A Traceable Block Cipher Olivier Billet, Henri Gilbert

france telecom

R\&D

Content Distribution Context

Issues:

(1) Key Redistribution (by traitors to pirate users)
© Content Redistribution (not addressed here)

Traitor Tracing Definitions

© Benny Chor, Amos Fiat, Moni Naor, 1994
© Each of the N users receives a personal key \mathcal{K}_{j} » \mathcal{K}_{j} enables user j to decrypt content » \mathcal{K}_{j} uniquely identifies user j
(1) No coalition of k traitors will produce an untraceable key
» allows a pirate to decrypt content
» conceals all traitors' identities

Traitor Tracing

(1) Four Procedures
» Key Generation
» Encrypt
» Decrypt
» Tracing
(1) Previous Constructions
» Combinatorial Scheme [CFN 94, NP 98] headers $O(k \ln N)$
》 Asymmetric Algorithm [BF 99] expansion $O(k)$

Traceable Blockcipher

(1) $F_{\mathcal{K}}$ satisfies usual symmetric block cipher requirements
© generation from the meta-key \mathcal{K} of keys \mathcal{K}_{j} such that

$$
\left.\left.\left.F_{\mathcal{K}}\right\rangle \equiv F_{\mathcal{K}_{1}}\right\rangle \equiv \cdots \equiv F_{\mathcal{K}_{j}}\right\rangle \equiv \cdots \equiv F_{\mathcal{K}_{N}}
$$

(1) k-traceability requirement: an equivalent description produced from the knowledge of up to k equivalent descriptions $F_{\mathcal{K}_{j_{1}}}, \ldots, F_{\mathcal{K}_{j_{k}}}$ must reveal at least one of the identities j_{1}, \ldots, j_{k}

Operation Modes

© Mode with control words: $F_{\mathcal{K}} \equiv F_{\mathcal{K}_{j}}$

Context

Definitions

Cipher

Modes
(1) Simple mode: $F_{\mathcal{K}}^{-1} \equiv F_{\mathcal{K}_{j}}$

C* Scheme Matsumoto-Imai

© parameters

$$
\begin{aligned}
> & \mathbb{K} \\
\text { » } & =\mathrm{GF}(q) \quad q=\mathbb{K}^{m} \\
\mathbb{L} & =\mathbb{K}[X] / \pi_{n}(X) \\
> & \left(1+q^{\theta}\right) \perp\left(q^{n}-1\right)
\end{aligned}
$$

(1) public key is a set of n quadratic equations in the variables x_{i}
(1) private key is (S, T) two invertible linear maps

$$
x_{1} x_{2} \quad \cdots \quad x_{n}=x \in \mathbb{K}^{n}
$$

Context

Definitions

Cipher

Modes

Underlying Problems

© Solving systems of multivariate equations
» find one solution $\left(x_{1}, \ldots, x_{n}\right)$ over a finite field \mathbb{K} of

$$
\left\{y_{i}=P_{i}\left(x_{1}, \ldots, x_{n}\right)\right\}_{i \in[1, n]}
$$

» Decision problem is NP-complete, even over GF(2)
" Patarin 1995 used structure of C^{*} to invert it
© IP: isomorphism of polynomials
" given two sets of polynomials $\{P\}$ and $\{Q\}$ find bijective linear maps A and B such that

$$
B \circ\left(P_{1}, \ldots, P_{n}\right) \circ A=\left(Q_{1}, \ldots, Q_{m}\right)
$$

» IP is harder than IG
» no polynomial algorithm is known
[PGC, 1998]
» relinearization attack for C^{*} degree 2 from [SK, 1999]

Commuting Blocks Conducting Idea

 $g_{1} \circ g_{2}=g_{2} \circ g_{1}$

Context

Definitions

Cipher

Modes

Comp. Prob.
Commuting
Θ use a version of C^{*} with higher degree $d>2$

$$
g_{i}: a \mapsto b=a^{1+q^{\theta_{1}+\ldots+q^{\theta_{d-1}}}}
$$

Commuting Blocks Key Generation

Context
Definitions
Cipher
Modes

Comp. Prob.
Commuting

Parameters Example

(1) $q=2^{16}$
$\mathbb{K}=\mathrm{GF}(q)$
(1) $n=5 \quad$ block size is 80 bits
(1) $d=4$
equations for $G_{i, j}$ have degree 4 about 70 monomials per equation computing $G_{i, j}$ is at most
435 multiplications in \mathbb{K}
(1) $r=32$

32 rounds
$F_{\mathcal{K}_{j}}$ is about 14000 mult. in \mathbb{K}
(1) size for $F_{\mathcal{K}_{j}}$ is 22 KB

Context

Definitions
Cipher
Modes

Comp. Prob.
Commuting
Parameters

Security as a Symmetric Cipher

Context

Definitions

Cipher

Modes

Comp. Prob.

Commuting

Parameters
Input/Output observation must not allow
(1) to recover $F_{\mathcal{K}}$
(1) to interpolate $F_{\mathcal{K}}$
(1) to distinguish from a random permutation

Tracing One Traitor Potential Strategy

Context
Definitions
Cipher
Modes

${ }^{*}$

Comp. Prob.
Commuting
Parameters
Security
Tracing

Tracing One Traitor

© step 1: guess $g_{\sigma(1)}$
(1) step i : guess $g_{\sigma(i)}$

Context
Definitions

Cipher

Modes

C^{*}

Comp. Prob.

Commuting

Parameters

Security

Tracing
(1) σ is known

Tracing several Traitors

Context
Definitions

Cipher

Modes

Comp. Prob.

Commuting

Parameter's

Security

Tracing
© inner values reveal one identity

Conclusion

(1) Properties
» very low control word overhead: save bandwidth
" good behavior with high number of traitors
" good behavior with huge number of users: scalable
» speed of symmetric block cipher
" no black box yet
© Security
(2) IP for extended C^{*} with degree higher than 2
© Applications
» White Box Cryptography
» Other instantiations

Context
Definitions
Cipher
Modes
C^{*}
Comp. Prob.
Commuting
Parameters
Security
Tracing

