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2 A Trace Formula on Stationary Kaluza-Klein

Spacetimes

Anthony McCormick

Abstract

We prove relativistic versions of the ladder asymptotics from [11] on princi-
pal bundles over globally hyperbolic, stationary, spatially compact spacetimes
equipped with a Kaluza-Klein metric. This involves understanding the dis-
tribution of the frequency spectrum for the wave equation on a Kaluza-Klein
spacetime when restricted to the isotypic subspace of an irreducible represen-
tation of the structure group, in the limit that the weight of the representation
approaches infinity in the Weyl chamber. This is a direct generalization of the
results from [23] and is closely related to [22], [14]. Furthermore we show how
to apply these results to frequency asymptotics for the massive Klein-Gordon
equation on vector bundles as one takes the representation defining the vector
bundle to infinity.
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1 Introduction

Given a principal G ⊆ SO(k)-bundle P with connection ω over a Lorentzian manifold
(Mn+1, g) one can form the Kaluza-Klein metric on P :

gω := π∗g + Tr(ω(−)ω(−)T )
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where π : P → M is the projection map. In the special case where M is globally
hyperbolic, stationary and spatially compact we will see in Section 2 that the Kaluza-
Klein spacetime takes the form

P = Rt × P0, M = Rt × Σ0, P0 → Σ0 a principal bundle

with metric given by

gω = −((N ◦ π)2 − |π∗η|2π∗h)dt
2 + dt⊗ (π∗η) + (π∗η)⊗ dt+ π∗h+ Tr(ω(−)ω(−)T )

where h is a Riemannian metric on Σ0, N : Σ0 → R>0 a smooth function, and η a
1-form on Σ0 satisfying |η|2h < N2 pointwise. Given an integral coadjoint orbit O for
G we have irreducible unitary representations corresponding to mO for each m ∈ Z≥1

and as discussed in Section 3 we get isotypic subspaces of the space of solutions to
the wave equation with respect to the Kaluza-Klein metric:

Hm ⊆ ker�ω corresponding to the representation mO.

As is shown in Section 3.1, for m sufficiently large the operator

DZ :=
1

i
∂t

is self adjoint on Hm with respect to the energy form with a discrete set of eigenvalues

· · · ≤ λm,ℓ ≤ λm,ℓ+1 ≤ ·

accumulating at ±∞ with at worst polynomial growth. For E > 0 fixed, our goal is
to study the following question.

Question:

What are the m→ ∞ asymptotics of the frequency spectrum of DZ −mE on Hm?

This is a relativistic analogue of the question studied in [11], and is a generalization to
non-trivial principal bundles with arbitrary compact structure groups of the results
in [23].

We make precise the notion of the distribution of the frequency spectrum about mE
via the tempered distribution µ(E,m,−) on R given by:

µ(E,m, ϕ) :=
∑

ℓ∈Z

ϕ(λm,ℓ −mE)

and we will study its asymptotics via the periodic generating function

Υ(ϕ)(θ) :=

∞∑

m=1

µ(E,m, ϕ)eimθ ∈ D′(S1) = D′(R/2πZ).
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The fact that µ(E,m,−) is tempered and Υ(ϕ) is defined on all of C∞(S1) are proven
in Sections 3.1, 4 respectively.

To state our main results we need to make a dynamical assumption akin to the
“clean intersection hypotheses” that appear in [23], [10] and [11]. For this we start by
introducing the notation:

• N is the symplectic manifold of affinely parametrized inextendible future-directed
null geodesics on P modulo the action of translation in the affine parameter,

• NO is the symplectic reduction of N along the coadjoint orbit O as in [11],

• H̃Z : NO → R and Φ̃Zt are respectively the Hamiltonian and Hamiltonian flow
corresponding to the reduction of the flow on N induced by the flow of Z = ∂t
on P .

The clean intersection hypothesis then states that E > 0 is a regular value for
H̃Z and the fibered product YE of the flow map

R× H̃−1
Z (E) → H̃−1

Z (E)

with the diagonal map H̃−1
Z (E) → H̃−1

Z (E) × H̃−1
Z (E) is a clean fibered product (it

is a smooth manifold with tangent spaces given by the non-necessarily-transverse
fibered products of the respective tangent spaces of the factors). We now state our
main theorems. These are completely analogous to the main theorems in [11] and are
direct relativistic generalizations of these.

Theorem 1.1. The wave front set of Υ(ϕ) ∈ D′(S1) is contained in:

Dϕ,E :=
{
(ω, r) ∈ S1 × R>0 : ∃(T, γ)) ∈ YE with T ∈ supp ϕ̂

such that ω = HolO([0, T ] ∋ t 7→ Φ̃Zt (γ))
}

where this holonomy is taken with respect to a natural U(1)-bundle with connection
over NO defined in 2.35.

Theorem 1.2. Let n + 1 = dim(M). Under the clean intersection hypothesis,
Dϕ,E is a union of the positive parts of finitely many fibers of T ∗S1, and Υ(ϕ) ∈

In+ℓ−1+ 1

4 (S1;Dϕ,E) where 2ℓ := dimO. Furthermore, we obtain an asymptotic ex-
pansion as m→ ∞:

µ(E,m, ϕ) ∼
∞∑

k=0

mn+ℓ−1−kak(ϕ,m)

with each ak(ϕ,m) a distribution in ϕ, bounded in m for k, ϕ fixed, and

a0(ϕ,m) = Cn,dϕ(0) Vol
(
H̃−1
Z (E)

)

where by Vol we mean to take the invariant measure on the energy hypersurface.
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Theorem 1.3. Suppose that, in addition to the clean intersection hypothesis, we
assumed that 0 /∈ supp(ϕ) and there existed only finitely many non-degenerate periodic
orbits (T1, γ1), · · · , (Tq, γq) ∈ YE with each Tj 6= 0. Then we actually obtain a better
asymptotic expansion as m→ ∞:

µ(E,m, ϕ) ∼
∞∑

k=0

m−kak(ϕ,m)

and a0(ϕ,m) is of the form:

a0(ϕ,m) = Cn,d

q∑

j=0

HolO(Tj, γj)
m
T#
j

2π
ϕ̂(Tj)

eiπmj/4

| det(I − Pj)|1/2
.

Where T#
j is the minimum positive value of T such that Φ̃ZT (γj) = γj, Pj is the

linearized Poincaré first return map of γj, and mj is the Conley-Zehnder index.

These theorems are proven in Section 4 using the tools developed in the previous
section. From the results of Section 3.1 we also obtain a corollary concerning the
frequency distribution of DZ for vector bundles. Let’s describe this now.

Let Vm → M denote the Hermitian vector bundle associated to the representation κm
equipped with the covariant derivative induced from ω on P and the representation.
We then have a massive Klein-Gordon operator �m with mass given by the eigenvalue

〈mΛ0, mΛ0 + ρ〉

of the quadratic Casimir on the representation corresponding to mO. Here Λ0 is the
highest weight for O and ρ is the sum of the positive roots. This massive Klein-
Gordon operator acts on sections and its kernel is invariant under the operator Dm,Z

given by 1
i

times the covariant derivative in the Z direction.

Corollary 1.4. For m sufficiently large operator Dm,Z on ker�m equipped with the
energy form from Section 3.1 is self adjoint with discrete spectrum equal to the spec-
trum of DZ on Hm, and the multiplicity of λ ∈ σ(DZ) is the product of the multiplicity
of λ ∈ σ(Dm,Z) and the dimension dm of the irreducible representation corresponding
to mO. Thus if µ(E,Vm, ϕ) is defined for Dm,Z in the same way µ(E,m, ϕ) is defined
for DZ then under the clean intersection hypothesis we have

µ(E,Vm, ϕ) ∼
1

dm

∞∑

k=0

mn+ℓ−1−kbk(ϕ,m).

In general, one can compute the values of ℓ and dm in terms of the dominant integral
element Λ0. Indeed, if R+ is the set of positive roots then

ℓ =
1

2
dimO = the number of positive roots not orthogonal to Λ0
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and as a consequence of the Weyl character formula we have

dm =

∏
α∈R+〈α, mΛ0 +

1
2
ρ〉∏

α∈R+〈α, 12ρ〉
.

In particular we see that dm is a polynomial of degree ℓ and so our leading order
asymptotics for µ(E,Vm, ϕ) as m → ∞ are mn−1. This is in agreement with [23]
where ℓ = 0 and dm = 1 for all m. When G = SU(2) and O corresponds to the vector
representation then ℓ = 1 and dm = m+ 1.

We now provide an outline of the paper. In Section 2 we demonstrate that (M, g) be-
ing globally hyperbolic, stationary and spatially compact implies that this is also true
for the Kaluza-Klein metric. The rest of the section is spent recalling the symplec-
tic geometry from [22] with (M, g) replaced by (P, gω). In Section 2.1 we introduce
the reduced phase space from [11], [24], [21] in the special case where the symplectic
manifold is N and in Section 2.2 we study two aspects of periodic orbits on this
reduced phase space: the linearized Poincaré first return map Pγ and the holonomy
map HolO. In Section 3 we use the general setup of [22] to discuss the wave equation
on (P, gω). Since we allow for a potential (as long as it is constant along the fibers of
P and independent of t) the energy quadratic form on the space of solutions ker�ω

need not be positive definite, but we use standard results from harmonic analysis
together with some results on Krein and Pontryagin spaces to show that it is positive
definite on the isotypic subspace Hm for m sufficiently large. In Section 3.1 we apply
a result from [14] to obtain that µ(E,m,−) is tempered and then we provide a proof
of Corollary 1.4 given Theorems 1.1,1.2,1.3. Finally, in Section 4 we simply combine
the techniques from [22] and [11] to obtain our main theorems.

2 The Classical Dynamics: Wong’s Equations

Let (Mn+1, g) be a connected, globally hyperbolic, oriented, time-oriented Lorentzian
manifold. For us, “Lorentzian” will mean that g has signature (−1,+1, · · · ,+1). We
refer the reader to [18] for an explanation of the various causality assumptions and
related terminology we will use. Throughout, we will assume the following:

1. We will assume that (M, g) admits a complete timelike Killing vector field Z,
flowing forwards in time with respect to the time-orientation (and we will make
a fixed choice of such a Z).

2. We will assume that (M, g) is spatially compact. That is, for some (hence any)
choice of Cauchy hypersurface Σ ⊆M , Σ is compact.

Lemma 2.1. [15]
All such spacetimes (M, g) as described above are diffeomorphic to Rt×Σ with metric

5



of the form:

g = −(N2 − |η|2h)dt
2 + dt⊗ η + η ⊗ dt+ h

= −N2dt2 + hij(dx
i + βidt)(dxj + βjdt)

where N : Σ → R>0 is smooth, η a 1-form on Σ, β = βi∂i a vector field on Σ, h a
Riemannian metric on Σ, and Σ = {0} × Σ a Cauchy hypersurface. We also have
N2 > |η|2h pointwise and β is the vector field h-dual to η. Furthermore, Σt = {t} ×Σ
will be a Cauchy hypersurface for each t ∈ R.

Notice that such spacetimes (M, g) are not necessarily static since Z = ∂t need not
be normal to Σ. Indeed, N−1(∂t − β) is the unit normal. Let’s denote this by

ν := N−1(∂t − β)

noticing that this is a globally defined vector field on M and is the unit normal to
each Σt when restricted to that submanifold.

The classical dynamics we wish to study are Wong’s equation [25] on a curved space-
time. In [25], the classical limit of a massive quantum particle in an external classical
Yang-Mills field was determined to be given by the equations

mẍi = Tr(qF ij
A )ẋj , ẋ2 = −1

where q ∈ u(k) is a conserved quantity describing the internal degrees of freedom of
the system (a generalization of charge). This is an analogue of the Lorentz force law,
generalized to connections with structure groups G other than U(1). Some references
for the study of these equations on curved non-relativistic space are [21], [24]. The
basic idea is to express these equations as geodesic equations on a principal bundle
over space equipped with a Kaluza-Klein metric. The Lorentzian analogue of this is
developed below.

Now, let G ⊆ SO(k) be a compact Lie group and π : P →M a principal G-bundle.

Definition 2.2. Recalling that (X, Y ) 7→ −Tr(XY ) is a positive definite Ad-invariant
inner product on g, given any connection ω on P we obtain an induced Kaluza-Klein
metric:

gω = π∗g − Tr(ω(−)ω(−))

on the total space of P . This is again a Lorentzian metric of signature (−1,+1, · · · ,+1).
Furthermore, we endow (P, gω) with the orientation induced from M and g ⊆ so(k),
and the time-orientation induced from M . We let

Zω := the horizontal lift of Z, and ξ̂ := the vertical vector field of ξ ∈ g.

We also abuse notation and set

n̂ := the horizontal lift of the unit normal N−1(∂t − β) = N−1(Z − β).
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Lemma 2.3. The horizontal lift Zω of Z is a complete timelike future-oriented Killing
vector field for gω and:

[Zω, ξ̂] = 0 for all ξ ∈ g.

Proof. Recall that the connection ω : TP → g defines a horizontal bundle HP :=
kerω splitting TP → V P ∼= P ×g and that π∗|HP : HP → π∗TM is an isomorphism.
The horizontal lift Zω of Z is then given by

(π∗|HP )
−1 (π∗Z)

where π∗Z is the pullback of Z to a section of π∗TM . Furthermore, the flow of Zω is
the horizontal lift of the flow of Z on M ( [3] section 10.1). This immediately implies
Zω is complete since Z is. Furthermore since Z is Killing on (M, g) it follows that
π∗g is invariant under the flow of Zω and since Zω is horizontal we have

LZω Tr(ω(−)ω(−)T ) = 0.

Thus indeed Zω is Killing on (P, gω). Finally, from [3] section 2.2 we know that Zω is

invariant under push-forward along the G-action on P and therefore [Zω, ξ̂] = 0 for
all ξ ∈ g.

The next result is an immediate corollary of [19] but we include the proof from [19]
for the reader’s convenience. Note that we are using the intrinsic definition of Cauchy
hypersurfaces in terms of inextendible causal curves since this is the definition used
when proving well-posedness for the wave equation in [2] and we would like to apply
their results directly. However, the proof of well-posedness simplifies when the man-
ifold is spatially compact with a complete timelike Killing vector field, and so our
discussion of “inextendibility” below is unnecessary for readers working exclusively in
this setting.

For a particularly nice discussion of the geometry of these spacetimes we refer the
reader to [1] and [5] where it is also shown that when n = 3 these spacetimes do not
admit non-trivial (i.e. product with a flat Riemannian spacetime) vacuum solutions
to the Einstein equations.

