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Abstract

Recently, Berthelin et al [5] introduced a traffic flow model describing
the formation and the dynamics of traffic jams. This model which
consists of a Constrained Pressureless Gas Dynamics system assumes
that the maximal density constraint is independent of the velocity.
However, in practice, the distribution of vehicles on a highway depends
on their velocity. In this paper we propose a more realistic model namely
the Second Order Model with Constraint (SOMC model), derived from
the Aw & Rascle model [1] abd which takes into this feature. Moreover,
when the maximal density constraint is saturated, the SOMC model
“relaxes” to the Lighthill & Whitham model [17]. We prove an existence
result of weak solutions for this model by means of cluster dynamics in
order to construct a sequence of approximations and we solve completely
the associated Riemann problem.
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1 Introduction

During the past fifty years, a wide range of models of vehicular traffic flow
has been developed. Roughly speaking, three important classes of approaches
are commonly used to model traffic phenomena. (i) Microscopic models or Car-
following models e.g. [11, 2]: they are based on supposed mechanisms describing
the process of one vehicle following another; (ii) Kinetic models [22, 20, 19, 14,
18, 13]: they describe the dynamics of the velocity distribution of vehicles, in
the traffic flow; (iii) Fluid-dynamical models [17, 23, 21, 9, 22, 1, 25, 6, 8, 5, 4]:
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they describe the dynamics of macroscopic variables (e.g. density, velocity, and
flow) in space and time.

Here, we are concerned with the latter approch, i.e., the fluid-dynamical
models. The first fluid model is due to Lighthill and Whitham [17] and Richards
[23]. It consists of a single equation, the continuity one, thereby it is called “first
order” model. Since then, various modifications and extensions to this basic
model have been proposed in the literature. At the same time, nonequilibrium
“second order” models, which consist of the continuity equation coupled with
another equation describing the acceleration behaviour, have been developed.
They are based either on perturbations of the isentropic gas dynamics models,
see e.g. [21, 15, 12], or on heuristic considerations and a derivation from the
Follow-the-Leader model (FLM) [1, 5, 6, 8, 25].

In this paper, we propose a second order model, called the Second Order
Model with Constraints (SOMC), which we derived from the Aw & Rascle (AR)
model [1] through a singular limit. We prove an existence result of weak solu-
tions for such a model and discuss the associated Riemann problem. In contrast
with the model introduced in [5] which is rather crude, as it assumes that the
maximal density is constant (therefore independent of the velocity), here, we
take into account the dependence of the maximal density constraint on the ve-
locity. This consideration leads to a more realistic formulation, since it is well
known that in practice, the distribution of vehicles on a highway, depends on
their velocity. Furthermore, the particularity of the model we propose here, is
its double-sided behaviour. Indeed, when the density constraint is saturated
i.e., the maximal density is attained, for a given velocity, the SOMC model
behaves like the Lighthill & Whitham first order model, whereas in the free
flow our model behaves like the pressureless gas model. Moreover, even in the
Riemann problem, the interaction between two constant states in either regime
can produce new states in the other regime: in other words the two regimes
are intimately coupled and thus cannot ignore each other. Due to this specific
property, we expect our model to capture some traffic complex phenomena such
as stop and go waves.

The remaining parts of the paper are organized as follows. In Section 2, we
first introduce the SOMC model, justify its motivations, then we outline and
discuss sufficient conditions for its derivation from the Aw & Rascle second order
model [1]. Section 3 provides an existence result of weak solutions to the SOMC
system. The Riemann Problem for the SOMC model is completely discussed in
Section 4. We finally conclude with directions for further research in Section 5.

2 The model and its derivation

In this section, we present the Second Order Model with Constraint and high-
light its specific properties. We justify the motivations of this model and discuss
its derivation from the Aw & Rascle second order model [1].
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2.1 The Second Order Model with Constraint (SOMC)

The second order model we introduce in this paper, namely the Second Order
Model with Constaint (SOMC), writes

∂tn(x, t) + ∂x(n(x, t)u(x, t)) = 0, (2.1)

(∂t + u(x, t)∂x)(u + p̄)(x, t) = 0, (2.2)

0 ≤ n(x, t) ≤ n∗(u(x, t)), p̄ ≥ 0, (n∗(u) − n)p̄ = 0, (2.3)

where n, u and n∗(u) denote respectively the density, the velocity and the maxi-
mal density. The functional p̄(n, u) is the offset velocity between the actual
velocity u and the preferred velocity given by u + p̄.

