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Abstract—The coverage of cellular networks is usually defined
as the probability that the Signal-to-Interference+Noise-Ratio
(SINR) is greater than a reliability threshold. Based on this
definition, the coverage cannot, in general, be formulated in
a tractable closed-form expression. In [1], the authors have
introduced a new definition of coverage that is shown to be math-
ematically tractable for system-level analysis and optimization.
In this letter, we conduct a thorough comparison between the two
definitions of coverage and show that the coverage introduced in
[1] provides one with a tractable and closed-form approximation
for the SINR-coverage, which is proved to be an upper-bound
in relevant operating regimes. By using the new definition of
coverage, the impact of several network parameters, e.g., the
density of base stations and mobile terminals, the transmit power,
and the transmission bandwidth, can be analytically proved.

Index Terms—Cellular networks, stochastic geometry.

I. INTRODUCTION

During the last few years, stochastic geometry tools, and,
in particular, the theory of Poisson Point Processes (PPPs)
have been widely used for modeling and analyzing cellular
networks [2]. By assuming Base Stations (BSs) and Mobile
Terminals (MTs) distributed according to two independent
homogeneous PPPs, a cell association criterion based on the
highest average received power, a singular path-loss model,
Rayleigh fading, as well as BSs and MTs equipped with a
single antenna, the authors of [3] have obtained the following
tractable expression of the coverage probability (Pcov):

P(SINR)
cov (γD) = Pr {SINR ≥ γD} = πλBS

∫ +∞

0

e−f(x)dx

(1)
where symbols and notation in Table I are used, SINR =
U
/(

σ2
N + I

)
is the Signal-to-Interference+Noise-Ratio, and

f (x) =
(
κσ2

N

/
Ptx

)
γDx

β/2 + πλBS (1 + ΥL (λMT/λBS))x.
The SINR-coverage in (1) cannot, in general, be formu-

lated in closed-form. An exception is the interference-limited
regime, where P

(SINR)
cov (γD) = P

(SIR)
cov (γD) = Pr {SIR ≥ γD}

= (1 + ΥL (λMT/λBS))
−1, and SIR = U/I is the Signal-to-

Interference-Ratio. The SIR-coverage is independent of Ptx,
which may lead to meaningless optimization problems [1].

To overcome these limitations, the authors of [1] have
introduced a new definition of coverage, which accounts for
the sensitivity of the MTs during both the data detection and
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TABLE I
SYMBOLS AND NOTATION (α = 3.5, δ = 2/β , β > 2, η = κσ2

NγA).
ALSO: Ū = Ptx/ℓ (r0), U = g0Ptx/ℓ (r0),

I =
∑

ri∈ΨBS\r0 giPtx/ℓ (ri), Pr {r0 ≤ r} = 1− e−πλBSr
2

,
Pr {g0 ≤ g} = Pr {gi ≤ g} = 1− e−g ,

Υ = 2F1 (−δ, 1, 1− δ,−γD)− 1 ≥ 0, L (x) = 1− (1 + x/α)−α ,
Q (x, y, z) = 1− exp

(
−πx(y/η)δ (1 + ΥL (z))

)
.

Symbol/Function Definition
E{·}, Pr {·} Expectation, probability measure
ΨBS, λBS, λMT PPP and density of BSs, density of MTs
Ptx, BW Transmit power, transmission bandwidth
N0, σ2

N = BWN0 Noise power density, noise variance
r0, g0 Distance and fading power of serving BS
ri, gi Distance and fading power of interfering BSs
ℓ (r) = κrβ , κ, β Path-loss function, constant, slope
γD, γA Threshold for decoding, cell association
2F1 (·, ·, ·, ·) Gauss hypergeometric function
Γ(·), erfc (·) Gamma function, complementary error function
Pcov, PSE Coverage probability, potential spectral efficiency.
zx (x, ·), ..

zx (x, ·) 1st and 2nd derivative with respect to x

cell association phases. Based on [1], the coverage probability
can be formulated in a tractable closed-form expression:

Pcov (γD, γA) = Pr {SIR ≥ γD,ASNR ≥ γA}

= πλBS

∫ (Ptx/η)
δ

0

e−πλBS(1+ΥL(λMT/λBS))xdx

= Q (λBS,Ptx, λMT/λBS) (1 + ΥL (λMT/λBS))
−1

(2)

where ASNR = Ū
/
σ2
N is the Signal-to-Noise-Ratio (SNR)

averaged over Rayleigh fading, which accounts for the smallest
average SNR needed to ensure a successful cell association.