Lemma 2.4. [19]
(P, gω) is globally hyperbolic and each Pt = π−1(Σt), t ∈ R, a Cauchy hypersurface.

Proof. The map R×P0 → P induced by flowing along Zω is a global diffeomorphism
and so we can, without loss of generality, assume P = Rt × P0 as a manifold with
Zω = ∂t and Pt = {t} × P0. Using our standard form for the metric g on M we can
write the Kaluza-Klein metric on P as:

gω = −((N ◦π)2−|π∗η|2π∗h)dt
2+dt⊗ (π∗η)+(π∗η)⊗dt+(π∗h−Tr(ω(−)ω(−))). (1)

In particular, the Riemannian metric h̃t on Pt induced by pulling back gω is indepen-
dent of t:

h̃t = h̃ = π∗h− Tr(ω(−)ω(−)).

7



Choose now an arbitrary inextendible causal curve γ in P , parametrized with respect
to t so that γ(t) = (t, γ0(t)). We can always make this parametrization for causal
curves in the spacetimes we are considering thanks to the global time function t. We
now write (a, b) ⊆ R∪{±∞} for the domain of γ with b ∈ (−∞,∞] and a ∈ [−∞, b).
Since γ is causal we have at all t ∈ (a, b) that:

−N(π(γ0(t)))
2 + |π∗η|2π∗h(γ(t)) + 2〈π∗η, γ′0〉h̃ + h̃(γ′0, γ

′
0) ≤ 0.

Thus by Cauchy-Schwarz we have:

|γ′0|
2
h̃
− 2|π∗η|h̃|γ

′
0|h̃ −N2 + |π∗η|2

h̃
≤ 0.

Rearranging yields:
(|γ′0|h̃ − |π∗η|h̃)

2 ≤ N2.

Now, suppose for contradiction that b < ∞ (the case −∞ < a is completely analo-
gous) and set:

C := sup
[−|b|−1,b+1]×P0

(
N + |π∗η|h̃

)
.

We have C < ∞ since Σ and G are compact, hence P0 and [−|b| − 1, b+ 1]× P0 are
compact. We then have:

|γ′0|h̃ ≤ C on [−|b| − 1, b]

and so the curve γ must be extendible beyond time b, a contradiction.

Here we provide a brief remark on the above proof: recall that in the definition of a
Cauchy hypersurface, the assumption is that all curves which are both inextendible
and causal intersect the hypersurface exactly once. One does not make this require-
ment of causal curves which are extendible, but whose extensions are non-causal. To
see why, consider the following example on flat 2-dimensional Minkowski space (this
example also works in any dimension).

We let t, x denote our coordinates so that the metric on R2 is −dt2 + dx2. Consider
the curve given by t(s) = s and x(s) = 0 for s ≤ 0 and x(s) = e−1/s2 for s > 0. There
exists a time s0 > 0 so that γ(s) := (t(s), x(s)) is a causal curve for s ∈ (−∞, s0) but
there exists no ǫ > 0 on which γ extends to a causal curve on (−∞, s0 + ǫ). So γ has
no causal extensions, but it is not inextendible since it does admit an extension to a
curve γ : R → R2 (albeit a non-causal one). This clarifies why, in the definition of a
Cauchy hypersurface, one only requires all inextendible curves, which are also causal,
to intersect the Cauchy hypersurface exactly once.

As an immediate corollary of the specific form of the metric gω derived in the above
proof, we also obtain the following.

Corollary 2.5. The horizontal lift n̂ of the unit normal to the Cauchy hypersurfaces
Σt ⊆M is the unit normal to the Cauchy hypersurfaces Pt ⊆ P with respect to gω.
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Let’s now discuss the geodesic equations in the Kaluza-Klein spacetime (P, gω). Most
of the basic facts here can be found in the reference [3] but we include them for
the reader’s convenience together with section and/or theorem numbers from [3].
Recall that the Levi-Civita connection, together with the ODE ∇γ̇ γ̇ = 0 defining the
geodesic equations are defined on Lorentzian manifolds in the exact same way as they
are defined on Riemannian manifolds. Furthermore, we still have

d

ds
gω(γ̇(s), γ̇(s)) = 2gω(∇γ̇(s)γ̇(s), γ̇(s)) = 0

and so
gω(γ̇, γ̇) is constant along geoedesics.

This allows us to split geodesics into three types.

Definition 2.6. We call a geodesic γ on (P, gω) lightlike (respectively spacelike

and null) if and only if the constant gω(γ̇, γ̇) is negative (respectively positive and
zero).

As the below lemma explains, despite Wong’s equations describing massive particles
in (M, g), we will be interested in null geodesics in (P, gω).

Lemma 2.7. Let γ be a geodesic in (P, gω). Then the value ω(γ′(t)) is constant.
Thus

gω(γ̇, γ̇) = g((π ◦ γ)′, (π ◦ γ)′)− Tr(ω(γ̇), ω(γ̇))

being constant implies that the projected curve π ◦ γ in M has g((π ◦ γ)′, (π ◦ γ)′)
constant. Since −Tr(ω(γ̇), ω(γ̇)) ≥ 0 (and is zero if and only if ω(γ̇) = 0) we see
that:

gω(γ̇, γ̇) ≤ 0 implies g((π ◦ γ)′, (π ◦ γ)′) ≤ 0

and so timelike or null geodesics in (P, gω) project to timelike or null curves in (M, g).
In fact, the projection will be timelike unless the geodesic in P is null and ω(γ̇) = 0.

Proof. The only part of this not proven in the statement is that ω(γ̇(t)) is constant
for a geodesic γ in (P, gω). This can be found in [3] theorem 10.1.5.

Lemma 2.8. In the special case where M = Rt × Rn is flat and P = M × G,
null geodesics in P project to solutions to Wong’s equations with ẋ2 a non-positive
constant. More generally, null geodesics in (P, gω) project to curves γ in (M, g)
together with a section q of γ∗Ad(P ) satisfying:





∇γ̇ γ̇ = −γ̇xTr(qFA)

(γ∗∇A)q = 0

g(γ̇, γ̇) = constant

where A is the connection on the bundle Ad(P ) induced by ω.
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Proof. Let γ̃ be a null geodesic in P and γ the projected curve in M . We denote
q := ω( ˙̃γ(t)) and notice that by Ad-equivarance of connection 1-forms on principle
bundles this defines a section of γ∗Ad(P ). We’ve already seen that g(γ̇, γ̇) is constant
so it suffices to prove that q is covariantly constant with respect to ∇A and that the
geodesic equations reduce to Wong’s equations.

The fact that the geodesic equations in (P, gω) reduce to Wong’s equations on M is
theorem 10.1.6 in [3]. As for q, we note that its covariant derivative as a section of
γ∗Ad(P ) is just the horizontal part of its time derivative as a g-valued function on a
curve in P , and this is zero since the entire time derivative vanishes.

Given a null geodesic γ in (P, gω), we would like to think of the constant ω(γ̇) as the
“charge”. Unfortunately, unlike the abelian case of the Lorentz force law, different
lifts of solutions to Wong’s equations in M to geodesics in (P, gω) will have different
charges. Indeed, if the two lifts of our curve in M are related by the right action of
g ∈ G on P then the charges of the two lifts will be related by Adg. Identifying the
charge q with −Tr(q(−)) ∈ g∗ we arrive at the following gauge invariant definition of
charge.

Definition 2.9. Let γ be a null geodesic in (P, gω) and ξ0 := −Tr(ω(γ̇)(−)) ∈ g∗.
The charge of γ is defined to be the coadjoint orbit:

O := {Ad∗
g ξ0 : g ∈ G} ⊆ g∗.

Just as in the flat case, Wong’s equations on a curved spacetime will arise as classi-
cal limits of the quantum system. One consequence of this will be charge quantization.

For now, let’s proceed to the Hamiltonian description of the dynamics of these null
geodesics. Recall that the relativistic description of the phase space of a system is
simply the space of solutions to the equations of motion, and the identification with a
cotangent bundle arises from the equations typically being second order ODE and so
solutions correspond to initial data. In this way, the following results and definitions
can been seen as relativistic versions of the results on the phase space for Wong’s
equations from [21], [24].

Definition 2.10. The null bicharacteristic flow Gs is the Hamiltonian flow on
T ∗P \ 0 of the Hamiltonian ξ 7→ 1

2
g−1
ω (ξ, ξ).

Lemma 2.11. Let ΦZs and Φξs respectively denote the flows on T ∗P \ 0 given by the

derivatives of the flows of Zω and ξ̂ (ξ ∈ g) on P . Then ΦZs and Φξs commute with
Gs for every ξ ∈ g.

Proof. Since ΦZs and Φξs are derivatives of flows on P they are a 1-parameter family
of canonical transformations on T ∗P \ 0 and therefore, by the Hamiltonian version
of Noether’s theorem, it suffices to show that the Hamiltonian ξ 7→ 1

2
g−1
ω (ξ, ξ) is

invariant under the flows ΦZs ,Φ
ξ
s in order to prove that they commute with Gs. But

this is immediate from both Zω and ξ̂ being Killing vector fields for the metric gω.
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One incredibly important subtlety is the following. Since our spacetimes are not
necessarily ultrastatic, there is no reason to expect that if η ∈ T ∗P0 then Gs(η) ∈
T ∗Ps. This is our reason for using the variable s instead of t. Indeed, we do have (by
definition) that ΦZt (η) ∈ T ∗Pt for η ∈ T ∗P0.

Definition 2.12. We begin by denoting:

Na := { all future-directed, inextendible null geodesics in (P, gω)}.

Recall that, for us, geodesics are specifically solutions to the equation ∇γ̇ γ̇ = 0
and hence these are already “affinely parametrized”. By definition, elements of Na

are, in particular, inextendible causal curves and therefore intersect each Cauchy
hypersurface Pt exactly once. An invariant way of dealing with the fact that such
curves γ need not satisfy γ(0) ∈ P0 is to define

N := Na/R

where b ∈ R acts on Na by γ(s) 7→ γ(s + b). Notice additionally that the R>0-action
on Na where a ∈ R>0 acts by γ(s) 7→ γ(as) descends to an R>0-action on the quotient
N .

The above set N with R>0-action is naturally a symplectic manifold with R>0-action
and one can view the next lemma as saying the there are R>0-equivariant Cauchy-data
symplectomorphisms between N and cotangent bundles. Instead, we will simply take
the next lemma as a definition of the smooth manifold and symplectic structures. For
this, we will need the definition.

Definition 2.13. We define three sub-cone-bundles of T ∗P \ 0:

T ∗
0P := {ζ ∈ T ∗P \ 0 : g−1

ω (ζ, ζ) = 0}

and
T ∗
±P := {ζ ∈ T ∗

0P : ζ is future (respectively past) oriented}

so that T ∗
0P = T ∗

+P ⊔ T ∗
−P .

As in [22] there are natural isomorphisms of bundles over P0:

T ∗P0 \ 0 ∼= T ∗
+P |P0

and T ∗P0 \ 0 ∼= T ∗
−P |P0

which are symplectomorphisms but are not R>0-equivariant! Indeed, the map

T ∗P0 \ 0
∼=
−→ T ∗

+P |P0

is given by ζ 7→ ζ + |ζ |2hn̂.

11



Lemma 2.14. Each equivalence class in N has a unique representative γ : R → P
satisfying γ(0) ∈ P0. Identifying elements of N with these representatives gives us an
R>0-equivariant bijection

N
∼=
−→ T ∗

+P |P0

γ 7→ (γ(0), γ̇(0))

where γ′(0) is identified with a cotangent vector via gω. The R>0-action on T ∗
+P |P0

is given by scalar multiplication in the fibers. Furthermore, the inverse of the above
bijection is given by

T ∗
+P |P0

\ 0 ∋ η 7→ (s 7→ Gs(η))

or, more precisely, η maps to the projection of the curve s 7→ Gs(η) down to P .

Proof. This is immediate from the definition of a future-directed, inextendible null
geodesic and the existence and uniqueness of solutions to ODE.

Lemma 2.15. g ∈ G has a right action on N induced by its right action on Na given
by γ(s) 7→ γ(s)g (via the right action on P ). The bijection in 2.14 intertwines this
right action with the right action on T ∗

+P |P0
given by dualizing (using gω) the action

of pushing forward by right multiplication by g on P .

Proof. This is immediate from the explicit form of our isomorphism N ∼= T ∗
+P |P0

and
the fact that G acts by isometries and therefore leaves T ∗

+P |P0
invariant.

Lemma 2.16. The flows ΦZs and Φξs on N induced by 2.14 are Hamiltonian flows
with respective Hamiltonians:

HZ(γ) = Zωx(γ(0), γ̇(0)) and Hξ(γ) = ξ̂x(γ(0), γ̇(0))

where again we have chosen representative geodesics γ with γ(0) ∈ P0. Furthermore,
the Φξs’s arise (through the exponential map) from the natural right-action of G on N
hence this G-action is Hamiltonian.

As the above right G-action is Hamiltonian, we can consider its moment-map:

µ : N → g∗

〈µ(γ), ξ〉 = Hξ(γ).

Lemma 2.17. Under the isomorphism g ∼= g∗ induced by our Ad-invariant inner
product on g, the moment map is given by

γ 7→ ω(γ̇).

Proof. We know that ω(ξ̂) = ξ by the definition of a connection on a principal bundle
and so the result follows from

ξ̂x(γ(0), γ̇(0)) = Tr(ω(ξ̂)ω(γ̇)T )

since we’re using gω to identify γ̇(0) with a covector.
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As a final remark before we proceed to symplectic reduction, we demonstrate that,
while our Hamiltonian may appear linear (indeed, it is homogeneous of degree 1 with
respect to the R>0-action on N ), it is in fact quadratic after applying the symplecto-
morphism T ∗P0 \ 0 ∼= N .

Lemma 2.18. Under the symplectomorphism T ∗P0 \ 0 ∼= N the Hamiltonian HZ

becomes:

HZ : T ∗P0 \ 0 → R

ζ 7→ N |ζ |2h + 〈η, ζ〉h

where η is the 1-form on P0 coming from our explicit form for the metric gω in 1.

Proof. This follows from the isomorphism T ∗P0\ ∼= T ∗
+P |P0

being given by ζ 7→
ζ + |ζ |2hn̂ and gω(Z

ω, n̂) = N−1.

Notice in particular that the fact that N > |η|h pointwise implies that HZ is strictly
positive. Furthermore, if we had N − |η|h uniformly bounded away from zero on
Σ0 then HZ would both be uniformly bounded away from zero and would have a
uniformly positive definite fiberwise Hessian.

