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1. Introduction

This online publication is a supplement to the article A tractable approximation of non-
convex chance constrained optimization with non-Gaussian uncertainties by A. Geletu,
M. Kloppel, A. Hoffmann and P. Li. This supplement provides proofs of major theorems
that are left out from the main manuscript. To make the reading of this document easier,
theorems are restated again here along with their corresponding proofs. Basic mathemat-
ical definitions are also provided with some additional references. All other theorems,
propositions, assumptions, etc., referenced here are found in the original manuscript.

2. Proofs propositions and theorems

PROPOSITION 3.3 Suppose Assumption 3.2 holds true. Then

(1) O(r,u,-) is a strictly increasing function w.r.t. s € R;
(2) O(,u,s) is a non-decreasing function w.r.t. 7 for 0 < 1 < 1;
(3) and

lim O(1,u,s) =

1,if s >0,
T\0F

0, if s < 0,

uniformly for uw € U and uniformly for s € (—oo, —e] U [0, +00) and arbitrary e > 0.
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Proof Part (1) follows through an elementary analysis. Since u is fixed, the dependence
of m1 and mgy on u can be dropped for clarity of presentation. Thus, to verify part (2),
differentiate ©(7,u, s) w.r.t. 7 to obtain

00(r,u,s) mi 1+my7 o S\ _s/r
or 1+ maore /7] * [1+ mQTe—s/T}Z [ e e <r) c }
1

= [1 . Te_s/T]2 {ml <1 + m27’€*8/‘r> —ma(1+m7) (1 + ;) e*S/T} .
2

Considering only the factor on the right hand side, it follows that

[ml (1 + m27673/7> —ma(l+m7) (1 + ;) 675/7]

s
=mi — ma (1 + —) e T — myimose /T
T

=mj —mg (1 + f) e™*/T — mymyr (f) e /.
T T

The standard inequality (14 ¢)e™" < 1 holds true for any ¢ € R. Hence, replacing t by £
in the inequality, it follows that

[ml (1 + m27675/7> —ma(l+m7) (1 + f) e*S/T}
T
= mp — Mg — MiMmaT

>my —ma(l4+mq) (since 0 <7 <1)

> my — (I1+my)=0.

14+my

Consequently, % > 0. Therefore, for any value of s (positive or negative) and wu,

the function O(7,u, s) is strictly increasing with respect to 7.
The simple estimation

|O(T,u,s) — 1| < 7C4, for s > 0, (1)
1
O(r,u,s) < +tar , for s < —¢, (2)
1+ CsTexp (%)
yields part (3).
]

The proof of Theorem 4.2. below needs definitions and properties of convergence of
sequences of sets. Hence, given a sequence {Ak},ifl’ of (closed) sets in R™, basically
there are two types of limits (cf. Aubin & Cellina (1984), Aubin & Frankwoska (1990),
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Kisielewicz (1991) for details):
limsup Ay, = {ac eR" ‘ liminf dist (x, Ax) = 0} , (3)

k—o0 k—o0
and
liminf Ay = {:U €R" | lim dist(x, Ag) = O} , (4)
k—o0 k—o0

where dist(x,A) = infieallr — z|| and | - || is the FEuclidean norm. If
limsupy_,.o Ay = liminfy . Ay, then it is said that the limit of the sequence

{Ak};;'ol exists and is denoted by limy_, o Ar = limsupy,_, ., Ax = liminfy_, Ag.

THEOREM 4.2 The compactness of U, the monotonicity and continuity of (-, u) with
respect to T as well as properties P1-P3 imply that, for each decreasing zero sequence
{7k }ren and for a regular chance constraint, the relation

lim M(m,) =K

k—o0

holds true.

Proof Take an arbitrary decreasing zero sequence {7j}ren. Using property P3, due to
the compactness of U and continuity of (7, u), {M(7%)},cy is @ monotonic sequence of
compact sets (i.e. M (1;) C M(7x11)). It follows that

li]gn inf M (73,) = limsup M (7). (5)
—00

k—o0

Since lim supy,_, o M (1) C K is obvious, it remains to show that limsup;,_,., M (1) D K.
Suppose u € IC, then there are two cases:
Case 1: E[h(u,§)] <1 —a.
Since E[h(u,§)] = inf ¢ 1)¥(7,u) and (-, u) is non-decreasing and continuous, there
is some kg such that (7, u) < 1 — «, for all & > kg. Hence, u € M(7y) for all k > kg
which yields u € limsup M (7).
k—o00

Case 2: Elh(u,§)] =1—a.
Using the regularity Assumption 4.1, there is a sequence {uj}reny in U such that
limg 00 up, = w and Pr{g(ug, &) < 0} > a. This implies that E[h(ug,&)] < 1 — «. Hence,
by property P2, for each uy there is a sufficiently small 74 such that E[h(ug,§)] <
(T, u) < 1 —a. Hence, ug, € M(7y) for all k. This implies that u € lim supy,_, o M (7%).

