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Abstract. Phase-type (PH) distributions are a popular tool for the analysis
of univariate risks in numerous actuarial applications. Their multivariate coun-
terparts (MPH∗), however, have not seen such a proliferation, due to a lack of
explicit formulas and complicated estimation procedures. A simple construction
of multivariate phase-type distributions – mPH – is proposed for the parametric
description of multivariate risks, leading to models of considerable probabilistic
flexibility and statistical tractability. The main idea is to start different Markov
processes at the same state, and allow them to evolve independently thereafter,
leading to dependent absorption times. By dimension augmentation arguments,
this construction can be cast under the umbrella of MPH∗ class, but enjoys ex-
plicit formulas which the general specification lacks, including common measures
of dependence. Moreover, it is shown that the class is still rich enough to be dense
on the set of multivariate risks supported on the positive orthant, and it is the
smallest known sub-class to have this property. In particular, the latter result
provides a new short proof of the denseness of the MPH∗ class. In practice, this
means that the mPH class allows for the modeling of bivariate risks with any given
correlation or copula. We derive an EM algorithm for its statistical estimation
and illustrate it on bivariate insurance data. Extensions to more general settings
are outlined.

1. Introduction

The effective description of multivariate random variables is a common challenging
task for actuaries and risk managers. There exists an extensive selection of para-
metric models designed for this task, which very roughly can be categorized into
copula and non-copula based. Copula approaches (cf. Frees and Valdez (1998) and
more generally Joe (2014)) are easy to implement since often the margins are fitted
separately from the dependence structure. However, their dependence structure can
sometimes be stringent, and in a one-to-one correspondence with celebrated sum-
mary statistics for dependence such as rank correlations (it is worth mentioning that
vine copulas have to a large extent overcome this classic drawback, see Joe (1997)).
Moreover, formulas for their density and other standard functionals are not explicit.
See also Mikosch (2006) for a conceptual critique on the copula methodology. On
the other hand, non-copula approaches tend to possess closed-form densities. For
instance, Lee and Lin (2012) (see also Willmot and Woo (2015)) propose infinite
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2 M. BLADT

mixtures of Erlang vectors for the effective modeling of multivariate risks. A po-
tential drawback of this approach is that, although guaranteed to approximate any
possible risk arbitrarily closely, the actual number of Erlang mixture components
does not have a natural or physical interpretation beyond a mixing mechanism.
Additionally, Erlang mixtures in the literature assume a common scale parameter,
which may cause poor fitting performance when marginals are of different scales.

This article proposes a parametric model based on the absorption times of Markov
processes. The advantage of this approach, from an interpretation point of view, is
that we may consider the size of each realization as the traversing of a multi-state
process coming to an end. More specifically, for each distinct risk, we associate a
Markov process, all defined on the same state space (without loss of generality). At
inception, all risks start at the same state and are thereafter allowed to traverse
the state-space independently until their individual absorptions. This is a bold
claim since we are implying that dependence is entirely decided before the actual
size of the claims is observed. The dependence-generating process is particularly
well-suited for interpreting insurance loss severities. For instance, we may think
of the initial distribution of the Markov processes as a common event such as an
accident or a natural disaster. After the common event, the evolution of the loss
severities is then no longer subject to additional interactions. Simple mixing (as
in Lee and Lin (2012)) can be seen as a degenerate case: when the multi-state
processes do not jump from any state to any other state. Modeling joint lifetimes
as the absorption of the dependent multi-state process is also conceptually aligned
with the analysis and development of products within life insurance. In terms of
statistical performance, the scaling issue from mixtures of Erlangs is also alleviated,
since there are no constraints on the parameters in the proposed model. Here, the
number of components of mixtures is conceptually replaced by matrix dimensions.

Despite the simple way of generating dependence, we show that the resulting model
is versatile and tractable. We show that the model can be embedded in the multi-
variate phase-type MPH∗ class of Kulkarni (1989) (after dimension augmentation),
and thus enjoys the property of all projections being univariate phase-type (PH) dis-
tributed (introduced by Neuts (1975); see also Bladt and Nielsen (2017)). We write
mPH to distinguish our multivariate model of phase-type distributions from the gen-
eral class MPH∗. However, and in contrast to the latter class, we derive closed-form
formulas for its density, cumulative distribution function, moments, and the most
common measures of dependence. We provide proof of the denseness of the mPH
class on the positive orthant, along the lines of Johnson and Taaffe (1988), and de-
rive a fully explicit EM algorithm for their Maximum-Likelihood (ML) estimation,
generalizing the formulas of Asmussen et al. (1996) to the multi-dimensional case.

Multivariate phase-type distributions were first treated in Assaf et al. (1984), which,
together with the construction of Kulkarni (1989), are the most commonly used
classes. The main advantage of our proposed model with respect to the previous
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contributions is the ability to estimate the model (and its right-censored and frac-
tional extensions) to data in a very straightforward manner. The recent contribution
Furman et al. (2021) considered scaling of PH distributions which resulted in mul-
tivariate models with background risk. The statistical and tail behaviour of related
models was considered in Albrecher et al. (2021). The mPH class differs from the
latter conceptually in that the dependence does not occur as a common shock to
all the loss severities, but rather as a shared component at the inception of the
claim-size processes.

The rest of the article is structured as follows. Section 2 introduces the mPH class
and derives its basic properties and measures of dependence. Subsequently, Section 3
is devoted to showing a deeper property of mPH distributions: their denseness on the
positive orthant. The statistical estimation is developed in terms of an EM algorithm
in Section 4, and an illustration is provided in Section 5. Relevant inhomogeneous
and fractional extensions are outlined in Section 6, and finally Section 7 concludes.

2. Multivariate Phase-type distributions

2.1. Notation. In what follows, we use the following conventions. The vector in-
equality {X ≤ x} is understood as

⋂d
i=1{Xi ≤ xi}, and similarly for related notation.

For a scalar λ and a vector x, we understand by λx as the vector (λxi)i=1,...,d, and
similarly for division. The operators ⊗ and ⊕ denote the Kronecker multiplication
and addition between matrices, respectively.

For any square matrix A of dimension p× p, we define

u(A) =
1

2πi

∮
Γ

u(w)(wI −A)−1dw , A ∈ Rp×p ,

with Γ a simple path enclosing the eigenvalues of A, and I the identity matrix of
the same dimension.

2.2. Definition. Let (J
(k)
t )t≥0, k = 1, . . . , d, be homogeneous Markov pure-jump

processes on the common state space {1, . . . , p, p+ 1}, with states 1, . . . , p transient
and p+ 1 absorbing, so defining

p
(k)
jl (s, t) = P(Jt = l|Js = j) , 0 ≤ j, l ≤ p+ 1, 0 ≤ k ≤ d ,

we may write

Pk(s, t) = exp(Λk(t−s)) =

(
exp(Tk(t− s)) eee− exp(Tk(t− s))eee

0 1

)
∈ R(p+1)×(p+1),

for s < t, 0 ≤ k ≤ d, where Λk(t) are intensity matrices.

