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1. Introduction

This online publication is a supplement to the article A tractable approximation of non-
convex chance constrained optimization with non-Gaussian uncertainties by A. Geletu,
M. Klöppel, A. Hoffmann and P. Li. This supplement provides proofs of major theorems
that are left out from the main manuscript. To make the reading of this document easier,
theorems are restated again here along with their corresponding proofs. Basic mathemat-
ical definitions are also provided with some additional references. All other theorems,
propositions, assumptions, etc., referenced here are found in the original manuscript.

2. Proofs propositions and theorems

PROPOSITION 3.3 Suppose Assumption 3.2 holds true. Then

(1) Θ(τ, u, ·) is a strictly increasing function w.r.t. s ∈ R;
(2) Θ(·, u, s) is a non-decreasing function w.r.t. τ for 0 < τ < 1;
(3) and

lim
τց0+

Θ(τ, u, s) =

{
1, if s ≥ 0,
0, if s < 0,

uniformly for u ∈ U and uniformly for s ∈ (−∞,−ε]∪ [0,+∞) and arbitrary ε > 0.
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Proof Part (1) follows through an elementary analysis. Since u is fixed, the dependence
of m1 and m2 on u can be dropped for clarity of presentation. Thus, to verify part (2),
differentiate Θ(τ, u, s) w.r.t. τ to obtain

∂Θ(τ, u, s)

∂τ
=

m1[
1 +m2τe−s/τ

] + 1 +m1τ[
1 +m2τe−s/τ

]2
[
−m2e

−s/τ −m2

( s
τ

)
e−s/τ

]

=
1

[
1 +m2τe−s/τ

]2
[
m1

(
1 +m2τe

−s/τ
)
−m2(1 +m1τ)

(
1 +

s

τ

)
e−s/τ

]
.

Considering only the factor on the right hand side, it follows that

[
m1

(
1 +m2τe

−s/τ
)
−m2(1 +m1τ)

(
1 +

s

τ

)
e−s/τ

]

= m1 −m2

(
1 +

s

τ

)
e−s/τ −m1m2se

−s/τ

= m1 −m2

(
1 +

s

τ

)
e−s/τ −m1m2τ

( s
τ

)
e−s/τ .

The standard inequality (1 + t)e−t ≤ 1 holds true for any t ∈ R. Hence, replacing t by s
τ

in the inequality, it follows that

[
m1

(
1 +m2τe

−s/τ
)
−m2(1 +m1τ)

(
1 +

s

τ

)
e−s/τ

]

≥ m1 −m2 −m1m2τ

> m1 −m2(1 +m1) (since 0 < τ < 1)

≥ m1 −
m1

1 +m1
(1 +m1) = 0.

Consequently, ∂Θ(τ,u,s)
∂τ > 0. Therefore, for any value of s (positive or negative) and u,

the function Θ(τ, u, s) is strictly increasing with respect to τ .
The simple estimation

|Θ(τ, u, s)− 1| ≤ τC1, for s ≥ 0, (1)

Θ(τ, u, s) ≤
1 + C1τ

1 + C3τ exp
(
ε
τ

) , for s ≤ −ε, (2)

yields part (3).
�

The proof of Theorem 4.2. below needs definitions and properties of convergence of
sequences of sets. Hence, given a sequence {Ak}

+∞
k=1 of (closed) sets in R

m, basically
there are two types of limits (cf. Aubin & Cellina (1984), Aubin & Frankwoska (1990),
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Kisielewicz (1991) for details):

lim sup
k→∞

Ak =

{
x ∈ R

n

∣∣∣∣ lim inf
k→∞

dist (x,Ak) = 0

}
, (3)

and

lim inf
k→∞

Ak =

{
x ∈ R

n

∣∣∣∣ lim
k→∞

dist (x,Ak) = 0

}
, (4)

where dist(x,A) = infz∈A ‖x − z‖ and ‖ · ‖ is the Euclidean norm. If
lim supk→∞Ak = lim infk→∞Ak, then it is said that the limit of the sequence
{Ak}

+∞
k=1 exists and is denoted by limk→∞Ak = lim supk→∞Ak = lim infk→∞Ak.