Definition 2.1. We call a cluster or a block, a stretch of road defined by an
interval [x1(t), x2(t)], inside which the system (2.34)-(2.36) is satisfied and

n(x, t) =











n∗(u(x, t)), if x ∈ [x1(t), x2(t)];

0, if x ∈ [x1(t) − ε(t), x1(t)[∪ ]x2(t), x2(t) + ε(t)], for ε(t) small.

It is well known that in traffic, the minimal distance between a driver and
its leading car is an increasing function of the velocity. Therefore, in contrast
with the model introduced in [5], here the maximal density n∗ is a functional of
the velocity u. However, this natural consideration imparts to the SOMC model
a particular property: a double behaviour. Indeed, when n(x, t) = n∗(u(x, t)),
i.e. the maximal density constraint n(x, t) ≤ n∗(u(x, t)) is saturated, a block
of vehicles (or a cluster) forms. In a cluster, u and p are layed down by the
first vehicle, and as long as the cluster is going freely, these variables remain
constant, see Section 3 and the discussions in Section 4 below. Therefore, inside
each cluster which is going freely, the SOMC model writes

∂tn
∗(u) + ∂x(n∗(u)u) = 0. (2.4)

Let n −→ u∗(n) be the inverse functional of u −→ n∗(u). Therefore (2.4)
rewrites

∂tn + ∂x(nu∗(n)) = 0, (2.5)

where q(n) := nu∗(n) is the flux function as in the Lighthill & Whitham model
[17]. Therefore, we have a hyperbolic second order model which “relaxes” to
the Lighthill & Whitham first order model when the maximal density constraint
is saturated. Hence, the SOMC model is expected to capture the stop and go
waves phenomena since there is no invariant region for the velocity u when the
model behaves as the Lighthill & Whitham model.

2.2 Derivation of the SOMC model

This paragraph is dedicated to the derivation of the SOMC model from the Aw
& Rascle second order model [1]. For sake of completeness, we present first the
classical case in which the maximal density n∗ is constant (i.e., independent of
the velocity). Then, we introduce the case n∗ := n∗(u) and justify its motiva-
tions. Afterwards we discuss the derivation of the SOMC model from the Aw
& Rascle model through a singular limit.
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2.2.1 The case n∗=constant

In conservative form, the Aw & Rascle (AR) macroscopic model [1] consists of
the following equations

∂tn + ∂x(nu) = 0, (2.6)

∂t(nw) + ∂x(nwu) = 0, (2.7)

w = u + p(n), (2.8)

where n(x, t)(≥ 0) and u(x, t)(≥ 0) denote respectively the local density (num-
ber of vehicles per unit of space) and the velocity, both at the position x
and the time t. The variable w denotes the drivers “preferred velocity” and
0 ≤ p(n) ≤ ∞ is the velocity offset between the actual velocity and the pre-
ferred velocity.
In what follows we give some important properties of the AR model and refer
the reader to [1] for more details.
Let us rewrite the system (2.6)-(2.8) in the following general form

∂tU + A(U)∂xU = 0 (2.9)

with U =

(

n
u

)

and A(U) =

(

u n
0 u − np′(n)

)

. (2.10)

The system (2.9)-(2.10) (or (2.6)-(2.8)) is strictly hyperbolic away from the
vacuum (i.e. when n 6= 0). Indeed, the eigenvalues of the jacobian matrix A(U)
are

λ1 = u − np′(n) ≤ λ2 = u. (2.11)

and the associated eigeinvectors are respectively

r1 =

(

1
−p′(n)

)

and r2 =

(

1
0

)

.

