describes the performance implications of smaller or
larger atomic units of work at the instruction-set architec-
ture (ISA), compiler, and hardware levels. The authors ar-
gue for small compiler atomic units and large execution
atomic units to achieve highest performance. The fill unit
is proposed as the hardware mechanism for compacting the
smaller compiler units into the large execution units, which
are then stored for reuse in a decoded instruction cache. The
follow-on work [16] evaluates the performance potential of
large execution atomic units. Although this work only eval-
uates sizes up to that of a single VAX instruction and a basic
block, it also suggests joining two consecutive basic blocks
if the intervening branch is “highly predictable”.

In [17], software basic block enlargement is discussed.
In the spirit of trace scheduling [5] and trace selection
[11], the compiler uses profiling to identify candidate basic
blocks for merging into a single execution atomic unit. The
hardware sequences at the level of execution atomic units as
created by the compiler. The advantage of this approach is
the compiler can optimize and schedule across basic block
boundaries.

Franklin and Smotherman [6] extended the fill unit’s
role to dynamically assemble VLIW-like instruction words
from a RISC instruction stream, which are then stored in a
shadow cache. This structure eases the issue complexity of
a wide issue processor. They further applied the fill unit and
a decoded instruction cache to improve the decoding perfor-
mance of a complex instruction-set computer (CISC) [27].
In both cases the cache lines are augmented to store treesto
improve the utilization of each line.

Four works have independently proposed the trace cache
as a complexity-effective approach to high bandwidth in-
struction fetching. Johnson [15] proposed the expansion
cache, which addresses cache alignment, branch prediction
throughput, and instruction run merging. The expansion
process also predetermines the execution schedule of in-



structions in a line. Unlike a pure VLIW cache, the sched-
ule may consist of multiple cycles via cycle tagging. Pe-
leg and Weiser [22] describe the design of a dynamic flow
instruction cache which stores instructions independent of
their virtual addresses, the defining characteristic of trace
caches. Rotenberg, Bennett, and Smith [23, 24] motivate
the concept with comparisons to other high bandwidth fetch
mechanisms proposed in the literature, and defines some of
the trace cache design space. Patel, Friendly, and Patt [21]
expand upon and present detailed evaluations of this design
space, arguing for a more prominent role of the trace cache.

The mispredict recovery cache proposed by Bondi,
Nanda, and Dutta [1] caches instruction threads from alter-
nate paths of mispredicted branches. The goal of this work
is to quickly bypass the multiple fetch and decode stages of
a long CISC pipeline following a branch mispredict. Nair
and Hopkins [19] employ dynamic instruction formatting to
cache large scheduled groups, similar in spirit to the cycle
tagging approach of the expansion cache.

There has also been recent work incorporating trace
caches into new processing models. Vajapeyam and Mi-
tra [29], Sundararaman and Franklin [28], and Rotenberg,
Jacobson, Sazeides, and Smith [25] exploit the data and
control hierarchy implied by traces to overcome complexity
and architectural hurdles of superscalar processors. Jacob-
son, Rotenberg, and Smith [14] propose a control prediction
model well suited to the trace cache called next trace pre-
diction, discussed in later sections. Friendly, Patel, and Patt
propose a new processing model called inactive issue for
reducing the effects of branch mispredictions [7], and dy-
namically optimizing traces before storing them in the trace
cache, reducing their execution time significantly [8].
Microcode, VLIW, and Block-Structured | SAs

Clearly the concept of traces exists in the software
realm of instruction-level parallelism. Early work by Fisher
[5], Hwu and Chang [11], and others on trace scheduling
and trace selection for microcode recognized the problem
imposed by branches on code optimization. Subsequent
VLIW architectures and novel ISA techniques, for exam-
ple [12, 10], further promote the ability to schedule long
sequences of instructions containing multiple branches.

2. Trace cache microar chitecture

In Section 1.1 we introduced the concept of the trace
cache — an instruction cache which captures dynamic in-
struction sequences, or traces. We now present a microar-
chitecture organized around traces.

2.1. Trace-level sequencing

The premise of the proposed microarchitecture, shown
in Figure 2, is to provide high instruction fetch bandwidth

with low latency. This is achieved by explicitly sequencing
through the program at the higher level of traces, both for
(1) control flow prediction and (2) supplying instructions.
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Figure 2. Microarchitecture.