2.1 The Reduced Phase Space

Fix a charge, i.e. a coadjoint orbit O ⊆ g∗. We now wish to form the symplectically
reduced phase space of solutions with charge O. The construction of this in Rieman-
nian signature, and its relationship to Wong’s equations can be found in [9] and it
generalizes with almost no modifications to our setting.

Recall that our coadjoint orbit O is naturally a symplectic manifold. The symplectic
form ωO can be defined as follows. Fix ξ0 ∈ O and let Gξ0 denote the stabilizer of ξ0
under the coadjoint action. Then

G→ O

g 7→ Ad∗
g ξ0

induces an isomorphism
G/Gξ0

∼= O

which identifies
Tξ0O ∼= g/gξ0

where gξ0 is the Lie algebra of Gξ0. The other tangent spaces of O are also identified
with g/gξ0 by pushforward along the G-action. We then have:

ωO(X, Y ) = 〈ξ0, [X, Y ]〉.

We notice that this is well-defined on g/gξ0 since

gξ0 = {X ∈ g : 〈ξ0, [X, Y ]〉 = 0 for all Y ∈ g}.

Let O denote O but equipped with −ωO as its symplectic form instead of O.
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Lemma 2.19. The extended moment map

µO : N ×O → g∗

µO(γ, ξ) := µ(γ)− ξ

is a submersion and G acts freely on µ−1
O (0).

Proof. The fact that G acts freely on µ−1
O (0) simply follows from G acting freely on

N ∼= T ∗
+P |P0

since P, P0 are principal G-bundles. To see that µO is a submersion, we
notice that under the isomorphism N ∼= T ∗

+P |P0
we have

µO : T ∗
+P |P0

×O → g∗

(ζ, ξ) 7→ Tr(ω(ζ)Tω(−))− ξ

and if we use our Ad-invariant inner product to identify g ∼= g∗ then this maps

(ζ, ξ) 7→ ω(ζ)− ξ.

Forgetting ξ we can already see that ζ 7→ ω(ζ) is a submersion (and therefore µO is a
submersion). Indeed, it suffices to prove that for every ξ ∈ g there exists ζ ∈ T ∗

+P |P0

such that ω(ζ) = ξ. However, ξ̂ is tangent to P0 with gω(ξ̂, ξ̂) = Tr(ξξT ) so ζ :=

Tr(ξξT )n̂+ ξ̂ is future-directed, has ω(ζ) = ξ and gω(ζ, ζ) = 0 as desired.

From the above proof we record as a remark the fact that µ−1
O (0) is precisely the space

of pairs (γ, ξ) where γ ∈ N and ξ ∈ O satisfy

Tr(ω(γ̇)T (−)) = ξ.

This µ−1
O (0) is precisely the space of solutions with charge O, prior to quotienting by

gauge transformations.

Definition 2.20. The reduced phase space is

NO := µ−1
O (0)/G

with symplectic form obtained from the one on N ×O.

Lemma 2.21. The Hamiltonian HZ , extended to N × O to be independent of O,
is invariant under the G-action and therefore descends to a Hamiltonian H̃Z on NO

with flow Φ̃Zs .

Proof. From the definition of HZ we see that what we have to show is that gω(Z
ω, γ̇ ·

g) = gω(Z
ω, γ̇) for all g ∈ G and γ ∈ N . However:

gω(Z
ω, γ̇ · g) = gω(Z

ω · g−1, γ̇) = gω(Z
ω, γ̇)

since Zω = ∂t is invariant under the G action.
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The point of the previous construction is its manifestly gauge-invariant nature. Below
we give an alternative characterization that might be more familiar to some readers,
although we will not use it in our proof.

Fix ξ0 ∈ O and recall from our proof that µO is a submersion that µ is also a
submersion, hence ξ0 is automatically a regular value. Furthermore, while the full
G-action on N doesn’t preserve the submanifold µ−1(ξ0), it is preserved by the action
of the stabilizer Gξ0 of ξ0. The action of Gξ0 on µ−1(ξ0) is free since the action of G
on N is free.

Definition 2.22. The reduced phase space (version II) is the quotient

µ−1(ξ0)/Gξ0

with the symplectic form induced from that on N .

Lemma 2.23. [11] The map

µ−1(ξ0) → NO

γ 7→ [(γ, ξ0)]

induces a symplectomorphism µ−1(ξ0)/Gξ0
∼= NO intertwining the reductions of the

Hamiltonian flow of HZ to µ−1(ξ0)/Gξ0 and NO. Here [(γ, ξ0)] denotes the equivalence
class of (γ, ξ0) in the quotient.

2.2 Periodic Orbits

Finally, let’s note that since M is assumed to be spatially compact we expect the
quantum system to have discrete spectrum and hence bound states. The leading order
singularities in our distributional trace of the propagator will be therefore expressed
as a sum over classical bound states: periodic orbits of null geodesics under Φ̃Zs . There
are two aspects of these periodic orbits we will need to consider:

1. the (linearized) Poincaré first return map of a periodic orbit, and

2. the phase change due to a periodic orbit for the Aharonov-Bohm effect.

The first of these points relates to the classical dynamics of periodic orbits, while the
second of these is only relevant for the quantum effects we will discuss later.

Following [22], we fix an energy E ∈ R and restrict ourselves to the contact manifold
given by the level surface

H̃−1
Z (E) ⊆ NO.

This is invariant under the Φ̃Zs -flow and so we can define the set of periods:

PE := {T ∈ R \ {0} : ∃z ∈ H̃−1
Z (E) such that Φ̃ZT (z) = z}
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and, for T ∈ PE , the set of periodic points:

PE,T := {z ∈ H̃−1
Z (E) : Φ̃ZT (z) = z.}

We say that T > 0 is the minimum period of z if and only if it is the smallest
positive time for which Φ̃ZT (z) = z. The below result is a general fact concerning
Hamiltonian dynamics and is a simple consequence of the implicit function theorem.

Lemma 2.24. ( [17] Prop 8.5.3)
Given a periodic point z0 ∈ PE,T where T is its minimum period there exists, in a
sufficiently small neighborhood of z0, a codimension 1 symplectic submanifold

z0 ∈ S ⊆ H̃−1
Z (E)

which is transverse to the flow Φ̃Zs . Furthermore, in a sufficiently small neighborhood
of z0 in S, the first return time

T (z) := min{t > 0 : Φ̃Zt (z) ∈ S}

is well-defined, smooth and satisfies T (z0) = T .

Definition 2.25. With z0, S, T as above, we define the linearized Poincaré first

return map to be

Pz0,S :=
∂

∂z

∣∣∣
z=z0

Φ̃ZT (z)(z) : Tz0S → Tz0S.

This is a linear symplectic map. For any other choice of local symplectic transversal
S ′ there is a linear symplectic isomorphism

L : Tz0S
′ ∼=
−→ Tz0S

such that
Pz0,S′ = L−1 ◦ Pz0,S ◦ L.

There is actually an alternate, perhaps simpler, description of these maps Pz0,S. This
alternate description is analogous to the more standard definition of the linearized
Poincaré first return map for geodesic flow on Riemannian or Lorentzian manifolds,
which is usually defined with the aid of Jacobi fields.

Definition 2.26. Given z0 ∈ PE,T with T the minimum period of z0, we define the
Floquet operator of z0 to be:

Vz0(T ) :=
d

dz

∣∣∣
z=z0

Φ̃ZT (z) : Tz0NO → Tz0NO.
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Lemma 2.27. The subspace

Wz0 := Span{Z̃(z0), ∇H̃(z0)}

is symplectic, as is the quotient Tz0NO/Wz0, and Wz0 is preserved by the Floquet
operator. The induced quotient map

Vz0(T ) : Tz0NO/Wz0 → Tz0NO/Wz0

is conjugate via a linear symplectomorphism to the linearized Poincaré first return
map.

Let’s discuss for some time the significance of these operators to us. For this, we will
need the following assumption.

Definition 2.28. We say that E satisfies the clean intersection hypothesis if and
only if E is a regular value for H̃Z and the flow map

R × H̃−1
Z (E) → H̃−1

Z (E)× H̃−1
Z (E)

(t, γ) 7→ (γ, Φ̃Zt (γ))

admits a clean fibered product over H̃−1(E)×H̃−1(E) with the diagonal map H̃−1(E) →

H̃−1(E)× H̃−1(E).

Let’s discuss this hypothesis for a moment. The fibered product is given, as a set, by:

YE := {(T, γ) ∈ R× H̃−1
Z (E) : Φ̃ZT (γ) = γ}.

Notice that this contains {0} × H̃−1
Z (E) as a subset and the clean intersection hy-

pothesis implies that YE is a disjoint union of smooth submanifolds of R × H̃−1
Z (E).

Lemma 2.29. Under the clean intersection hypothesis, {0} × H̃−1
Z (E) is a clopen

subset of YE and every connected component Y ⊆ YE has

dim(Y ) ≤ dim H̃−1
Z (E) = 2n+ dimO − 1.

Proof. Let Y ⊆ YE be any connected component. By the clean intersection hypoth-
esis, for any (T, γ) ∈ Y we must have

T(T,γ)Y =

{
(τ, ζ) ∈ TTR× TγH̃

−1
Z (E) : τ

d

dt

∣∣∣
t=T

Φ̃Zt (γ) +DΦ̃ZT (ζ) = ζ

}

Since ζ 7→ ζ − DΦ̃ZT (ζ) is linear the only way for the above constraint to be trivial

(and not reduce the dimension) is if d
dt
|t=T Φ̃Zt (γ) = 0 and if DΦ̃ZT = id. Indeed, if

d
dt
|t=T Φ̃

Z
t (γ) 6= 0 and we didn’t want the equation to constrain ζ then we would need

to constrain τ to τ = 0. But now since Φ̃ZT (γ) = γ it follows that d
dt
|t=T Φ̃Zt (γ) = 0
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implies d
dt
|t=0Φ̃

Z
t (γ) = 0 and so the gradient of the Hamiltonian ∇H̃Z vanishes at γ

and so γ is an equilibrium point. However, we assumed that γ ∈ H̃−1
Z (E) and that E

was a regular value for H̃Z , which contradicts ∇H̃Z vanishing at γ.

Now, let Y be the smallest clopen subset containing {0}× H̃−1
Z (E). We have already

shown that dim(Y ′) ≤ dim H̃−1
Z (E) for any connected component Y ′ and so we must

have dim(Y ) = dim H̃−1
Z (E) since Y is a disjoint union of connected components. In

particular, since the inclusion

{0} × H̃−1
Z (E) →֒ Y

is an immersion it is automatically a submersion as well and hence a local diffeomor-
phism. Local diffeomorphisms are local homeomorphisms and are hence open maps.
Thus the image {0}× H̃−1

Z (E) is open in Y , hence open in YE since Y is open in YE .

Since {0} × H̃−1
Z (E) is also closed in YE it follows that it is clopen hence

{0} × H̃−1
Z (E) = Y

as desired.

We should remark that there is no reason to expect H̃−1
Z (E) to be connected even if

M is connected since we have allowed disconnected structure groups such asG = O(d).

In our trace formula, the leading order singularities of the distributional trace will
have symbols given by integrals over components of the above clean intersection. The
linearized Poincaré map gives us a dynamical description of the volume density on
these components. To describe how, let’s first recall the invariant volume density on
the energy hypersurface H̃−1

Z (E).

Definition 2.30. Let Ω denote the volume form on NO induced by the symplectic
form and equip NO with the Riemannian metric h0 induced from the one on N ∼=
T ∗
+P |P0

∼= T ∗P0 \ 0 and the Ad-invariant inner product on g. Using this metric we
can define the gradient ∇H and the 2(n+ ℓ)− 1-form on NO:

|∇H̃Z|
−2
h0
∇H̃ZxΩ.

Denote:
νE := the pullback of the above form to H̃−1

Z (E).

The νE is invariant under the Hamiltonian flow Φ̃Zt and its absolute value |νE | defines

an invariant measure on the energy hypersurface H̃−1
Z (E).

Lemma 2.31. Under the clean intersection hypothesis, the fibered product YE comes
equipped with a natural volume density. Consider then the case YE is a union of
{0} × H̃−1

Z (E) and finitely many disjoint isolated orbits:

Y1 := {(T1, Φ̃
Z
t (γ1)) : t ∈ [0, T1]}, ..., Yq := {(Tq, Φ̃

Z
t (γq)) : t ∈ [0, Tq]}
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with Tj 6= 0 for all j. Then the Poincaré first return map of each γj is invertible
and if Ωγ is the symplectic volume form on T ∗

γNO then the induced volume density
on T ∗

γ Yj is given by:

| det(I − Pγ)|
−1/2|νE | (2)

with Pγ the Poincaré first return map for one, hence any, choice of symplectic local
transversal S.

Proof. Indeed this follows immediately from the expression for the tangent space of
Y derived in the proof of 2.29, noticing that the constraint

τ
d

dt

∣∣∣
t=T

Φ̃Zt (γ) +DΦ̃ZT (ζ) = ζ

in the case of isolated periodic orbits is such that ζ 7→ ζ−DΦ̃ZT (ζ) has a 1-dimensional

kernel in TγH̃
−1
Z (E) = (∇H̃Z(γ))

⊥ spanned the vector field Z̃ corresponding to the

reduced flow Φ̃Zt . Thus by 2.27 the Poincaré first return map is invertible and the
induced volume form on TYj is determined by the invariant volume form νE on

H̃−1
Z (E) and the Poincaré first return map acting on

TNO/ Span{Z̃,∇H̃Z} ∼= TH̃−1
Z (E)/ Span{Z̃}

yielding the formula 2.

Next, let’s discuss the phase associated to a periodic orbit. For this we need the
following basic result from representation theory.

Definition 2.32. The coadjoint orbit O ⊆ g∗ is called integral if and only if the
cohomology class [ωO] of its symplectic form ωO is in the image of H2(O;Z) →
H2(O;R) ∼= H2

dR(O;R).

Lemma 2.33. A coadjoint orbit O = G · ξ0 is integral if and only if there exists a
character

χξ0 : Gξ0 → U(1)

such that
(dχξ0)I = 2πi〈ξ0,−〉 : gξ0 → iR

where I ∈ G is the identity matrix.

So, when our coadjoint orbit is integral we have a U(1)-bundle defined by the char-
acter:

G×χξ0
U(1) → O

where G×χξ0
U(1) is the quotient of G×U(1) by the relation

(g, z) ∼ (gh, χξ0(h
−1)z) for all h ∈ Gξ0.

