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ABSTRACT

It is well known that the extended Kalman filtering methodology works well
in situations characterized by a high signal-to-noise ratio, good observability
and a valid state trajectory for linearization. This paper considers a problem
not characterized by these favorable conditions. A large number of ad hoc

modifications are required to prevent divergence, resulting in a rather

complex filter. However, performance is quite good as judged by comparison
of Monte-Carlo simulations with the Cramer-Rao lower bound, and by the

filter's ability to track maneuvering targets.
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The specific problem treated is that of esti-tating the path of a

so urce of CW energy. A single se-sor is available to detect the center

frequency of tthe signal and the direction from which it is arriving. rThe

relative motion of the target and sensor produce Doppler shifts and source

bearings that change through time. The sensor will be fairly rodeled as

observing these quantities in the presence of uincorrelated, zero m.ean

Gaussian noise.

Since the frequency and bearing observations obtained at a single

instant of time are insufficient to uniquely deteimiine the position of the

target, a model of the source behavior is unavoidable. The simplest

model assumes that the source is moving at constant speed along a straight

lIne path. Deviations from this path (maneuvers) can take many forms.
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The simplest type, considered here, is a sudden change in speed or

heading. After a maneuver, it is assumed that the target will return

to a constant speed, straight line course. The center frequency of the

signal is assumed to remain constant throughout the maneuver.

A previous solution to this problem was reviewed in [7]. A Cartesian

state

x' [x(t),y(t),vxVy, f] 

where the components of velocity vx, vy and the center frequency of the

source are constant, was used as the basis for a standard extended Kalman

filter. The current state estimate was used as the reference track, and

mechanisms were included for both local and global iteration over the

observations to reduce the effect of the nonlinearities [5], [8]. A

class of gentle maneuvers could be modeled by adding fictitious system

noise on the velocity states.

Subsequent work revealed three drawbacks to this approach. The

most important was the requirement for a good path estimate early in the track

about which linearization could take place so the filter would not diverge.

In most cases, an estimate of the required quality is simply not available. Also,

the filter tended to become conceited in-the sense that its estimate of the state

error covariance matrix was consistently smaller than the statistics of

the actual errors, leading to an underweighting of high quality observations.

Finally, the method of adding system noise to describe maneuvers posed

problems. Too little noise restricted the class of maneuvers that could
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be tracked; too much led to filter divergences as perfectly good velocity

information was exponentially forgotten. The present paper describes a

new approach to the problem that eliminates these drawbacks.

II. FILTER DESIGN

Design of a filter for this problem was to a large extent a trial

and error procedure. A number of less successful designs are described

in [7]; the present paper simply summarizes the final design.

An important innovation was the introduction of an alternative

to Cartesian coordinates, termed relative coordinates (Fig. 1).

The coordinates base the description of the track on the position and

speed of the target when it is at its closest point of approach (CPA)

to the sensor. The observations are then

Y(t) = tan- i((t - t o )) + B + 1)

yf(t) = f(l - v sin a(t)) + wf (2)

v(t-tO )

sin a(t) = - ,, (3)

/2 2 2
r2 +v (t-to)2

where c is the speed of signal propagation. The problem is thus to

estimate the parameters. X' = [-to f_ v ] of the track
r o' r' $, f,- c

from the time-varying non-linear observations (1)-(3).

To apply the extended Kalman filtering methodology to the problem,

linearization of the measurement equations is required. Consider first

the bearing measurement,

-----------~ ~ _~ ~--- ~
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Figure 1 Relative coordinates
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y(t) tan 1 (x 1 + x2 t)J + + wV (4)

This equation can be transformed by application of the tangent function

and linearizing about x3 + wg = 0 to give

Ye(t) " tan (ye(t)) x1 + x2t + 1 (X1 + x22t)x3 (1+ (xl+ 2t) )w

(5)

If Jx3 + w is sufficiently small, one can approximate

X e x2t - yW (t) (6)

yielding an approximate measurement equation

y (t) xl t + (1 + y )x 3 + (1 + )w (7)

The advantage of this form is that the linearized equation is linear in

the states, rather than state deviations, and the coefficients can

be evaluated without a reference trajectory. Thus an initial state

estimate is unnecessary for the linearization to take place. The

requirement that lB + weI be small can be satisfied by having several

trackers operating in parallel, each using a different reference value

of B, namely yi' and each tracking the difference 8-y¥. The key tc the



success of this approach is that.the linearizations differ only by one

parameter, which is hard to estimate early. The filter using the value

of Yi nearest the true value of 8 can be selected later in the path by

a straightforward residual test on incoming observations.