A next trace predictor [14] treats traces as basic units
and explicitly predicts sequences of traces. Because traces
are the unit of prediction, rather than individual branches,
high branch prediction throughput is implicitly achieved
with only a single trace prediction per cycle. Jacobson et
al [14] demonstrated that explicit trace prediction not only
removes fundamental constraints on the number of branches
in a trace (usually a consequence of adapting single branch
predictors to multiple branch predictor counterparts [23]),
but it also holds the potential for achieving higher overall
branch prediction accuracy than single branch predictors.
Details of next trace prediction are presented in Section 2.3.

The output of the trace predictor is a trace identifier: a
given trace is uniquely identified by its starting PC and the
outcomes of all conditional branches embedded in the trace.
The trace identifier is used to lookup the trace in the trace
cache. The index into the trace cache can be derived from
just the starting PC, or a combination of PC and branch out-
comes. Using branch outcomes in the index has the advan-
tage of providing path associativity — multiple traces emi-
nating from the same start PC can reside simultaneously in
the trace cache even if it is direct mapped [24].

The output of the trace cache is one or more traces, de-
pending on the cache associativity. A trace identifier is
stored with each trace in order to determine a trace cache
hit, analogous to the tag of conventional caches. The de-
sired trace is present in the cache if one of the cached trace
identifiers matches the predicted trace identifier.

The trace predictor and trace cache together provide fast
trace-level sequencing. Unfortunately, trace-level sequenc-
ing does not always provide the required trace. This is par-
ticularly true at the start of the program or when a new re-
gion of code is reached — neither the trace predictor nor the
trace cache has “learned” any traces yet. Instruction-level
sequencing, discussed in the next section, is required to con-
struct non-existent traces or repair trace mispredictions.



2.2. Instruction-level sequencing

The outstanding trace buffersin Figure 2 are used to (1)
construct new traces that are not in the trace cache and (2)
track branch outcomes as they become available from the
execution engine, allowing detection of mispredictions and
repair of the traces containing them.

Each fetched trace is dispatched to both the execution
engine and an outstanding trace buffer. In the case of a
trace cache miss, only the trace prediction is received by
the allocated buffer. The trace prediction itself provides
enough information to construct the trace from the instruc-
tion cache, although this typically requires multiple cycles
due to predicted-taken branches.

In the case of a trace cache hit, the trace is dispatched
to the buffer. This allows repair of a partially mispredicted
trace, i.e. when a branch outcome returned from execution
does not match the path indicated within the trace. In the
event of a branch misprediction, the trace buffer begins re-
constructing the tail of the trace (or all of the trace if the
start PC is incorrect) using the corrected branch target and
the instruction cache. For subsequent branches in the trace,
a second-level branch predictor is used to make predictions.

We advocate an aggressive instruction cache design for
providing robust performance over a broad range of trace
cache miss rates. The instruction cache is 2-way interleaved
so that up to a full cache line can be fetched each cycle,
independent of PC alignment [9]. The second-level branch
prediction mechanism is simple —a 2-bit counter and branch
target stored with each branch. Logically, the instructions,
counters, and targets are all stored in the instruction cache
(as opposed to a separate cache and branch target buffer) to
allow fast, parallel prediction of any number of not-taken
branches. We call this instruction fetch mechanism SEQ.n
in keeping with the terminology of [24] — any number (de-
noted n) of sequential basic blocks, up to the line size, can
be fetched in a single cycle.

When a trace buffer is through constructing its trace, it is
written into the trace cache and dispatched to the execution
engine. If the newly constructed trace is a result of mispre-
diction recovery, the trace identifier is also sent to the trace
predictor for repairing its path history.

2.3. Next trace prediction

The next trace predictor, shown in Figure 3, is based on
Jacobson’s work on path-based, high-level control flow pre-
diction [13, 14].

An index into a correlated prediction table is formed
from the sequence of past trace identifiers. The hash func-
tion used to generate the index is called a DOLC func-
tion: ‘D’epth specifies the path history depth in terms of
traces; ‘O’ldest indicates the number of bits selected from
each trace identifier except the two most recent ones; ‘L’ast

Prediction

(D-O-L-C) PC [path

Figure 3. Jacobson’s next trace predictor.

FC, pah to Trace Cache

and ‘ C’ urrent indicate the number of bits selected from the
second-most recent and most recent trace identifiers, re-
spectively.