The right G-action on G yields a right G-action on the total space G×χξ0
U(1) since

the stabilizer Gξ0 is a normal subgroup. Through this, we identify every tangent space
of the total space with the tangent space at the equivalence class [I, 1] ∈ G×ξ0 U(1)
of (I, 1) ∈ G× U(1).
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Lemma 2.34. We have a natural isomorphism

T[I,1](G×χξ0
U(1)) ∼=

{(
Y + cξ#0 ,

i

2π
c

)
: Y ∈ g⊥ξ0 , c ∈ R

}
.

Furthermore, there is a principal U(1)-connection α on G×ξ0 U(1) such that dα = ωO

and, under our above isomorphism, it is given by:

α

(
Y + cξ#0 ,

i

2π
c

)
= c = 〈ξ0, Y + cξ#0 〉.

This G-equivariant bundle with connection over O gives us a natural U(1)-bundle
with connection over the reduced phase space NO, which we describe now.

Definition 2.35. The U(1)-Bundle With Connection: Construction I

Recalling that µO : N ×O → g∗ we can consider the G-equivariant U(1)-bundle:

(
N × (G×χξ0

U(1))
) ∣∣

µ−1

O (0)
→ µ−1

O (0).

If α0 denotes the Liouville 1-form on N and i : µ−1
O (0) →֒ N the inclusion then we

have a G-invariant 1-form on the total space of this bundle given by:

i∗(α0 − α).

We then set:

ZO :=
(
N × (G×χξ0

U(1))
) ∣∣

µ−1

O (0)

/
G→ µ−1

O (0)/G = NO

with connection 1-form

αO := the reduction of i∗(α0 − α) mod G.

Definition 2.36. The U(1)-Bundle with Connection: Construction II

Here we instead extend our right Gξ0-action on µ−1(ξ0) so µ−1(ξ0) × U(1) via the
character χξ0 . We then set

ZO :=
(
µ−1(ξ0)×U(1)

)/
Gξ0 → µ−1(ξ0)/Gξ0 = NO

with connection 1-form

αO := the reduction of i∗α0 + dθ mod Gξ0

where now i : µ−1(ξ0) →֒ N is the inclusion.

Finally we arrive at the holonomies that describe the quantum phase translation that
occurs upon traveling along a classical periodic orbit.
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Definition 2.37. Let γ : [0, T ] → NO be a periodic orbit of the Φ̃Zs -flow (i.e. γ(s) =

Φ̃Zs (z0) for some z0 and γ(0) = γ(T )) and assume that T is the minimum period of
γ. We denote:

HolO(γ) := the holonomy of αO about the loop γ.

A key point is that while our construction of the U(1)-bundle with connection relied
on a choice of character as well as a choice of ξ0 ∈ O, the element HolO(γ) ∈ U(1) is
independent of these choices.

The following proposition is from [11] section 4. Their result applies here since it
applies in the general context of symplectic reduction along an integral coadjoint
orbit.

Proposition 2.38. The map HolO : YE → U(1) is locally constant. Furthermore,
if we consider the symplectomorphism NO

∼= µ−1(ξ0)/Gξ0 and suppose we had γ ∈
µ−1(ξ0) with HZ(γ) = E and T ∈ R, g ∈ Gξ0 such that ΦZT (γ) = γ · g then if [γ] ∈ NO

denotes the image in the quotient we have:

HolO(T, [γ]) = χξ0(g)e
iTE.

3 The Wave Equation on a Kaluza-Klein Spacetime

Similar to the classical phase space, the quantum-mechanical phase space is the space
of solutions to the equations of motion. Usually, for quantum particles in a classical
gauge field, one solves Schrödinger’s equations for sections of a vector bundle with
connection. A choice of such a vector bundle corresponds to a choice of representation
(usually irreducible) and hence a choice of fixed “charge”.

When performing semiclassical asymptotics, one doesn’t simply send ~ → 0 since ~

is a dimensional quantity, but instead sends an observable such as Ŝ/~ or Ĵ/~ to

infinity (here Ŝ and Ĵ are respectively action and angular momentum). We will work
as in [12], [11] and send “charge” to infinity while holding the ratio of charge to energy
fixed. Thus we need a quantum phase space which allows for varying representations
of our structure group G. The relativistic version of this is defined below.

Definition 3.1. Fix a smooth function V ∈ C∞(M,R) satisfying LZV = 0 to act as
a time-independent potential. We denote

�ω := d∗d+ V ◦ π

acting on C∞(P,C). We also define operators:

DZ :=
1

i
LZω and Dξ :=

1

i
Lξ̂.
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Lemma 3.2. We have

[�ω, DZ ] = 0 = [�ω, Dξ] for all ξ ∈ g.

Proof. Indeed, isometries and hence Lie derivatives along Killing vector fields com-
mute with the wave operator d∗d so it suffices to shown thatDZ(V ◦π) = 0 = Dξ(V ◦π)
for all ξ ∈ g. DZ(V ◦ π) = 0 since LZV = 0 and Zω is the horizontal lift of Z to P .

Dξ(V ◦ π) = 0 since V ◦ π is constant on the fibers of P and the vector fields ξ̂ are
vertical.

It should be noted that these results are of interest even when V = 0. Nevertheless,
we include the potential term in order to allow our results to apply to the conformal
wave equation

d∗dφ+ CnSgωφ = 0

for Cn a dimensional constant and Sgω the scalar curvature of gω. The origin of this
variant of the wave equation comes from considering conformal variations g̃ω := e2fgω
of the Hilbert-Einstein action. Indeed, setting φ := e(n−2)f/2 one can compute:

ˆ

P

Sg̃ωdVg̃ω =

ˆ

P

φ(d∗dφ+ CnSgωφ)dVgω .

It’s also worth noting that if SG denotes the (constant) scalar curvature of the fibers
of P then from [3] Theorem 9.3.7 we have

Sg̃ω = Sg ◦ π +
1

2
|Fω|

2 ◦ π + SG

and so the scalar curvature of (P, gω) does indeed satisfy our assumptions on the
potential.

Returning to our operator �ω, the vanishing of our commutators with DZ and Dξ

tells us that the operators DZ and Dξ leave the kernel of �ω invariant. In fact, we
want to complete the kernel of �ω to a Hilbert space of sorts since this is the quantum
mechanical phase space. Indeed, the phase space in either classical or quantum me-
chanics is most naturally viewed as the space of solutions to the equations of motion
(from a relativistic point of view). Any choice of Cauchy hypersurface then provides
a natural identification of this phase space with a cotangent bundle; a more common
non-relativistic description of phase space.

As is done in [22], we adapt several definitions and results from [2].

Definition 3.3. For T > 0 we denote:

FE(P|t|≤T ) := W 1,2([−T, T ], L2(P0)) ∩ L
2([−T, T ],W 1,2(P0))

and we will often interpret elements of FE(P|t|≤T ) as C-valued functions on P|t|≤T :=
π−1([−T, T ]× Σ0). For the moment, let’s write:

kerT (�ω) := {φ ∈ FE(P|t|≤T ) | �ωφ = 0}.
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Lemma 3.4. [2] For 0 < T1 < T2, the natural restriction map

kerT2(�ω) → kerT1(�ω)

is an isomorphism of locally convex spaces.

Definition 3.5. We denote

ker�ω := {φ ∈ L2
loc(P ) : φ|P|t|≤T

∈ kerT (�ω) for all T > 0}.

Lemma 3.6. [2] We have φ ∈ ker�ω if and only if φ ∈ L2
loc(P ) and there exists a

T > 0 such that φ|P|t|≤T
∈ kerT (�ω). Furthermore, the restriction map

ker�ω → kerT (�ω)

is a vector space isomorphism for all T > 0 and the locally convex topology on ker�ω

obtained by declaring this to be a homeomorphism is independent of our choice of
T > 0.

Lemma 3.7. [2] For each t ∈ R the map

CDt : ker�ω →W 1,2(Pt)⊕ L2(Pt)

φ 7→ (φ|Pt
, (Ln̂φ)|Pt

)

is an isomorphism of locally convex spaces (recall: ν is the future-directed unit normal
of the Cauchy hypersurfaces Pt). Thus ker�ω has the topology of a Hilbert space.

Our goal is to study the semiclassical asymptotics of the action of time translation
on the space ker�ω.

Definition 3.8. We denote by

e−itDZ : ker�ω → ker�ω

the isomorphism given by precomposing functions φ ∈ ker�ω with the time −t flow
P → P along the Killing vector field Zω.

At the moment e−itDZ is merely a notation since we do not have a preferred Hilbert
space inner product with which to perform a functional calculus. Let’s now describe
how we perform the quantum mechanical analogue of symplectic reduction.

Towards this end, we should notice that e−itDZ is not unitary on ker�ω with respect
to any of the Hilbert space structures defined by a fixed Cauchy-data isomorphism
since Zω 6= n̂. Instead, we proceed as in [22] and notice that the equation �ωφ = 0
arises from a variational problem and therefore has an associated stress-energy tensor.

Definition 3.9. Given φ ∈ ker�ω ∩ C∞(P,C) we define the stress-energy tensor

of φ to be

T (φ) := dφ⊗ dφ−
1

2

(
|dφ|2gω + |φ|2V

)
· gω.
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The proof of the next few results are in [22] but we sketch them here since the
computations will be useful to us later.

Lemma 3.10. [22] For φ ∈ ker�ω ∩ C∞(P,C), the stress-energy tensor T (φ) has
divergence −1

2
φ2dV with respect to the metric gω.

Proof. We compute, using that the metric is divergence free to get:

div

(
dφ⊗ dφ−

1

2

(
|dφ|2gω + φ2V

)
gω

)
= −2(d∗dφ)dφ

−
1

2

(
2〈∇2φ,∇φ〉gω + 2φV∇φ+ φ2∇V

)
xgω

= −(�ωφ)dφ−
1

2
φ2dV

and since �ωφ = 0 by assumption we’re done.

As such, we can use the stress-energy tensor to define a quadratic form on ker�ω ∩
C∞(P,R) and extend it to a Hermitian form on ker�ω via the polarization identity.

Definition 3.11. For φ ∈ ker�ω ∩ C∞(P,R) we denote

Qω(φ) :=

ˆ

P0

T (φ)(Zω, n̂)dVP0

and extend this quadratic form Qω to a Hermitian one via the polarization identity.

Lemma 3.12. Qω is invariant under both the action of G and e−itDZ .

Proof. First we recall the proof of e−itDZ -invariance from [22]. Since e−i(t1+t2)DZ =
e−it1DZe−it2DZ it suffices to show that the time derivative of Q(e−itDZφ) vanishes at
t = 0. We do this for φ real-valued. Writing ∗ for the Hodge-∗ on P (not on P0!) we
can compute using Cartan’s formula for the Lie derivative:

d

dt

∣∣∣
t=0
Q(e−itDZφ) =

d

dt

∣∣∣
t=0

ˆ

P0

∗T (φ)(Zω)

=

ˆ

P0

Zxd(∗T (φ)(Z)) since the pullback of an exact form is exact

=

ˆ

P0

N divP (T (φ)(Z))dVP0

where divP denotes the full divergence on P . From the previous lemma we have
divP (T (φ))(Z) =

1
2
φ2LZωV = 0 and since Killing vector fields are divergence-free it

follows that
divP (T (φ)(Z

ω)) = (divP (T (φ)))(Z
ω) = 0

as desired.
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Next let’s look at the G-action. We write φ · g for the function x 7→ φ(xg−1) and also
continue to use the notation ζ · g for the induced right action of G on covectors ζ .
Since G acts by isometries we have |d(φ · g)|2gω = |dφ|2gω · g and therefore

T (φ · g)(Zω, n̂) = T (φ)(g−1 · Zω, g−1 · n̂) · g.

But Zω = ∂t and n̂ = N−1(∂t − β) are both invariant under the G-action so

T (φ · g)(Zω, n̂) = T (φ)(Zω, n̂) · g.

Finally, the volume form dVP0
is invariant under the G-action since it is an action by

isometries hence we can perform the change of variables x 7→ xg−1 in the integral to
get

ˆ

P0

T (φ · g)(Zω, n̂)dVP0
=

ˆ

P0

T (φ)(Zω, n̂) · gdVP0
=

ˆ

P0

T (φ)(Zω, n̂)dVP0

as desired.

Unfortunately: since we have allowed possibly negative potentials V our quadratic
form Qω need not be positive definite. Just as in [22], we apply several results on the
general theory of Pontryagin and Krein spaces [16], [6]. These are “Hilbert spaces”
for which the inner product is permitted to have finite dimensional negative-definite
and/or degenerate subspaces. As we will see below in 3.19, we only care about the
operators DZ , Dξ, etc. on certain closed subspaces Hm of ker�ω and Qω will be
positive definite on these subspaces.

Lemma 3.13. [22]
kerQω ⊆ ker�ω is finite dimensional and consists of C∞ functions. Furthermore, for
all φ ∈ kerQω we have:

DZφ = 0.

In particular, if Q̃ω is the Hermitian form on ker�ω/ kerQω induced by Qω then
(ker�ω/ kerQω) is a Pontryagin space.

Lemma 3.14. DZ descends to a Krein-self-adjoint operator on ker�ω/ kerQω whose
domain contains the dense G-invariant subspace given by the image of ker�ω∩C∞(P )
in the quotient. Furthermore, the spectrum of DZ on this Krein space is discrete
consisting of eigenvalues of finite multiplicity, invariant under λ 7→ λ and λ 7→ −λ,
accumulates at ±∞ only, and has only finitely many non-real eigenvalues.

Proof. The only part of this not proven in [22] was the G-invariance of the subspace
ker�ω ∩ C∞(P ). However, the G-action preserves C∞(P ) since it is smooth and
therefore preserves ker�ω ∩ C∞(P ) by 3.2.

Lemma 3.15. [22], [16], [6] Let Q̃ω denote the induced quadratic form on the quo-
tient ker�ω/ kerQω. Then there exists a maximal negative definite subspace

Ṽ − ⊆ (ker�ω/ kerQω, Q̃ω)
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which is invariant under DZ and e−itDZ . Furthermore, it is finite-dimensional with di-
mension an invariant of the Krein space and DZ themselves. Finally, Ṽ − is invariant
under the action of G.