Observe that, by using property P3 in conjunction with P2, the parameters 73 can be
chosen so that {7 }ren is a decreasing zero sequence. Therefore, limy_, o M (73) = K.

|

COROLLARY 4.3 Let {7 }ren C (0,1) be any sequence that decreases to zero. Then
Assumption 4.1 implies that

lim H (M(m),K) = 0.

k—o0
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Proof Since {M(7y)},cy is @ sequence of compact sets, M (1) C U, U is a compact set,
limy_,0o M (1) = K and K is a compact set, it follows (see Remark 1.2 of Kisielewicz
(1991), also Theorem 5.2.4 of Aubin (1999)) that

lim H (M(m),K) = 0.

k—o0

THEOREM 4.4 (Approzimability of optimal solutions)

(1) Let {ug}ren be a sequence such that uy is a local optimal solution of the NLPy, k =
1,2,... Then there is a subsequence {uy, }1en of {uk}ren such that uy, — u*, there
is an open ball B(u*) around u*, u* € KN B(u*) and

Elf(, &= min E[f(u,)]; (6)

uweNB(u*)

i.e., u* is a local optimal solution of (CCOPT).
(2) Conversely, if ug is a strict local minimizer of CCOPT, then there is a sequence of
local minimizers u, of NLPy which converges to ug.

Proof

(1) Since U is a compact set and {ug}reny C U, there is a convergent subsequence
{ug, }1en such that ug, — u*. Since ug, € M (7x,) and (according to Theorem 4.2)
lim supy,_, o, M (1) = K, it follows that u* € K. For a sufficiently large [, there is
a ball B(u*) such that ug, € K N B(u*) are minimizers of NLPy,.
Assume now that u* € K N B(u*) is not a local optimum point of CCOPT.
This implies that there is w € K N B(u*) such that

E[f(u”,&)] > E[f(u,¢)].

Using Corollary 4.3, there is a sequence {zj},cy such that z, € M(r,) N B(u*)
and z; — u. Thus, for a subsequence {zy,} it follows that

Elf(z,,8)] > E[f(ug,§)] (by the local optimality of ug,).

This implies that

E(f(@8)] = lim Elf(z,6)) > lm E[f(u.&)) = E[f(a", O] > E@8)).

k‘l*)OO

But this is a contradiction. Therefore, u* should be a local optimal solution of
CCOPT.

(2) Suppose ug be a strict local optimal solution of CCOPT. Let F(u) > F(ug) for
all u € clB(up) with p(u) > « for a bounded ball B(ug) around ug. Let further
that F(u) > F(ug) for all u € clB(ug) with 1 —¢(7x,u) > «. By the compactness
of the closed ball such a uy exists. Without loss of generality, limg_, oo up =: u*.
Since H (M (1) NclB(up), K NclB(ug)) — 0, the continuity of F' implies that

F(u) > F(u") for all u € clB(ug) with p(u) > «a.
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Hence F(u*) = F(ug). If u* # wg, then this leads to a contradiction to the
assumption that ug is a strict local minimizer. Consequently, u; converge to ug
and there is a kg such for all k > ko, uy belongs to the interior of B(ug). These
uy are all local solutions of NLPy.

THEOREM 4.9 Let W be an open bounded subset of U and Q be an open set with
Q C Q. Define B(u,e) :=1{£ € Q| |g(u,§)| < e}. Then for each u € W and each € > 0
it follows that

i) lim sup

/~ [a@mwvuml(m 3 PO g )
Q\B(u,e) dmy oma

s=g(u,€)

009(1x, u, S)

0s

Vaug(u, 6)] $(§)dg

s=g(u,€)

¢(§)d¢
s=g(u€)

i)  lim sup

k—00 yeW

09 (1, u, s) 00(7k, u, S)
— " V.m(u) + ————=V, ma(u
/ (w)[ N () + 2! 2 ()

. I:ae(ﬂm U, 8)
= hm _—
k—o0 B(u,e) 0s

|s:g<u,@vug<u,§>} o(6)de

iii) klim Vp(7i, w)
—s00

uniformly on W.

Proof A detailed proof of this theorem takes several pages. Thus, this section provides
only a sketch of the idea of the proof.

e Referring to Proposition 3.3 it should be noted that the function

1,if s > ¢,

0,if s < —¢,
the derivative lim o+ V,O(7,u, s) = 0. Thus, the main contribution to the derivative
comes when —e < s < e. Thus, replacing s = g(u, ) gives an idea on how the proof
should proceed.

o Let up € W and let

lim o+ O(7,u,s) = for an e > 0. Consequently, for |s| > ¢ the limit of

To(uo) = {€ € Q| g(uo, &) = 0}.