Each entry in the correlated prediction table contains a
trace identifier and a 2-bit counter for replacement. The
predictor is augmented with several other mechanisms[14].

o Hybrid prediction. In addition to the correlated table,
a second, smaller table is indexed with only the most
recent trace identifier. This second table requires a
shorter learning time and suffersless aliasing pressure.

e Return history stack. At call instructions, the path his-
tory is pushed onto a special stack. When the corre-
sponding return point is reached, path history before
the call is restored. This improves accuracy because
control flow following asubroutineishighly correlated
with control flow beforethe call.

o Alternate trace identifier. An entry in the correlated
table may be augmented with an alternate trace predic-
tion, aform of associativity in the predictor. If atrace
misprediction is detected, the outstanding trace buffer
responsible for repairing the trace can use the alter-
nate prediction if it is consistent with known branch
outcomes in the trace. If so, the trace buffer does
not have to resort to the second-level branch predic-
tor; instruction-level sequencing is avoided altogether
if the alternate trace a so hitsin the trace cache.

2.4. Trace selection

The performance of thetrace cacheis strongly dependent
on trace selection, the algorithm used to divide the dynamic
instruction stream into traces. Trace selection primarily af-
fects average trace length and trace cache hit rate, both of
which, in turn, affect fetch bandwidth. The interaction be-
tween trace length and hit rate, however, is not well under-
stood. Preliminary studies indicate that longer traces result
in lower hit rates, but this may be an artifact of naive trace
selection policies. Sophisticated selection techniques that
are conscious of control flow constructs — loop back-edges,
loop fall-through points, call sites, and re-convergent points
in general — may lead to different conclusions. The reader
isreferred to [21, 25, 20] for afew interesting control -flow-
conscious selection heuristics.

Trace selection in this paper is constrained only by



the maximum trace length of 16 instructions, and indirect
branches (returns and jump/call indirects) terminate traces.

2.5. Hierarchical sequencing

In Figure 4(a), a portion of the dynamic instruction
stream is shown with a solid horizontal arrow from left to
right. The streamis divided into traces T1 through T5. This
sequence of traces is produced independent of where the
instructions come from — trace predictor/trace cache, trace
predictor/instruction cache, or branch predictor/instruction
cache.

,T1 T2 T3, T4 T5 mispredicted
T T T : ‘A T T T1 T2 branch
misprexf(:'t/ed—ti » MW Ty T4 TS
branch proes infmi 1 1

(a) Hierarchical. (b) Non-hierarchical.

Figure 4. Two sequencing models.

For example, if the trace predictor mispredicts T3, the
trace buffer assigned to T3 resorts to instruction-level se-
guencing. Thisis shown in the diagram as a series of steps,
depicting smaller blocksfetched from theinstruction cache.
The trace buffer strictly adheres to the boundary between
T3 and T4, dictated by trace selection, even if the final in-
struction cache fetch produces a larger block of sequential
instructions than is needed by T3 itself.

We call this process hierarchical sequencing because
there exists a clear distinction between inter-trace control
flow and intra-trace control flow. Inter-trace control flow,
i.e. trace boundaries, is effectively pre-determined by trace
selection and is unaffected by dynamic effects such astrace
cache misses and mispredictions.

A contrasting sequencing model is shown in Figure 4(b).
In this model, trace selection is “reset” at the point of the
mispredicted branch, producing the shifted traces T3/, T4/,
and T5'. This sequencing model does not work well with
path-based next trace prediction. After resolving the branch
misprediction, trace T3' and subsequent traces must some-
how be predicted. However, this requires a sequence of
traces leading to T3’ and no such sequenceis available (in-
dicated with question marksin the diagram).

A potential problemwith hierarchical sequencingismis-
prediction recovery latency. Explicit next trace prediction
uses a level of indirection: a trace is first predicted, and
then the trace cache is accessed. Thisimpliesan extracycle
is added to the latency of misprediction recovery. How-
ever, this extra cycle is not exposed. First, consider the
case in which the aternate trace prediction is used. The
primary and aternate predictions are supplied by the trace
predictor at the same time, and stored together in the trace
buffer. Therefore, the alternate prediction is immediately

available for accessing the trace cache when the mispredic-
tion is detected. Second, if the aternate is not used, then
the second-level branch predictor and instruction cache are
used to fetch instructions from the correct path. In this case,
the instruction cache is accessed immediately with the cor-
rect branch target PC returned by the execution engine.