Now consider the doppler measurement. Since

v(t-to)
sin a(t) = (8)

r2+V2(:-t 2

= - . - (9)

the observation becomes

Yt8l+ye

Again, these equations are linear in the states and require no reference

information other than that provided directly by the measurements.

However, writing the measurement in this form ignores the information

on x and x 2 contained in the frequency data.

The frequency observation equation can also be written as

x5 5 +
yf +14 +-(. 1 Z2 t) . .. /l+(X .2 2 f (11)

_ _ _~_ __ * _ _ __ _____ _ ___ ____ _____------i----· I



which brings out the dependency on xl and x2 This equation is still

linear in the states if an estimate of

x5

1 2

is available. If one regards the frequency observation as two observations,

with perfectly correlated measurement noise, one can take advantage of

both ways of writing the observation equation., thus gaining information on

all states possible. This strategy results in a measurement matrix

1 t 1+ 2 o o

M 0 0 0 1 ·(12)L-~2
2 2 0 1 0

and measurement noise covariance

2 R 0 0

R o 0 Rf Rf (13)

_ 0 Rf Rf

where E1 is the estimate of x + x2t used in the linearization (here E1=Y8)

and ;2 the estimate of x5 (=X5).
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Two quantities need to be estimated for the measurement matrix M

to be computed. The (1 can be found using either the measurements

as described earlier, or from the predicted state estimate as in a

classical extended Kalman filter. Both of these approaches result in

an estimate with known mean and variance. Since observation noise is

independent of the error on the predicted state x(tjt-1), these

approximations can be combined into one estimate which is likely to be

better than either alone. If

- ~ ~e q N(9lRv) Ri Rei
E1 e 1"'l R( Ro (14)

1 " X1 + x2 t El X N( 1'R,1) R Pll(tlt-)

+ 2tP1 2(tlt-1) + t2P2 (t t-l) (15)

the minimum variance linear combination is

1 Ri+RI 1+ E+I i.

R' R'
var () -Lull (16)Ri

Combining these this way produces a considerable improvement in the

estimation of M. Early in the path, 51 is based mainly on the observations.