Proof. The only part of this not proven in the above-cited papers is the G-invariance.
Indeed, suppose for contradiction that there was some g ∈ G and v ∈ Ṽ − with
g · v /∈ Ṽ −. Consider the subspace W̃− := g · Ṽ −. Then, as g · v /∈ Ṽ − we have that
the subspace W̃−+ Ṽ − properly contains Ṽ −. Furthermore, it is invariant under both
DZ and e−itDZ since DZ commutes with the G-action. Finally, Q̃ω is negative-definite
on W̃− since it is negative-definite on Ṽ − and invariant under the G-action, hence
Q̃ω is negative definite on W̃− + Ṽ −, contradicting maximality.

Since Q̃ω is non-degenerate and invariant under both the G-action and e−itDZ we
obtain the following immediate corollary.

Corollary 3.16. The subspace

Ṽ + := (Ṽ −)⊥Q̃ω

is a Hilbert space with inner product Q̃ω, and is equipped with a unitary representation
of R×G given by the restriction of e−itDZ and the G-action from above.

We can now begin the process of showing that Qω is positive definite on isotypic sub-
spaces for irreducible representations with sufficiently large dominant integral weights.

Lemma 3.17. Let V − be the preimage of Ṽ − in ker�ω under the quotient map
ker�ω → ker�ω/ kerQω. Then V − is finite dimensional and contains kerQω.

Proof. Indeed the quotient map restricts to a map V − → Ṽ − with kernel kerQω.
Choosing a splitting of this linear surjection gives us an isomorphism of vector spaces
V − ∼= Ṽ − ⊕ kerQω and since Ṽ − ⊕ kerQω so is V −.

Definition 3.18. For O our integral coadjoint orbit and m ∈ Z≥1 we let κm denote
the irreducible representation corresponding to the integral coadjoint orbit mO ⊆ g∗.

Proposition 3.19. There exists an m0 ∈ Z≥1 depending only on O, DZ and the

Krein space (ker�ω/ kerQω, Q̃ω) such that for any m ≥ m0 and any φ ∈ ker�ω

which generates a cyclic G-representation Vφ ⊆ ker�ω isomorphic to κm we have

Vφ ∩ V
− = {0}.

Thus for each m ≥ m0 we have a closed subspace

Hm := SpanC{φ ∈ ker�ω : Vφ ∼= κm}

on which Qω restricts to a positive definite Hilbert space inner product. Furthermore,
our representation of R ×G arising as the product of the G-action and e−itDZ leaves
Hm invariant and is unitary.
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Proof. Let φ ker�ω generate a cyclic G-representation Vφ isomorphic to κm. Suppose
that Vφ ∩ V − 6= {0} and so there existed a non-zero ψ ∈ Vφ ∩ V −. Since V − is
a G-invariant subspace we have Vψ ⊆ V − where Vψ is the cyclic G-representation
generated by ψ. Furthermore, 0 6= Vψ ⊆ Vφ and since Vφ is irreducible it follows that
Vψ = Vφ. So it follows that:

if Vφ ∼= κm and Vφ ∩ V
− 6= {0} then Vφ ⊆ V −.

Since V − is finite dimensional this can happen for at most finitely many irreducible
cyclic invariant subspaces and hence for at most finitely many m. In fact, since the
dimension of V − is an invariant of DZ and the Krein space ker�ω/ kerQω it follows
that for m0 large enough (with dependence as in the statement of the proposition)
and all m ≥ m0 we have:

if φ ∈ ker�ω with Vφ ∼= κm then Vφ ∩ V
− = {0}.

In particular, for m ≥ m0 and Hm defined as in the statement of the proposition, Qω

is positive definite on Hm.

To show that our R×G action leaves Hm invariant and is unitary it suffices to show
that it leaves SpanC{φ ∈ ker�ω : Vφ ∼= κm} invariant and is unitary here, since
it will then extend to Hm by uniform continuity. Since Qω is invariant under the
full R × G-action, unitarity is immediate. All that remains is to check invariance.
However, since κm is irreducible it follows that for any φ with Vφ ∼= κm and any
g ∈ G we have 0 6= Vφ·g ⊆ Vφ hence Vφ·g = Vφ thus we have invariance, as desired.

It is worth noting that, as remarked in [22], if V ≥ 0 and there exists some x ∈ Σ0 for
which V (x) > 0 then Qω is positive definite. This is especially true for the massive
Klein-Gordon equation where V is a positive constant. In [23] the special case of
our results where G = U(1) and (P, ω) were trivial was considered. In this case it
was shown that when projected down to M our parameter m ∈ Z≥1 above actually
corresponds to mass. We will demonstrate an analogue of this later in 3.1.

Another important remark is that not every φ ∈ Hm has Vφ ∼= κm. This is most easily
seen in the Euclidean-signature case where M is a single point. Then P = G and our
Hilbert space is L2(G) which, by the Peter-Weyl theorem, contains every irreducible
representation of G as a cyclic subspace. However, as was shown in [8], since G is
compact Hausdorff and second-countable, the entire representation L2(G) is itself a
cyclic representation.

Combining our previous facts, for m ≥ m0 we can decompose:

Hm =

L2⊕

ℓ∈Z

Hm,ℓ
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with Hm,ℓ the λm,ℓ-eigenspace for DZ on Hm, organized so that λm,ℓ ≤ λm,ℓ+1 for all
ℓ ∈ Z. If λm,ℓ = λm,ℓ+1 then Hm,ℓ = Hm,ℓ+1 and otherwise these spaces are orthogonal
(this is the sense in which the above is indeed an L2-direct sum). We can then further
decompose:

Hm,ℓ =

µ(m,ℓ)⊕

j=1

κm

and it is worth noticing that µ(m, ℓ) is indeed always finite since Hm,ℓ itself is finite
dimensional (being an eigenspace for DZ).

Since we will be studying asymptotics as m→ ∞, there’s no harm in replacing κ with
κm0

so that we may assume m0 = 1. As such, we want to study the time evolution of
quantum states in the subspace

H :=

L2⊕

m≥1

Hm ⊆ ker�ω.

However, we still haven’t fully specified a direction in which to take our large quantum
numbers limit. Indeed, for fixed m the eigenvalues λm,ℓ very well might accumulate at
±∞ as ℓ tends to ±∞. Thus for each E ∈ R we could consider eigenvalues satisfying

λm,ℓ ∼ mE

and different choices of E might very well yield different m→ ∞ asymptotics. Clas-
sically this is reflected in the fact that symplectic reduction along O generally leads
to phase spaces which are not conical. As such, our problem is broken into two steps:

1. For m fixed, “count” eigenvalues satisfying λm,ℓ ∼ mE.

2. Understand the asymptotics of the above count as m→ ∞.

The first step is fairly straight-forward. It is highly unlikely for us to have any
eigenvalues satisfying λm,ℓ = mE exactly and so we instead sum over all ℓ ∈ Z,
weighting eigenvalues near mE the most. By stationary phase, this is described for
large frequencies by the distribution:

ϕ 7→ Tr

(
ˆ ∞

−∞

ϕ(t)e−it(DZ−mE)|Hm
dt

)
=

∑

ℓ∈Z

ϕ̂(λm,ℓ −mE) =: µ(E,m, ϕ).

We use the letter µ to denote this distribution since it can be viewed as a multiplicity
for the representation on H of R×G associated to the coadjoint orbit {E}×O ⊆ R⊕g∗.
The point is that (modulo factors of 2π), ϕ̂ approaches δ0 as ϕ → 1 and so in this
limit the right hand side approaches the literal multiplicity of mE as an eigenvalue
on Hm. However, this is only a moral since the above limit does not converge. In-
stead we first notice that µ(E,m,−) defines a linear functional on the collection of
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all ϕ ∈ S(R) with compactly supported Fourier transform. Our goal now is to apply
a result of [14] which generalizes the Weyl law of [22] to vector bundles in order to
prove that µ(E,m,−) is actually tempered and hence µ(E,m, ϕ) is defined for any
ϕ ∈ S(R).

3.1 Relation to Vector Bundles

We begin by recalling the well-known fact that for any unitary representation V of
G there is an isomorphism

C∞(P, V )G ∼= Γ(M,P ×G V )

between V -valued G-equivariant smooth functions on P and smooth sections of the
associated vector bundle P ×G V over M . Furthermore, the Hermitian inner product
on V defines a Hermitian fiber metric on P ×G V . We will need a less well-known,
but related construction.

Definition 3.20. We fix an m ≥ m0 so that Qω is positive definite on Hm ⊆ ker�ω

and denote by κm : G→ U(Vm) our irreducible representation corresponding to mO.
We also let dm := dimC Vm and fix an orthonormal basis ~e1, ..., ~edm for Vm, writing
〈−,−〉m for our Hermitian inner product on Vm.

Lemma 3.21. Let ~ψ ∈ C∞(P, Vm)
G and ~v ∈ Vm both be non-zero. Define a function

φ : P → C

φ(p) := 〈~ψ(p), ~v〉m.

Then Vφ ∼= Vm as G-representations. Furthermore, if �ω is extended to act on Vm-

valued smooth functions it follows that �ω
~ψ = 0 if and only if �ωφ = 0.

Proof. Since ~v ∈ Vm is non-zero and Vm is irreducible, it is a cyclic vector and so for
each j = 1, ..., dm there are finitely many group elements gij ∈ G such that

∑
i g

i
j~v = ~ej .

Thus ∑

i

φ(p(gij)
−1) =

∑

i

〈~ψ(p), gij~v〉m = 〈ψ(p), ~ej〉m.

So the functions 〈~ψ(−), ~ej〉m are in Vφ for all j = 1, ..., dm. Furthermore every function

p 7→ ψ(pg−1) = 〈~ψ(p), g~v〉m is in the span of the functions 〈~ψ(−), ~ej〉m hence

Vφ = SpanC

{
〈~ψ(−), ~e1〉m, ..., 〈~ψ(−), ~edm〉m

}
.

The set of functions 〈~ψ(−), ~ej〉m are linearly independent since if aj ∈ C are such

that 〈~ψ(p), aj~ej〉m = 0 for all p ∈ P then since ~ψ 6= 0 there exists a p ∈ P with
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0 6= ~ψ(p) ∈ Vm. Since Vm is irreducible there exists elements gk ∈ G such that∑
k g
~ψ(p) = aj~ej and so

0 =
∑

k

〈~ψ(pg−1
k ), aj~ek〉 =

∑

j

|aj |2

hence aj = 0 for all j as desired. Therefore the map

~ej ↔ 〈~ψ(−), ~ej〉m

induces an isomorphism of G-representations Vm ∼= Vφ.

If �ω
~ψ = 0 then by definition (~v and 〈−,−〉m are constant) �ωφ = 0. Conversely,

G-invariance of �ω implies that if �ωφ = 0 then �ωf = 0 for all f ∈ Vφ and hence

�ω〈~ψ(−), ~ej〉m = 0 for all j. Therefore �ω
~ψ = 0 as desired.

Usually one doesn’t look at the full wave operator �ω applied to ~ψ ∈ C∞(P, V )G but
only at the “horizontal” wave operator. To relate these two wave operators, we fix a
root system for g compatible with our Ad-invariant inner product and let:

ρ := the sum of all positive roots

and
Λ0 := the dominant integral weight for κm0

.

Lemma 3.22. The wave operator �ω on C∞(P ) splits as a sum of vertical and
horizontal parts:

�ω = �H −∆G

where �H is the horizontal wave operator (plus the potential) and ∆G is the Laplacian
on the fibers. These operators commute and if φ ∈ Hm has Vφ ∼= Vm then ∆G acts on
Vm as multiplication by a constant. Hence ∆G acts by multiplication by a constant on
all of Hm and this constant is given by:

∆G|Hm
= 〈mΛ0, mΛ0 + ρ〉.

Proof. The existence of the splitting and the fact that [�H ,∆G] = 0 follows from [11]
section 6. Since ∆ω and ∆H both commute with the G-action it follows that ∆G does
as well hence ∆G does indeed preserve Vφ. In fact, by the explicit form of ∆G we
see that its action on Vφ is precisely the action of the quadratic Casimir and hence is
given by multiplication by 〈mΛ0, mΛ0 + ρ〉.

In fact, we see that ∆G preserves our space

H =

L2⊕

m≥m0

Hm

and on this space Hm is precisely the 〈mΛ0, mΛ0 + ρ〉-eigenspace of ∆G.
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Definition 3.23. We denote by �m the operator

�m := �H − 〈mΛ0, mΛ0 + ρ〉.

Lemma 3.24. Denote by

Grm(P ) := {V ⊆ ker�ω ∩ C
∞(P ) : V is G-invariant and V ∼= Vm}

the collection of all invariant subspaces of ker�ω which are isomorphic to Vm as
G-representations. Then for each V ∈ Grm(P ) we have V ⊆ Hm. Furthermore if
Φ : Vm → V is any isomorphism of G-representations then

~ψ(p) :=
dm∑

j=1

Φ(~ej)(p)~ej

is a G-equivariant Vm-valued function with

�m
~ψ = �H

~ψ − 〈mΛ0, mΛ0 + ρ〉~ψ = 0. (3)

Finally, the definition of ~ψ is independent of our choice of orthonormal basis ~ej.

Proof. Since each Φ(~ej) generates a cyclic representation isomorphic to Vm it auto-

matically follows that V ⊆ Hm and ~ψ satisfies 3. So all that remains to be checked
is ~ψ’s equivariance and basis-independence. However since Φ is an isomorphism of
G-representations we can compute:

~ψ(pg−1) =
dm∑

j=1

Φ(~ej)(pg
−1)~ej =

dm∑

j=1

Φ(g~ej)(p)~ej.

But if we write g~ej = gij~ei then we arrive at:

~ψ(pg−1) =

dm∑

j=1

gijΦ(~ei)(p)~ej =

dm∑

i=1

Φ(~ei) g~ei

proving equivariance. Similarly, if ~fj ∈ Vm is another orthonormal basis then there

exists a unitary matrix A satisfying ~ej = Aij
~fi hence

~ψ(p) =
dm∑

j=1

AijA
k
jΦ(~ei)(p)~ek =

dm∑

i=1

Φ(~ei)(p)~ei

as desired.

Since Vm is irreducible, Schur’s lemma tells us that any two isomorphisms Vm ∼= V of
G-representations differ by a multiplicative non-zero constant complex number. As
such, we obtain the following corollary.
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Corollary 3.25. There is a natural isomorphism

Grm(P ) → {~ψ ∈ C∞(P, Vm)
G : �m

~ψ = 0}/C×

V 7→
dm∑

j=1

Φ(~ej)(−)~ej mod C
×

where in the above expression ~ej is any choice of orthonormal basis for Vm and Φ is
any choice of isomorphism of G-representations Vm ∼= V .

Proof. This is simply a combination of 3.21 and 3.24, taking care to remark that the
two constructions from these two lemmas are inverse to one-another (taking ~v = ~e1
in 3.21).

