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Abstract 16 

Background: Understanding the mechanisms that explain the spatial distribution 17 
of conifers across biogeographical gradients is important for anticipating 18 
potential range shifts owing to global change. Classical explanations have 19 
involved trade-offs between shade and drought tolerances, but more recent 20 
studies observed that trade-offs between fire and drought tolerances could also be 21 
important. 22 
Aims: Here we propose that a contributing mechanism to explain how conifer 23 
species are distributed across productivity gradients – with marked variation in 24 
the incidence of fire - involves a trade-off between allocation to bark, which 25 
serves to protect against fire, or to embolism resistance, which serves to protect 26 
against drought. 27 
Methods: We compiled information from different datasets and performed 28 
regression analyses. 29 
Results: We observed a trade-off between bark thickness and embolism 30 
resistance in conifer species such that species show either large investments of 31 
carbon to the bark or have thinner barks but xylem resistant to embolism; we did 32 
not observe conifer species concomitantly showing high fire tolerance and 33 
embolism resistance.  34 
Conclusions: This study serves as a starting point for a novel framework on how 35 
fire and drought adaptations affect conifer biogeography. Additional studies will 36 
be necessary to discover the generality of our findings by including other species 37 
of conifers, e.g. those in the Southern Hemisphere.  38 

Keywords: bark, cavitation, climate change, conifers, fire, drought, life strategies, 39 
trade-off 40 

Introduction 41 

Variation in fire regimes (pyrogeography) across biomes is primarily driven by 42 

productivity and aridity gradients (Boer et al. 2016). Maximum global fire activity 43 

occurs at intermediate levels of productivity and aridity. Conversely, minimum fire 44 

activity is observed at sites with low productivity and high aridity (i.e. deserts, with 45 

strong fuel limitation), or at sites with high productivity and low aridity (i.e. wet 46 



temperate/tropical forests, where the large amounts of accumulated biomass are seldom 47 

dry enough to burn) (Keeley et al. 2012; Pausas and Bradstock 2007; Pausas and 48 

Ribeiro 2013).  49 

Considering these interactions between productivity and aridity as drivers of 50 

pyrogeography, Keeley (2012) has proposed a division of life strategies across the 51 

species of Pinus, later expanded by Pausas (2015), and classified species in relation to 52 

fire as tolerant, embracer and avoider. Fire-tolerant species occur at the more productive 53 

sites, where fire activity is often limited by high moisture that results in low intensity 54 

surface fires (Figure 1). Consequently, fire-tolerant species (e.g. P. nigra, P. ponderosa, 55 

P. sylvestris) have thick barks that allow the survival of individuals under low intensity 56 

fires, but do not regenerate under high intensity crown defoliating fires. Fire-embracer 57 

species occur at sites with intermediate productivity, where fire activity is highest, and 58 

have a low degree of self-pruning and an overall canopy architecture that enhances 59 

crown fires (Figure 1). Their regeneration depends on stand-replacing fires that open 60 

their serotinous cones (e.g.: P. attenuata, P. halepensis). Fire-avoider species occur at 61 

dry (or upper montane) environments, where fires are very rare and limited by fuel load 62 

(or moisture), and lack adaptations to fire (e.g.: P. aristata, P. uncinata; Figure 1).  63 

The analyses of trade-offs among traits have been useful to explain species 64 

distributions across productivity gradients (Rueda et al. 2016; Valladares et al. 2016). 65 

Here we elaborate on a mechanism that could explain, at least partly, recently reported 66 

trade-offs in the ability to cope with stress (drought) and disturbance (fire) in conifer 67 

species (Karavani et al. 2018; Rueda et al. 2016). We hypothesised that adaptations to 68 

fire and drought incurred a cost and that conifers might not concomitantly survived 69 

disturbance and stress. Thus, conifer species may either show large investments of 70 

carbon to the bark, which protects the cambium and phloem against fire; or have thinner 71 



barks and xylem highly resistant to embolism. Consequently, we hypothesised that 72 

conifer species concomitantly showing high bark thickness and embolism resistance 73 

may not occur. There are many traits involved in fire tolerance and drought resistance, 74 

but bark thickness and embolism resistance are of pivotal importance.  75 

We begin by providing some basic calculations on the carbon costs of 76 

constructing bark and xylem resistant to embolism. We then revisit recent work 77 

indicating the potential for a trade-off between fire resistance and drought tolerance 78 