In our evaluation, we assume a trace must be fully con-
structed before any of its instructions are dispatched to the
execution engine, because traces are efficiently renamed as
aunit[29, 25]. Thisaggravatesboth trace mispredictionand
trace cache missrecovery latency. We want to makeit clear,
however, that this is not due to any fundamental constraint
of the fetch model, only an artifact of our dispatch model.

3. Simulation methodology

3.1. Fetch models

To evaluate the performance of the trace cache microar-
chitecture, we compare it to several more constrained fetch
models. We first determine the performance advantage of
fetching multiple contiguous basic blocks per cycle over
conventional single block fetching. Then, the benefit of
fetching multiple noncontiguous basic blocks is isolated.

In al models a next trace predictor is used for con-
trol prediction, for two reasons. First, next trace predic-
tionis highly accurate, and whether predicting one or many
branchesat atime, it iscomparableto or better than some of
the best single branch predictorsin the literature. Second, it
is desirable to have a common underlying predictor for all
fetch models so we can separate performance due to fetch
bandwidth from that due to branch prediction (more on this
in Section 3.2).

What differentiates the following modelsis the trace se-
lection agorithm.

e SEQ.1 (“sequential, 1 block”): A “trace” isasingle
basic block up to 16 instructionsin length.

e SEQ.n (“ sequential, n blocks’): A “trace” may con-
tain any number of sequentia basic blocks up to the
16 instruction limit.

e TC (“tracecache”): A trace may contain any number
of conditional branches, both taken and not-taken, up
to 16 instructions or the first indirect branch.

The SEQ.1 and SEQ.n models do not use a trace cache
because an interleaved instruction cache is capable of sup-
plying a“trace” in asingle cycle [9] — a consequence of the
sequential selection constraint. Therefore, one may view
the SEQ.1/SEQ.n fetch unit as identical to the trace cache
microarchitecture in Figure 2, except the trace cache block
is replaced with a conventional instruction cache. That is,
the next trace predictor drives a conventional instruction



cache, and the trace buffers are used to construct “traces”
from the L2 cache/main memory if not present in the cache.

Finally, to establish an upper bound on the performance
of noncontiguousinstruction fetching, weintroduceafourth
model, TC-perfect, which is identical to TC but the trace
cache aways hits.

3.2. I solating trace predictor/trace cache per formance

An interesting side-effect of trace selection is that it
significantly affects trace prediction accuracy. In general,
smaller traces (resulting from more constrained trace selec-
tion) result in lower accuracy. We have determined at least
two reasons for this. First, longer traces naturally capture
longer path history. This can be compensated for by using
more trace identifiers in the path history if the traces are
small; that is, agood DOL C function for onetracelengthis
not necessarily good for another. For the TC model, DOLC
= {7,3,6,8} (adepth of 7 traces) consistently performswell
over al benchmarks [14]. For SEQ.1 and SEQ.n, a brief
search of the design space shows DOLC = {17,3,4,12} (a
depth of 17 traces) performswell.

We have observed, however, that tuning the DOLC pa-
rameters is not enough — trace selection affects accuracy
in other ways. The graph in Figure 5 shows trace pre-
dictor performance using an unbounded table, i.e. using
full, unhashed path history to make predictions. The graph
showstrace mispredictionsper 1000 instructionsfor SEQ.1,
SEQ.n, and TC trace selection, as the history depth is var-
ied. For the go benchmark, trace mispredictions for the
SEQ.n model do not dip below 8.8 per 1000 instructions,
whereas the TC model reaches as few as 8.0 trace mispre-
dictions per 1000 instructions. Unconstrained trace selec-
tion results in the creation of many unique traces. While
thistrace explosion generally has anegativeimpact on trace
cache performance, we hypothesize it also creates many
more unique contexts for making predictions. A large pre-
diction table can exploit this additional context.

ideal trace prediction (GO)
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Figure 5. Impact of trace selection on unbounded
trace predictor performance.

We conclude that it is difficult to separate the perfor-
mance advantage of the trace cache from that of the trace
predictor, because both show positive improvement with

longer traces. Nonethel ess, when we compare TC to SEQ.n
or SEQ.1, we would like to know how much benefit is de-
rived from the trace cache itself.