Assume that Tg(ug) # 0 (for To(up) = () the discussion below follows trivially). Hence,
there is € € Q such that (ug,&) € I'o(up). Furthermore, define the set

Ty = {(1,&,8) | s =0,9(u,&) =0, (u,6) € W x O}

Since T'o(uo) # 0, it follows that 'y # 0 .

e The set I'y is a compact set. For each (1, £,5) e I'y it follows that g(a, §)=0and 5 =0.
According to Assumption 4.5, Vgg(ﬂé # 0. This implies there is a component g of
€= (&, &, ..., &) such that %g(a, €) # 0. Without loss of generality, let £ = &p and
define n = (&1, &2, ...,&p—1). Hence,
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according to the Implicit Function and Open Mapping Theorems, there are open
neighborhoods U,V and (—¢,¢) of u,7 and 5 = 0, respectively; an interval (a,b)
with a < {3 < b and a unique surjective mapping q

q:U XV x(—¢e¢)— (a,b)
such that ¢(a, 7, s) = q(a,7,0) = Eﬁ and g(u, (n,q(u,&, s))) = s, for each (u,n,s) €
——
~ ~ =£p
UxV x (—80,80).
The family of sets {([7 X <\7 X (a,b)) X (—5,5)) | (u,&,0) € Fg} defines an
open covering of the compact set I'y. Hence, there is a finite collection

{(UZ X <T~/; X (ai,bi)) X (—a,ei))) | 1= 1,...,2} that covers I'; with a corre-

sponding set of surjective mappings {¢g; | i = 1,...,z}. Define now that
g0 :=min{g,e1,...,e,}.

Let s = g(u,&). Then, for each u € J7_, U;
B(u,e) C | (‘72 X (az’abz’))
i=1

with B(u,e0) = {{ | —e0 < g(u,§) < eo}. Figure 1 indicates that the set I'o(uo)
is contained in the open set B(u,eg).

g(“oag)zo

-------------

R
. B
.............

W, =V, x(a;b,)

Figure 1. An e-tube around I'g(uy)

Let M := U7, (Ul X (f/@ X (ai,bi))) and the family p; € C*°(M,R),i =1,...,z,
be a partition of unity of the system {UZ X (\N/z X (ai,bi)) | i = 1,...,z}; ie.,
Yoiipi(wg) =1on M, 0 < ¢i(u,§) < 1,4 =1,...,2 and compact support
supp ;i C Us % (f/z X (ai,bi)) i=1,...,z.
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e Hence, it follows that

O 8)|_ ;
/B(u €0) v (Tk u 8)|5—g(u,§) ¢(£) 5

- Z /V bi) g (u8)|< v“‘@(Tk’ u, 8)}s:g(u,§) ¢(§)cpz(u, f)df

Furthermore, use the coordinate transformation

_ njg g #B

= TP =12,
& {q(u,n,S)lfJZﬁ J b

) )

to write

z

> / VO Tk, ) o) ()01 (1, £)d
Vix(ai,bi),lg(u,§)[<eo

1=

z

= Z/V ( ) lg(wd)|< Q(Tkauagvg(u7£))luz(ua£)d£7
X(a; glu, €0

i=1
where
~ [0O(7y,u,s) 00 (1, u, S)
Q. &.0(0,8)) = | 22T ) 2OG gy
00(1g,u, s
R
s :g(u7§)

and p1;(u, §) = ¢(§)pi(u, &) so that

z

/ Qi . €, (1, €))D(E) i, €)de
i=1 Y Vix(ai,b:),lg(u.§)[<e0

— Z/v :. Q(7r, u, (1, gi(u,n, 8)))pi(u, n, gi(u,n, s))dsdn
- Z/ Q Tk, U 777QZ(U n,s )))Mz(u,n,qz(um,s))dsdn

_ Z/ /_aUQ (s, (0, @i (w, 1, 8))) i (w, m, @i (w, 1, s))dsdn.

The rest of the proof uses a sequence of technical Lemmata for elementary properties
(which hold uniformly with respect u € W) of the expressions 6%;“ 3) 86(.5:;2” :3) BG(T us)

their integrals w.r.t. s and V,g(u, &) corresponding to |s| > ¢, |s| < €9 and 7% \, 0,
respectively, as well as the properties of the coordinate transformation. Based on the
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Mean-Value Theorem, the inner integration can be removed and thus the delta distribu-

009(T,u,s)
Js

tional term remains. Hereby the continuity of the density ¢(&) is required.