THEOREM 4.2 The compactness of U , the monotonicity and continuity of ψ(·, u) with
respect to τ as well as properties P1-P3 imply that, for each decreasing zero sequence
{τk}k∈N and for a regular chance constraint, the relation

lim
k→∞

M(τk) = K

holds true.

Proof Take an arbitrary decreasing zero sequence {τk}k∈N. Using property P3, due to
the compactness of U and continuity of ψ(τ, u), {M(τk)}k∈N is a monotonic sequence of
compact sets (i.e. M(τk) ⊂M(τk+1)). It follows that

lim inf
k→∞

M(τk) = lim sup
k→∞

M(τk). (5)

Since lim supk→∞M(τk) ⊂ K is obvious, it remains to show that lim supk→∞M(τk) ⊃ K.
Suppose u ∈ K, then there are two cases:
Case 1: E[h(u, ξ)] < 1− α.
Since E[h(u, ξ)] = infτ∈(0,1) ψ(τ, u) and ψ(·, u) is non-decreasing and continuous, there
is some k0 such that ψ(τk, u) < 1 − α, for all k ≥ k0. Hence, u ∈ M(τk) for all k ≥ k0
which yields u ∈ lim sup

k→∞
M(τk).

Case 2: E[h(u, ξ)] = 1− α.
Using the regularity Assumption 4.1, there is a sequence {uk}k∈N in U such that
limk→∞ uk = u and Pr {g(uk, ξ) ≤ 0} > α. This implies that E[h(uk, ξ)] < 1−α. Hence,
by property P2, for each uk there is a sufficiently small τk such that E[h(uk, ξ)] <
ψ(τk, uk) < 1−α. Hence, uk ∈M(τk) for all k. This implies that u ∈ lim supk→∞M(τk).
Observe that, by using property P3 in conjunction with P2, the parameters τk can be

chosen so that {τk}k∈N is a decreasing zero sequence. Therefore, limk→∞M(τk) = K.
�

COROLLARY 4.3 Let {τk}k∈N ⊂ (0, 1) be any sequence that decreases to zero. Then
Assumption 4.1 implies that

lim
k→∞

H (M(τk),K) = 0.
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Proof Since {M(τk)}k∈N is a sequence of compact sets, M(τk) ⊂ U , U is a compact set,
limk→∞M(τk) = K and K is a compact set, it follows (see Remark 1.2 of Kisielewicz
(1991), also Theorem 5.2.4 of Aubin (1999)) that

lim
k→∞

H (M(τk),K) = 0.

�

THEOREM 4.4 (Approximability of optimal solutions)

(1) Let {uk}k∈N be a sequence such that uk is a local optimal solution of the NLPk, k =
1, 2, . . . Then there is a subsequence {ukl

}l∈N of {uk}k∈N such that ukl
→ u∗, there

is an open ball B(u∗) around u∗, u∗ ∈ K ∩B(u∗) and

E [f(u∗, ξ)] = min
u∈K∩B(u∗)

E [f(u, ξ)] ; (6)

i.e., u∗ is a local optimal solution of (CCOPT).
(2) Conversely, if u0 is a strict local minimizer of CCOPT, then there is a sequence of

local minimizers uk of NLPk which converges to u0.

Proof

(1) Since U is a compact set and {uk}k∈N ⊂ U , there is a convergent subsequence
{ukl

}l∈N such that ukl
→ u∗. Since ukl

∈M(τkl
) and (according to Theorem 4.2)

lim supk→∞M(τk) = K, it follows that u∗ ∈ K. For a sufficiently large l, there is
a ball B(u∗) such that ukl

∈ K ∩B(u∗) are minimizers of NLPkl
.

Assume now that u∗ ∈ K ∩ B(u∗) is not a local optimum point of CCOPT.
This implies that there is ũ ∈ K ∩B(u∗) such that

E [f(u∗, ξ)] > E [f(ũ, ξ)] .