(Karavani, et al. 2018). Further, we test for the existence of a trade-off in embolism 79 

resistance and bark thickness. Finally, we explain the relevance of our findings in a 80 

broader context of conifer biogeography. 81 

The carbon cost of constructing bark and xylem  82 

The presence of a trade-off in the allocation of C to either building fire-resistant bark or 83 

drought-resistant xylem is conditional on the existence of substantial construction costs. 84 

Fernandes et al. (2008) have reported normalised bark thickness (the ratio of bark 85 

thickness to stem radius) in western European pines ranging from 7.4% in P. uncinata 86 

to 24.5% in P. pinaster; bark density is ca. 90% that of the xylem in pines (Miles and 87 

Smith 2009). Assuming that C concentration is similar across tissues (ca. 50% in both 88 

cases (Chave et al. 2009; Hansson et al. 2004)), it thus follows that resources consumed 89 

by the bark range from ca. 6.7 % (7.4 × 0.9) to 22.1 % (24.5 × 0.9) those of the xylem, 90 

thus representing a substantial construction cost.  91 

In terms of embolism resistance, different adjustments of tracheid anatomy and 92 

morphology occur for different conifer families. In species of the Pinaceae and 93 

Cupressaceae (which largely dominate our analyses), wood density and tracheid 94 

‘thickness-to-span’ ratio are strongly correlated with protection from drought-induced 95 

embolism (Pittermann et al. 2006). Consequently, mechanical strength is required in 96 



these species to avoid tracheid collapse under drought and the correlation between 97 

density and resistance to embolism indicates that these trees incur substantial C costs 98 

during xylem construction [i.e.: higher wood density leads to higher embolism 99 

resistance; (Pittermann, et al. 2006)]. In fact, recent studies have demonstrated that the 100 

amount of lignin, which varies between 25 and 36% of wood dry mass in conifers 101 

(Fengel and Grosser 1975; Pettersen 1984), is directly related to embolism resistance. 102 

Pereira et al. (2017) have observed a significant correlation between the values of Ψ50 103 

(the xylem potential where 50% of the hydraulic conductivity is lost) for different 104 

species (Choat et al. 2012) with their respective lignin concentrations (Fengel and 105 

Grosser 1975; Pettersen 1984). Based on such correlation, they quantified that an 106 

increase of 1% of dry mass allocation to lignin reduced Ψ50 by -0.3MPa.  107 

Evidence for trade-offs in embolism resistance and fire tolerance in conifers 108 

The existence of a trade-off between fire tolerance and cavitation resistance in conifer 109 

species may be tested with previously published datasets. Data on embolism resistance 110 

were obtained from a global database (Choat, et al. 2012). We used Ψ50  as this is a 111 

commonly used indicator of embolism resistance in conifers (Brodribb and Cochard 112 

2009). We collected data on fire tolerance from the USDA PLANTS database 113 

(www.plants.usda.gov, 13 Dec 2016). This database provides a value on “the relative 114 

ability to resprout, regrow, or re-establish from residual seed after a fire”, and there are 115 

four possible levels (none, low, medium, high). After crossing the two datasets, we were 116 

able to examine hydraulic resistance and fire tolerance across 41 conifer species (Table 117 

S1). No species from those present in the database was able to resprout.  118 

In this analysis we found evidence for a trade-off between Ψ50 and fire tolerance 119 

(Figure 2a). Conifers with xylem more resistant to embolism (e.g. with Ψ50 ≤ -6 MPa, 120 



and down to -12MPa) had either low or no tolerance to fire (levels 1-2 in Figure 1a), 121 

whereas conifers with mid or high fire tolerance (levels 3-4 in Figure 2a) always 122 

showed smaller embolism resistance (e.g. with Ψ50 > -5 MPa) (Figure 2a). We also 123 

observed some conifer species with low resistance to cavitation and low tolerance to fire 124 

but there were no species showing both high fire tolerance and high Ψ50 (Figure 2a). 125 

