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ABSTRACT

It is well known that the extended Kalman filtering methodology works well
in situations characterized by a high signal-to-noise ratio, good observability
and a valid state trajectory for linearization. This paper considers a problem
not characterized by these favorable conditions. A large number of ad hoc
modifications are required to prevent divergence, resulting in a rather
complex filter. However, performance is quite good as judged by comparison
of Monte-Carlo simulations with the Cramer-Rao lower bound, and by the
filter's ability to track maneuvering targets.
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The specific problem treated is that of esticating the path of a
sovrce of CW energy. A single sessor is availzble to detect the center
frequency of the signal and the directicn from vhich it is arriving. The
relative motion of the target and sensor precduce Doppler shifts and source
bearings that change through time. The sensor will be fairly rocdeled as
observing these quantities in the presaace of uncorrelated, zero mean
Gaussian noise.

Since the frequency and bearing observations obtained at a single
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instant of time are insufficient to uniquely determine the position of the
target, a model of the source behavior is unavoidable. The simplest

model assumes that the source is moving at constant speed along a straight

line path. Deviations from this path (manesuvers) can take many forms.

Ly iove of the case heve only cue re-



The simplest fype, considered here, is a sudden change in speed or
heading. After a maneuver, it is assumed that the target will return
to a constant speed, straight line course. The center frequency of the
signal is assumed to remain constant throughout the ﬁlaneuvere

A previous solution to this pfoblem was reviewed in [7]. A Cartesianm

state
x' = IX(t),y(t),vx,vy,f] s

where the components of velocity Voo vy and the center frequeﬁcy of the
souice are constant, was used aé the basis for a standard extended Kalman
filter. The current state estimate was used as the reference track, and
mechanisms were included for both local and global iteration over the
observations to reduce the effect of the nonlinearities [5], [8]. A
class of gentle maneuvers could be modeled by adding fictitious system
noise on the velocity states. |

Subsequent work revealed three drawbacks to this approach. The
most important was the requirement for a good path estimate early in the track
about which lingarization could take place so the filter Qould not diverge.
Iﬁ most cases, an estimate of the required quality is simply not available. Also,
the filter tended to become conceited in the sense that its estimate of the state
error covariance matrix was consistently smaller than the statistics of
the actual errors, leading to an underweighting of high quality observations.
Finally, the me;hod of adding system noise to deécribe maneuvers posed

problems. Too little noise restricted the class of maneuvers that could




be tracked; too much led to filter divergence as perfectly good velocity
information.was exponentially forgotten. The present paper describes a
new approach to the ptoblem that eliminates these drawbacks.
II. FILTER DESIGN

Design of a filter for this problem was‘to a large extent a trial
and error procedure. A number of less successful designs are described
in [7]; the present paper simply summarizes the f£inal design.

An important innovation was the intreduction of an alternative
to Cartesian coordinates, termed relative coérdinates (Fig. 1).
The coordinates base thg description of the tra;k on the position and
speed of the target whem it is at its closest pointrof approach (CPA)

to the sensor. The observations are then

7o(8) = tan " (He-t ) + B + v, e
ye(t) = £Q - -‘cl sin a(t)) + wg ‘ (2)
) v(t~t0)
gin a(t) = N (3)
/;2+v2(t-—t0)2

where ¢ is the speed of signal propagation. The problem is thus to

v v fv
'{:'to’ o) g, £, = —-‘-:-] of the track

estimate the parameters. X' = [-
from the time-varying non-lincar observations (1)-(3).
To apply the extended Kalwan filtering methodology to the problem,

linearization of the measurement equations is required. Consider first

the bearing measurement,
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Figure 1 Relative coordinates




yg(£) = tan T[(x, + x,00 + x; + vy )

This equation can be transformed by applicatlon of the tangent fumction

and linearizing about X4 + L 0 to give

N ' | N 2 . 2
ye(t) = tan (ye(t)) =%, + X,t + (1 + (xl + xzt) )x3 f 1+ (x1 + xzt) )w6

5)
If {x3 + we' is sufficiently small, one can app;oximate
x) + %t = ;v'e(t) - (6)
yielding an approximate measurement equation
" o N2 n 2
ye(t) =x; hxt+ 1+ Yo )x3 + (1 +'ye')wa (7

LY
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The advantage of this form is that the linearized equation is linéar in
the states, rather than state deviations, and the coefficients can

be evaluated without a reference trajectory. Thus an initial state
estimate is unnecessary for the linearization to take place. The
requirement that |8 + wel be small can be satisfied by having several
trackers operating in parallel, each using a different reference value

of B, namely \E and each tracking the difference B—Yi. The key tc the




success of this approach is that the linearizations différ oﬁly by one
parametexr, which is hard to estimate éarly. The filter using the value
of Yy nearest the true value of B can be selected later in the path by
a straightforward residual test on incoming cbservatiens.