Our final step is to compare elements of C∞(P, Vm)
G with sections of the associated

vector bundle.

Definition 3.26. We define a map Ψ : C∞(P, Vm)
G → Γ(M,P ×G Vm) as follows.

Given ~ψ ∈ C∞(P, Vm)
G and x ∈ M we choose an arbitrary p ∈ P in the fiber over x

and define

Ψ(~ψ)(x) := the equivalence class of (p, ~ψ(p)) in the fiber (P ×G Vm)x.

We recall from [3] Chapter 3, for example, that Ψ is an isomorphism. Furthermore
there is an induced covariant derivative ∇m on P×GVm which corresponds under Ψ to
the horizontal exterior derivative on P with respect to ω, and there is a Hermitian fiber
metric 〈−,−〉m on P ×G V corresponding to the constant Hermitian inner product
〈−,−〉m on Vm.

Now, let’s let V ∈ Grm(P ) and choose an isomorphism Φ : Vm → V which is unitary
where V is given the Qm-inner product. Writing

~ψ(p) :=

dm∑

j=1

Φ(~ej)(p)~ej

it follows that the expression

Qω(~ψ) :=

dm∑

j=1

Qω(Φ(~ej))

is independent of our choice of orthonormal basis ~ej or unitary isomorphism Φ. We
also have the following explicit formula from [22] where we use Greek µ, ν, ... for
indices of coordinates tangent to Σ0 ⊆ M and Roman a, b, ... indices for coordinates
tangent to the fibers of P0:

Q(Φ(~ej)) =

ˆ

P0

N−1
(
|∂tΦ(~ej)|

2 + (N2hµν − βµβν)(∂µΦ(~ej))(∂νΦ(~ej))

+ Tr
(
ω(dΦ(~ej))ω(dΦ(~ej))

T
)
+ |Φ(~ej)|

2V
)
dVP0
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By equivariance it follows that if ξ1, ..., ξd is an orthonormal basis for g then

ω(dΦ(~ej)) =
∑

a

(Lξ̂aΦ(~ej))ξ̂a =
∑

a

Φ(ξa · ~ej)ξ̂a

and so

Tr
(
ω(dΦ(~ej))ω(dΦ(~ej))

T
)
=

∑

a

|Φ(ξa · ~ej)|
2 = 〈mΛ0, mΛ0 + ρ〉|Φ(~ej)|

2.

Thus we obtain

Q(Φ(~ej)) =

ˆ

P0

N−1
(
|∂tΦ(~ej)|

2 + (N2hµν − βµβν)(∂µΦ(~ej))(∂νΦ(~ej))

+ |Φ(~ej)|
2 (V + 〈mΛ0, mΛ0 + ρ〉)

)
dVP0

Furthermore, from this explicit expression we see that the sum

dm∑

j=1

N−1
(
|∂tΦ(~ej)|

2 + (N2hµν − βµβν)(∂µΦ(~ej))(∂νΦ(~ej)) (4)

+ |Φ(~ej)|
2(V + 〈mΛ0, mΛ0 + ρ〉)

)

is invariant under the G action.

Definition 3.27. Given a section s ∈ Γ(M,P ×G Vm) we define the bundle stress-

energy tensor Tm(s) to be the symmetric 2-tensor on M given by:

Tm(s)ij := 〈∇m
i s,∇

m
j s〉 −

1

2

(
|∇ms|2 + |s|2 (V + 〈mΛ0, mΛ0 + ρ〉)

)
gij

where we recall that ∇m is the covariant derivative on P ×G Vm induced by the
connection ω.

Since 〈mΛ0, mΛ0 + ρ〉 is a constant and the connection ∇m is compatible with the
fiber metric it follows exactly as in the scalar case that if we abuse notation and also
use �m to denote

�m = (∇m)∗∇m + V + 〈mΛ0, mΛ0 + ρ〉

acting on sections of P ×G Vm then

divM(Tm(s)) = −〈�ms,∇
ms〉 −

1

2
|s|2dV

divM(Tm(s)(Z)) = (divM Tm(s))(Z) = 0 if �ms = 0

where we note that despite the raised and lowered m’s appearing, we are not summing
over them: they merely denote the representation of G we are considering.

33



Just as in the scalar case, we can define the space of finite-energy solutions s to
�ms = 0 and one has Cauchy-data isomorphisms:

s 7→ (s|Σ0
, (∇m

n̂ s)|Σ0
)

which give ker�m the topology of a Hilbert space. Furthermore, since Z is Killing the
covariant derivative ∇m

Z commutes with �m and we have the densely defined operator

Dm,Z :=
1

i
∇m
Z : ker�m ∩ C∞ → ker�m ∩ C∞.

Combining all of our results in this section and especially using 4 we arrive at the
following result.

Proposition 3.28. Let V ∈ Grm(P ) and Φ : Vm → V a unitary isomorphism so that
we can define

~ψ(p) :=

dm∑

j=1

Φ(~ej)(p)~ej.

Then Ψ(~ψ) ∈ ker�m and

Qm(Ψ(~ψ)) :=

ˆ

Σ0

Tm(Ψ(~ψ))(Z, n̂)dVΣ0
= Vol(G)Qω(~ψ)

where Vol(G) is taken with respect to the volume form induced by our Ad-invariant
inner product on g. Furthermore, since m ≥ m0 by assumption it follows that Qm is
positive definite on the finite energy space ker�m.

We are now ready to apply the results of [14]. Really we are using a very special case
of these results since we only need them to show that our multiplicity distributions
µ(E,m,−) are tempered.

Theorem 3.29. [14] The operator Dm,Z is self-adjoint on (ker�m, Qm) with σ(Dm,Z) ⊆
R discrete and accumulating at ±∞ with polynomial growth.

Corollary 3.30. The spectrum of DZ on Hm is real, discrete and accumulates at
±∞ with polynomial growth. Furthermore, the multiplicity of λ ∈ σ(DZ) is equal to
dm = dim(Vm) times the multiplicity of λ ∈ σ(Dm,Z).

Corollary 3.31. The distribution µ(E,m,−) given by

µ(E,m, ϕ) :=
∑

ℓ∈Z

ϕ̂(λm,ℓ −mE)

is a tempered distribution on R. Here we recall that · · · ≤ λm,ℓ ≤ λm,ℓ+1 ≤ · · · are the
eigenvalues of DZ on Hm.
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4 Proofs of Main Theorems

We are now prepared to study the m → ∞ asymptotics of µ(E,m, ϕ). As it turns
out, this will depend significantly on whether or not 0 ∈ supp ϕ̂. For now we illustrate
the method from Section 7 of [10] where ϕ is fixed and arbitrary. This method takes
advantage of the periodicity and “positive frequency” property of our distributions
to express them in terms of linear combinations of the basic homogeneous periodic
distributions

∞∑

m=1

mkz−meimθ

with z ∈ S1 and k ∈ Z≥0 determining the location of the singularity and the ho-
mogeneity respectively. A key advantage of these techniques from [10] is that it
circumvents the need for general Tauberian theorems.

From now on we replace O with m0O so that we may assume m0 = 1.

Definition 4.1. We define the generating function of the multiplicities µ(E,m, ϕ)
to be the periodic distribution in the real variable θ:

Υ(ϕ)(θ) :=

∞∑

m=1

µ(E,m, ϕ)eimθ

defined for any function f(θ) which is the Fourier transform of a compactly supported
function on R.

Distributions of the form
∑∞

m=1 ame
imθ with am real are called Hardy distribu-

tions. These are precisely the distributions on the sphere S1 whose negative Fourier
coefficients all vanish and so they have nice descriptions in terms of boundary val-
ues of holomorphic functions on the unit disk via the Paley-Weiner theorem. The
asymptotics of the Fourier coefficients of such distributions, especially when am is a
homogeneous function of m, have been studied in books such as [4] Sections 12 and
13, and applied to spectral asymptotics in [10], [11], [23] for example.

Later in this section we will write Υ(ϕ) as a composition of Fourier integral operators
and through this we will show that it is actually in D′(R/2πZ). For now we illustrate
how the asymptotics of the Fourier coefficients of a general Lagrangian distribution
Υ on S1 can be related to its principal symbol.

Definition 4.2. Let Υ ∈ D′(R/2πZ). An element s0 ∈ singsupp(Υ) is called classi-

cal of degree k if and only if when interpreting Υ as a 2πZ-periodic distribution on
R we have:

1. s0 is an isolated singularity, and
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2. for any ρ ∈ C∞
c (R) with ρ ≡ 1 on a neighborhood of s0 and singsupp(Υ) ∩

supp(ρ) = {s0} we have asymptotic expansions:

ρ̂Υ(ξ) ∼ e−is0ξ
∞∑

ℓ=0

c+ℓ ξ
k−ℓ as ξ → +∞ and

ρ̂Υ(ξ) ∼ e−is0ξ
∞∑

ℓ=0

c−ℓ ξ
k−ℓ as ξ → −∞.

Lemma 4.3. Let s0 ∈ R be a classical singularity of Υ of degree k, and let ρ ∈ C∞
c (R)

have ρ ≡ 1 on a neighborhood of s0 and singsupp(Υ(ϕ)) ∩ supp(ρ) = {s0}. Then

ρΥ(ϕ) ∈ Ik+1/4(R,Λ)

where Λ = {(s0, ξ) ∈ T ∗R \ 0 : ξ 6= 0}. If c−ℓ = 0 for all ℓ (in which case the
singularity is called positive) then instead Λ = {(s0, ξ) ∈ T ∗R \ 0 : ξ > 0}.

Proof. We can write the distribution ρΥ as

〈ρΥ, ψ〉 =

ˆ

R

ei(s−s0)ξ(eis0ξρ̂Υ(ξ))ψ(s)dsdξ

and so it suffices to check whether the function eis0ξρ̂Υ(ξ) lives in the correct symbol
class. Since ρΥ ∈ E ′(R) its Fourier transform is a smooth function and our asymptotics
precisely tell us that it lives in the symbol class

Sk(Rs × Rξ) (it is independent of s).

Since dim(Rs) = 1 = dim(Rξ) this is the correct order for a symbol to define an FIO
of order

k − (1− 2 · 1)/4 = k + 1/4.

As for the Lagrangian, one simply notices first that the ξ-critical points of the phase
are precisely the set of (s, ξ) with s = s0, meanwhile the support of eis0ξρ̂Υ(ξ) is
everywhere in the non-positive singularity case and is a positive ray in the case of a
positive singularity.

Lemma 4.4. Suppose Υ had only finitely many singularities z1, ..., zq ∈ S1 and that
for s1, ..., sq ∈ [0, 2π] with e−is1 = z1, ..., e

−isq = zq the singularities s1, ..., sq were all
classical with respective degrees k1, ..., kq. For some ρj ∈ C∞

c (R) smooth cutoffs with
ρj ≡ 1 on a neighborhood of sj and singsupp(Υ) ∩ supp(ρj) = {sj}, and for c±,jℓ the

coefficients of our asymptotic expansions for ρ̂jΥ:

ρ̂jΥ(ξ) ∼
∞∑

ℓ=0

c±,jℓ ξkj−ℓ as ξ → ±∞

we have:

1

2π

ˆ 2π

0

e−imsΥ(θ)ds ∼
∞∑

ℓ=0

q∑

j=1

c+,jℓ ω−m
j mkj−ℓ as m→ ∞.
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Proof. Choose our cutoffs ρj to be non-negative with disjoint supports and such that
there exists η ∈ C∞

c (R) with 0 ≤ η ≤ 1 such that

ρ1 + · · ·+ ρq + η ≡ 1 on [0, 2π] and singsupp(Υ) ∩ supp(η) = ∅.

Then, taking Fourier transforms we have

1

2π

ˆ 2π

0

e−imsΥ(s)ds =
1

2π

q∑

j=1

ˆ 2π

0

e−imsρj(s)Υ(s)ds+
1

2π

ˆ 2π

0

e−imsη(s)Υ(s)ds.

Since ηΥ ∈ C∞
c (R) we have that the last term is going to 0 rapidly as m → ∞. For

the remaining terms we have

1

2π

ˆ 2π

0

e−imsρj(s)Υ(s)ds = ρ̂jΥ(m) ∼ e−isjm
∞∑

ℓ=0

c+,jℓ mkj−ℓ as m→ ∞.

Summing these asymptotics together then yields our desired result.

So we see that in order to obtain the leading order asymptotics of µ(E,m, ϕ) as
m → ∞ it suffices to demonstrate that the singularities of Υ(ϕ) are classical and
to compute both its order as an FIO, and the leading terms c+,j0 in the asymptotic
expansions of its Fourier transform. Let’s now check how to obtain c+,j0 from the
principal symbol.

Lemma 4.5. Let s0 be a classical singularity of degree k of Υ, let ρ ∈ C∞
c (R) be a

cutoff as in the previous lemma and let a(s, ξ) be any principal symbol for ρΥ. i.e.

a(s, ξ)− eis0ξρ̂Υ(ξ) ∈ Sk−1(Rs × Rξ).

Then
c±0 = lim

ξ→±∞
a(s, ξ)ξ−k.

Proof. Indeed, if a(s, ξ) is any principal symbol for ρΥ then, by definition

|a(s, ξ)− eis0ξρ̂Υ(ξ)| . (1 + |ξ|)k−1

and so dividing by ξk and taking limits yields our desired result.

So, our goal has now been reduced to writing Υ(ϕ) as a composition of well-understood
FIOs and computing the order and principal symbol of the composition in terms of
its constituents. Let’s begin by introducing the relevant operators from [11] and [22].

Definition 4.6. Let Eadv and Eret respectively denote the advanced and retarded

fundamental solutions for �ω. Explicitly, for f ∈ C∞
c (P ), u := Eadvf is the unique

solution to �ωu = f whose support is contained in the forward causal set of supp(f).
i.e. u solves �ωu = f with vanishing Cauchy data in the past before supp(f). Sim-
ilarly, Eretf is the unique solution to the Cauchy problem �ωu = f with vanishing
Cauchy data in the Causal future of f (in the future after supp(f)).
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Lemma 4.7. [22]
let f ∈ C∞(P0) and let |dVP0

| denote the measure on P given by integration over
P0 with respect to the induced volume measure on P0 from the metric. Write E :=
Eadv − Eret. Then

u := E(f1|dVP0
|+ ∂n̂(f2|dVP0

|))

(where ∂n̂(f2|dVP0
|) is a distributional derivative of a measure) is the unique solution

to the Cauchy problem ∆ωu = 0 with Cauchy data
{
u(x, 0) = f1(x) on P0,

(Ln̂u)(x, 0) = f2(x) on P0.