Problem Statement: Unlike the SINR-coverage that cannot
be formulated in closed-form and the SIR-coverage that is
independent of key system parameters, the coverage in (2) is
given in closed-form, depends on the most relevant network
parameters, and is proved in [1] to be simple enough, tractable,
and meaningful for system optimization. Motivated by these
strengths, this letter has four objectives: i) to identify a suitable
choice of γA that makes (2) a good approximation of (1), ii)
to evaluate the accuracy of the proposed approximation, iii)
to study the performance trends of (2) as a function of key
parameters to optimize cellular networks, i.e., Ptx, BW, λBS,
λMT, and iv) to evaluate whether the proposed approximation
results in the same performance trends as the SINR-coverage.

II. PROPOSED APPROXIMATION

The rationale of the proposed approximation consists of
ensuring that (1) and (2) coincide with (or are asymptot-
ically close to) each other when the corresponding net-
work models operate in their own interference-limited and
noise-limited regimes. As for (1), these regimes correspond
to P

(SINR)
cov (γD) = Pr {SIR ≥ γD} and P

(SINR)
cov (γD) =



Pr {SNR ≥ γD}, respectively. As for (2), they correspond 
to Pcov (γD, γA) = Pr {SIR ≥ γD} and Pcov (γD, γA) = 
Pr {ASNR ≥ γA}, respectively. Thus, the following holds.

In the interference-limited regime, i.e., σ2
N = 0, we ob-

tain, by direct inspection of (1) and (2), Pcov
(SINR) 

(γD) = 
Pcov (γD, γA) = Pcov

(SIR) 
(γD), which holds true for any γA.

In the noise-limited regime, i.e., I = 0, (1) and (2) are:

P(SINR)
cov (γD) = Pr {SNR ≥ γD}

(a)
= Eg0

{
Pr

{
r0 ≤ (g0rD)

1/β
}} (b)

≤ 1− e−πλBSΓ(1+δ)rδD
(3)

Pcov (γD, γA) = Pr {ASNR ≥ γA}
(a)
= Pr

{
r0 ≤ r

1/β
A

}
= 1− e−πλBSr

δ
A

(4)

where rD = Ptx

/(
κσ2

NγD
)
, rA = Ptx

/(
κσ2

NγA
)
, (a) follows

from the definitions of SNR and ASNR, and (b) follows by
applying the Jensen’s inequality and Eg0

{
gδ0
}
= Γ (1 + δ).

Remark 1: Jensen’s inequality is necessary in order to have
a tractable closed-form expression of (3) and to avoid using
special functions, e.g., the Meijer’s G-function. By direct
inspection, it is easy to show that the tightness of the upper-
bound in (3) increases as either λBS or Ptx decrease. Thus,
(3) is expected to be accurate in the noise-limited regime. �

Approach: The SINR-coverage in (1) is approximated as:

P(SINR)
cov (γD) ≈ Pcov

(
γD, γA = γDΓ(1 + δ)

−1/δ
)

(5)

Rationale: Equation (5) follows by equating (3) and (4),
which ensures that (2) is a tight upper-bound of (1) if I = 0.

Remark 2: Based on (5), γA = γDΓ(1 + δ)
−1/δ . Arguably,

this is a suitable result for system-level optimization, since γA
depends only on β and γD, while it is constant as a function of
the key parameters usually used to optimize cellular networks,
i.e., Ptx, BW, λBS, λMT. Based on (5), e.g., the conclusions
drawn in [1] about the optimal Ptx and λBS that maximize
the energy efficiency based on (2) apply unaltered to (1). �

A. Expected Accuracy

From the previous section, we evince that the approximation
in (5) is exact in the interference-limited regime and is a tight
upper-bound in the noise-limited regime. In this section, we
study the accuracy of (5) beyond these asymptotic regimes.
Due to the lack of a closed-form expression for (1), this is a
challenging task for arbitrary system setups. Then, we consider
two case studies for which the integral in (1) can be computed.

Lemma 1: If β = 4, the proposed approximation in (5) is an
upper-bound of the SINR-coverage in (1), i.e., P(SINR)

cov (γD) ≤
Pcov

(
γD, γA = γDΓ(1 + δ)

−1/δ
)

.