Now consider the doppler measurement. Since

v(teto)
sin a(t) = ‘ (8)

/2 2(twt )2

0

v (9N

the observation becones

*
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Again, these equations are linear in the states and require no reference
information other than that provided directly by the measurements.
However, writing the measurement in this form ignores the information

on xy and X, contained in the frequency data.

The frequency observation equation can alsc be written as

x Xt
?5 =%, + ,-,m_§_~____ ¥ 2 X, +w (11)

/l+(:~:l+x2t)2 /1+(>. -szt)




which brings out the dependency on % and X, This equation is still
linear in the states if an estimate of

*g

¢l+(xl+xzt)2’

is available. 1If one regards the frequency cbservation as two observations,
with perfectly correlated measurement noise, one can take advantage of
both ways of writing the observation equation, thus gaining information on

all states possible. This strategy results in a measurement matrix

1t w2 0 o
‘1
M= 0 0 0 1l (12)
/2
l+§'1
£ £t
2.2 _ 1 o0
v’l-!-zi ¢1+£2
1 i
and measurement noise covariance N
. 2.2 1
(1+£1) "Ry 0 0
R = 0 R, Re ¢ )
0 Rf Rf

)

where &:l is the estimate of X+ xzt, uged in the linearization (here El'%:e)

and &, the estimate of X (ﬁfcs).
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Two quantities :ieed to be estimated for the measurement matrix M
to be computed. The El can be found using either the measurements
as described earlier, or from the predicted state estimate as in a
classical extended Kalman filter. Both of these approaches resﬁlt in
an estimate with known mean and variance. Since observation noise is
independent of the error on the predicted state ;:(t[t-l), these
aﬁprcximations can be combined into one estimate which is likely to be

better than either alone. If

N e
¢ =Yg £ v N(ER) Ry = Ry, : (14)

g = ¥ *+x,t  E] vN(E,,R)) R = Pll(t]t—l)
+ 2tl?lz(tlt—1) + 7P, (e[t-1)  (15)

the minimum variance linear combination is

1" R'
2 1
£, = == &1+ oy £V
1 Rl+ 1 R1+Rl 1
11} 4
- Rl Rl

var (81) =-il'.—;R-,-.' (16)
1
Combining these this way produces a considerable improvement in the
estimation of M. Early in the path', 51 is based mainly on the observations.
After CPA, the observation noise increases, but the state estimate has

become very good. Thus it is better to use it as a basis for computing M.




A similar procedure can be used in the determination of an estimate

of 52 = -~%§ « One source of information is the state estimate

Vo ¥ 7 T t = .

27 %5 & v N(Ey, Ry) Ry = Pgg - an
Since the state xg is difficult to observe early in the paih, an a priori
estimate of the velocity Va is assumed to be available, along with a

N
variance Ra. Typically, Ra = v:, indicating & very crude guess.

2 ,
VeV : veR
WO o ___f__§_ 1 1" "o f a
3 — &, vN(,, R)) R, 2 (18)

and these two estimates can be combined to form 22.

The effect of this procedure is to base the approximation of Ez on the
a priori estimate early in the run. When the filter acquires ;5, near CPA,
the estimate switches over to it.

Thus the combination of information from several sources can be used
to improve the estimation of the quantities necessary to evaluate M., This
was found in result in a decrease in the RMS errors incurred in the Monte
Carlo simulations to be described later.