To this end, we devel oped a methodology to statistically
“adjust” the overall branch prediction accuracy of a given
fetch model to match that of another model. The trace
predictor itself is not adjusted — it produces predictions in
the normal fashion. However, after making a prediction,
the predicted trace is compared with the actual trace, de-
termined in advance by a functional simulator running in
paralel with the timing smulator. If the prediction is in-
correct, the actual trace is substituted for the mispredicted
trace with some probability. In other words, some fraction
of mispredicted traces are corrected. The probability for in-
jecting corrections was chosen on a per-benchmark basisto
achieve the desired branch misprediction rate.

This methodol ogy introduces two additional fetch mod-
els, SEQ.1-adj and SEQ.n-adj, corresponding to the “ad-
justed” SEQ.1 and SEQ.n models. Clearly these models
are unrealizable, but they are useful for performance com-
parisons because their adjusted branch misprediction rates
match that of the TC model.

3.3. Simulator and benchmarks

A detailed, fully-execution driven superscalar processor
simulator is used to evaluate the trace cache microarchitec-
ture. The simulator was developed using the simplescalar
platform [2]. This platform uses aMIPS-like instruction set
and a gcc-based compiler to create binaries.

The datapath of the fetch engine as shown in Figure 2
is faithfully modeled. The next trace predictor has 216 en-
tries. The DOL C functionsfor compressing the path history
into a 16-bit index were described earlier in Section 3.2, for
both the TC and SEQ models. The trace cache configura-
tion — size, associativity, and indexing — is varied. There
are sufficient outstanding trace buffers to keep the instruc-
tion window full. Thetrace buffersshare asingle port to the
combined instruction cache and second-level branch predic-
tor. Theinstruction cache is 64KB, 4-way set-associative,
and 2-way interleaved. The line size is 16 instructions and
the cache hit and miss latencies are 1 cycle and 12 cycles
respectively. The second-level branch predictor consists of
2-hit counters and branch targets, assumed to be logically
stored with each branch in the instruction cache.

An instruction window of 256 instructionsis used in all
experiments. The processor is 16-way superscalar, i.e. the
processor can fetch and issue up to 16 instructions each
cycle. Five basic pipeline stages are modeled. Instruc-
tion fetch and dispatch take 1 cycle each. Issue takes at
least 1 cycle, possibly moreif the instruction must stall for
operands; any 16 instructions, including loads and stores,
may issue each cycle. Execution takes a fixed latency based



on instruction type, plus any time spent waiting for aresult
bus. Instructionsretire in order.

For loads and stores, address generation takes 1 cycle
and the cache access is 2 cycles for a hit. The data cache
is 64K B, 4-way set-associative with a line size of 64 bytes
and a miss penalty of 14 cycles. Realistic but aggressive
memory disambiguation is modeled. Loads may proceed
ahead of any unresolved stores, and any memory hazards
are detected as store addresses become available — recovery
is via selective reissuing of misspeculated loads and their
dependent instructions [25].

Seven of the SPEC95 integer benchmarks, shown in Ta-
ble 1, are simulated to compl etion.

Table 1. Benchmarks.

benchmark input dataset dynamic instr. count
gcc -O3 genrecog.i 117M
go 99 133M
jpeg vigo.ppm 166M
li queens 7 202M
m88ksim -c < ctl.in (dcrand.big) 120M
perl scrabbl.pl < scrabbl.in 108M
vortex persons.250 101M
4. Results

4.1. Performance of fetch models

Figure 6 shows the performance of the six fetch mod-
elsin terms of retired instructions per cycle (IPC). The TC
model in this section uses a64K B (instruction storageonly),
4-way set-associative trace cache. The trace cache is in-
dexed using only the PC (i.e. no explicit path associativity,
except that afforded by the 4 ways).

| EMSEQ.1 SEQ.1-adj
B SEQ.n SEQ.n-adj
HETC(64K,4) OTC-perfect

go gcc  jpeg li perl m88k vortex

Figure 6. Performance of the fetch models.

We can draw several conclusions from the graph in Fig-
ure 6. First, comparing the SEQ.n models to the SEQ.1
models, it is apparent that predicting and fetching multi-
ple sequential basic blocks provides a significant perfor-
mance advantage over conventional single-block fetching.
The graph in Figure 7 shows that the performance advan-

tage of the SEQ.n model over the SEQ.1 model ranges from
about 5% to 25%, with the majority of benchmarks show-
ing greater than 15% improvement. Similar results hold
whether or not branch prediction accuracy is adjusted for
the SEQ.n and SEQ.1 models.