The eigenvalues of the system correspond to the information propagation speed
and they are both bounded by the traffic flow speed. Thereby the model com-
plies with the anisotropic features of traffic flow.
Since ∇λ1.r1 6= 0 and ∇λ2.r2 = 0 (here ∇ := (∂/∂n, ∂/∂nw)), then λ1 is gen-
uinely nonlinear and λ2 is linearly degenerate. Therefore, the waves associated
to λ1 correspond to shock waves (braking) or rarefaction waves (acceleration)
which modify the velocity, whereas the waves associated to λ2 correspond to con-
tact discontinuities. In this model, the shock and rarefaction curves coincide,
therefore the model falls into the class of “Temple Systems” [24]. The Riemann
invariants in the sense of Lax [16] for the system (2.6)-(2.8) are respectively w
and u.

Naturally in the traffic dynamics, at each time t > 0, the following con-
straints have to be satisfied

0 ≤ u(., t) ≤ u∗, (2.12)

0 ≤ n(., t) ≤ n∗, (2.13)

with u∗ < ∞ and n∗ < ∞ respectively the maximal velocity and density.
In the (u, w) plane, this region is defined by

Ru∗,n∗ = {0 ≤ u ≤ u∗, 0 ≤ w − u ≤ p(n∗)} (2.14)
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which is not an invariant region for the AR model. Therefore, for some badly
chosen initial data in Ru∗,n∗ , one may obtain for some (x, t) solutions which are
later on out of the region Ru∗,n∗ . There are two possible strategies to avoid
the possible (unpleasant!) appearance of densities n > n∗ in the future. One
consists in using invariant rectangles in the plane (u, w), see [1]. The other one
is to choose a velocity offset p which is singular at n = n∗. One of the good
candidate proposed in [5] is

p(n) =

(

1

n
−

1

n∗

)−γ

with n ≤ n∗ and γ > 0, (2.15)

where n∗ denotes the maximal density. The AR model with the constraints
(2.12)-(2.13) and the function p given by (2.15) is called the Modified AR model
(MAR). Obviously, the MAR model inherits the properties of the AR model
stated above (see [5]).

It is known that drivers do not reduce significantly their speed unless they
are too closed to the maximal density, what means the velocity offset p −→ 0 in
free flow traffic. In the MAR model, this can be taken into acount by replacing
the functional p by the rescaled one: εp with ε −→ 0. Therefore the rescaled
model can be stated as follows

∂tn
ε + ∂x(nεuε) = 0, (2.16)

(∂t + uε∂x)(uε + εp(nε)) = 0, (2.17)

where p(n) is defined in (2.15). The system (2.16)-(2.17) is called the Rescaled
Modified Aw & Rascle model (RMAR). Furthermore, it conserves the properties
of the MAR model.

Now we recall briefly the Constrained Pressureless Gas Dynamics model and
we refer the reader to [5] for more details on this model.
Due to the form of the modified velocity offset (2.15),

p(n) −→ ∞ when n −→ n∗.

Assume that εp(nε)(x, t) has a limit: p̄(x, t) := lim
ε−→0

εp(nε)(x, t). If n = n∗

at the point (x, t), p̄ may become non zero and finite, and p̄ turns out to be a
Lagrangian multiplier of the constraint n ≤ n∗. In others words,

p̄ =

{

0 if n < n∗,

c (0 < c < ∞) if n = n∗.
(2.18)

Finally, the formal limit of the RMAR system (2.16)-(2.17) leads to the Con-
strained Pressureless Gas Dynamics model (CPGD):

∂tn + ∂x(nu) = 0, (2.19)

(∂t + u∂x)(u + p̄) = 0, (2.20)

0 ≤ n ≤ n∗, p̄ ≥ 0, (n∗ − n)p̄ = 0. (2.21)

2.2.2 The case n∗ = n∗(u)

As in practice, the minimal distance between a driver and its leading car is an
increasing function of the velocity, a more realistic formulation of traffic flow
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must include this fact. With this consideration, the velocity offset p takes the
form

p(n, u) =

(

1

n
−

1

n∗(u)