One fault that early versions of this tracker shared with many other
extended Kalman filters is that the covariances computed by the filter were
much smaller than the actual statistics of the state errors. This suggested
that errors were being introduced by uncertainties not a;.'.counted for
in the calculation of the covariance matrix. An important source of error

was found to be the inaccurate estimation of M.
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If the errors on the Ei are made explicit by writing

A

i 78 Oy 08y VO, Rey) (1%)

the measurement matrix M becomes, to first order,

a A oM aM ’
.1_4_, = _}2(519 Ez) + ';;" 551 + ;g"“ 652 Czo)
1 2
and the observation equation
. -~ -~ aﬁ 3_}1
" i el ,
y(e) & M(Ey, &)x + %%, X8, + %, %6, + w (21)
Letting
[
MM
A=l % 5502 (22)
_ e ,
this becomes
y(t) = M5, EDx+ (L Al [w ] . (23)
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Thus the inaccuracies in the esimtates of the have, to first order, the

21

same effect as an additional noise process. The vector v, = [w' 6&1 662]'-

is zero mean and has an easily determined covariance. This covariance is at

least as large as the observation covariance R, and reflects additionel

uncertainty due to the approximate evaluation of M. Thus, the replacement

of Rby R = cov(gc) in the filter equations réfiects the error process.

This results in a larger, more accurate state error covariance estimate’

than that produced using R only. Note also that Rc, unlike R, is nousiﬁgular;
Since the system model incorporates nc dynamics and no system noilse,

the inverse form of the Kalman filter equations can be used, which in the

case of a static state with no system noise reduce to

2eH) = 2() + M) RN M)z =0 e
Zn(e+l) = Zx(e) + ' (0) R ) 5e)  zx(0) = O (25)
2(e) = z7N(t) | (26)
2(6) = P(t) Zx(t) | | o @n

where g(t) is the observation matrix, Rc(t) the compensated observation .
noise covarianc;,.g(t) the state error covariance, and ;ﬁt) the state
estimate. The computational simplicity of these equations offsets the need
for several filters in parallel. The great advantage, however, lies in

the fact that numerical errors caused by the matrix inversion when it is
nearly singular ate not propaga;ed through time. This contrasts with

the standard form in which the accumulation of numerical errors can lead

to divergence. Also, no initial state and covariance are required to

start the filter.
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Extraction of the state estimate é, from Z and Zx via (26) and (27)
is fraught with numerical error whem Z is nearly singular. This is particularly
a problem here siﬁce the limited observability of the path causes Z to be
singular until near CPA. Two methods for avcoiding these errors were inmcluded
in the tracker. The first simply suppresses the retrieval process if cetﬁain.'
tests on Z indicate that it is nearly singular, The state %,is still. set tc
gfl . zZx, but P is set to a very large value. This allows a state estimate
to be produced even though it is known to be unreliable.

" The second merely involves estimating the erroxr introduced into éc: when

the retrieval is performed, and increasing the estimate of P te aécount
for it. Note that neither of these methods introduce compensations that -
are directly propagated through time., The recursively computed qﬁantities;
g,a#d‘g§, are left untouched. Of course, the choice of the optimal lineax-
ization is affected, as intended.
III. MANEUVERS

The filter design of the previous section suffices to produce both an
accurate state estimate and a covariance estimate that closely matches the

" actual error statistics. This latter point is extremely useful in detecting

maneuvers. Examination of the residuals
x(t) = y(&) - y(t) _ (28)

vith respect to their covariance

R = R (&) + MR (v) (29)
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provides an indicator of the consistency of the observed measurement
residuals with their expected magnitudes, The validity of this test is
highly dependent on the existence of an accurate P, which is not available
in many approximate nonlinear filtering algorithms. |

Of'course, the idea of examining filter residuals is common in tﬁe
literature. The approacﬁ outlined in [18-19] suggested averaging these
chi-square indicators over time to reduce the susceptibility of the tracker
to short, unexpected measurement noise bursts. A lcng time window results
in delay between the maneuver and its detection, making filter adjustment
difficult. In this problem, the indicators were averaged over a time-windéw
of two observations with an extra term included to make use of the whiteness

property of the residuals as well as their size.
£6) = ' ©R T (O3(E) + [1(8) + Y (E-DI'R (€) + R (=D [x(e) + y -]
+3'(e-1) R 1 (e-1)y(t-1) V | (31)

The motivation for this type of residual test was the effect of changes
in speed and heading on the observations. These appear almost instantly
as a jump on the Doppler shift which remans biased for some time. The
bearings exhibit a ramp type deviation, again remaining biased. Thus
maneuvers are characterized by residuals that are not only large, but highly
correlated through time, ’

