A Traceable Block Cipher

Olivier Billet, Henri Gilbert

Issues:

- Key Redistribution (by traitors to pirate users)
- Content Redistribution (not addressed here)

Context

Traitor Tracing Definitions

• Benny Chor, Amos Fiat, Moni Naor, 1994

 \odot Each of the N users receives a personal key \mathcal{K}_j

- » \mathcal{K}_j enables user j to decrypt content
- » \mathcal{K}_j uniquely identifies user j

 \bigcirc No coalition of k traitors will produce an untraceable key

- » allows a pirate to decrypt content
- » conceals all traitors' identities

Context Definitions

Traitor Tracing

• Four Procedures

- » Key Generation
- » Encrypt
- » Decrypt
- » Tracing
- Previous Constructions
 - » Combinatorial Scheme [CFN 94, NP 98] headers $O(k \ln N)$
 - » Asymmetric Algorithm [BF 99] expansion O(k)

Context Definitions

Traceable Blockcipher

• $F_{\mathcal{K}}$ satisfies usual symmetric block cipher requirements • generation from the meta-key \mathcal{K} of keys \mathcal{K}_j such that

$$F_{\mathcal{K}} \equiv F_{\mathcal{K}_1} \equiv \cdots \equiv F_{\mathcal{K}_j} \equiv \cdots \equiv F_{\mathcal{K}_N}$$

• *k*-traceability requirement:

an equivalent description produced from the knowledge of up to k equivalent descriptions $F_{\mathcal{K}_{j_1}}, \ldots, F_{\mathcal{K}_{j_k}}$ must reveal at least one of the identities j_1, \ldots, j_k

Context Definitions <mark>Cipher</mark>

Operation Modes

• Mode with control words: $F_{\mathcal{K}} \equiv F_{\mathcal{K}_i}$

Context Definitions Cipher Modes

C^{*} Scheme Matsumoto-Imai

parameters

- » $\mathbb{K} = \mathsf{GF}(q)$ $q = 2^m$
- » $\mathbb{L} \simeq \mathbb{K}^n$
 - $\underline{\mathbb{L}} = \mathbb{K}[X] / \pi_n(X)$
- $| \mathbf{w} (1+q^{\theta}) \perp (q^n 1) |$
- public key is a set of n quadratic equations in the variables x_i
- composition G is public \bigcirc private key is (S, T)two invertible linear maps
- \odot encrypt with G
- \bigcirc decrypt with $S^{-1} \circ q^{-1} \circ T^{-1}$

$$x_1 \ x_2 \ \cdots \ x_n = x \in \mathbb{K}^n$$

$$a_1 \ a_2 \ \cdots \ a_n \rightsquigarrow a \in \mathbb{L}$$

$$a \mapsto b = a^{1+q^{\theta}}$$

$$b_1 \ b_2 \ \cdots \ b_n \rightsquigarrow b \in \mathbb{L}$$

$$y_1 \ y_2 \ \cdots \ y_n = y \in \mathbb{K}^n$$

Context Definitions

Underlying Problems

• Solving systems of multivariate equations

» find one solution (x_1, \ldots, x_n) over a finite field $\mathbb K$ of

 $\{y_i = P_i(x_1, \dots, x_n)\}_{i \in [1,n]}$

- » Decision problem is NP-complete, even over GF(2)
- » Patarin 1995 used structure of C^* to invert it

• IP: isomorphism of polynomials

» given two sets of polynomials $\{P\}$ and $\{Q\}$ find bijective linear maps A and B such that

 $B \circ (P_1, \ldots, P_n) \circ A = (Q_1, \ldots, Q_m)$

- » IP is harder than IG
- » no polynomial algorithm is known [PGC, 1998]
- » relinearization attack for C^* degree 2 from [SK, 1999]

Context Definitions Cipher Modes C^* Comp. Prob.

Commuting Blocks Conducting Idea

 $g_1 \circ g_2 = g_2 \circ g_1$

Context
Definitions
Cipher
Modes
C*
Comp. Prob.
Commuting

 \bigcirc use a version of C^* with higher degree d > 2

$$g_i : a \mapsto b = a^{1+q^{\theta_1}+\ldots+q^{\theta_{d-1}}}$$

Commuting Blocks Key Generation

Context
Definitions
Cipher
Modes
C
*
Comp. Prob.
Commuting

Parameters Example

- $\bigcirc q = 2^{16}$ $\mathbb{K} = \mathsf{GF}(q)$
- block size is 80 bits $\bigcirc n=5$
- $\bigcirc d = 4$

- equations for $G_{i,i}$ have degree 4 about 70 monomials per equation computing $G_{i,j}$ is at most 435 multiplications in K
- $rac{1}{2}$ r=3232 rounds $F_{\mathcal{K}_i}$ is about 14000 mult. in \mathbb{K} \bigcirc size for $F_{\mathcal{K}_i}$ is 22 KB

Context Definitions Modes **Parameters**

Security as a Symmetric Cipher

Input/Output observation must not allow

- \bigcirc to recover $F_{\mathcal{K}}$
- \bigcirc to interpolate $F_{\mathcal{K}}$

● to distinguish from a random permutation

Context Definitions Cipher Modes C^* Comp. Prob. Commuting Parameters Security

Tracing One Traitor Potential Strategy

Definitions Tracing

Tracing One Traitor

- \bigcirc step 1: guess $g_{\sigma(1)}$
- step *i*: guess $g_{\sigma(i)}$
- $\bigcirc \sigma$ is known

Definitions Tracing

Tracing several Traitors

Definitions Tracing

14

Conclusion

Properties

- » very low control word overhead: save bandwidth
- » good behavior with high number of traitors
- » good behavior with huge number of users: scalable
- » speed of symmetric block cipher
- » no black box yet
- Security
 - ⑦ IP for extended C^* with degree higher than 2
- Applications
 - » White Box Cryptography
 - » Other instantiations

Context **Definitions** Cipher Modes Comp. Prob. Commuting **Parameters** Security Tracing