For future reference, we write eeek for the k-th canonical basis vector in Rp, eee =∑p
i=1 eeei, and

Tk = (t
(k)
ij )i,j=1,...,p , tttk = −Tkeee = (t

(k)
1 , . . . , t(k)

p )T , λ
(k)
i = −tii > 0 , i = 1, . . . , p .
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The process {J (k)
t }t≥0 is assumed to generate the k-th risk, 0 ≤ k ≤ d, by traversing

through different states before reaching absorption. Their dependence structure is
completely specified as follows:

J
(k)
0 = J

(l)
0 , (J

(k)
t )t≥0⊥⊥J(1)

0
(J

(l)
t )t≥0, l 6=k, k, l ∈ {1, . . . , d},(2.1)

which means that they all start at the same state, but otherwise evolve indepen-
dently thereafter (note that the t = 0 case is trivially true). For simplicity, we

denote J0 = J
(1)
0 , and P(J0 = j) = πj, j = 1, . . . , p, and πππ = (π1, . . . , πp).

Thus, the following random variables

Xi = inf{t > 0 : J
(i)
t = p+ 1} , i = 1, . . . , d,(2.2)

are all univariate phase-type distributed. Their joint behaviour will be our primary
focus in the sequel.

Definition 2.1 (mPH class). We say that a random vector X ∈ Rd
+ has a multi-

variate phase-type distribution if each component variable Xi, i = 1, . . . , d is given
as in (2.2), that is, they are the absorption times of distinct Markov jump processes
having the structure (2.1), which amounts to the following defining properties:

(1) An initial state is drawn, and all d processes start at such a state.
(2) Thereafter, each of the d Markov processes evolves independently, until their

respective absorptions.

Moreover, we use the notation

X ∼ mPH(πππ, T ), where T = {T1, . . . ,Td}.
Without loss of generality, we may assume that πππ has dimension p and the Tk,
k = 1, . . . , d, have dimension p× p.

Remark 2.1. Throughout the remainder of the article, we will use matrices Tk
of no particular substructure, so that the total degrees of freedom (number of free
parameters) is given by p− 1 + dp2.

We begin by showing that this definition falls into a very general class of multivariate
distributions with phase-type marginals, the MPH∗ class of Kulkarni (1989).

Proposition 2.2 (mPH ⊂ MPH∗). The mPH class is contained in the MPH∗ class.

Proof. Define the parameters

π̃ππk = (πkeee
T
k ,000, . . . ,000) ∈ Rpd, k = 1, . . . , p,

T̃k =


T1 ttteeeTk

T2 ttteeeTk
. . .

Td

 ∈ R(pd)×(pd), k = 1, . . . , p,
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R =


eee 000 · · ·
000 eee 000
...

. . .
eee

 ∈ R(pd)×d.

Then with

π̃ππ = (π̃ππ1, . . . , π̃ππp) ∈ Rp2d

T̃ =


T̃1

T̃2

. . .

T̃d

 ∈ R(p2d)×(p2d), R̃ =


R
R
...
R

 ∈ R(p2d)×d,

it is easy to see that the reward-collecting mechanism in this higher-dimensional
space leads to precisely the mPH class. �

Notice that the dimension of the latter representation is much larger than the indi-
vidual marginal dimension of the mPH class. This implies that fitting methods for
MPH∗ are prohibitively slow when applied to the mPH subclass, which motivates
us to derive a novel estimation procedure in a later section, specifically designed
for our case. However, belonging to the MPH∗ class does imply following desirable
property:

Corollary 2.3 (Projections). Let X be a multivariate phase-type random vector.
Then any inner product

〈X, u〉 =
d∑
i=1

Xiui, u > 0.

is univariate phase-type distributed.

2.3. Basic properties. We proceed to derive closed-form formulas for several func-
tionals of interest for the mPH class. Not only are these properties desirable from
a multivariate distribution perspective, but they will be crucial in later sections for
deriving closed-form formulas for measures of dependence and the EM algorithm.
We define the cumulative distribution function as

FX(x) = P(X1 ≤ x1, X2 ≤ x2, . . . , Xd ≤ xd), x ∈ Rd
+,

and the survival function as

SX(x) = P(X1 > x1, X2 > x2, . . . , Xd > xd), x ∈ Rd
+.

Clearly FX(x) 6= 1−SX(x) for d > 1, but they can be related by inclusion-exclusion
formulas.
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Proposition 2.4 (Cumulative distribution function). Let X ∼ mPH(πππ, T ) be a
multivariate phase-type random vector. Then

FX(x) =

p∑
j=1

πj

d∏
i=1

(1− eeeTj exp(Tixi)eee), x ∈ Rd
+.

For the survival function, we may express it in terms of the survival function of a
univariate phase-type distribution of appropriate size, as follows.

SX(x) = P(Y (x) > 1), x ∈ Rd
+,

for Y (x) ∼ PH(π̃ππ,T (x)), with

π̃ππ = (π1(eeeT1 ⊗ · · · ⊗ eeeT1 ), . . . , πp(eee
T
p ⊗ · · · ⊗ eeeTp )),(2.3)

and

T (x) =


T1x1 ⊕ · · · ⊕ Tdxd

T1x1 ⊕ · · · ⊕ Tdxd
. . .

T1x1 ⊕ · · · ⊕ Tdxd

 ,

(2.4)

where the diagonal block matrix is repeated p times.

Proof. We have that

P(X1 ≤ x1, X2 ≤ x2, . . . , Xd ≤ xd)

=

p∑
j=1

P(X1 ≤ x1, X2 ≤ x2, . . . , Xd ≤ xd|J0 = j)P(J0 = j)

=

p∑
j=1

πj

d∏
i=1

P(Xi ≤ xi|J0 = j) =

p∑
j=1

πj

d∏
i=1

(1− eeeTj exp(Tixi)eee),

and similarly for the survival function

P(X1 > x1, X2 > x2, . . . , Xd > xd)

=

p∑
j=1

P(X1 > x1, X2 > x2, . . . , Xd > xd|J0 = j)P(J0 = j)

=

p∑
j=1

πj

d∏
i=1

P(Xi > xi|J0 = j) =

p∑
j=1

πj

d∏
i=1

eeeTj exp(Tixi)eee

=

p∑
j=1

πj(eee
T
j ⊗ · · · ⊗ eeeTj ) exp(T1x1 ⊕ · · · ⊕ Tdxd)eee

=

p∑
j=1

πj(eee
T
j ⊗ · · · ⊗ eeeTj ) exp(T1x1 ⊕ · · · ⊕ Tdxd)eee,



MULTIVARIATE PHASE-TYPE DISTRIBUTIONS FOR LOSS MODELING 7

which implies the second claim. �

Corollary 2.5 (Density). Let X ∼ mPH(πππ, T ) be a multivariate phase-type random
vector. Then

fX(x) =

p∑
j=1

πj

d∏
i=1

eeeTj exp(Tixi)ttti = fY (x)(1), x ∈ Rd
+,

where Y (x) is univariate phase-type with parameters given in (2.3) and (2.4).

Proof. Follows by repeated partial differentiation. �

The quantiles, even for d = 1, are in general not explicitly available, and thus
numerical methods are required to calculate, for instance, the value-at-risk, tail-
value-at-risk, conditional tail expectation, or expected shortfall.