After CPA, the observation noise increases, but the state estimate has

become very good. Thus it is better to use it. as a basis for computing M.

~~~----~--- · I ~ --------------a
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A similar procedure can be used in the determination of an estimate

fv
of F2 = - . One source of information is the- state estimate2 c

2 = x5 2 ' 2(2 R2 R P55 (17)

Since the state x5 is difficult to observe early in the path, an a priori

estimate of the velocity va is assumed to be available, along with a

2
variance Ra. Typically, Ra v , indicating a very crude guess.

a a a a

2

" =p fac 2"2 N(S 2 R") R" fa (18)2Z 2 2 2

and these two estimates can be combined to form ~2

The effect of this procedure is to base the approximation of EZ on the

a priori estimate early in the run. When the filter acquires xS, near CPA,

the estimate switches over to it.

Thus the combination of information from several sources can be used

to improve the estimation of the quantities necessary to evaluate M. This

was found in result in a decrease in the RMS errors incurred in the Monte

Carlo simulations to be described later.

One fault that early versions of this tracker shared with many other

extended Kalman filters is that the covariances computed by the filter were

much smaller than the actual statistics of the state errors. This suggested

that errors were being introduced by uncertainties not accounted for

in the calculation of the covariance matrix. An important source of error

was found to be the inaccurate estination of ri.

V.___ _________________ _____________________________
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If the errors on the ;i are made explicit by writing

+i(i Ei i N(G, IiR) (19)

the measurement matrix M becomes, to first order,,

a M am

l M_) 1 t a e + S (20)

and the observation equation

aM aM
(t) , 2)X + -x6 + (21)

Letting

r XM | a] X (22)

this becomes

y(t) M( 1 ,1 C2 )x + [I A] w (23)

L"2



Thus the inaccuracies in the esimtates of the (t have, to first order, the

same effect as an additional noise process. The vector wc = [w' 651 6~21]

is zero mean and has an easily determined covariance. This covariance is at

least as large as the observation covariance R. and reflects additional

uncertainty due to the approximate evaluation of M. Thus, the replacement

of R by R = cov(w ) in the filter equations reflects the error process.

This results in a larger, more accurate state error covariance estimate

than that produced using R only. Note also that Re, unlike R, is nonsingular.

Since the system model incorporates no dynamics and no system noise,

the inverse form of the Kalman filter equations can be used, which in the

case of a static state with no system noise reduce to

Z (t+l) +M(t) R -(t) + M'(t) zRt) t)(24)

Zx(t+l) = Zx(t) + M' (t) R (t) f(t) zx(o) (25)

P(t) = Z (t) (26)

X(t) - P(t) Zx(t) (27)

where M(t) is the observation matrix, Rc(t) the compensated observation

noise covariance, P(t) the state error covariance, and x(t) the state

estimate. The computational simplicity of these equations offsets the need

for several filters in parallel. The great advantage, however, lies in

the fact that numerical errors caused by the matrix inversion when it is

nearly singular are not propagated through time. This contrasts with

the standard form in which the accumulation of numerical errors can lead

to divergence. Also, no initial state and covariance are required to

start the filter.
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Extraction of the state estimate x from Z and Zx via (26) and (27)

is fraught with numerical error when Z is nearly singular. This is particular;ly-

a problem here since the limited observability of the path causes Z to be

singular until near CPA. Two methods for avoiding these errors were included

in the tracker. The first simply suppresses the retrieval process if certain

tests on Z indicate that it is nearly singulatr. The state x is still seet to

p -* Zx, but P is set to a very large value. This allows a state estimate

to be produced even though it is known to be unreliable.

The second merely involves estimating the error introduced into x when

the retrieval is performed, and increasing the estimate of P to account

for it. Note that neither of these methods introduce compensations that

are directly propagated through time. The recursively computed quantities,

Z and Zx, are left untouched. Of course, the choice of the optimal linear-

ization is affected, as intended.

III. MANEUVERS

The filter design of the previous section suffices to produce both an

accurate state estimate and a covariance estimate that closely matches the

actual error statistics. This latter point is extremely useful in detecting

maneuvers. Examination of the residuals

Y(t) = y(t) - y(t) (28)

with respect to their covariance

R R (t) + M(t)P(t)M' (t) (29)
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provides an indicator of the consistency of the observed measurement

residuals with their expected magnitudes. The validity of this test is

highly dependent on the existence of an acctrate P, which is not available

in many approximate nonlinear filtering algorithms.

Of course, the idea of examining filter residuals is common in the

literature. The approach outlined in [18-191 suggested averaging these

chi-square indicators over time to reduce the susceptibility of the tracker