This first observation is important because the SEQ.n
model only requires a more sophisticated, high-level con-
trol flow predictor, and retains a more-or-less conventional
instruction cache microarchitecture.

B SEQ.n over SEQ.1
0 SEQ.n-adj over SEQ.1-adj

go gcc jpeg i perl m88k vort

Figure 7. Speedup of SEQ.n over SEQ.1.

Second, the ability to fetch multiple, possibly noncon-
tiguous basic blocks improves performance significantly
over sequential-only fetching. The graph in Figure 8 shows
that the performance advantage of the TC model over the
SEQ.n model ranges from 15% to 35%.

Speedup of TC over SEQ.n
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Figure 8. Speedup of TC over SEQ.n.

Figure 8 also isolates the contributions of next trace pre-
diction and the trace cache to performance. The lower part
of each bar is the speedup of model SEQ.n-adj over SEQ.n.
And since the overall branch misprediction rate of SEQ.n-
adj is adjusted to match that of the TC modél, this part of
the bar approximately isolates the impact of next trace pre-
diction on performance. The top part of the bar therefore
isolates the impact of the trace cache on performance.

For go, which suffers noticeably more branch mispredic-
tions than other benchmarks, most of the benefit of the TC
model comes from next trace prediction. In this case, the
longer traces of the TC model are clearly more valuable for
improving the context used by the next trace predictor than
for providing raw instruction bandwidth. For gcc, however,



both next trace prediction and the trace cache contribute
equally to performance. The other five benchmarks bene-
fit mostly from higher fetch bandwidth.

Finally, Figure 6 shows the moderately large trace cache
of the TC model very nearly reaches the performance upper
bound established by TC-perfect (within 4%).

Table 2 shows trace- and branch-related measures. Aver-
age trace lengths for TC range from 12.4 (li) to 15.8 (jpeg)
instructions (1.6 to over 2 times longer than SEQ.n traces).

The table also shows predictor performance: primary
and alternate trace mispredictionsper 1000instructions, and
overall branch misprediction rates (the latter is computed by
checking each branch at retirement to seeif it caused amis-
prediction, whether originating from the trace predictor or
second-level branch predictor). In all cases prediction im-
proves with longer traces. TC has from 20% to 45% fewer
trace mispredictions than SEQ.1, resulting in 15% (jpeg)
to 41% (m38ksim) fewer total branch mispredictions. Note
that the adjusted branch misprediction rates for the SEQ
models are nearly equal to those of TC.

Shorter traces, however, generally result in better alter-
nate trace prediction accuracy. Shorter traces result in (1)
fewer total traces and thus less aliasing, and (2) fewer pos-
sible aternative traces from a given starting PC. For all
benchmarks except gcc and go, the alternate trace predic-
tion is amost always correct given the primary trace pre-
diction is incorrect — both predictions taken together result
in fewer than 1 trace misprediction per 1000 instructions.

Trace caches introduce redundancy — the same instruc-
tion can appear multipletimesin one or moretraces. Table2
shows two redundancy measures. The overall redundancy
factor, RF,,¢q11, 1S cCOMputed by maintaining atable of all
unique traces ever retired. Redundancy is the ratio of total
number of instructions to total number of unique instruc-
tionsfor traces collected in the table. RF ¢, iSindepen-
dent of trace cache configuration and does not capture dy-
namic behavior. The dynamic redundancy factor, RF 4y, iS
computed similarly, but using only tracesin the trace cache
inagiven cycle; thefina valueisan averageover al cycles.
RFy,, Was measured using a 64K B, 4-way trace cache.

RF,yerqu Varies from 2.9 (vortex) to 14 (go). RFiyn
is less than RF,,.q;; and only ranges between 2 and 4,
because the fixed size trace cache limits redundancy, and
perhaps temporally there is less redundancy.

4.2. Trace cache size and associativity

In this section we measure performance of the TC model
as afunction of trace cache size and associativity. Figure9
shows overall performance (1PC) for 12 trace cache config-
urations: direct mapped, 2-way, and 4-way associativity for
each of four sizes, 16KB, 32KB, 64KB, and 128K B.