Proof : Let A = (1/2)πλBS (1 + ΥL (λMT/λBS)) r
1/2
D ≥

0, the SINR-coverage in (1) simplifies to P
(SINR)
cov (γD) =√

π(1 + ΥL (λMT/λBS))
−1Aerfc (A) eA

2

and (2) reduces to
Pcov

(
γD, γA = γDΓ(1 + δ)

−1/δ
)

=
(
1− e−2Γ(3/2)A)

×(1 + ΥL (λMT/λBS))
−1. The proof follows, since√

πAerfc (A) eA
2

+ e−2Γ(3/2)A ≤ 1 for A ≥ 0. �
Lemma 2: In the low-noise regime, i.e., σ2

N ≪ I but σ2
N ̸=

0, the approximation in (5) is an upper-bound of (1).

Proof : In the low-noise regime, the approximation
e−(1/rD)x1/δ ≈ 1−(1/rD)x

1/δ can be used and (1) becomes:

P(SINR)
cov (γD) ≈ Pcov

(
γD, γA = γDΓ(1 + δ)

−1/δ
)

+
e−B − Γ (1 + 1/δ) Γ(1 + δ)

1/δB−1/δ

1 + ΥL (λMT/λBS)

(6)

with B = πλBS (1 + ΥL (λMT/λBS)) r
δ
A ≥ 0. Consider the

function B1/δe−B. It is positive and attains its maximum
at B = 1/δ. Thus, e−BB1/δΓ(1 + δ)

−1/δ
Γ(1 + 1/δ)

−1 ≤
(1/δ)

1/δ
e−1/δΓ(1 + δ)

−1/δ
Γ(1 + 1/δ)

−1 ≤ 1 for β > 2. So,
the second line of (6) is negative and the proof follows. �

B. Interplay of Transmit Power and Density of Base Stations
Given a desired coverage probability, P∗

cov, to be fulfilled,
three questions are of importance for the design and optimiza-
tion of cellular networks: i) Is P∗

cov achievable? ii) If so, what
is the functional relation between Ptx and λBS to achieve
P∗
cov? iii) Is this functional relation an injective function?
Equation (5) is instrumental to answer these questions.
Theorem 1: Let 0 ≤ P∗

cov ≤ 1 be the coverage to be fulfilled.
It can be achieved if P∗

cov < (1 + ΥL (λMT/λBS))
−1. Ptx can

be formulated as Ptx = κσ2
NγDT (λBS), where:

T (ξ) =

(
− ln (1− P∗

cov (1 + ΥL (λMT/ξ)))

πξ (1 + ΥL (λMT/ξ)) Γ (1 + δ)

)1/δ

(7)

and T (ξ = λBS) is an injective function in λBS.
Proof : Equation (7) follows from (5) by setting

Pcov

(
γD, γA = γDΓ(1 + δ)

−1/δ
)

= P∗
cov. The feasibility

condition on P∗
cov follows from (7), since the argument

of the logarithmic function cannot be negative. The
injectivity of T (·) follows by computing its first-
order derivative and noting that it is non-positive,
i.e.,

.
T λBS (λBS) ≤ 0 for λBS ≥ 0 and 0 ≤ P∗

cov <
(1 + ΥL (λMT/λBS))

−1 ≤ 1, since
.
LλBS (λMT/λBS) ≥ 0

and L (λMT/λBS) + λBS

.
LλBS (λMT/λBS) ≥ 0. �

Remark 3: For brevity, we focus our attention only on the
interplay between Ptx and λBS, but (5) can be used to study
functional relations among any system parameters. �

To the best of our knowledge, Theorem 1 constitutes the
only available analytical expression that, for cellular networks,
provides one with an explicit relation between Ptx and λBS.
To get deeper insight into the relation of Ptx as a function of
λBS, we study, in detail, two relevant asymptotic regimes.

Corollary 1: Let the BSs be sparsely deployed compared
with the MTs, i.e., λBS/λMT ≪ 1. T (ξ = λBS) is a single
variable posynomial function in λBS of degree −1/δ = −β/2:

T (λBS) ≈
(
− ln (1− P∗

cov (1 + Υ))

π (1 + Υ)Γ (1 + δ)

)1/δ

λ
−1/δ
BS (8)

Proof : If λBS/λMT ≪ 1, then L (λMT/λBS) ≈ 1 holds
true. The proof follows directly from (7). �

Corollary 2: Let the BSs be densely deployed compared
with the MTs, i.e., λBS/λMT ≫ 1. Let us assume, in
addition, (λMT/λBS)Υ ≪ 1. T (ξ = λBS) is a single variable
posynomial function in λBS of degree −1/δ = −β/2:

T (λBS) ≈ (−ln (1− P∗
cov)/(πΓ (1 + δ)))

1/δ
λ
−1/δ
BS (9)



Rcell, and λBS is, approximately, λBS = 1 πR2
cell

Proof : If λBS/λMT ≫ 1, then L (λMT/λBS) ≈ λMT/λBS 
holds true. If, in addition, (λMT/λBS) Υ ≪ 1, then 1 + 
(λMT/λBS) Υ ≈ 1. The proof follows from (7). � 

Remark 4: Corollaries 1 and 2 are in agreement with link 
budget calculations of isolated wireless links: The transmit 
power that is necessary to fulfill a given coverage probability 
requirement is a posynomial increasing function of the average 
cell radius whose order of growth coincides with the path-loss 
slope (β). This conclusion follows from (8) and (9), by taking 
into account that the relation between the a/(verage )cell radius,

. �

III. PERFORMANCE TRENDS

The aim of this section is to study the impact of the most
important system parameters, i.e., Ptx, BW, λBS, λMT, used
to optimize cellular networks. The main objective consists of
proving that the approximation in (5) allows one to unveil the
impact of Ptx, BW, λBS, λMT in rigorous mathematical terms.
The relevance of this study for cellular network design lies in
the difficulty of doing the same, for some system parameters,
by direct inspection of (1). Two performance metrics are
analyzed: i) the coverage probability in (5) and ii) the Potential
Spectral Efficiency (PSE) defined as follows [1, Eq. (9)]:

P̂SE (γD)
(a)
≈ BWρDλBSL (λMT/λBS) P̂cov (γD) (10)

where the approximation in (a) originates from (5), and,
for ease of writing, the following notation is used:
ρD = log2 (1 + γD), γ̂A = γDΓ(1 + δ)

−1/δ , P̂cov (γD) =

Pcov (γD, γ̂A), and P̂SE (γD) = PSE (γD, γ̂A).
In the sequel, for clarity, the network parameter of interest

is denoted by ζ. The other parameters are implicitly assumed
to be constant. For ease of notation, accordingly, the shorthand
notation P̂cov (γD) = P̂cov (γD; ζ) = P (ζ) and P̂SE (γD) =

P̂SE (γD; ζ) = S (ζ) for Pcov and PSE, respectively, is used.

A. Coverage Probability

The impact of Ptx, BW, λBS, and λMT on P(·) is summa-
rized in the following four propositions, respectively.

Proposition 1: Let us consider ζ = Ptx. The following holds
true: i) P (ζ) is monotonically increasing in ζ, ii) P (ζ → 0) =
0, and iii) P (ζ → +∞) = (1 + ΥL (λMT/λBS))

−1.
Proof : It follows by direct inspection of (5). �
Remark 5: By direct inspection of (1), the same trend as in

Proposition 1 holds true for the SINR-coverage. �
Proposition 2: Let us consider ζ=BW. The following

holds true: i) P (ζ) is monotonically decreasing in ζ, ii)
P (ζ → 0) = (1 + ΥL (λMT/λBS))

−1, iii) P (ζ → +∞) = 0.
Proof : It follows by direct inspection of (5). �
Remark 6: By direct inspection of (1), the same trend as in

Proposition 2 holds true for the SINR-coverage. �
Proposition 3: Let us consider ζ = λBS. The following

holds true: i) P (ζ) is monotonically increasing in ζ, ii)
P (ζ → 0) = 0, and iii) P (ζ → +∞) = 1.

Proof : From (5),
.
Pζ (ζ) ≥ 0 holds true if and only if:

.
Qζ (ζ) (1 + ΥL (ζ))−Q (ζ)Υ

.
Lζ (ζ) ≥ 0 (11)

where Q (ζ) = Q (ζ,Ptx, λMT/ζ) and L (ζ) = L (λMT/ζ).
(11) is true for ζ ≥ 0, since Q (ζ) ≥ 0,

.
Qζ (ζ) ≥ 0, L (ζ) ≥ 0,

and
.
Lζ (ζ) ≤ 0 for ζ ≥ 0. Then, i) is proved. ii) and iii) follow

from L (ζ → 0) = 1 and L (ζ → +∞) = 0, respectively. �
Remark 7: Due to the lack of a closed-form expression

for the SINR-coverage, it is not straightforward to prove, in
mathematical terms, the impact of λBS directly from (1). Since.
L (λMT/ζ) ≤ 0, i.e., L (ζ) is decreasing in ζ, the same trend
as in Proposition 3 holds true for the SIR-coverage. �

Proposition 4: Let us consider ζ = λMT and denote r̂A =
Ptx

/(
κσ2

Nγ̂A
)
. The following holds true: i) P (ζ) is monoton-

ically decreasing in ζ, ii) P (ζ → 0) = 1 − e−πλBSr̂
1/δ
A , and

iii) P (ζ → +∞) =
(
1− e−πλBSr̂

1/δ
A (1+Υ)

)/
(1 + Υ).