2.4. Moments and measures of dependence. Moments are of interest for any
multivariate distribution since the provide a glimpse into the dependence between
different elements of the random vector.

Theorem 2.6 (Laplace transform and moments). Let X ∼ mPH(πππ, T ) be a multi-
variate phase-type random vector. Then its joint Laplace transform is given by

E(exp(−uX)) =

p∑
j=1

πj

d∏
i=1

eeeTj (uiI − Ti)
−1ttti, u ∈ Rd

+.

For θ1, . . . , θd > −1, we have that

E(Xθ1
1 · · ·X

θd
d ) =

p∑
j=1

πj

d∏
i=1

Γ(θi + 1)eeeTj (−Ti)−θieee.

Proof. We have that

E(exp(−uX)) =

p∑
j=1

E(exp(−uX)|J0 = j)P(J0 = j)

=

p∑
j=1

πj

d∏
i=1

E(exp(−uiXi)|J0 = j) =

p∑
j=1

πj

d∏
i=1

eeeTj (uiI − Ti)
−1ttti.

A similar argument holds for the moments. �

We may then easily calculate, for instance, the Pearson correlation between any pair
of marginals. For such result, we first denote by

σk =

(
2

p∑
j=1

πjeee
T
j (−Tk)−2eee− (

p∑
j=1

πjeee
T
j (−Tk)−1eee)2

)1/2

, k = 1, . . . , d,

the standard deviation of each marginal.
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Corollary 2.7 (Pearson correlation). Let X ∼ mPH(πππ, T ) be multivariate phase-
type random vector. Then the pairwise Pearson correlations are given by

ρXk,Xl

=

∑p
j=1 πjeee

T
j (−Tk)−1eeeeeeTj (−Tl)−1eee− (

∑p
j=1 πjeee

T
j (−Tk)−1eee)(

∑p
j=1 πjeee

T
j (−Tl)−1eee)

σkσl
,

with k 6= l.

Copula-based methods are particularly interested in measures of dependence which
are invariant under marginal transformations, and in particular, rank-based mea-
sures have gained popularity. We now proceed to show that for the mPH class, such
rank-based dependence measures are also explicit.

Recall that for X = (X1, X2) and Z = (Z1, Z2) i.i.d. random vectors, Kendall’s
correlation at the population level is given by

P((X1 − Z1)(X2 − Z2) > 0)− P((X1 − Z1)(X2 − Z2) < 0).

Theorem 2.8 (Kendall correlation). Let X ∼ mPH(πππ, T ) be multivariate phase-
type random vector. Then the pairwise Kendall correlations are given for k, l ∈
{1, . . . , d} by

τXk,Xl

= 4

p∑
i=1

p∑
j=1

πiπj(eee
T
i ⊗ eeeTj )[−Tk ⊕ Tk]

−1(eee⊗ tttk)(eeeTi ⊗ eeeTj )[−Tl ⊕ Tl]
−1(eee⊗ tttl)− 1.

Proof. It is standard that

τXk,Xl
= 4

∫ ∞
0

∫ ∞
0

S(Xk,Xl)(x, y)f(x, y)dxdy − 1,

and so

(τXk,Xl
+ 1)/4

=

∫ ∞
0

∫ ∞
0

p∑
i=1

πieee
T
i exp(Tkx)eeeeeeTi exp(Tly)eee

p∑
j=1

πjeee
T
j exp(Tkx)tttkeee

T
j exp(Tly)tttldxdy

=

p∑
i=1

p∑
j=1

∫ ∞
0

∫ ∞
0

πieee
T
i exp(Tkx)eeeeeeTi exp(Tly)eeeπjeee

T
j exp(Tkx)tttkeee

T
j exp(Tly)tttldxdy

=

p∑
i=1

p∑
j=1

πiπj

∫ ∞
0

eeeTi exp(Tkx)eeeeeeTj exp(Tkx)tttkdx

∫ ∞
0

eeeTi exp(Tly)eeeeeeTj exp(Tly)tttldy

=

p∑
i=1

p∑
j=1

πiπj

∫ ∞
0

(eeeTi ⊗ eeeTj ) exp(Tkx⊕ Tkx)(eee⊗ tttk)dx
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×
∫ ∞

0

(eeeTi ⊗ eeeTj ) exp(Tly ⊕ Tly)(eee⊗ tttl)dy

=

p∑
i=1

p∑
j=1

πiπj(eee
T
i ⊗ eeeTj )[−Tk ⊕ Tk]

−1(eee⊗ tttk)(eeeTi ⊗ eeeTj )[−Tl ⊕ Tl]
−1(eee⊗ tttl).

�

Similarly, for X = (X1, X2), (Y1, Y2) and Z = (Z1, Z2) i.i.d. random vectors, Spear-
man’s correlation at the population level is given by

P((X1 − Z1)(X2 − Y2) > 0)− P((X1 − Y1)(X2 − Z2) < 0).

Theorem 2.9 (Spearman correlation). Let X ∼ mPH(πππ, T ) be multivariate phase-
type random vector. Then the pairwise Spearman correlations are given for k, l ∈
{1, . . . , d} by

ρSXk,Xl

= 12

p∑
j=1

πj
(
1 + (πππ ⊗ eeeTj )[Tk ⊕ Tk]

−1(eee⊗ tttk)
) (

1 + (πππ ⊗ eeeTj )[Tl ⊕ Tl]
−1(eee⊗ tttl)

)
− 3.

Proof. It is standard that

τXk,Xl
= 12

∫ ∞
0

∫ ∞
0

FXk
(x)FXl

(y)f(x, y)dxdy − 3,

and so

(ρSXk,Xl
+ 3)/12

=

∫ ∞
0

∫ ∞
0

(1− πππ exp(Tkx)eee) (1− πππ exp(Tly)eee)

p∑
j=1

πjeee
T
j exp(Tkx)tttkeee

T
j exp(Tly)tttldxdy

=

p∑
j=1

πj

∫ ∞
0

(1− πππ exp(Tkx)eee)eeeTj exp(Tkx)tttkdx

∫ ∞
0

(1− πππ exp(Tly)eee)eeeTj exp(Tly)tttldy

=

p∑
j=1

πj

(
1−

∫ ∞
0

(πππ ⊗ eeeTj ) exp(Tkx⊕ tttkx)(eee⊗ tttk)dx
)

×
(

1−
∫ ∞

0

(πππ ⊗ eeeTj ) exp(Tly ⊕ tttly)(eee⊗ tttl)dy
)

=

p∑
j=1

πj
(
1− (πππ ⊗ eeeTj )[−Tk ⊕ Tk]

−1(eee⊗ tttk)
) (

1− (πππ ⊗ eeeTj )[−Tl ⊕ Tl]
−1(eee⊗ tttl)

)
.

�

Remark 2.2. Although, in principle, by their denseness property, any correlation
is achievable for a large enough dimension p, it is worth noticing that for a fixed
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p, the entire range of correlation may not be captured. For instance, for p = 1, we
have two independent exponential random variables, so the correlation can only be
zero.