to short, unexpected measurement noise bursts. A long time window results

in delay between the maneuver and its detection, making filter adjustment

difficult. In this problem, the indicators were averaged over a time window

of two observations with an extra term included to make use of the whiteness

property of the residuals as well as their size.

YE(W (t)R t y3L(t) = ly(t) + +(t-1)=' fry(t) Y(t + X(t-)]

t y' (t-l) R -1 (t-)(t-1) (3
Y

The motivation for this type of residual test was the effect of changes

in speed and heading on the observations. These appear almost instantly

as a jump on the Doppler shift which remans biased for some time. The

bearings exhibit a ramp type deviation, again remaining biased. Thus

maneuvers are characterized by residuals that are not only large, but highly

correlated through time.

when the Z(t) for the filter that is tracking the target is computed,

it is compared against an ecpirically determined threshold. If it is larger

than the threshold, the maneuver hypothesis is accepted and a compensation

process is invoked. Otherwise, the system tracks normally,
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The detection of a maneuver signals an increase in the uncertainty of

only part of the state, that associated with v and S. If the maneuver

occurs after the tracker has acquired a good estimate of the path, the x and y

position of the target at the time of the maneuver is known. If the new

heading O' and velocity v ' could be estimated, the filters could be reset to

incorporate an initial path estimate and covearlance consistent with this

information,

Since each of the parallel filters assumes that the target path has a

bearing at CPA near its yis it can be initialized to a path departing from

the known x y location with bearing at CPA yi. The filter selection mechanism

will use the filter which tracks the new path best as the output, so the

heading change can be handled easily.

The new velocity can also be estimated, directly from the post

maneuver Doppler shift. Since the center frequency of the transmitted

signal is known, and does not change, the Doppler shift yields a velocity

estimate. When the maneuver results in a CPA on the new path, this velocity

estimate has a large variance. It can be combined with the a priori velocity

estimate used in the optimal linearization procedure to limit the uncertainty.

Thus the geometry of the old path, the characteristic angle of each

filter, and the postmaneuver observations are used to compute a new state

for the filter. Once each of the filters are reset, the tracker operates

in normal mode until the next maneuver detection.

IV. EVALUATION

The following figures illustrate the effectiveness of the tracking

syt:em for a typical trajectory. Estimated and actual RMS errors, averaged

over 25 runs and normalized, are plotted on logarithmic scales. The Cramer-Rao

lower bound for the problem was computed ignoring any a priori information
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and is also shown. The results shown correspond to the parameters

= .004 seconds 1
r

t o = 1000 seconds

f ~ f Hertz
2

R r(t3 ) i.e. degenerating with range
R0 m[3 ° rto) x 6-0

105 .f2 2
R 60 Hertz

0< t< 2000

with observations every 60 seconds. The results are plotted as ratios of the

standard deviation of each state error to the actual value of that state

(with the exception of state 3). This is the same trajectory and format

used in the Monte Carlo evaluations to be presented later.

Notice that the average actual estimation errors are quite close to

the average errors estimated by the filter, and both are reasonably close

to the Cramer-Rao lower bound values. The lack of observability of the

problem is reflected by the poor trajectory estimates before CPA in Figure 7. In

Figures 2-6, the filter is unable to accurately invert the Z matrix

before CPA to produce an estimate of P.

The determination of the number of subfilters is- crucial to the

computational efficiency of this tracker. The errors encountered as a function

of B -Yi3 are shown in Table 1. For IB - yij c 4°, the tracking errors

are dominated by sources other than the approximations that assume that it

is small. At 8° tracking errors increase noticeably, indicating that these

latter errors are dominating performance. Since the number of subfilters

must be kept as small as possible for efficient computation, the yS were
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00 40 8o 120

State 1 8% 8% 9% 10%

State 2 8% 8% 8% 9%

State 3 20 30 6 O 100

State 4 .01% .02% .03% .04%

State 5 5% 5% 10% 12%

Table 1 State error as function of .
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chosen so that the actual value of B never differed from one -of them by

more than 7 1/20. It was felt that the few tracks that approached this

limit, if B were uniformly distributed, would not degrade overall

performance enough to justify a smaller spacing. The Monte Carlo simulations

included a representative sample of these margiral tracks.

The ability of the tracker to operate on various values of measurement

noise near the limits of good performance is demonstrated in Table 2. It can

be seen that bearing noise near the 7 1/2" limit degrades filter performance

just as much as yS - ¥ij does, since both must be relatively small for the