When the Z(t) for the filter that is tracking the target is computed,
it is compavred agalnst an empirically determined threshold. 1f it is larger
than the threshold, éhe maneuver hypothesils is accepted and a compensation

process is invoked. Otherwise, the syctem tracks normally,
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The detection of a maneuver signals an increase in the uncertainty of
only part of the state, that assoclated with v and 8. If the maneuver
occurs after the tracker has acquired a good estimate of the path, the i and y
position of the target at the time of the maneuver is known. If the new
heading B’ and velocity v' could be.estimateir the filterse could be reset to
incorporate an initial path estimate and covariance consistent with this
information.

Since each of the parallel filters assumes that the target path has a
bearing at CPA near its Yy0 it can be initialized to a path departing from
the'known X y location with bearing at CPA Yy The filter selection.mecﬁanism
will use the filter which tracks the new path best as the outpuﬁ, so the
heading change can be handled easily.

The new velocity can also be estimated, directly from the post
maneuver Doppler shift. Since the center frequency of the transmitted
signal is known, and does not change, the Doppler shift yields a velocity
estimate. When the maneuver results in a CPA on the new path, this velocity
estimate has a large variance. It can be combined with the a priori velocity
estimate used in the optimal linearization procedure to limit the uncertainty.

Thus the geometry of the old path, the characteristic angle of each
filter, and the postmaneuver observations are used to compute a new state
for the filter. Once each of the filters are reset, the tracker operates
in normal mode until the next maneuver detection.

I.V « EVALUATION _

The following figures illustrate the effectiveness of the tracking
system for a typical trajectory. Estimated and actual RMS errors, averaged
over 25 runs and normalized, are plotted on logarithmic scales. The Cramer-Rao

lower bound for the problem was computed ignoring any a priori information
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and is also shown. The results shown correspond to the parameters

¥-=0004 seconds_l

t. = 1000 seconds.

0
B = 0°
£ = £ Hertz

r(t) JZ 1

= 00 e T~ L3 © 9
R [3° r(t,) x Z5 i.e. degenerating with range

=3, ¢2 2

R 10 Hertz

£~ " 60
o_gt_gzooo

éith observations every 60 seconds. The results are plotted as ratics of the

standard deviation of each state error to the actual value of that étate

(with the exception of state 3). This is the same trajectory and format

used in the Monte Carlo evaluations to be presented later,

Notice that the average actual estim;tion errors are qﬁite close to
the average errors estimated by the filter, and both are reasonably close
to the Cramer-Rao lower bound values. The lack of observability of the
problem is reflected by the poor trajectory estimates before CPA in Figure 7. In
Figures 2-6, the filter is unable to accurately invert the Z matrix )
before CPA to produce an estimate of P.

The determination of the number of subfilters is crucial to the
computational efficiency of this tracker. The errors encountered as a function
of |B -.Yil are shown in Table 1. For |8 - Yii < 4°, the tracking errors
are dominated by sources other than the approximations that assume that it
is small, At 8° tracking errors increase noticeably, indicating that these
latter errors are dominating performance. Since the number of subfilters

must be kept as small as possible for efficient computation, the Y4 were
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State 1

State 2
State 3

State 4

'State 5
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0° 4 g 12°
8% | 8% | 9% | 10%
8% 8% 8% 9%
20 30 o | 100
01% | 02% | .03% | .04%
5% 5% 10% | 12%

Table 1 State error as function of 8
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chosen so that the actual value of B never differed from one of them by

more than 7 1/2°, It was felt that the few tracks that approached this
limit, if B were uniformly distributed, would not degrade overall

performance enough to justify a smaller spacing. The Monte Carle simulations
included a representative sample of these marginal tracks.

The ability of the tracker to operate on various vaiues of measurement
noise near the limits of good performance is demonstrated in Table 2. It can
be seen that bearing noise near the 7 1/2° limit degrades filter performance
just as much as [B =~ yi[ does, since both must be relatively small for the
li;earization approximationsvto hold. Frequency noise does not have guite as
significant an effect, for the values shown. The center values used in the
Monte Carlo simulations shown in Figures 2-8 lie at the edge of the region of
good filter performance.