Despite the scatter in the data, the lack of conifers concomitantly showing high fire 126 

tolerance and high embolism resistance points towards a trade-off between these two 127 

traits.  128 

As proposed by Grubb (2016), the existence of trade-offs may be formally 129 

demonstrated through quantile regression (when fitting an upper quantile the regression 130 

becomes significant). Consequently, we examined the significance of the 0.5, 0.75 and 131 

0.95 quantiles and found only the 0.95 quantile regression significant (P < 0.05) (using 132 

the “quantreg” package (Koenker 2016) within the R software environment (R Core 133 

Team 2016)), hence suggesting a trade-off between Ψ50 and fire tolerance in conifers 134 

(Figure 2a). We note that using different datasets could introduce additional uncertainty 135 

around mean trait values. However, this problem affected equally all species and should 136 

not lead to any systematic bias. 137 

Evidence for trade-offs in embolism resistance and bark thickness in conifers 138 

The previous analysis is not exempt of criticism because of the ambiguous definition of 139 

fire tolerance in the USDA PLANTS database. To overcome this limitation, we 140 

conducted further analyses with independent sources of information to test the specific 141 

hypothesis that there was a trade-off in the allocation of resources to the bark or to 142 

embolism resistance. First, we digitised data on resistances to cambium kill from a 143 

previous study on fire resistance across European pines (Fernandes, et al. 2008). This 144 



allowed the examination of six species in total (Table S1), a small number, but 145 

respresenting a substantial proportion of the pines in Europe (Barbéro et al. 1998; Willis 146 

et al. 1998). Cambium kill resistance in the study by Fernandes, et al. (2008) was 147 

derived from the percentage of tree radius occupied by bark (at 1.3 m). We observed a 148 

negative relationship between resistance to cambium kill and Ψ50 (Figure 2b), which is 149 

consistent with our hypothesis of a trade-off.  150 

We additionally used an independent dataset on bark thickness at a normalised 151 

stem diameter of 10 cm across 20 conifer species (Table S1) from a recent global study 152 

(Pellegrini et al. 2017). We observed again that species with a thicker bark were least 153 

resistant to embolism and there were no species concomitantly showing thick bark and 154 

high embolism resistance (Figure 2c). While more data would be needed to generalise 155 

this claim, the trade-off is formally anticipated by the significant (at P < 0.05) 0.95 156 

quantile regression.  157 

We also addressed patterns of intra-specific genetic variation underlying a 158 

potential trade-off between drought and fire tolerances by digitising graphs with data on 159 

bark thickness (Tapias et al. 2004) and on Ψ50 (Corcuera et al. 2011) for six different 160 

provenances of P. pinaster grown under uniform conditions. This Mediterranean pine 161 

has a very broad ecological niche (from sea level to 1900 m), which has elicited 162 

adaptive divergence among populations arising through localised selection (González-163 

Martínez et al. 2004). The provenances spanned a broad precipitation (348 - 1,257 mm 164 

yr-1) and soil fertility gradient (mainly acid soils, but also basic soils and even sandy and 165 

poor soils such as those of Landes, France). From a fire perspective this species is 166 

important as a large proportion of all fires in the western Mediterranean basin occur in 167 

P. pinaster stands. In Spain alone, one-third of all forest fires have been reported from 168 

forests dominated by this species (MAGRAMA 2012). This dataset, at intra-specific 169 



level, once more indicated a negative relationship between bark thickness and Ψ50 was 170 

also significant (Figure 2d).  171 

Conclusions and outlook 172 

Overall, our analyses using independent datasets and across different geographical 173 

scales indicate that there are no conifers concomitantly showing high embolism 174 

resistance and high tolerance to fire and that this may be owing to an C allocation trade-175 

off between bark and lignin. Moreover, the intra-specific association observed for Pinus 176 

pinaster under common-garden conditions (Figure 2d) indicates that this trade-off has a 177 

genetic basis, although further studies on genetic variation would be required to 178 

generalise this claim.  179 

Our hypothesis on a trade-off between embolism resistance and fire tolerance 180 

raises the question as to whether adaptations to fire and to drought may, at least to some 181 

degree, be antagonistic in conifers. This hypothesis is still tentative because many 182 

additional mechanisms, including stomatal regulation, root:shoot allocation or stem 183 

capacitance to name a few, are also involved in drought resistance. However, it could 184 

provide a mechanistic explanation, at least partially, to the distribution of the species of 185 