)−γ

, with n ≤ n∗(u), and γ > 0. (2.22)

With the functional p in the above form (2.22) the MAR model presented above
turns to

∂tn + ∂x(nu) = 0, (2.23)

(∂t + u∂x)(u + p(n, u)) = 0. (2.24)

From now on, p and n∗ denote respectively p(n, u) and n∗(u).
Now,

0 = (∂t + u∂x)(u + p(n, u))

= ∂tu + u∂xu + ∂np∂tn + ∂up∂tu + u∂np∂xn + u∂up∂xu

= ∂tu + u∂xu − n∂np∂xu + ∂up∂tu + u∂up∂xu

= (1 + ∂up)∂tu + [u(1 + ∂up) − n∂np]∂xu,

then the system (2.23)-(2.24), called the Modified AR* model (MAR*), can be
rewritten as

∂tU + A(U)∂xU = 0, (2.26)

with U =





n

u



 and A(U) =





u n

0 u − n∂np
1+∂up



 . (2.27)

The eigenvalues of the matrix A(U) are

λ1 = u −
n∂np

1 + ∂up
≤ λ2 = u, (2.28)

and the associated eigenvectors are respectively

r1 =





1 + ∂up

−∂np



 and r2 =

(

1
0

)

.

Since ∇λ2.r2 = 0, the second eigenvalue is linearly degenerate (here, ∇ :=
(

∂

∂n
,

∂

∂u

)

), the waves associated to λ2 are contact discontinuities.

Now let us consider the first eigenvalue λ1. We have
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∇λ1 =







− ∂np
1+∂up − n∂nnp

1+∂up + n∂np∂unp
(1+∂up)2

1 − n∂unp
1+∂up + n∂np∂uup

(1+∂up)2






,

then

∇λ1.r1 = −2∂np +
2n∂np∂unp

1 + ∂up
− n∂nnp −

n(∂np)2∂uup

(1 + ∂up)2
. (2.29)

Clearly, ∃ (n, u) ∈ R
∗
+ × R

∗
+ such that ∇λ1.r1 6= 0, hence λ1 is not linearly

degenerate. Therefore we would like λ1 to be genuinely nonlinear i.e. ∇λ1.r1 6=
0 for all (n, u) 6= (0, 0). In fact, one can easily notice that we need some
assumptions on the functional n∗ : u 7−→ n∗(u).
We consider the following assumptions:

(A-1) n∗(u) is twice continuously differentiable;

(A-2) n∗(u) is strictly decreasing.

(A-3) n∗(u) concave

(

d2

du2
(n∗(u)) ≤ 0

)

.

The second assumption is quite natural, since the faster the vehicles the larger
the spacing between them.

Lemma 2.1. Under assumptions (A-1)-(A-3), the eigenvalue λ1 is genuinely
non linear.

For readability reasons, the proof of this lemma is postponed in the Appen-
dix.
Since λ1 is genuinely non linear, therefore, the associated waves are either shocks
or rarefaction waves. The Riemann invariants in the sense of Lax [16] associated
to the eigenvalues λ1 and λ2 are respectively

w = u + p(n, u) and z = u. (2.30)

For the same reason as in the previous paragraph, let us multiply by ε the
velocity offset p in the model (2.23)-(2.24). Then, we obtain

∂tU
ε + A(Uε)∂xUε = 0, (2.31)

with Uε =





nε

uε



 and A(Uε) =





uε nε

0 uε − εnε∂np
1+ε∂up



 . (2.32)

Hence the eigenvalues and the Riemann invariants in the sense of Lax [16] are
respectively

λε
1 = uε −

εnε∂np

1 + ε∂up
≤ λε

2 = uε (2.33)
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and wε = uε + εp(nε, uε) , zε = uε. This modification conserves the properties
of the model (2.23)-(2.24). The system (2.31)-(2.32) is the so-called Rescaled
Modified AR* Model (RMAR*)

Let p̄ = lim
ε−→0

εp(nε, uε)(x, t) and (nε, uε) −→
ε−→0

(n, u), then the formal limit

of the RMAR* model (2.31)-(2.32) is given by

∂tn + ∂x(nu) = 0, (2.34)

(∂t + u∂x)(u + p̄) = 0, (2.35)

0 ≤ n(x, t) ≤ n∗(u(x, t)), p̄ ≥ 0, (n∗(u) − n)p̄ = 0, (2.36)

which is nothing but the SOMC model.