Furthermore E ∈ I−3/2(P × P ;C ′
1) with the canonical relation C1 given by

C1 = {(ζ1; ζ2) ∈ T ∗
0P × T ∗

0P : ∃s ∈ R such that ζ2 = G−s(ζ1)}.

Parametrizing the left copy of T ∗
0P in C1 by T ∗

0P |P0
× R ∼= N × Rs′ via the geodesic

flow and then the ζ2 = G−s(ζ1) by the parameter s, the principal symbol of E is given
by the half-density

|dC1
|1/2 := −

1

2
|ΩN |1/2 ⊗ |ds′|1/2 ⊗ |ds|1/2

where ΩN is the Liouville volume form on N induced by the symplectic form.

Before we get to composing FIO’s, let’s recall how this works [13]. Suppose we
had smooth manifolds X, Y, Z of respective dimensions nX , nY , nZ respectively and
C1 ⊆ (T ∗Z \ 0)× (T ∗Y \ 0), C2 ⊆ (T ∗Y \ 0)× (T ∗X \ 0) \ 0 canonical relations. We
write C ′

j for the result of multiplying the left fiber variables by −1 so that the result
is a Lagrangian submanifold. Given

A1 ∈ Id1(Z × Y ;C ′
1) and A2 ∈ Id2(Y ×X ;C ′

2)

we interpret A1 and A2 as operators

A1 : C
∞
c (Y ) → D′(Z) and A2 : C

∞
c (X) → D′(Y ).

One can then often form the composition

A1 ◦ A2 ∈ Id1+d2+
e
2 (Z ×X ; (C1 ◦ C2)

′)

where e and (C1 ◦ C2)
′ are defined as follows. Since C1 and C2 are Lagrangian they

have dimensions:

dim(C1) = nX + nY and dim(C2) = nY + nZ .

The product C1 × C2 lives in T ∗Z × (T ∗Y )×2 × T ∗X and has dimension

dim(C1 × C2) = nX + 2nY + nZ .
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Meanwhile we also have a diagonal submanifold

D := (T ∗Z \ 0)× diag(T ∗Y \ 0)× (T ∗X \ 0)

of dimension dim(D) = 2nZ+2nY +2nX . Since the total space T ∗Z×(T ∗Y )×2×T ∗X
has dimension 2nZ+4nY +2nX it follows that if D and C1×C2 intersected transversely
then the intersection would have dimension

dim(D ∩ (C1 × C2)) = nZ + nX

and if πX , πZ are respectively the projection maps from T ∗Z × (T ∗Y )×2 × T ∗X to
T ∗X and T ∗Z then the restriction

πZ × πX |D∩(C1×C2) : D ∩ (C1 × C2) → C1 ◦ C2 := (πZ × πX)(D ∩ (C1 × C2))

is a local diffeomorphism and C1 ◦ C2 is a Lagrangian submanifold of (T ∗Z \ 0) ×
(T ∗X \0). In this case, as long as everything is properly supported, we can take e = 0
and we have

A1 ◦ A2 ∈ Id1+d2(Z ×X ; (C1 ◦ C2)
′).

We call this a transverse composition of FIO’s. Furthermore, in this case if a1, a2
are the principal symbols of A1, A2 then:

the principal symbol of A1 ◦ A2 is given by the restriction of a1 × a2 to (C1 ◦ C2)
′.

However, one can still form the composition A1 ◦ A2 if the intersection of D and
C1 × C2 in T ∗Z × (T ∗Y )×2 × T ∗X is merely clean. In this case the intersection
is still a smooth manifold, its tangent spaces are given by the intersections of the
tangent spaces of D and C1 × C2, C1 ◦ C2 is still defined in the same way, but now
the projection map

πZ × πX |D∩(C1×C2) : D ∩ (C1 × C2) → C1 ◦ C2

is merely required to be a submersion. Since we’re assuming everything is properly
supported it follows that the fibers are compact manifolds. We define:

e := the dimension of the fibers of πZ × πX |D∩(C1×C2).

This is called the excess. Then from Proposition 25.1.5’ in [13] we have

A1 ◦ A2 ∈ Id1+d2+
e
2 (Z ×X ; (C1 ◦ C2)

′)

where if a1, a2 are the principal symbols of A1, A2 respectively then the principal
symbol of A1 ◦A2 at a point z ∈ (C1 ◦ C2)

′ is given by

ˆ

Fz

a1 × a2 where Fz is the fiber over z.
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We will call this a clean composition of FIOs. It should be noted that the above
results can be occasionally tweaked to apply when some of the hypotheses (such as Cj
being a canonical relation) aren’t exactly satisfied as long as one is careful to ensure
that the wavefront sets line up correctly in order for the desired products to be defined.

Finally we should say that in our below computations we omit the Maslov index fac-
tors until the very end.

We are now ready to apply the above FIO calculus in order to better understand our
generating function Υ(ϕ). Let’s recall our notation from earlier:

• d is the dimension of G,

• n+ 1 is the dimension of M with n the dimension of Σ0,

• n+ 1 + d is the dimension of P ,

• T ∗
0P is a cone subbundle of T ∗P \ 0 and has dimension 2(n+ 1 + d)− 1.

• The restriction T ∗
0P |P0

is symplectomorphic to T ∗P0 \ 0 (but not in a R>0-
equivariant way) and both have dimension 2(n+ d).

• dimO =: 2ℓ so NO has dimension 2(n+ ℓ).

The below result is also from [22] and again we state it for the reader’s convenience.

Lemma 4.8. [22]
Let Et(x, y) := e−it(DZ )xE(x, y). Then

Et(x, y) ∈ I−7/4(P × P × R;C ′
2)

where C2 is the canonical relation:

C2 := {(ζ1; ζ2; t, τ) ∈ (T ∗
0P )

×2 × (T ∗
R \ 0)

: τ + 〈Zω, ζ1〉 = 0, ∃s such that ζ2 = (G−s ◦ Φ
Z
t )(ζ1)}.

Parametrizing C2
∼= C×Rt as the flowout of C under the Z-flow the principal symbol

of Et(x, y) is given by:

∓
i

2
(2π)3/4|dC1

|1/2 ⊗ |dt|1/2 on C±

where C± is the subset of C1 where both covectors are in T ∗
±P .

In the next lemma we begin combining results from [22] and [11].
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Lemma 4.9. The right G-action gives us an action map C∞(P ) → C∞(P×G) which
is an FIO

F ∈ I−d/4(P × P ×G; Γ′
0)

with Γ′
0 the moment Lagrangian, whose canonical relation is:

Γ0 := {(ζ ; ζ · g; g, η) ∈ (T ∗P \ 0)×2 × (T ∗G \ 0) : µ(ζ) = η}.

The composition Et ◦ F , denoted by Et(x, yg), arises from a transverse intersection
of canonical relations and is therefore an FIO:

Et(x, yg) ∈ I−(d+7)/4(P × P ×G× R; Γ′)

with canonical relation

Γ := {(ζ1; ζ2; g, η; t, τ) ∈ (T ∗
0P )

×2 × (T ∗G \ 0)× (T ∗
R \ 0)

: τ + 〈Zω, ζ1〉 = 0, µ(ζ2g
−1) = η, ∃s such that ζ2 = (G−s ◦ Φ

Z
t )(ζ1)g}

Parametrizing Γ by C2×G×R ∼= C1×Rt1 ×G×Rt2 the principal symbol of Et(x, yg)
is given by:

∓
i

2
(2π)(d+3)/4|dC1

|1/2 ⊗ |dt1|
1/2 ⊗ |dg|1/2 ⊗ |dt2|

1/2 on C±

where |dg| is the volume measure on G induced by our Ad-invariant inner product on
the tangent spaces.

Proof. The expression for the moment Lagrangian and the fact that Γ0 ∈ I−d/4(P ×
P ×G; Γ′

0) is proven in [11]. By construction we have

Γ = C2 ◦ Γ0

and the composition is clean so the orders of the FIOs simply add up.

In [22], the distributional trace of e−itDZ was expressed in terms of Et and so Et(x, yg)
will play a similar role for our equivariant trace.

Lemma 4.10. Write n̂x, n̂y for the Lie derivatives along the unit normal n̂ in the
variables x and y respectively. Then

F := n̂xEt(x, yg)− n̂yEt(x, yg) ∈ I−(d+3)/4(P × P ×G× R; Γ)

with Γ given in 4.9. Under the same parametrization of Γ as in 4.9, the principal
symbol of F is given by

±
1

2
(2π)(d+3)/4〈n̂,−〉|dC1

|1/2 ⊗ |dt1|
1/2 ⊗ |dg|1/2 ⊗ |dt2|

1/2 on C±

where 〈n̂,−〉 is the function on Γ given by pairing the first cotangent vector with n̂.
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Proof. Differentiation is a differential operator, hence pseudodifferential operator, and
so its Lagrangian is just the diagonal. Therefore differentiating an FIO does not affect
the Lagrangian and merely increases the order by 1.

For the next couple of lemmas we hold off on computing the principal symbols since
it will be easier to directly compute the principal symbol of the wave trace after all
of these compositions.

Lemma 4.11. Let diag : P → P × P denote the diagonal map so that pulling back
along diag is an FIO

diag∗ ∈ I(n+1+d)/4(P × P × P ;C ′
3)

with Lagrangian C ′
3 where

C3 = {(p, ζ2 − ζ1; p, ζ1; p, ζ2) ∈ (T ∗P \ 0)×3}.

Then the composition diag∗F arises from a transverse intersection and is therefore
an FIO

diag∗F ∈ I(n−2)/4(P ×G× R; Γ1)

where

Γ1 := {(ζ2 − ζ1; g, η; t, τ) ∈ T ∗P × (T ∗G \ 0)× (T ∗
R \ 0)

: τ + 〈Zω, ζ1〉 = 0, µ(ζ2g
−1) = η, ∃s such that ζ2 = (G−s ◦ Φ

Z
t )(ζ1)g

and ζ1, ζ2 ∈ T ∗
0P live over the same point in P}

Proof. The expression for Γ1 above is precisely the definition of C3 ◦ Γ so let’s check
that this is indeed a transverse composition. Notice that in the definition of Γ1,
one ζ1 and t are chosen, s and g are uniquely determined by the requirement that
(G−s ◦Φ

Z
t )(ζ1)g must live over the same point in P as ζ1. Furthermore, the constraint

that there must exist s, g so that (G−s ◦ΦZt )(ζ1)g lives over the same point in P adds
n independent constraints on ζ1 since they must also live over the same point in Σ0.
This is unless t = 0.

So, given 0 6= t, ζ1 satisfying our n independent constraints: s, g and therefore ζ2 and
η are completely determined. τ is directly determined by ζ1. Hence we see that there
are exactly

dim(T ∗
0P ) + 1− n = 2(n+ 1 + d)− 1 + 1− n = (n + 1 + d) + d+ 1

independent directions in both the composition C3 ◦Γ and in the fiber over the point
corresponding to 0 6= t, ζ1.

In the case t = 0 we necessarily have s = 0 and g = 1 ∈ G, however the t = 0 local
is a proper submanifold of Γ1 and the tangent space to Γ1 at t = 0 has d+ 1 tangent

42



directions arising from how s, g vary as we move off the t = 0 local. Within the t = 0
local we then have ζ2 = ζ1 and τ, η are determined by ζ1 = ζ2. While, in this case,
we do have dim(T ∗

0P ) = 2(n+1+ d)− 1 choices for ζ1, it is the quantity ζ2 − ζ1 that
appears in Γ1 and so the fiber coordinates of the first component of Γ1 always vanish.
Thus in both Γ1 and in the fiber over the point corresponding to (0, ζ1) we have

dim(P ) + d+ 1 = (n+ 1 + d) + d+ 1

tangent directions. Hence indeed we have a transverse intersection and the order of
diag∗F is the sum of the orders of diag∗ and F .

Lemma 4.12. Let ι : P0 →֒ P denote the inclusion. Pulling back along ι is an FIO

ι∗ ∈ I1/4(P0 × P ;C ′
4)

with Lagrangian C ′
4 defined by

C4 = {(x, ζ1; x, ζ2) ∈ T ∗P0 × T ∗P |P0
: ζ2|TP0

= ζ1}.

As in [22], the canonical relation of diag∗F is disjoint from the conormal bundle
N∗P0 and C4 ◦ Γ1 arises from a tranverse intersection so the composition ι∗ diag∗F
can be formed as if it were a transverse composition of FIOs and

ι∗ diag∗F ∈ I(n−1)/4(P0 ×G× R; Γ2)

where

Γ2 := {((ζ2 − ζ1)|TP0
; g, η; t, τ) ∈ T ∗P0 × (T ∗G \ 0)× (T ∗

R \ 0)

: ζ1, ζ2 ∈ T ∗
0P |P0

lie over the same point in P0, τ + 〈Zω, ζ1〉 = 0,

µ(ζ2g
−1) = η, ∃s such that ζ2 = (G−s ◦ Φ

Z
t )(ζ1)g}.

Proof. The proof that the composition i∗ diag∗F can be formed is exactly the same
as in Lemma 8.3 and the discussion preceding it in [22], and our Γ2 is precisely defined
to be C4 ◦Γ1. Transversality again follows from noticing that the intersection is clean
and then dimension-counting, however we should remark that in order to get exactly
n + 2d + 1 degrees of freedom one uses the fact that the restriction of covectors in
T ∗
0P |P0

to TP0 yields the isomorphism T ∗
0P |P0

∼= T ∗P \ 0 and hence the only way the
fiber variable of the first component is zero is if ζ1 = ζ2.

So, we’ve arrived at the following object:

ι∗ diag∗F = (n̂xEt(x, yg)− n̂yEt(x, yg)) |x=y∈P0
∈ I(n−1)/4(P0 ×G× R; Γ2).

The importance of this object arises from the following slight generalization of The-
orem 4.1 from [22].
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Proposition 4.13. Let Π∗ : C∞(P0 × G × R) → C∞(G × R) be the operator given
by integration over P0. Then since the base has dimension d + 1 and the fibers have
dimension n+ d we have

Π∗ ∈ I
d+1

2
−n+d

4 (G× R × P0 ×G× R;C ′
5)

where

C5 = {(g, η; t, τ ; x, 0; g, η; t, τ)

∈ (T ∗G \ 0)× (T ∗
R \ 0)× T ∗P0 × (T ∗G \ 0)× (T ∗

R \ 0) : x ∈ P0}.