Figure 8 illustrates the behavior of the filter for a path with several
maneuvers. The initial path and measureﬁent noise were the same as for the
Monte Carlo runs. The errors at the beginning of the second leg were due
to the selection of the wrong subfilter for three observations. The loss
of information after the third maneuver seems to have caused divergence, but
the errors before CPA on the fourth leg are much smaller than those
encountered for a similar path with no initial information. In all cases,
the position estimate is best near CPA, when the target path is most
observable. Beyond, the tracker is merely extrgpolating the path obtained
from earlier data. |
V. SUMMARY
A, Review

The basic approéch adopted for this passive tracking system was that

of the extended Kalman filter. The final tracking system incorporated
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Bearing noise at CPA

1 3 g
ax10® | O%
10°[15% 6% 11%| X4
5
3X10 m
ax10°® 6%
105/1.5% 6% 11%| X,
5 B
3X10 ™
ax10® |1
Frequency noise ~ 10°| 1+ 15° 3| X,
0'2 5
- 3X10 .
axi0® [P
10°[.01%.01%.02%| X,
5 ’
3X10 02%
3X10-6 20/0
105(3% 5% 8%| X,
5
3X10 -

Table 2 RMS State Estimation Error as a Function of Measurement Noise Intensity
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several techniques that led to its success. The most notable of these weré :
1. The choice of a state with several useful properties:
a) The measurements, by use of a nonlinear transformation, can be
expressed as a linear combination of the states with uncertain parameters.
b) The quantities that are needed to compute these parameters are few,
nam.ely'x1 + xzt and Xge »
¢) The more useful Cartesian state is extractable by a very nonlinear
function. This, combined with (a), produces a formulation iﬁ which the
estimation is linear, with nonlinear transformations acting only on |
quantities with small variance (the filter state). Thus the estimate is
obtained with minimal nonlinear effects, these being reserved for the
conversion process. |
2. The use of several filters based on varilous reference values of one
state, permitting the above, and of a selection process that chooses the
subfilter that best matches the observations over a period of time.,
3. The combination of all sources of information, (observétions, state
estimates, and a priori data,) to obtain a minimum variance estimate of the‘
uncertain parameters. *
4, The adjustment of the measurement noise covarilance matrix to reflect the
remaining uncertainties.
5. The suppression of a state estimate when conditions guaranteeing
large biases exist.
6., The use of an inverse form of the Kalman filter equations which, in a casé
of parameter eétimation with no plant noise, are very simple and not prone
to the propagation of numerical errors. They also remove the need for an

initial state estimate and covariance,
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7. Increasing the covariance matrix to account for state retrieval errors.
8. Detection of maneuvers based on a hypothesis test using the subfilter
that exhibits the best behavior. This preserves as much information about

a straight line course as possible.

9. The preservation of information during maneuver compensation in the farm
of an initial state estimate for each of the subfilters. |
10. The increase of the variance of those states affected byga maneuver to
allow the filter to adjust 1Cse1£ to the new trajectory.

B. Extensions.

The tracking system presented here can easily be extended along tW@A
different avenues. The first is the use of batch processing, and theiseqond
is the availability of multiple sensors.

Global iteration over time would be just one example of nonrecursive
approaches in which several observations would be stored in a batch and
some nonlinear processing performed on tﬁem. This type of processing is
more suitable to this problem, characterized by few observations, than it
might be to othexr estimation problems. Certainly global iteration would
not degrade the performance of this tracker, since information contained
in the early observations could be used to a greater extent,

The most tractable problem would be an extension to a multiple sensor
situation. The added observability would allow a much more general class
of maneuvers to be considered, as well as prov;ding a better straight line
path estimate, '

c. Conclusion#
It is well known that the extended Kalman filtering methodology works

well for situations characterized by a high signal-to-noise ratio, good




- 28 -

. observability, and a valid state trajectory for linearizatiou;‘ This paper
jllustrates the considerable additionai filter complexity required in
situations not characterized by these favorable conditions. A number of the
ideas of the paper are quite specific to the paxtiéular problem considered,
although a few may be of more general interest - all are ragther ad hec.
However, the filter performes quite well as evidenced by comparison of tbe.
results of Monte-=Carlo simulation and the Cramer-Rac lower bound, and s&

the filter's ability to track maneuvering vehicles.
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