Remark 2.3 (Copulas). The mPH class in not based on copulas. Nonetheless, it
may give rise to very different shapes of copula densities with a relatively small state
space. The copula densities, as defined for a bivariate random vector by

cX(u, v) =
fX(x1, x2)

fX1(x1)fX2(x2)
, u = FX1(x1), v = FX2(x2) ∈ [0, 1]

are in general not explicit, but can be very effectively calculated.

Consider for instance p = 3, and the following sojourn intensities: a = 5, b = 20
and c = 140. We define six mPH models according to the following parameters:

πππ = eee/3, T1 =

− a 1 1
1 −b 1
1 1 −c



T2 =

− α(1) 1 1
1 −α(2) 1
1 1 −α(3)

 , (α(1), α(2), α(3)) ∈ P((a, b, c)),

where P((a, b, c)) is the set of all six permutations of the vector (a, b, c). It follows
immediately that all six mPH models have the same marginals, and thus the copulas,
depicted by their contours in Figure 2.1, are a standardized measure of dependence
when permuting the state space of the second marginal.

3. Denseness on the positive orthant

The denseness of infinite mixtures of Erlang vectors was established in Lee and Lin
(2012). We show that the same holds true for finite mixtures, as a way to establish
the property for general finite-order mPH distributions. Although a substantial
part of the proof could be taken from the latter reference, we proceed using an
alternative and elementary method of proof, inspired by the univariate case given
in Johnson and Taaffe (1988), also based on Erlang substructures. This method of
proof also sheds light into one possible constructive way of interpreting additional
mixture components – or more generally, additional elements of the state-space –
with respect to their contribution towards approximating a target distribution.

Recall that weak convergence is characterised by point-wise convergence of the mul-
tivariate cumulative distribution functions at continuity points of the limit.

Define for any λ > 0,

dF (λ, k) = P(X ∈ C(λ, k)), k ∈ Nd,
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Figure 2.1. Copulas associated with the density functions of a bi-
variate mPH distribution based on permuting the state-space of the
second marginal. Standard Gaussian margins are used for visualiza-
tion purposes.
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where C(λ, k) = {x|xi ∈ ((ki − 1)/λ, ki/λ], i = 1, . . . , d}. Further, let

Ek(u;λ) = 1−
k−1∑
l=1

1

l!
(λu)l exp(−λu) = 1−

k−1∑
l=1

pl(u), u > 0,

i.e. the univariate Erlang cumulative distribution function, and with pl(u), l =
1, 2, . . . , being Poisson probabilities with mean λu.

Theorem 3.1 (Denseness of infinite mixtures). Let F be a distribution concentrated
on Rd

+. Define for n ∈ N ,

Fn(x) =
∞∑
k1=1

· · ·
∞∑

kd=1

dF (n, (k1, . . . , kd))Ek1(x1;n) . . . Ekd(xd;n).

Then for each n ∈ N, Fn is a distribution function and

Fn(x)→ F (x), n→∞

at every point of continuity x of F .

Proof. The sum of all dF (n, (k1, . . . , kd)) ≥ 0 is unity, since they measure probabil-
ities at sets which generate a partition. Thus Fn(x) is a multivariate distribution
function. Now let x be a continuity point of F . Now,

Fn(x)

=
∞∑
k1=1

· · ·
∞∑

kd=1

dF (n, (k1, . . . , kd))Ek1(x1;n) . . . Ekd(xd;n)

=
∞∑
k1=1

· · ·
∞∑

kd−1=1

Ek1(x1;n) . . . Ekd−1
(xd;n)

∞∑
kd=1

dF (n, (k1, . . . , kd))(1−
kd−1∑
i=1

pi(xd)).

Notice that

∞∑
kd=1

dF (n, (k1, . . . , kd))(1−
kd−1∑
i=1

pi(xd))

=
∞∑

kd=1

dF (n, (k1, . . . , kd))−
∞∑

kd=1

dF (n, (k1, . . . , kd))

kd−1∑
i=1

pi(xd)

=
∞∑

kd=1

dF (n, (k1, . . . , kd))−
∞∑
i=0

pi(xd)
∞∑

kd=i+1

dF (n, (k1, . . . , kd))

=
∞∑
i=0

pi(xd)
i∑

kd=1

dF (n, (k1, . . . , kd)).
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Thus, applying the last relation d times, we obtain

Fn(x) =
∞∑
i1=1

· · ·
∞∑
id=1

pi1(x1) . . . pid(xd)

i1∑
k1=1

· · ·
id∑

kd=1

dF (n, (k1, . . . , kd))

=
∞∑
i1=1

· · ·
∞∑
id=1

pi1(x1) . . . pid(xd)F (i).

Now define the independent random variables Yn,i ∼ Poisson(n · xi), and Xn,i =
Yn,i/n. From the above expression it is follows that

E(F ((Xn,1, . . . , Xn,d))) = Fn(x).

Since, almost surely,
lim
n→∞

Xn,i = xi, i = 1, . . . , d,

then dominated convergence implies that

Fn(x)→ E(F (x)) = F (x), n→∞,
as desired. �

We immediately obtain the following result.

Corollary 3.2. Let X be a random vector in Rd
+. Then there exist a sequence of

random vectors {Xn}n∈N in Rd
+, where each Xn has a distribution that is an infinite

mixture of d-dimesional random vectors with independent Erlang components, such
that

Xn
d→ X, n→∞.

We now allow for finite mixtures as well.

Theorem 3.3 (Approximation by finite mixtures). Let F be a distribution concen-
trated on Rd

+. Define for n ∈ N and m = (m1, . . . ,md) ∈ Nd,

Fm,n(x) =
1

F (m/n)

m1∑
k1=1

· · ·
md∑
kd=1

dF (n, (k1, . . . , kd))Ek1(x1;n) . . . Ekd(xd;n).

Then
lim
m→∞

sup
x∈Rd

+

|Fn(x)− Fm,n(x)| = 0.

Proof. First note that for X ∼ F ,
∞∑

k1=m1+1

· · ·
∞∑

kd=md+1

dF (n, (k1, . . . , kd))

= P(X1 > m1/n, . . . , Xd > md/n)

≤ 1− P(X1 ≤ m1/n, . . . , Xd ≤ md/n) = 1− F (m/n).
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Then we have that

|Fn(x)− Fm,n(x)|

≤

∣∣∣∣∣
∞∑

k1=m1+1

· · ·
∞∑

kd=md+1

dF (n, (k1, . . . , kd))Ek1(x1;n) . . . Ekd(xd;n)

∣∣∣∣∣
+

∣∣∣∣∣
(

1− 1

F (m/n)

) m1∑
k1=1

· · ·
md∑
kd=1

dF (n, (k1, . . . , kd))Ek1(x1;n) . . . Ekd(xd;n)

∣∣∣∣∣
≤

∣∣∣∣∣
∞∑

k1=m1+1

· · ·
∞∑

kd=md+1

dF (n, (k1, . . . , kd))

∣∣∣∣∣
+

∣∣∣∣∣
(

1− 1

F (m/n)

) m1∑
k1=1

· · ·
md∑
kd=1

dF (n, (k1, . . . , kd))

∣∣∣∣∣
=

∣∣∣∣∣
∞∑

k1=m1+1

· · ·
∞∑

kd=md+1

dF (n, (k1, . . . , kd))

∣∣∣∣∣+ |1− F (m/n)|

≤ 2 |1− F (m/n)| ,

which is independent in x, and goes to zero as all entries of m go to infinity. �

In particular we obtain the following limit.