Associativity has anoticeableimpact on performancefor

Table 2. Trace statistics.

model measure gcc| go |jpeg| li |m88k| perl| vort
trace length 4.9 6.2| 8.3 4.2| 48| 51| 5.8

trace misp./1000 8.8| 145| 52| 69| 35 34| 15
SEQ.1|alt. trace misp./1000 2.1 45 0.1] 0.6/ 0.4 0.1] 0.2
branch misp. rate 5.0%[11.0%|7.7%| 3.7%| 2.2%|2.2%| 1.1%
adjusted misp. rate 3.6%| 8.2%|6.6%|3.2%|1.3%|1.4%|0.8%

trace length 7.2 8.0| 9.6/ 6.3 6.0/ 7.1] 8.2

trace misp./1000 73] 127 46] 6.9 33 31 12
SEQ.n|alt. trace misp./1000 2.7 54| 05| 09| 0.6/ 03] 0.3
branch misp. rate 4.4%[10.1%|7.0%| 3.7%] 2.1%| 2.0%]| 0.9%
adjusted misp. rate 3.6%| 8.1%]|6.7%]|3.1%|1.3%| 1.4%)| 0.8%

trace length 13.9] 14.8] 15.8| 12.4]| 13.1| 13.0| 144

trace misp./1000 5.4 9.6/ 42| 55/ 20[ 21| 1.0

alt. trace misp./1000 2.7 53] 09| 13| 05/ 03] 03

TC |branch misp. rate 3.6%]| 8.2%]|6.7%]|3.1%(1.3%|1.5%| 0.8%
control instr. per trace 2.8 23] 13| 29| 25/ 25 23
RFoveran 7.1 14.4| 53| 3.1 3.7 41 29

RF gy, 3.0 33| 3.7 3.2 31 29| 21

B vort,
7.5 A .

\f

=4
47 —--2
-1
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- - - go

16KB 32KB 64KB 128KB
trace cache size

Figure9. Performancevs. size/associativity.

all of the benchmarks except go. Go has a particularly large
working set of uniquetraces[25], and total capacity ismore
important than individual trace conflicts. The curves of jpeg
andli arefairly flat — sizeis of littleimportance, yet increas-
ing associativity improves performance. These two bench-
marks suffer few general conflict misses (otherwise size
should improve performance), yet conflicts among traces
with the same start PC are significant. Associativity allows
simultaneously caching these path-associative traces.

The performance improvement of the largest configu-
ration (128KB, 4-way) with respect to the smallest one
(16K B, direct mapped) ranges from 4% (go) to 10% (gcc).

Figure 10 shows trace cache performance in misses per
1000 instructions. Trace cache size is varied along the x-
axis, and there are six curves: direct mapped (DM), 2-
way (2W), and 4-way (4W) associative caches, both with
and without indexing for path associativity (PA). We chose
(somewhat arbitrarily) the following index function for
achieving path associativity: the low-order bits of the PC
form the set index, and then the high-order bits of thisindex



are XORed with the first two branch outcomes of the trace
identifier.

Gcc and go are the only benchmarks that do not fit en-
tirely within the largest trace cache. Aswe observed earlier,
go has many heavily-referencedtraces, resultingin no fewer
than 20 misses/1000 instructions.

Path associativity reduces misses substantially, particu-
larly for direct mapped caches. Except for vortex, path as-
sociativity closes the gap between direct mapped and 2-way
associative caches by more than half, and often entirely.
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Figure 10. Trace cache misses.

5. Summary

It isimportant to design instruction fetch units capabl e of
fetching past multiple, possibly taken branches each cycle.
Trace caches provide this capability without the complex-
ity and latency of equivalent-bandwidth instruction cache
designs. We evaluated a microarchitecture incorporating a
trace cache, with the following major results.

e The trace cache improves performance from 15% to
35% over an otherwise equally-sophisticated, but contigu-
ous multiple-block fetch mechanism.

o Longer traces improve trace prediction accuracy. For
the misprediction-bound benchmark go, this factor con-
tributes almost entirely to the observed performancegain.

e A moderately large and associative trace cache per-

forms as well as a perfect trace cache. For go, however,
trace mispredictions mask poor trace cache performance.

e Overal performanceis not as sensitive to trace cache
size and associativity as one might expect, duein part to ro-
bust instruction-level sequencing. IPC varies no more than
10% over awide range of configurations.

¢ The complexity advantage of the trace cache comes at
the price of redundant instruction storage: for gcc, a factor
of 7 redundancy among all traces created, corresponding to
afactor of 3 redundancy in the trace cache.

e An instruction cache combined with an aggressive
trace predictor can fetch any number of contiguous basic
blocks per cycle, yielding from 5% to 25% improvement
over single-block fetching.
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