linearization approximations to hold. Frequency noise does not have quite as

significant an effect, for the values shown, The center values used in the

Monte Carlo simulations shown in Figures 2-8 lie at the edge of the region of

good filter performance.

Figure 8 illustrates the behavior of the filter for a path with several

maneuvers. The initial path and measurement noise were the same as for the

Monte Carlo runs. The errors at the beginning of the second leg were due

to the selection of the wrong subfilter for three observations. The loss

of information after the third maneuver seems to have caused divergence, but

the errors before CPA on the fourth leg are much smaller than those

encountered for a similar path with no initial information. In all cases,

the position estimate is best near CPA, when the target path is most

observable. Beyond, the tracker is merely extrapolating the path obtained

from earlier data.

V. SUMMARY

A. Review

The basic approach adopted for this passive tracking system was that

of the extended Kalman filter. The final tracking system incorporated
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Bearing noise at CPA
10 30 60

3X10 6 6

10'5 1.5% 6% 11 X%

3X10'5 8

3X16 6%

10" 1.5% 6% 11% X2

38%

3X10 6 150

Frequency noise 10 5 1 1.50 30 X

1..2 3X10 3

f2 30

-6 .001
3X10 %

10 5 1.01%.01%.02% X4

3X10 .

3X10 6 2%

10 '5 3% 50/% 8% i

3X10. 5 8%

Table 2 RMS State Estimation Error as a Function of Measurement Noise Intensity
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several techniques that led to its success. The most notable of these wer&e 

1. The choice of a state with several useful properties:

a) The measurements, by use of a nonlinear transformation, can be

expressed as a linear combination of the states writh uncertain parameters.

b) The quantities that are needed to compute these parameters are few,

namely x. + x 2 t and x 5 .

c) The more useful Cartesian state is extractable by a very nonlinear

function. This, combined with (a), produces a formulation in which the

estimation is linear, with nonlinear transformations acting only on

quantities with small variance (the filter state). Thus the estimate is

obtained with minimal nonlinear effects, these being reserved for the

conversion process.

2. The use of several filters based on various reference values of one

state, permitting the above, and of a selection process that chooses the

subfilter that best matches the observations over a period of time.

3. The combination of all sources of information, (observations, state

estimates, and a priori data,) to obtain a minimum variance estimate of the

uncertain parameters.

4. The adjustment of the measurement noise covariance matrix to reflect the

remaining uncertainties.

5. The suppression of a state estimate when conditions guaranteeing

large biases exist.

6. The use of an inverse form of the Kalman filter equations which, in a case

of parameter estimation with no plant noise, are very simple and not prone

to the propagation of numerical errors. They also remove the need for an

initial state estimate and covariance.



- 27 -

7. Increasing the covariance matrix to account for state retrieval errors.

8. Detection of maneuvers based on a hypothesis test using the subfilter

that exhibits the best behavior. This preserves as much information about

a straight line course as possible.

9. The preservation of information during maneuver compensation in the form

of an initial state estimate for each of the subfilters.

10. The increase of the variance of those states affected by a maneuver to

allow the filter to adjust itself to the new trajectory.

B. Extensions.

The tracking system presented here can easily be extended along two

different avenues. The first is the use of batch processing, and the second

is the availability of multiple sensors,

Global iteration over time would be just one example of nonrecursive

approaches in which several observations would be stored in a batch and

some nonlinear processing performed on them. This type of processing is

more suitable to this problem, characterized by few observations, than it

might be to other estimation problems. Certainly global iteration would

not degrade the performance of this tracker, since information contained

-in the early observations could be used to a greater extent.

The most tractable problem would be an extension to a multiple sensor

situation. The added observability would allow a much more general class

of maneuvers to be considered, as well as providing a better straight line

path estimate.

C. Conclusions

It is well knotn. that the extended Kalman filtering methodology works

well for situations characterized by a high signal-to-noise ratio, good
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observability, and a valid state trajectory for linearization, This paper

illustrates the considerable additional filter complexity required in

situations not characterized by these favorable conditions. A number of the

ideas of the paper are quite specific to the particular problem considered,

although a few may be of more general interest all are- rther ad hRc.

However, the filter performs quite well as evidenced by comparison of the

results of Monte-Carlo simulation and the Cramer-Rao lower bound, and by

the filter's ability to track maneuvering vehicles.
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