Corollary 3.4. Let F be a distribution concentrated on Rd
+. Then

lim
n→∞

lim
m→∞

Fm,n(x) = F (x), ∀x ∈ Rd.

The above now yields the following main result, noting that the class of mPH dis-
tributions is closed under mixtures, and that multivariate Erlang distributions with
independent marginals fall trivially into the mPH class.

Theorem 3.5 (Denseness of the mPH class). Let X be a random vector in Rd
+.

Then there exist a sequence of random vectors {Xn}n∈N in Rd
+, where each Xn has

a multivariate phase-type distribution, such that

Xn
d→ X, n→∞.

In particular, the Xn may be taken as finite mixtures of d-dimensional random vec-
tors with independent Erlang components.

It should be mentioned that although the mPH class is dense on the class of
positively-supported distributions, for convergence to be achieved, we require the
number of components to be allowed to diverge. That is, for a fixed and finite
dimension, denseness does not hold.
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Another dense subclass are Markovian Arrival Processes (MAP’s). However, the
mPH class is contained in the latter and thus is the smallest (with respect to set
inclusion) known dense subclass of the MPH∗ distributions.

Conjecture 3.6. The mPH class is the smallest possible subclass of the MPH∗

distributions with general PH margins which is dense on the set of distributions
supported on the positive orthant.

4. Estimation

We now derive a fully-explicit EM algorithm for the ML estimation of the mPH
class. In contrast to the estimation methods for the MPH∗ class, the formulas are
not based on projections onto univariate domains, but instead we directly compute
the conditional expectations on the multivariate domain.

Let F ∼ mPH(πππ, T ). Assume we have a sample x(1), . . . , x(n) ∼ F with associated

latent sample paths {J (i,m)
t }t≥0, i = 1, . . . , d, m = 1, . . . , n. We make the following

definitions.

Bk =
d∑
i=1

n∑
m=1

1{J (i,m)
0 = k}, k = 1, . . . , p,

N
(i)
ks =

n∑
m=1

∑
t≥0

1{J (i,m)
t− = k, J

(i,m)
t = s}, k, s = 1, . . . , p, i = 1, . . . , d,

N
(i)
k =

n∑
m=1

∑
t≥0

1{J (i,m)
t− = k, J

(i,m)
t = p+ 1}, k = 1, . . . , p, i = 1, . . . , d,

Z
(i)
k =

n∑
m=1

∫ ∞
0

1{J (i,m)
t = k}dt, k = 1, . . . , p, i = 1, . . . , d.

These statistics are not observable, but help with constructing an effective EM al-
gorithm. Notice also their interpretation in terms of the dynamics of the underlying
Markov process. Denote by Ξ (respectively ξ) the observed information of the sam-
ple at the population level (respectively, observation level). Then, the completely
observed likelihood can be written as follows:

(4.1) Lc(πππ, T ; ξ) =

p∏
k=1

πk
Bk

d∏
i=1

p∏
k=1

∏
s 6=k

t
(i)
ks

N
(i)
ks
e−t

(i)
ksZ

(i)
k

p∏
k=1

t
(i)
k

N
(i)
k
e−t

(i)
k Z

(i)
k ,

which is seen to conveniently fall into the exponential family of distributions, and
thus has explicit maximum likelihood estimators.

The E-step consists on calculating the expected value of the log likelihood, given the
sample, while the M-step maximises the likelihood given the conditional expectations
in place of the actual statistics. The latter step is straightforward and thus the
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details are omitted. We thus only derive the former, which depends on the joint
distribution. We get by Bayes’ formula

E(Bk | Ξ = ξ) =
d∑
i=1

n∑
m=1

E(1{J (i,m)
0 = k} | Ξ = ξ)

= d

n∑
m=1

P(J
(m)
0 = k | Ξ = ξ)

= d
n∑

m=1

P(J
(m)
0 = k)P(X1 ∈ dx(m)

1 , . . . , Xd ∈ dx(m)
d | J (m)

0 = k)

P(X1 ∈ dx(m)
1 , . . . , Xd ∈ dx(m)

d )

= d
n∑

m=1

πk
∏d

i=1 eeek
T exp(Tix

(m)
i )ttti∑p

j=1 πj
∏d

i=1 eeek
T exp(Tix

(m)
i )ttti

,

E(Z
(i)
k | Ξ = ξ)

=
n∑

m=1

E(

∫ x
(m)
i

0

1{J (i,m)
t = k}dt | Ξ = ξ)

=
n∑

m=1

∫ x
(m)
i

0

P(J
(i,m)
t = k | Ξ = ξ)dt

=
n∑

m=1

∫ x
(m)
i

0

P(J
(i,m)
t = k)P(X1 ∈ dx(m)

1 , . . . , Xd ∈ dx(m)
d | J (i,m)

t = k)

P(X1 ∈ dx(m)
1 , . . . , Xd ∈ dx(m)

d )
dt

=
n∑

m=1

∫ x
(m)
i

0

∑p
j=1 πjeeek

T exp(Ti(x
(m)
i − t))ttti

∏
l 6=i eeej

T exp(Tlx
(m)
l )tttleeej

T exp(Tit)eeek∑p
j=1 πj

∏d
i=1 eeej

T exp(Tix
(m)
i )ttti

dt

=
n∑

m=1

∑p
j=1 πj

∏
l 6=i eeej

T exp(Tlx
(m)
l )tttl∑p

j=1 πj
∏d

i=1 eeej
T exp(Tix

(m)
i )ttti

∫ x
(m)
i

0

eeek
T exp(Ti(x

(m)
i − t))tttieeejT exp(Tit)eeekdt.

Further,

E(N
(i)
ks | Ξ = ξ)

=

n∑
m=1

E(
∑

t≥0 1{J(i,m)
t− = k, J

(i,m)
t = s}, X1 ∈ dx(m)

1 , . . . , Xd ∈ dx
(m)
d )

P(X1 ∈ dx(m)
1 , . . . , Xd ∈ dx

(m)
d )

=
n∑

m=1

p∑
j=1

p∑
l=1

πk

E(
∑

t≥0 1{J(i,m)
t− = k, J

(i,m)
t = s}1{X1 ∈ dx(m)