Using Corollary 4.3, there is a sequence {zk}k∈N such that zk ∈ M(τk) ∩ B(u∗)
and zk → ũ. Thus, for a subsequence {zkl

} it follows that

E [f(zkl
, ξ)] ≥ E [f(ukl

, ξ)] (by the local optimality of ukl
).

This implies that

E [f(ũ, ξ)] = lim
kl→∞

E [f(zkl
, ξ)] ≥ lim

kl→∞
E [f(ukl

, ξ)] = E [f(u∗, ξ)] > E [f(ũ, ξ)] .

But this is a contradiction. Therefore, u∗ should be a local optimal solution of
CCOPT.

(2) Suppose u0 be a strict local optimal solution of CCOPT. Let F (u) > F (u0) for
all u ∈ clB(u0) with p(u) ≥ α for a bounded ball B(u0) around u0. Let further
that F (u) ≥ F (uk) for all u ∈ clB(u0) with 1−ψ(τk, u) ≥ α. By the compactness
of the closed ball such a uk exists. Without loss of generality, limk→∞ uk =: u∗.
Since H(M(τk) ∩ clB(u0),K ∩ clB(u0)) → 0, the continuity of F implies that

F (u) ≥ F (u∗) for all u ∈ clB(u0) with p(u) ≥ α.



February 14, 2014 17:58 Engineering Optimization Engopt˙CCOPT2˙Supplement

Engineering Optimization 5

Hence F (u∗) = F (u0). If u∗ 6= u0, then this leads to a contradiction to the
assumption that u0 is a strict local minimizer. Consequently, uk converge to u0
and there is a k0 such for all k > k0, uk belongs to the interior of B(u0). These
uk are all local solutions of NLPk.

�

THEOREM 4.9 Let W be an open bounded subset of U and Ω̃ be an open set with
Ω ⊂ Ω̃. Define B(u, ε) := {ξ ∈ Ω̃ | |g(u, ξ)| < ε}. Then for each u ∈ W and each ε > 0
it follows that

i) lim
k→∞

sup
u∈W

∣∣∣∣∣

∫

Ω̃\B(u,ε)

[
∂Θ(τk, u, s)

∂m1
∇um1(u) +

∂Θ(τk, u, s)

∂m2
∇um2(u)

∣∣∣∣
s=g(u,ξ)

+
∂Θ(τk, u, s)

∂s

∣∣∣∣
s=g(u,ξ)

∇ug(u, ξ)

]
φ(ξ)dξ

∣∣∣∣∣ = 0;

ii) lim
k→∞

sup
u∈W

∣∣∣∣∣

∫

B(u,ε)

[
∂Θ(τk, u, s)

∂m1
∇um1(u) +

∂Θ(τk, u, s)

∂m2
∇um2(u)

∣∣∣∣
s=g(u,ξ)

φ(ξ)dξ

∣∣∣∣∣ = 0;

iii) lim
k→∞

∇ψ(τk, u) = lim
k→∞

∫

B(u,ε)

[
∂Θ(τk, u, s)

∂s
|s=g(u,ξ)∇ug(u, ξ)

]
φ(ξ)dξ

uniformly on W .

Proof A detailed proof of this theorem takes several pages. Thus, this section provides
only a sketch of the idea of the proof.

• Referring to Proposition 3.3 it should be noted that the function

limτց0+ Θ(τ, u, s) =

{
1, if s ≥ ε,

0, if s < −ε,
for an ε > 0. Consequently, for |s| > ε the limit of

the derivative limτց0+ ∇uΘ(τ, u, s) = 0. Thus, the main contribution to the derivative
comes when −ε < s < ε. Thus, replacing s = g(u, ξ) gives an idea on how the proof
should proceed.

• Let u0 ∈W and let

Γ0(u0) = {ξ ∈ Ω̃ | g(u0, ξ) = 0}.

Assume that Γ0(u0) 6= ∅ (for Γ0(u0) = ∅ the discussion below follows trivially). Hence,

there is ξ̃ ∈ Ω̃ such that (u0, ξ̃) ∈ Γ0(u0). Furthermore, define the set

Γg = {(u, ξ, s) | s = 0, g(u, ξ) = 0, (u, ξ) ∈W × Ω̃}.