Proof : From (5),
.
Pζ (ζ) ≤ 0 holds true if and only if:

Υ
.
Lζ (ζ)

[
(1 + C (1 + ΥL (ζ))) e−C(1+ΥL(ζ)) − 1

]
≤ 0 (12)

where C = πλBSr̂
1/δ
A , Q (ζ) = Q (λBS,Ptx, ζ/λBS), and

L (ζ) = L (ζ/λBS). (12) is true for ζ ≥ 0, since
.
Lζ (ζ) ≥ 0

for ζ ≥ 0 and the term inside the brackets is negative for
C (1 + ΥL (ζ)) ≥ 0. Then, i) is proved. ii) and iii) follow
from L (ζ → 0) = 0 and L (ζ → +∞) = 1, respectively. �

Remark 8: Since L (ζ/λBS) ≥ 0 and
.
Lζ (ζ/λBS) ≥ 0, i.e.,

L (ζ) is increasing in ζ = λMT, we evince, from (1), that the
SINR-coverage behaves like (5) as a function of λMT. �

From Propositions 1-4, a few comments can be made:
• Remarks 5, 6, 8 are readily obtained from (1). They are,

however, instrumental to explicitly substantiating that the
proposed approximation in (5) yields the same perfor-
mance trends as (1). The impact of λBS (see Remark 7)
is evaluated in Section IV with Monte Carlo simulations.

• The performance trend as a function of λMT (see Propo-
sition 4) can be explained as follows: By increasing
λMT, the number of active BSs increases, which, in turn,
enhances the aggregate other-cell interference, I. As a
result, the coverage probability decreases.

• By comparing Proposition 1 against Proposition 3, we
evince that network densification, i.e., increasing λBS, has
the potential of providing the typical MT with zero outage
(the coverage probability tends asymptotically to one as
λBS → +∞). This is not possible, on the other hand, by
increasing Ptx: As Ptx → +∞, the coverage probability
reaches an upper-limit that is less than one.

B. Potential Spectral Efficiency

In this section, we turn our attention to the PSE in (10).
Unlike the analysis of the coverage in Section III-A, the
impact of BW, λBS, λMT cannot be readily proved for the
SINR-PSE, i.e., the PSE obtained by replacing P̂cov (·) in
(10) with the SINR-coverage in (1). The reason of the an-
alytical complexity is the presence of the multiplicative factor
BWλBSL (λMT/λBS), which depends on BW, λBS, λMT.
Therefore, the performance trends reported in this section are
non-trivial, and, to the best of our knowledge, they have not
been mathematically and rigorously proved elsewhere.

The impact of BW, λBS, and λMT on S(·) is summarized in
the following three propositions, respectively. The impact of
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Fig. 1. PSE as a function of Ptx and Rcell (a) and BW (b).

Ptx is, on the other hand, not discussed in detail. It follows, in
fact, by direct inspection of the PSE in (10) and by noting that
PSE and coverage have the same behavior. Thus, the trends
discussed in Proposition 1 and Remark 5 apply to PSE as well.

Proposition 5: Let us consider ζ = BW and denote
r̄A = Ptx/(κN0γ̂A). The following holds true: i) S (ζ) is
monotonically increasing in ζ, ii) S (ζ → 0) = 0, and iii)
S (ζ → +∞) = +∞.

Proof : The PSE is S (ζ) = Dζ
(
1− e−Eζ−δ

)
, where

D = ρDλBSL (λMT/λBS)/(1 + ΥL (λMT/λBS)) and E =
πλBS (1 + ΥL (λMT/λBS)) r̄

δ
A. i) follows because

.
Sζ (ζ) ≥

0, since
.
Sζ (ζ → 0) = 1,

.
Sζ (ζ → +∞) = 0, and

..
Sζ (ζ) =

−δEDe−Eζ−δ (
δEζ−(1+2δ) + (1− δ) ζ−(1+δ)

)
≤ 0 for β > 2.

ii) directly follows from (10) and iii) is obtained by computing
the limit S (ζ → +∞) with the aid of De L’Hopital’s rule. �

Remark 9: Comparing Propositions 2 and 5, we evince that
Pcov and PSE have opposite trends as a function of BW. �

Proposition 6: Let us consider ζ = λBS. The following
holds true: i) S (ζ) is monotonically increasing in ζ, ii)
S (ζ → 0) = 0, and iii) S (ζ → +∞) = BWρDλMT.