1 , . . . , Xd ∈ dx
(m)
d }1{J(i,m)

x
(m)
i −

= l}t(i)l | J
(m)
0 = j)∑p

j=1 πj
∏d

i=1 eeej
T exp(Tix

(m)
i )ttti

=
n∑

m=1

∑p
j=1 πj

∏
l 6=i eeej

T exp(Tlx
(m)
l )tttl∑p

j=1 πj
∏d

i=1 eeej
T exp(Tix

(m)
i )ttti

p∑
l=1

E(
∑
t≥0

1{J(i,m)
t− = k, J

(i,m)
t = s}1{Xi ∈ dx

(m)
i }1{J(i,m)

x
(m)
i −

= j} | J(m)
0 = j)t

(i)
l

=

n∑
m=1

∑p
j=1 πj

∏
l 6=i eeej

T exp(Tlx
(m)
l )tttl∑p

j=1 πj
∏d

i=1 eeej
T exp(Tix

(m)
i )ttti

p∑
l=1

t
(i)
ks

∫ x
(m)
i

0
eeeTs exp(Ti(x

(m)
i − t))eeeleeeTj exp(Tit)eeekdt t

(i)
l ,
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so that summing up, we obtain

E(N
(i)
ks | Ξ = ξ)

=
n∑

m=1

∑p
j=1 πj

∏
l 6=i eeej

T exp(Tlx
(m)
l )tttl∑p

j=1 πj
∏d

i=1 eeej
T exp(Tix

(m)
i )ttti

t
(i)
kseee

T
s

(∫ x
(m)
i

0

exp(Ti(x
(m)
i − t))tttieeeTj exp(Tit)dt

)
eeek.

Finally,

E(N
(i)
k | Ξ = ξ) =

n∑
m=1

E(
∑
t≥0

1{J (i,m)
t− = k, J

(i,m)
t = p+ 1} | Ξ = ξ)

=
n∑

m=1

P(J
(i)

x
(m)
i −

= k | Ξ = ξ)

=
n∑

m=1

P(X1 ∈ dx(m)
1 , . . . , Xd ∈ dx(m)

d | J (i,m)

x
(m)
i −

= k)P(J
(i,m)

x
(m)
i −

= k)

P(X1 ∈ dx(m)
1 , . . . , Xd ∈ dx(m)

d )

=
n∑

m=1

t
(i)
k

P(X1 ∈ dx(m)
1 , . . . , Xd ∈ dx(m)

d | J (i,m)

x
(m)
i −

= k)∑p
j=1 πj

∏d
i=1 eeej

T exp(Tix
(m)
i )ttti

=
n∑

m=1

p∑
j=1

πjt
(i)
k

eeej
T exp(Tix

(m)
i )eeek

∏
l 6=i eeej

T exp(Tlx
(m)
l )tttl∑p

j=1 πj
∏d

i=1 eeej
T exp(Tix

(m)
i )ttti

.

It is not hard to verify that for d = 1, all these formulas indeed reduce to the
corresponding univariate phase-type variants, found in Asmussen et al. (1996).

For simplicity, we provide the full procedure in Algorithm 1, where we avoid re-
dundant matrix exponential evaluations – which are computationally costly. Notice
that integrals of matrix exponentials do not require numerical evaluation, but can
be circumvented using the results of Van Loan (1978), which in particular gives the
identity

exp

((
T tttπππ
0 T

)
y

)
=

(
eT y

∫ y
0

eT (y−u)tttπππeTudu
0 eT y

)
.

This implies that integrals of the form∫ y

0

eT (y−u)tttπππeTudu,

may be obtained as a sub-matrix of a single matrix exponential evaluation.

Standard arguments for the EM algorithm for exponential families yields the fol-
lowing result, which despite not guaranteeing convergenge to a global optimum, it
does guarantee monotonicity and thus eventual convergence.
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Algorithm 1 EM algorithm for mPH distributions

Input: a sample of size n, x = (x(1)T, . . . , x(n)T), where each x(m) ∈ Rd+.
1) Matrix exponentials: Compute for each sample point (and thus their super-index

is omitted in this step):

akij = eeeTk exp(Tixi)eeej , k, j = 1, . . . , p, i = 1, . . . , d,

aki =
∑
j

t
(i)
j akij , k = 1, . . . , p, i = 1, . . . , d,

ak,−i =
∏
j 6=i

akj , k = 1, . . . , p, i = 1, . . . , d,

ak =
∏
i

aki, k = 1, . . . , p,

ãk,i =
∑
j

πjaj,−iajik, k = 1, . . . , p, i = 1, . . . , d,

a =
∑
k

πkak

bskij = eees
T

∫ xi

0
exp(Ti(xi − t))tttieeejT exp(Tit)dteeek, s, k, j = 1, . . . , p, i = 1, . . . , d,

bski =
∑
j

πj(aj,−ibskij), s, k = 1, . . . , p, i = 1, . . . , d,

2) E-step: compute the conditional expectations

E(Bk | Ξ = ξ) = dπk

n∑
(ak/a), k = 1, . . . , p

E(Z
(i)
k | Ξ = ξ) =

n∑
(bkki/a), k = 1, . . . , p, i = 1, . . . , d,

E(N
(i)
ks | Ξ = ξ) = t

(i)
ks

n∑
(bski/a), s, k = 1, . . . , p, i = 1, . . . , d,

E(N
(i)
k | Ξ = ξ) = t

(i)
k

n∑
(ãki/a), k = 1, . . . , p, i = 1, . . . , d

3) M-step: let

π̂k =
E(Bk | Ξ = ξ)

d · n
, k = 1, . . . , p,

t̂
(i)
ks =

E(N
(i)
ks | Ξ = ξ)

E(Z
(i)
k | Ξ = ξ)

, s, k = 1, . . . , p, i = 1, . . . , d.

t̂
(i)
k =

E(N
(i)
k | Ξ = ξ)

E(Z
(i)
k | Ξ = ξ)

, k = 1, . . . , p, i = 1, . . . , d.

t̂
(i)
kk = −

∑
s 6=k

t̂
(i)
ks − t̂

(i)
k , k = 1, . . . , p, i = 1, . . . , d.

4) Update the current parameters to (πππ, T ) = (π̂ππ, T̂ ). Return to step 1 unless a
stopping rule is satisfied.

Output: fitted representation (π̂ππ, T̂ ).
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Proposition 4.1 (Convergence). The likelihood function is increasing at each it-
eration of the EM algorithm for mPH distributions. In particular, convergence is
guaranteed to a possibly local maximum.

Remark 4.1. Using the fit() function for mph objects from the matrixdist pack-
age1, most datasets will be correctly estimated within one thousand iterations (ab-
solute tolerance of 10−6), which for a dataset of e.g. 104 datapoints with d = 2 will
take just a few minutes (depending on computer specifications). Initial parameters
are by default randomly generated when initializing an mph object.

5. An insurance illustration

This section illustrates the statistical methodology developed in the previous section
on real-life insurance data. The principal aim is to show the feasibility and accuracy
of the algorithm. That said, we do not intend to do a systematic comparison against
all relevant multivariate models. A full practical guide to how to effectively choose
the order p and structure of the underlying processes, as well as their corresponding
simplified EM algorithms, is the subject of additional research, which is currently
under preparation (where the useful interval-censored case is also studied). Prelim-
inary results suggest that for models with a unique mode, a small p (smaller than
5) is often sufficient, with no special structure, while Coxian structures and large p
(larger than 10) perform better when multimodal marginals are present. Presently,
p is chosen by trial and error, and we allow for the most general phase-type structure
possible (no zeros in T ).