Since Γ0(u0) 6= ∅, it follows that Γg 6= ∅ .

• The set Γg is a compact set. For each (ũ, ξ̃, s̃) ∈ Γg it follows that g(ũ, ξ̃) = 0 and s̃ = 0.

According to Assumption 4.5, ∇ξg(ũ, ξ̃) 6= 0. This implies there is a component ξβ of

ξ = (ξ1, ξ2, . . . , ξp) such that ∂
∂ξβ

g(ũ, ξ̃) 6= 0. Without loss of generality, let ξβ = ξp and

define η = (ξ1, ξ2, . . . , ξp−1). Hence,
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(a) according to the Implicit Function and Open Mapping Theorems, there are open

neighborhoods Ũ , Ṽ and (−ε, ε) of ũ, η̃ and s̃ = 0, respectively; an interval (a, b)
with a < ξ̃β < b and a unique surjective mapping q

q : Ũ × Ṽ × (−ε, ε) → (a, b)

such that q(ũ, η̃, s̃) = q(ũ, η̃, 0) = ξ̃β and g(u, (η, q(u, ξ, s)︸ ︷︷ ︸
=ξβ

)) = s, for each (u, η, s) ∈

Ũ × Ṽ × (−s0, s0).

(b) The family of sets
{(
Ũ ×

(
Ṽ × (a, b)

)
× (−ε, ε)

)
| (u, ξ, 0) ∈ Γg

}
defines an

open covering of the compact set Γg. Hence, there is a finite collection{(
Ũi ×

(
Ṽi × (ai, bi)

)
× (−εi, εi))

)
| i = 1, . . . , z

}
that covers Γg with a corre-

sponding set of surjective mappings {qi | i = 1, . . . , z}. Define now that

ε0 := min {ε, ε1, . . . , εz} .

Let s = g(u, ξ). Then, for each u ∈
⋃z

i=1 Ũi

B(u, ε0) ⊂
z⋃

i=1

(
Ṽi × (ai, bi)

)

with B(u, ε0) = {ξ | − ε0 < g(u, ξ) < ε0}. Figure 1 indicates that the set Γ0(u0)
is contained in the open set B(u, ε0).

( , ) 0g u x =

0( , ) 0g u x =

} 0( , )B u e

( , )i i i iW V a b= ´

Figure 1. An ε-tube around Γ0(u0)

(c) Let M := ∪z
i=1

(
Ũi ×

(
Ṽi × (ai, bi)

))
and the family ϕi ∈ C∞(M,R), i = 1, . . . , z,

be a partition of unity of the system
{
Ũi ×

(
Ṽi × (ai, bi)

)
| i = 1, . . . , z

}
; i.e.,

∑z
i=1 ϕi(u, ξ) = 1 on M , 0 ≤ ϕi(u, ξ) ≤ 1, i = 1, . . . , z, and compact support

supp ϕi ⊂ Ũi ×
(
Ṽi × (ai, bi)

)
, i = 1, . . . , z.
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• Hence, it follows that

∫

B(u,ε0)
∇uΘ(τk, u, s)|s=g(u,ξ) φ(ξ)dξ

=

z∑

i=1

∫

Vi×(ai,bi),|g(u,ξ)|<ε0

∇uΘ(τk, u, s)]s=g(u,ξ) φ(ξ)ϕi(u, ξ)dξ.

Furthermore, use the coordinate transformation

ξj =

{
ηj if j 6= β

q (u, η, s) if j = β
, j = 1, 2, ..., p,

to write

z∑

i=1

∫

Vi×(ai,bi),|g(u,ξ)|<ε0

∇uΘ(τk, u, s)|s=g(u,ξ) φ(ξ)ϕi(u, ξ)dξ

=

z∑

i=1

∫

Vi×(ai,bi),|g(u,ξ)|<ε0

Q(τk, u, ξ, g(u, ξ))µi(u, ξ)dξ,

where

Q(τk, u, ξ, g(u, ξ)) :=

[
∂Θ(τk, u, s)

∂m1
∇um1(u) +

∂Θ(τk, u, s)

∂m2
∇um2(u)