Proof : i) follows because P (ζ) (see Proposition 3) and
ζL (λMT/ζ) increase in ζ. ii) and iii) follow from (10) by us-
ing Proposition 3 and taking into account that ζL (λMT/ζ) →
0 if ζ → 0 and ζL (λMT/ζ) → λMT if ζ → +∞. �

Proposition 7: Let us consider ζ = λMT and denote
r̂A = Ptx

/(
κσ2

Nγ̂A
)
. The following holds true: i) S (ζ) is

monotonically increasing in ζ, ii) S (ζ → 0) = 0, and iii)
S (ζ → +∞) = BWρDλBS

(
1− e−πλBSr̂

δ
A(1+Υ)

)/
(1 + Υ).

Proof : From (10),
.
Sζ (ζ) ≥ 0 holds true if and only if:

.
Lζ (ζ)Q (ζ) + L (ζ)

.
Qζ (ζ) + ΥL2 (ζ)

.
Qζ (ζ) ≥ 0 (13)

where Q (ζ) = Q (λBS,Ptx, ζ/λBS) and L (ζ) = L (ζ/λBS).
(13) is true for ζ ≥ 0, since Q (ζ) ≥ 0,

.
Qζ (ζ) ≥ 0, L (ζ) ≥ 0,

and
.
Lζ (ζ) ≥ 0 for ζ ≥ 0. Then, i) is proved. ii) and iii) follow

from L (ζ → 0) = 0 and L (ζ → +∞) = 1, respectively. �
Remark 10: Comparing Propositions 4 and 7, we note that

Pcov and PSE have opposite trends as a function of λMT. �
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Fig. 2. Pcov (a) and PSE (b) as a function of Ptx and RMT.

IV. NUMERICAL RESULTS

The aim of this section it to analyze the accuracy of the ap-
proximation in (5) and to substantiate the performance trends
proved in Section III as a function of the network parameters
Ptx, BW, λBS, and λMT. Unless otherwise stated, the simula-
tion setup is: β = 3.5, fc = 2.1 GHz, κ =

(
4πfc/3 · 108

)2
, N0

= -174 dBm/Hz, BW = 20 MHz, λBS = 1/
(
πR2

cell

)
BSs/m2

with Rcell = 250 m, λMT = 1/
(
πR2

MT

)
= 121 MTs/km2 with

RMT = 51.29 m, and γD = 5 dB.
The numerical results are illustrated in Figs. 1 and 2. The

solid lines report the SINR-coverage and SINR-PSE obtained
from (1) and (10). The dashed lines show the proposed ap-
proximation based on (5). The numerical illustrations provide
evidence that the proposed approximation is accurate enough
for practical applications, and, more importantly, yields the
same trends as the widely used SINR-coverage. Therefore,
(5) and (10) constitute accurate and tractable analytical frame-
works for the analysis and optimization of cellular networks
as a function of several network parameters of interest.

V. CONCLUSION

In this letter, we have shown that the coverage probability
recently introduced in [1] constitutes a closed-form upper-
bound of the conventional SINR-coverage. The new definition
of coverage probability provides one with a tractable analytical
framework, from which the impact of the most important sys-
tem parameters for the design of cellular networks can be rig-
orously proved. Possible generalizations of this work include
the analysis of bounded path-loss models, tri-dimensional
network deployments, multi-tier cellular networks.

REFERENCES

[1] M. Di Renzo, A. Zappone, T. T. Lam, and M. Debbah, “System-level
modeling and optimization of the energy efficiency in cellular networks –
A stochastic geometry framework”, IEEE Trans. Wireless Commun., Jan.
2018, to appear. IEEE Early Access (https://arxiv.org/abs/1801.07513).

[2] F. Baccelli and B. Blaszczyszyn, Stochastic Geometry and Wireless
Networks, Part I: Theory, Now Publishers, Sep. 2009.

[3] J. G. Andrews, F. Baccelli, and R. K. Ganti, “A tractable approach to
coverage and rate in cellular networks”, IEEE Trans. Commun., vol. 59,
no. 11, pp. 3122-3134, Nov. 2011.