Pinus and, in general, conifers with different life strategies across productivity gradients 186 

(Rueda, et al. 2016).  187 

Further studies should address the role of site fertility as an additional driver of 188 

productivity. From the perspective of pyrogeography, productivity gradients have so far 189 

been defined as precipitation gradients (Pausas and Bradstock 2007). However, site 190 

productivity is also a function of nutrient concentrations and that could be particularly 191 

important for species that occurg across a wide range of soil nutrient availabilities (e.g.: 192 

P. pinaster, P. sylvestris, Larix laricina, Taxodium distichum, etc). This is particularly 193 



important because nutrient concentrations tend to decrease xylem vulnerability to 194 

embolism (Ewers et al. 2000; Resco de Dios et al. 2013), although less is known on its 195 

effects on bark production or fire tolerance, and also because of human-induced nutrient 196 

imbalances such as nitrogen deposition (Ochoa-Hueso et al. 2011). 197 

Fire-embracing species, that occupy intermediate productivity sites, would need 198 

a high resistance to drought because they are regularly exposed to periods of water 199 

scarcity, but they also live in crown-fire environments and, since non-resprouting trees 200 

often succumb under high intensity crown defoliating fires, any carbon investment into 201 

building structures enhancing fire survival may be futile. Consequently, the mechanism 202 

that allows the maintenance of these species in such environments, rather than cambium 203 

or crown adaptations to withstand fires, relies on a reproductive strategy that ensures 204 

post-fire seed availability via an aerial seed bank (i.e. serotinous cones) (Martín-Sanz et 205 

al. 2016). Similarly, fire-avoiding species from arid environments (e.g. P. edulis, P. 206 

monophylla), which likely show the highest drought tolerance, often lack fire 207 

adaptations (Keeley 2012). Additionally, fire-avoiding upper montane treeline-forming 208 

species which experience cavitation caused by freeze-thaw cycles notably also lack fire 209 

adaptations. Conversely, mesic conifer species need protection from surface fires but 210 

are less exposed to periods of intense drought and, consequently, may preferentially 211 

allocate more resources into protecting the phloem and cambium than the xylem. 212 

Considering forecasts of increased drought and fire occurrence across parts of the 213 

geographical range of temperate conifers (Moritz et al. 2012), understanding conifer 214 

strategies for dealing with these factors should be at the forefront of our research efforts. 215 

Subsequent work should also address the possibility of recovery from cavitation either 216 

by stem refilling or by resprouting. 217 
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Figure legends 327 

Figure 1: Idealised and simplified representation of how different conifer functional 328 

groups are distributed across productivity gradients according to a presumed trade-off 329 

between fire tolerance and embolism resistance.  330 

Figure 2: Trade-offs between embolism resistance and bark thickness. (a) Relationship 331 

between fire tolerance (1, none; 2, low; 3, medium; 4, high; from PLANTS USGS 332 

database) and the xylem potential where 50% (Ψ50) of the hydraulic conductivy is lost 333 

(Choat, et al. 2012) across 41 conifer species. (b) Relationships between cambium and 334 

kill resistance (in relative units) (Fernandes, et al. 2008), against the xylem water 335 

potential where 50% of the hydraulic conductivity is lost (Ψ50) (Choat, et al. 2012) 336 

across six European pine species. (c) Relationship between bark thickness for a 337 

diameter of 10 cm (Pellegrini, et al. 2017) against the xylem potential where 50% of the 338 

hydraulic conductivity is lost (Ψ50) (Choat, et al. 2012) across conifer species. (d) 339 

Relationship between bark thickness (Tapias, et al. 2004) and Ψ50 (Corcuera, et al. 340 

2011) across six Pinus pinaster provenances. The line indicates results of quantile (a, c) 341 

or linear (c, d) regression. P-values and R2 are given for quantile and linear regression, 342 

respectively. In quantile regressions, we examined the significance of the 0.5, 0.75 and 343 

0.95 quantile regressions for all plots but only the 0.95 quantile regressions were 344 

significant at P < 0.05, as indicated by the plotted line. X-axis scales may differ 345 

between panels. (a) modified from (Karavani, et al. 2018). 346 
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