THEOREM 4.13 Let {7} ,cn C (0,1) be any sequence with 7, \, 0 and let Assump-
tions 4.11 and 4.12 be satisfied. Then the following hold true

(1) If Assumption 4.11 (MFCQ) holds, then
(a) limsupy,_,., A C II and
(b) limsup;,_,, A} C Iy.
(2) If Assumption 4.12 (LICQ) holds, then Iy C limsupy,_,., AJ.

Proof

(1) Take any sequence {7;},cy C (0,1) such that 7, \, 0%. Let (ug,m;) € Ay such
that (ug,mx) — (uo,mo). For each j € {1,...,q} using the estimation

[Vabr j (ur) + Vp(uo)l| < [[Vibr,j(ur) + Vps(up)ll + || — Vpj(ur) + Vp;(uo) |

and applying Proposition 4.9 and the continuity of Vp;(-) it follows that

lim [V (ug) + Vp(up)|| < lim sup [V j(u) + Vp;(u)]| = 0
k—o0 k—00 et

and limg_, || — Vp(ug) + Vp(up)|| = 0. Consequently,

q q
Z Mk, Vi () Pavdie Z 1m0, Vpj (uk)
j=1

j=1

where 7;; and 7;o are the j-th components of 7, and 79, respectively. Further-
more, the continuous differentiability of F'(u) yields that

q q
VF(u)+ Z nkawk,j(uk) =0 kjo VF(up) — Z M0,; VDj (ug) = 0.
J=1 j=1

The complementarity and non-negativity conditions in II are also consequences
of the continuity and non-negativity properties of p;(u) and 1y j(u). Hence, it
follows that (zo,n0) € II and

limsup Ay C 11
k—00

The proof for limsup;,_,,, A) C Il is the same as in part (1a).

(2) It remains to prove that II; C limsup;_,. AY. Suppose now that (ug,no) € .
Since uy is a strict local optimal solution of CCOPT, Theorem 4.4(2) implies that
there is sequence {uy} pen such that uy is a local optimal solution of NLP; and
limkﬁoo U = UQ-

For each k € {1,2,3,...}, the local optimality of u; to NLPj, yields that there
is ng € R% such that (ug,nx) € AY.
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Claim: There is a subsequence {n, } of {n;} such that
Nk, — 70- (7)

Now, from the local optimality of ug and uy, it follows that

q q
VF(Uk) + anij"(ﬂk,j(uk) — VF(U()) + Z ?707ij]‘(110) <ek=12,...
= j=1

for an arbitrary € > 0. This implies,

q
+Z Nk,j — N0.5) Vi i (ur) — VE (ug)

J=1
q
+ > 0 (Vpj(uo) + Viby (i, ur))|| < e,
j=1
k=1,2,...
This yields that
q
D (g = m0g) Vb j(ur) || < e+ [ VE(ur) = VF(uo)|
j=1
q
Z 10,5 (Vpj(uo) + Vb j(uk)) || »
j=1
k=1,2,...
Consequently,

(&, — Mo,
[ — 7ol ZH jnoHerl Vg j(ur) || <

q
e+ [|[VF(ur) — VF(uo)ll + Zﬁo,j (Vpj(uo) + Vi, j(ug))

k=1,2,....
Let 0y, = W,j 1,2,...,¢. Then the sequence {dj ;}, for each j €
{1,...,q}, is bounded. Hence, there is a subsequence {dj, j} which is convergent

and dy, ; — o ; for some 507]- € R. Since, {9y j(u)} is a convergent sequence,
the sequence {0, jtx, ;(ux)} is convergent and dy, jix, j(ur) — 0o, Vp;(ug). As
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a result it follows that

q
/r’kl:] 7707.7)
Vg, j(ur)|| — d0,;Vpj(uo)
Z||7lkl—770\|+1 " ]z; o

To show that Hzg‘:l 80,;Vp;(uo H = 0 only if §p; = 0 for each j € {1,...,¢}.

Assume that thereis j' € {1,..., ¢} such that dp j # 0 and ‘ _100,;Vpj(u )H =

0. This implies Y 9_; do,;Vp;(u*) = 0 violating the Assumptlon 4.12 (LICQ).
Consequently,
(i) either (50j =0 foreach j € {1,...,q};
100,V (u)|| £ 0.
The latter case yields

(ii) or

&+ IV F(un,) = VF(uo) | + || -y mo (Vs (o) + V()|
HZ?:1 Ok, V k5 (k) ‘ '

Consequently, both cases (i) and (ii) imply that ||ng, — no|| — 0 which verifies
the claim and concludes the proof.

17k, — mol| <
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