+
∂Θ(τk, u, s)

∂s
∇ug(u, ξ)

]

s=g(u,ξ)

and µi(u, ξ) := φ(ξ)ϕi(u, ξ) so that

z∑

i=1

∫

Vi×(ai,bi),|g(u,ξ)|<ε0

Q(τk, u, ξ, g(u, ξ))φ(ξ)ϕi(u, ξ)dξ

=

z∑

i=1

∫

Vi

∫ εi

−εi

Q(τk, u, (η, qi(u, η, s)))µi(u, η, qi(u, η, s))dsdη

−
z∑

i=1

∫

Vi

∫ εi

ε0

Q(τk, u, (η, qi(u, η, s)))µi(u, η, qi(u, η, s))dsdη

−
z∑

i=1

∫

Vi

∫ −ε0

−εi

Q(τk, u, (η, qi(u, η, s)))µi(u, η, qi(u, η, s))dsdη.

The rest of the proof uses a sequence of technical Lemmata for elementary properties

(which hold uniformly with respect u ∈W ) of the expressions ∂Θ(τ,u,s)
∂m1

, ∂Θ(τ,u,s)
∂m2

, ∂Θ(τ,u,s)
∂s ,

their integrals w.r.t. s and ∇ug(u, ξ) corresponding to |s| ≥ ε0, |s| < ε0 and τk ց 0+,
respectively, as well as the properties of the coordinate transformation. Based on the
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Mean-Value Theorem, the inner integration can be removed and thus the delta distribu-

tional term ∂Θ(τ,u,s)
∂s remains. Hereby the continuity of the density φ(ξ) is required.

�

THEOREM 4.13 Let {τk}k∈N ⊂ (0, 1) be any sequence with τk ց 0+ and let Assump-
tions 4.11 and 4.12 be satisfied. Then the following hold true

(1) If Assumption 4.11 (MFCQ) holds, then
(a) lim supk→∞ Λk ⊂ Π and
(b) lim supk→∞ Λ0

k ⊂ Π0.
(2) If Assumption 4.12 (LICQ) holds, then Π1 ⊂ lim supk→∞ Λ0

k.

Proof

(1) Take any sequence {τk}k∈N ⊂ (0, 1) such that τk ց 0+. Let (uk, ηk) ∈ Λk such
that (uk, ηk) −→ (u0, η0). For each j ∈ {1, . . . , q} using the estimation

‖∇ψk,j(uk) +∇p(u0)‖ ≤ ‖∇ψk,j(uk) +∇pj(uk)‖+ ‖ − ∇pj(uk) +∇pj(u0)‖

and applying Proposition 4.9 and the continuity of ∇pj(·) it follows that

lim
k→∞

‖∇ψk,j(uk) +∇p(uk)‖ ≤ lim
k→∞

sup
u∈U

‖∇ψk,j(u) +∇pj(u)‖ = 0

and limk→∞ ‖ − ∇p(uk) +∇p(u0)‖ = 0. Consequently,

q∑

j=1

ηk,j∇ψk,j(uk) −→
k→∞

−

q∑

j=1

η0,j∇pj (uk) ,

where ηj,k and ηj,0 are the j-th components of ηk and η0, respectively. Further-
more, the continuous differentiability of F (u) yields that

∇F (uk) +

q∑

j=1

ηk,j∇ψk,j(uk) = 0 −→
k→∞

∇F (u0)−

q∑

j=1

η0,j∇pj (u0) = 0.

The complementarity and non-negativity conditions in Π are also consequences
of the continuity and non-negativity properties of pj(u) and ψk,j(u). Hence, it
follows that (x0, η0) ∈ Π and

lim sup
k→∞

Λk ⊂ Π.

The proof for lim supk→∞ Λ0
k ⊂ Π0 is the same as in part (1a).

(2) It remains to prove that Π1 ⊂ lim supk→∞ Λ0
k. Suppose now that (u0, η0) ∈ Π1.