Furthermore, since m0 = 1 and Qω is positive definite on H =
⊕L2

m≥1 Hm, if we set

V := H⊥Qω then ker�ω = V ⊕H

then we have

K(g, t) := Π∗ι
∗ diag∗F =

ˆ

P0

(n̂xEt(x, yg)− n̂yEt(x, yg))
∣∣
x=y

dVP0
(x) (5)

= TrV(e
−itDZ ◦ F ) +

∞∑

m=1

∑

ℓ∈Z

µ(m, ℓ) Tr(κm(g))e
−itλm,ℓ . (6)

Proof. The basic facts concerning push-forward distributions such as Π∗ can be found
in section 7.1 of [23] and we omit the proofs here as they are well known.

Let’s now derive the above explicit expression 6 for K(g, t). Indeed, by the computa-
tion in Theorem 4.1 of [22], K(g, t) is the equivariant trace of the operator e−itDZ ◦F on
ker�ω. Recalling that µ(m, ℓ) is simply the multiplicity of κm in the λm,ℓ-eigenspace
and that F acts by κm on this eigenspace by definition of Hm we obtain our above
expression 6 for K(g, t), as desired.

We will now build a distribution on P0 × G × R × S1 which we will then compose
with ι∗ diag∗F to produce Υ(ϕ). A key motivating fact in the below definition is
the orthogonality of the functions g 7→ Tr(κm(g)) for different m’s. This is a well-
known fact from abstract harmonic analysis (see Section 5.3 of [7], for example),
however one should take care not to confuse the two distinct notions of “character”
of a representation.

Lemma 4.14. [10, 11]
The operator LO : C∞(G) → D′(S1) with Schwartz kernel given by the distribution

L(eiθ, g) :=
∞∑

m=1

Tr(κm(g))e
imθ

is in
LO ∈ I(1−d)/4(S1 ×G; ΛO)
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with Lagrangian

ΛO = {(z, r; g, rξ) ∈ (T ∗S1 \ 0)× (T ∗G \ 0) | ξ ∈ O, g ∈ Gξ, z = χξ(g)}

where χξ : Gξ → U(1) is the character associated to ξ ∈ O.

Our final to-do before we have, at least morally, obtained a description of Υ(ϕ) as a
composition of FIOs is to localize about the ray λm,ℓ ∼ mE via ϕ. Towards this end,
we define an operator

Tϕ,E : C∞
c (S1 × R) → D′(S1)

by declaring its Schwartz kernel to be given by the oscillatory integral

Tϕ,E(θ
′; θ, t) := (2π)−2ϕ̂(t)

ˆ ∞

−∞

ds eis(θ
′−θ−tE).

Lemma 4.15. [11]
Tϕ,E ∈ I−1/4(S1 × S1 × R; ΛE) where

ΛE := {(zeitE , r; z, r; t, rE) ∈ (T ∗S1 \ 0)× (T ∗S1 \ 0)× (T ∗
R \ 0) | r ∈ R, z ∈ S1}.

Lemma 4.16. We can form the composition

Tϕ,E ◦ (LO ⊗ idR) ∈ I−d/4(S1 ×G× R; Θ′
ϕ,E)

where

Θ′
ϕ,E = {(χξ(g)e

itE, r; g, rξ; t, Er) ∈ T ∗S1 × T ∗G× T ∗
R : ξ ∈ O, g ∈ Gξ}.

Furthermore:
(Tϕ,E ◦ LO ⊗ idR)K = Υ(ϕ).

Proof. The fact that this composition Tϕ,E ◦ (LO ⊗ idR) can be formed, has the above
order, and the above canonical relation Θ′

ϕ,E is proven in [11]. So, we just need to
demonstrate that we do indeed obtain Υ(ϕ) when applying it to K. Recalling the
formula 6 for K(g, t) we note that by [22] the trace over V still decomposes as a sum
over (possibly generalized) eigenvalues of DZ counted with multiplicity, only now not
all are real and some may be zero modes. Furthermore, the G-dependence in the
trace over V is still in the form of the Tr(κ(g)) for κ the representation generated by
that specific (generalized) eigenvector. Indeed, while the Hilbert space inner products
from the Cauchy data isomorphism are DZ-invariant they are still G-invariant and so
V is completely decomposable since it is a unitary G-representation. Since characters
are orthogonal with respect to the Haar measure on G, we obtain:

(Lm0O ⊗ idR)K =
∞∑

m=1

∑

ℓ∈Z

e−itλm,ℓeimθ

as a distribution on S1 × R. Finally, applying Tϕ,E we immediately obtain:

(Tϕ,E ◦ (Lm0O idR))K =

∞∑

m=1

∑

ℓ∈Z

ϕ(λm,ℓ −mE)eimθ

as desired.
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Our next step is to understand the composition (Tϕ,E ◦ (LO ⊗ idR))K as an actual
Lagrangian distribution. As it turns out, it is more clear if one first computes (Tϕ,E ◦
(LO ⊗ idR)) ◦ Π∗.

Lemma 4.17. The composition

(Tϕ,E ◦ (LO ⊗ idR)) ◦ Π∗ ∈ I
1

2
−n

4 (S1 × P0 ×G× R;C ′
6)

is a transverse composition of FIOs with Lagrangian determined by

C6 = {(χη(g)e
itE , r; x, 0; g, rη; t, rE) ∈ (T ∗S1 \ 0)× T ∗P0 × (T ∗G \ 0)× (T ∗

R \ 0)

: η ∈ O, g ∈ Gη}.

Proof. This is immediate since this composition does not affect the T ∗P0-variables and
in the (T ∗G \ 0)× (T ∗

R \ 0)-variables the Lagrangian for Π∗ is just the diagonal.

Theorem 4.18. The clean intersection hypothesis implies that the composition of
Tϕ,E ◦ (LO ⊗ idR) ◦ Π∗ and ι∗ diag∗F is a clean composition of FIOs with excess

e = 2(n+ ℓ)− 2 and therefore order

(
1

2
−
n

4

)
+
n− 1

4
+
e

2
= n + ℓ− 1 +

1

4

Thus
Υ(ϕ) ∈ In+ℓ−1+ 1

4 (S1;C′
E)

where

C′
E = {(χη(g)e

itE, r) ∈ T ∗S1 \ 0 : η ∈ O, g ∈ Gη, ∃ζ ∈ T ∗
0P |P0

such that

∃s with ζ = (G−s ◦ Φ
Z
t )(ζ)g, 〈Z

ω, ζ〉 = −rE, µ(ζg−1) = rη}

Proof. The main goal here is to compute the fiber over a point (ω, r) ∈ TODO. By
homogeneity we can assume r = 1 and so the fiber is given by:

F(ω,1) := {(x, 0; g, η; t, E) ∈ T ∗P0 × (T ∗G \ 0)× (T ∗
R \ 0) : x ∈ P0, ∃ζ ∈ (T ∗

0P )x

such that∃s with ζ = (G−s ◦ Φ
Z
t )(ζ)g, 〈Z

ω, ζ〉 = −E, µ(ζg−1) = η,

χη(g)e
itE = ω, and η ∈ O, g ∈ Gη}

Since we chose E > 0 our constraint 〈Zω, ζ〉 = −E implies ζ ∈ T ∗
+P |P0

⊆ T ∗
0P |P0

and
therefore ζ corresponds to a unique null geodesic γ ∈ N with γ(0) = x, HZ(γ) = E,
µ(γg−1) = η and γ = ΦZt (γ)g. Therefore (γg−1, η) ∈ µ−1

O (0) and the image of this in

the quotient is a periodic orbit in NO with period t and energy H̃Z = E.

Now, let’s write π : R × µ−1
O (0) → R × NO for the projection map and recall that

YE ⊆ R × NO is the set of periodic orbits for the reduced flow together with their
periods. If we denote

X := {(t, γ, η, g) : (t, γ, η) ∈ π−1(YE) and g ∈ Gη}
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then dimX = dim π−1(YE) + dimG− dimO = 2d+ 2n− 1 since YE has dimension
2(n + ℓ)− 1 where 2ℓ = dimO. Note: the clean intersection hypothesis implies that

YE is a disjoint union of smooth manifolds with the clopen subset {0} × H̃−1
Z (E)

having dimension = 2(n+ ℓ)−1 and the other components having dimension at most
2(n+ ℓ)− 1. Furthermore the map

X → F(ω,1)

(t, γ, η, g) 7→ (γ(0)g, g, η, t)

is a submersion. This, together with the fact that the holonomy map Hol : YE → U(1)
is locally constant, implies that we have a clean composition of FIOs. Since the only
part of the derivative γ′(0) of γ captured in the image of our submersion X → F(ω,1)

is η = µ(γ) it follows that the kernel of the above submersion at each point contains a
2d− 2ℓ-dimension subspace of tangent vectors orthogonal to the tangent space TηO.
The only other degeneracy comes the 1-dimensional space of vectors tangent to the
curve γ itself and so we arrive at:

dimF(ω,1) = 2(n+ d)− 1− 2(d− ℓ)− 1 = 2(n+ ℓ)− 2

as desired.

All that remains now is the calculation of the principal symbol of Υ(ϕ). It’s worth
noticing, however, that from the expression for Tϕ,E we see that the actually wave
front set WF′(Υ(ϕ)) will often be a proper subset of C′

E depending on supp ϕ̂. This
is due to the varying dimensions of the components of YE and the support of the
principal symbol of Υ(ϕ) being constrained by supp ϕ̂. We compute this principal
symbol now.

Theorem 4.19. We have

WF′(Υ(ϕ)) ⊆ {(ω, r) ∈ S1 × R>0 : ∃(T, γ) ∈ YE

with T ∈ supp ϕ̂ such that HolO([0, T ] ∋ t 7→ Φ̃Zt (γ)) = ω}

and, under the clean intersection hypothesis, the singularities of Υ(ϕ) are all classical.
Assuming ϕ̂(0) 6= 0 the principal symbol at (ω, r) ∈ WF′(Υ(ϕ)) is given by:

Cn,dω
mϕ̂(0) Vol

(
H̃−1
Z (E)

)
|r|n+ℓ−1|dω ∧ dr|1/2.

Here we omit the Maslov factor since in this case it can be invariantly taken to be
constant on WF′(Υ(ϕ)).

Proof. The result concerning the wave front set will follow immediately from the
calculation of the principal symbol since the constraint T ∈ supp ϕ̂ comes from the
support of the principal symbol.
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We can compute a principal symbol for Tϕ,E ◦(LO⊗ idR) by composing their explicitly
given Schwartz kernels. The Schwartz kernel for the composition is then a distribution
on S1 ×G× R with Schwartz kernel

(θ′, g, t) 7→
∞∑

m=1

(2π)−2ϕ̂(t)eim(θ′−tE)Tr(κm(g)).

Recalling that the principal symbol of F is given by

±
1

2
(2π)(d+3)/4〈n̂,−〉|dC1

|1/2 ⊗ |dt1|
1/2 ⊗ |dg|1/2 ⊗ |dt2|

1/2

we have that the principal symbol of Υ(ϕ) at a point (ω, 1) ∈ C′
E is given by the

integral over the fiber

F(ω,1)
∼= quotient of holonomy ω clopen subset of YE by the action of the flow Φ̃Z

of the product of the symbol of F and the symbol of

Tϕ,E ◦ (LO ⊗ idR) ◦ Π∗ ◦ ι
∗ ◦ diag∗

restricted to the fiber. The symbol over a more general point (ω, r) ∈ C′
E is then

obtained by homogeneity in r. Since 0 ∈ supp ϕ̂ and principal symbols are defined
modulo symbols of lower order it suffices to compute this integral over the quotient
of the clopen subset

{0} × H̃−1
Z (E) ⊆ YE .

In this fibered product of symbols, the pairing of the g in the symbol for Tϕ,E ◦
(LO ⊗ idR) and the g in the symbol for F amounts to replacing variables in the fibers
of T ∗

0P |P0

∼= N with fiber variables in NO (here the “fibers” are diffeomorphic to

O). Since our fibered product is just over the quotient of {0} × H̃Z by the flow,
the pairing of the t-variables in the symbol for Tϕ,E ◦ (LO ⊗ R) and the symbol for
F simply amounts to setting t = 0 in both symbols and multiplying by ϕ̂(0). The
effect of restricting to P0 along the diagonal P0 →֒ P × P on the fibered product of
symbols (aside from replacing the volume half-density on Γ with the one on H̃−1

Z (E))
is to divide by the function 〈n̂,−〉 and multiply by a dimensional constant, hence
removing the function 〈n̂,−〉 from our symbol expression. Therefore, denoting by
Cn,d a dimensional constant and writing ω = eiθ

′
, we obtain the symbol over the

point (ω, 1) as:

Cn,dω
m

ˆ

H̃−1

Z
(E)

ϕ̂(0)|dω ∧ dr|1/2
1

|∇H̃Z|2
∇H̃ZxdVNO

= Cn,dω
mϕ̂(0) Vol

(
H̃−1
Z (E)

)
|dω ∧ dr|1/2.

We can now recover the principal symbol over (ω, r) by scaling. Since the fibers are

diffeomorphic to H̃−1
Z (E)/R where the R-action is by the Hamiltonian flow of H̃Z they

have dimension 2(n+ ℓ)− 2 and so the principal symbol over (ω, r) is given by:

Cn,dω
mϕ̂(0) Vol

(
H̃−1
Z (E)

)
|r|(n+ℓ)−1|dω ∧ dr|1/2
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where we note that n + ℓ− 1 is half the dimension of our fiber.

Theorem 4.20. Under the assumptions of 2.31 where the time 6= 0 part of the set YE

consists of finitely many isolated periodic orbits (T1, γ1), ...., (Tq, γq), and assuming 0 /∈
supp ϕ̂ we actually have Υ(ϕ) ∈ I1/4 with principal symbol at each (HolO(Tj , γj), r),
j = 1, ..., q, given by:

Cn,dHolO(Tj, γj)
m
T#
j

2π
ϕ̂(Tj)| det(I − Pj)|

−1/2eiπmj/4|dω ∧ dr|1/2

where T#
j is the primitive period of γj, Pj is the linearized Poincaré first return map

of γj with respect to any local symplectic transversal and we have included the Maslov
factor eiπmj/4 where mj is the Conley-Zehnder index of γj as in [22].

Proof. The proof is exactly the same as the previous one only instead of integrat-
ing over {0} × H̃−1

Z (E) with respect to its invariant measure we integrate over the
respective periodic orbit γj with respect to the density from 2.31.

These last three theorems respectively conclude the proofs of Theorems 1.1,1.2 and
1.3.
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