The dataset is the Loss-ALAE dataset, consisting of n = 1500 bivariate observa-
tions, the first margin being an insurance loss, and the second one the corresponding
allocated loss adjustment expense. The dataset was considered in Frees and Valdez
(1998), see also Section 7.4 of Joe (2014). There are 34 loss observations are which
are right-censored, which we will presently consider as fully observed. Deriving
interval-censored versions of the EM algorithm above is the subject of further re-
search. The loss variable ranges from 10 to 2.2MM, with quartiles of 4, 000, 12, 000
and 35, 000, while the ALAE variable ranges from 15 to 0.5MM with quartiles of
2, 300, 5, 500 and 12, 600. Following Joe (2014), we divide all data points by 10, 000,
for easier numerical implementation.

Phase-type marginals are popular for statistical modeling due to their closed-form
formulas and denseness properties and are sometimes linked through a copula to
obtain dependence. However, by the results of previous sections, we may fit a
tractable multivariate phase-type distribution directly. Thus, we consider fitting a
4-dimensional mPH via the EM algorithm of the previous section, and for reference,
we also consider separately fitting 4-dimensional univariate PH distributions to each
marginal and modeling the dependence structure with a copula (effectively, the IFM
method). The order p = 4 was found by fitting various orders of increasing size

1R package openly available at https://github.com/martinbladt/matrixdist_1.0.

https://github.com/martinbladt/matrixdist_1.0
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until no significant improvement of the likelihood function occurred, and the initial
parameters were randomly generated. The results are given in Table 5.1. We observe
that the performance of the dependence structure implied from the mPH model is
advantageous compared to the copulas, given that PH margins are chosen. Further
evidence of the adequate fit is provided in Figures 5.1 and 5.2. Naturally, the IFM
method also allows for non-PH margins, but this would not make the dependence
structure directly comparable. For extensions of the tail behaviour of the margins,
we refer to Section 6. The parameters are given by

πππ = (0.408 , 0.441 , 0.135 , 0.016),

T1 =


− 0.381 0.336 0 0

0 −1.797 0 0.005
0.007 0.014 −0.077 0
0.024 0 0 −0.025

 ,

T2 =


− 1.481 0.9 0.043 0

0 −2.526 0.017 0.004
0.236 0.025 −0.417 0

0 0 0.085 −0.085

 .

We observe that all states are possible initial states. For the first marginal, the
following transitions are possible: 1→ 2→ 4→ 1, 3→ 1, 3→ 2, which essentially
means that the third state is not accessed very often (only if chosen as initial state).
Given that the third state has the second largest mean sojourn time, with average
1/0.077 ≈ 13, the state is acting like a possible additive shock. Of course, the
interpretation is in terms of latent variables, and without further covariates, cannot
be linked to a physical process. For the second marginal, similar considerations hold,
although there are more jump possibilities. When interested in the joint behaviour
one may inspect each possible path. For example, notice that when starting in state
four, the marginals behave very similarly, both having a large initial sojourn time
and then immediately jumping to a state of comparable and smaller sojourn time,
so that a strong positive relation is created for large values.

Finally, we study the empirical versus fitted joint dependence for increasing thresh-
olds. More precisely, we consider joint exceedances over increasing bivariate thresh-
olds. The thresholds for both marginals are chosen according to quantiles of order
α ∈ (0, 1). For the fitted counterpart, the correlations for different thresholds are
computed from simulations, using 1500 datapoints, the same number as the sam-
ple size. The procedure is the repreated 5000 times and averaged. The results are
given in Table 5.2, where the tail independence is not yet apparent for the mPH
model. Theoretically, for very high thresholds (outside of the data rage), the tail
independence will manifest itself.
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Figure 5.1. Scatter plot of the Loss-ALAE data, together with con-
tour lines of the fitted mPH density. Both are log-transformed in both
marginals (after estimation) for visualization purposes.

Figure 5.2. Marginal fitted densities for the Loss-ALAE data, to-
gether with their respective histograms. Both marginals are log-
transformed (after estimation) for visualization purposes.
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Model Log Likelihood Degrees of freedom AIC BIC
mPH −4495.46 35 9060.921 9246.883
PH+Gumbel −4497.643 39 9073.287 9280.502
PH+Normal −4518.516 39 9115.032 9322.248
PH+t −4510.010 40 9100.020 9312.549
PH+Frank −4530.431 39 9138.862 9346.078
PH+Clayton −4604.792 39 9287.584 9494.800
PH+Joe −4512.921 39 9103.843 9311.058
PH+Galambos −4497.466 39 9072.933 9280.148
PH+Husler Reiss −4502.159 39 9082.319 9289.535
PH+Tawn −4502.549 39 9083.098 9290.314

Table 5.1. Summary of fitted multivariate models to the Loss-
ALAE dataset. All models have general phase-type marginals with
p = 4.

α Pearson Pearson fitted Kendall Kendall fitted Spearman Spearman fitted
0.1 0.392 0.425 0.292 0.293 0.421 0.426
0.2 0.379 0.417 0.264 0.277 0.382 0.403
0.3 0.361 0.410 0.251 0.260 0.363 0.380
0.4 0.370 0.401 0.237 0.247 0.346 0.362
0.5 0.353 0.391 0.269 0.242 0.387 0.356
0.6 0.336 0.377 0.264 0.247 0.383 0.364
0.7 0.295 0.357 0.248 0.246 0.362 0.360
0.8 0.235 0.313 0.287 0.200 0.412 0.293
0.9 0.185 0.270 0.090 0.164 0.135 0.242

Table 5.2. Empirical versus simulated joint exceedance correlations
for the Loss-ALAE data.

6. Tail behaviour and extensions

Some applications may require tail behaviour in each marginal which is different to
that of exponential decay. In particular, life-insurance applications require lighter
tails, such as Gompertz-type tails, and third party liability insurance often requires
Pareto-type tails. This section outlines two possible solutions, inspired by the uni-
variate case.

6.1. Inhomogeneous mPH distributions. Let (J
(k)
t )t≥0, k = 1, . . . , d, be inho-

mogeneous Markov pure-jump processes on {1, . . . , p, p + 1}, with states 1, . . . , p
transient and p + 1 absorbing. We endow the processes with the same dependence
structure as in the homogeneous case, given by (2.1).
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It follows (cf. Albrecher and Bladt (2019)) that the transition matrix is given by

P (s, t) =
t∏
s

(I + Λ(u)du) := I +
∞∑
k=1

∫ t

s

∫ uk

s

· · ·
∫ u2

s

Λ (u1) · · ·Λ (uk) du1 · · · duk,

with

Λ(t) =

(
T (t) ttt(t)

0 0

)
∈ R(p+1)×(p+1) , t ≥ 0 .

Then the random variables Xi = inf{t > 0 : J
(i)
t = p + 1} , i = 1, . . . , d, are

univariately inhomogeneous phase-type distributed.

Definition 6.1 (Inhomogeneous mPH class). We say that a random vector X ∈ Rd
+

has a inhomogeneous multivariate phase-type distribution if each component variable
Xi, i = 1, . . . , d is the absorption time of distinct inhomogeneous Markov jump
process having the structure (2.1) and with Ti(t) = λi(t)Ti, i = 1, . . . , d.