Since u0 is a strict local optimal solution of CCOPT, Theorem 4.4(2) implies that
there is sequence {uk}k∈N such that uk is a local optimal solution of NLPk and
limk→∞ uk = u0.
For each k ∈ {1, 2, 3, . . .}, the local optimality of uk to NLPk yields that there

is ηk ∈ R
q
+ such that (uk, ηk) ∈ Λ0

k.
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Claim: There is a subsequence {ηkl
} of {ηk} such that

ηkl
−→ η0. (7)

Now, from the local optimality of u0 and uk, it follows that

∥∥∥∥∥∥
∇F (uk) +

q∑

j=1

ηk,j∇ψk,j(uk)−∇F (u0) +

q∑

j=1

η0,j∇pj(u0)

∥∥∥∥∥∥
≤ ε, k = 1, 2, . . .

for an arbitrary ε > 0. This implies,

∥∥∥∥∥∥
∇F (uk) +

q∑

j=1

(ηk,j − η0,j)∇ψk,j(uk)−∇F (u0)

+

q∑

j=1

η0,j (∇pj(u0) +∇ψj(τk, uk))

∥∥∥∥∥∥
≤ ε,

k = 1, 2, . . .

This yields that

∥∥∥∥∥∥

q∑

j=1

(ηk,j − η0,j)∇ψk,j(uk)

∥∥∥∥∥∥
≤ ε+ ‖∇F (uk)−∇F (u0)‖

+

∥∥∥∥∥∥

q∑

j=1

η0,j (∇pj(u0) +∇ψk,j(uk))

∥∥∥∥∥∥
,

k = 1, 2, . . .

Consequently,

‖ηk − η0‖

∥∥∥∥∥∥

q∑

j=1

(ηk,j − η0,j)

‖ηk − η0‖+ 1
∇ψk,j(uk)

∥∥∥∥∥∥
≤

ε+ ‖∇F (uk)−∇F (u0)‖+

∥∥∥∥∥∥

q∑

j=1

η0,j (∇pj(u0) +∇ψk,j(uk))

∥∥∥∥∥∥

k = 1, 2, . . . .

Let δk.j := (ηk,j−η0,j)
‖ηk−η0‖+1 , j = 1, 2, . . . , q. Then the sequence {δk,j}, for each j ∈

{1, . . . , q}, is bounded. Hence, there is a subsequence {δkl,j} which is convergent
and δkl,j −→ δ0,j for some δ0,j ∈ R. Since, {ψk,j(uk)} is a convergent sequence,
the sequence {δkl,jψkl,j(uk)} is convergent and δkl,jψkl,j(uk) −→ δ0,j∇pj(u0). As
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a result it follows that

∥∥∥∥∥∥

q∑

j=1

(ηkl,j − η0,j)

‖ηkl
− η0‖+ 1

∇ψkl,j(uk)

∥∥∥∥∥∥
−→

∥∥∥∥∥∥

q∑

j=1

δ0,j∇pj(u0)

∥∥∥∥∥∥
.

To show that
∥∥∥
∑q

j=1 δ0,j∇pj(u0)
∥∥∥ = 0 only if δ0,j = 0 for each j ∈ {1, . . . , q}.

Assume that there is j′ ∈ {1, . . . , q} such that δ0,j′ 6= 0 and
∥∥∥
∑q

j=1 δ0,j∇pj(u
∗)
∥∥∥ =

0. This implies
∑q

j=1 δ0,j∇pj(u
∗) = 0 violating the Assumption 4.12 (LICQ).

Consequently,
(i) either δ0,j = 0 for each j ∈ {1, . . . , q};

(ii) or
∥∥∥
∑q

j=1 δ0,j∇pj(u
∗)
∥∥∥ 6= 0.

The latter case yields

‖ηkl
− η0‖ ≤

ε+ ‖∇F (ukl
)−∇F (u0)‖+

∥∥∥
∑q

j=1 η0,j (∇pj(u0) +∇ψkl,j(ukl
))
∥∥∥

∥∥∥
∑q

j=1 δk,l∇ψkl,j(ukl
)
∥∥∥

.

Consequently, both cases (i) and (ii) imply that ‖ηkl
− η0‖ −→ 0 which verifies

the claim and concludes the proof.

�
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