Moreover, we use the notation

X ∼ mIPH(πππ, T ,L), where T = {T1, . . . ,Td}, L = {λ1, . . . , λd}.

Writing

g−1
i (x) =

∫ x

0

λi(u)du, i = 1, . . . , d,

it follows that its density, cumulative distribution function, and tail function are
given, for x ∈ Rd

+, by

FX(x) =

p∑
j=1

πj

d∏
i=1

(1− eeeTj exp(Tig
−1
i (xi))eee),

SX(x) =

p∑
j=1

πj

d∏
i=1

eeeTj exp(Tig
−1
i (xi))eee,

fX(x) =

p∑
j=1

πj

d∏
i=1

eeeTj exp(Tig
−1(xi))tttiλi(xi),

the derivation being analogous to the homogeneous case, and thus omitted. The
tail behaviour of each marginal is given by

P(Xi > xi) ∼ ci[g
−1
i (xi)]

ni−1e−χ2[g−1
i (xi)], i = 1, . . . , d,

where for each i, ci is a positive constant, −χi is the largest real eigenvalue of Ti
and ni is the dimension of the Jordan block associated to χi. This can give rise
to different tail behaviour for different marginals, which is useful, but uncommon
in non-copula specifications. By construction, it is clear that the marginals are tail
independent, and that the copula behaviour is the same as for the mPH class.
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6.2. Fractional mPH distributions.

6.2.1. A semi-Markov construction. We first state a univariate construction from
Albrecher et al. (2020a), which aids us define the multivariate extension. As before,
let E = {1, 2, ..., p, p+1} be a state space and denote by Q = {qij}i,j∈E the transition
matrix of a Markov chain {Yn}n∈N on E, where the first p states are transient and
state p+1 is absorbing. In particular we have that the chain {Yn}n∈N has a transition
matrix given by

Q =

(
Q1 qqq1

000 1

)
.

We also assume that qii = 0 for all i 6= p + 1, in order to construct a semi-Markov
process.

Let α ∈ (0, 1] and λi > 0. For each state i = 1, ..., p, we define T in, n = 1, 2, ... as
independent ML(α, λi)–distributed (Mittag-Leffler distributed) random variables,
with density given by

(6.1) fλ,α(x) = λxα−1Eα,α(−λxα), λ > 0, 0 < α ≤ 1,

where

Eα,β(z) =
∞∑
k=0

zk

Γ(αk + β)
, β ∈ R, α > 0

is the Mittag–Leffler function (see Gorenflo et al. (2014); Haubold et al. (2011)).

Define S0 = 0 and

Sn =
n∑
i=1

T Yii , n ≥ 1,

so that the following specification is a semi–Markov process:

(6.2) Jt =
∞∑
n=1

Yn−11{Sn−1 ≤ t < Sn}, t ≥ 0.

Several properties of the above construction can be found in Albrecher et al. (2020a),
including an explicit representation of the transition probabilities in terms of the
Mittag-Leffler function, and a fractional version of the Kolmogorov differential equa-
tions. Presently we only mention the most relevant property for our purpose:

Theorem 6.2. Let {Jt}t≥0 be the semi-Markov process constructed above and let
X = inf{t ≥ 0 : Jt = p + 1} denote the time until absorption. Then X has a
PHα(πππ,T ) distribution, i.e. has cumulative distribution function given by

FX(u) = 1− πππEα,1(Tuα)eee.
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6.2.2. The multivariate extension. Let (J
(k)
t )t≥0, k = 1, . . . , d, be semi-Markov pure-

jump processes as above, all on {1, . . . , p, p + 1}, with states 1, . . . , p transient and
p+ 1 absorbing. We again endow the processes with the same dependence structure
as in the non-fractional case, given by (2.1).

Then the random variables Xi = inf{t > 0 : J
(i)
t = p + 1} , i = 1, . . . , d, are

univariately fractional phase-type distributed.

Definition 6.3 (Fractional mPH class). We say that a random vector X ∈ Rd
+ has

a fractional multivariate phase-type distribution if each component variable Xi, i =
1, . . . , d is the absorption time of a distinct semi-Markov jump process as above,
having the dependence structure (2.1).

Moreover, we use the notation

X ∼ mPHα(πππ, T ), where T = {T1, . . . ,Td}, α(0, 1].

The derivation of its density, cumulative distribution function, and tail function
are straightforward by combining the non-fractional approach and the formulas in
Albrecher et al. (2020a) for the fractional univariate case, and thus we only state
them, for x ∈ Rd

+:

FX(x) =

p∑
j=1

πj

d∏
i=1

(1− eeeTj Eα,1(Txαi )eee),

SX(x) =

p∑
j=1

πj

d∏
i=1

eeeTj Eα,1(Txαi )eee,

fX(x) =

p∑
j=1

πj

d∏
i=1

xα−1
i eeeTj Eα,α(Txαi )ttt.

The tail behaviour of each marginal is regularly varying with index α. This follows
from the fact that

Xi
d
= X̃iS

(α)
i , i = 1, . . . , d,

where X̃i ∼ PH(πππ,Ti), and (S
(α)
i )i=1,...,d is an independent collection of i.i.d. positive

stable variables, i.e. with Laplace transform exp(−uα). It is not hard to see that
even the following relation holds:

Proposition 6.4. Let X ∼ PHα(πππ, T ), and (S
(α)
i )i=1,...,d as above. Then

X = X̃ • S(α),

where X̃ = (X̃1, . . . , X̃d) ∼ mPH(πππ, T ), S(α) = (S
(α)
1 , . . . , S

(α)
d ), X̃⊥⊥S(α), and •

denotes the Schur (component-wise) product of vectors.

Proof. Verification via Laplace transforms or cumulative distribution functions is
immediate. �
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By construction, the marginals are tail independent, but the copula behaviour in
general is different (for α 6= 1) than that of the mPH class. See also Albrecher et al.
(2020b,c) for multivariate fractional PH constructions, with and without possible
tail dependence.

Remark 6.1. The adaptations to the estimation methodology are straightforward
for mIPH distributions, and rather involved for mPHα distributions, and thus we
omit both cases. It is not a given that an EM algorithm will be faster than naive
numerical optimization, especially in the latter case.

7. Concluding remarks

We have introduced a new class of multivariate phase-type distributions which is
simple to work with probabilistically and has a natural physical interpretation. Com-
mon functionals and measures of dependence are explicitly available in terms of ma-
trices, extending and unifying the corresponding formulas for simpler models. Their
estimation methodology gains efficiency with respect to more general specifications,
and their flexibility was shown theoretically and with some illustrations for a given
state-space size.

Several directions of research are promising in conjunction with the mPH class. Ex-
ploring the interval-censored and inhomogeneous case will allow the consideration of
data with non-exponential tail behaviour, and generally provide more parsimonious
estimation. Introduction of covariate information into the initial vector or into the
intensity function can further allow for a multivariate regression analysis of claim
severity, which can be useful for the simultaneous risk assessment for various lines
of business. Finally, a comparison between existing multivariate fractional PH dis-
tributions and the mPHα class could clarify how to introduce tail dependence into
mPH models.
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