Proposition 2.1. Assume that εp(nε, uε) −→
ε−→0

p̄ > 0, uε(x, t) −→ u and

nε − n∗(uε) −→
ε−→0

0. Then

λε
1 = uε −

εnε∂np

1 + ε∂up
−→
ε−→0

u +
n∗(u)

(n∗)′(u)
= λ̄1(u) (2.37)

Proof . Since εp(nε, uε)
ε−→0

= p̄ > 0, then

∃ δ > 0 such that ∀ ε > 0, εp(nε, uε) ≥ δ.

Thus we have

ε∂up(nε, uε) = −γ
(n∗)′(uε)

n∗(uε)2

(

1

nε
−

1

n∗(uε)

)−1

εp(nε, uε) −→
ε−→0

∞.

Therefore,

εnε∂np

1 + ε∂up
∼

ε−→0

nε∂np

∂up
= −

1
nε

(n∗)′(uε)
n∗(uε)2

−→
ε−→0

−
n∗(u)

(n∗)′(u)
.

Finally

λε
1 −→

ε−→0
u +

n∗(u)

(n∗)′(u)
= λ̄1(u).

Furthermore,

dλ̄1(u)

du
= 1 +

(n∗)′(u)2 − n∗(u)(n∗)′′(u)

(n∗)′(u)2
.

Since n∗(u) is concave, then λ̄1(u) is strictly increasing. The limit λ̄1 is the
characteristic speed of the Lighthill & Whitham model when n = n∗(u). Con-
trarily to the case n∗ = constant, here

∣

∣λ̄1

∣

∣ < +∞. In other words, a velocity
variation in front of a cluster propages with a finite speed (but not with an
infinite speed as in [5]) through the whole cluster.
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3 Existence result for the SOMC model (2.34)-
(2.36)

This section is devoted to the proof of the existence of weak solutions to the
SOMC system (2.34)-(2.36), written in conservative form. The proof is based
on the results in [3] and is strongly motivated by the analysis of the Riemann
problem in Section 4. Indeed, this analysis permits us to exhibit the limit as
ε −→ 0 of the solutions to the Riemann problem of the RMAR* model (2.31)-
(2.32), which are nothing but the expected solutions to the Riemann problem
of the SOMC model (2.34)-(2.36). For instance, when two blocks collide i.e.,
the cluster behind is going faster than the cluster ahead, a shock wave appears
at the front of the cluster behind and propagates upstream with a finite speed.
This technical and “self contained” analysis is postponed at the end of the paper
for readability reasons. However, it is not needless since it justfies the choice
of the dynamics considered below, and allows us to expect that the obtained
solution (non unique) is the one which models the real phenomena. First we
prove the existence of weak solutions for some particular data and then we prove
the stability of the obtained solutions. Namely, we make use of the result in [3],
in which it has been proved that any smooth function can be approximated in
the distribution sense by a sequence of characteristic functions.
In conservative form, the SOMC model (2.34)-(2.36) is written as follows

∂tn + ∂x(nu) = 0, (3.1a)

∂t(n(u + p̄)) + ∂x(n(u + p̄)u) = 0, (3.1b)

0 ≤ n(x, t) ≤ n∗(u(x, t)), p̄ ≥ 0, (n∗(u) − n)p̄ = 0 (3.1c)

3.1 Clusters dynamics

In order to prove the existence of solutions for the SOMC model, we mimic
the approach of [7] (which was also used in [5]). We approximate the initial
datum as a succession of vacuum and blocks (or clusters) where the constraint is
saturated. Physically, this means that any traffic condition can be approximated
in the weak sense by a situation where saturated stretches of road are followed
by empty stretches. So, our first task is to consider the dynamics of a solution
which consists of a succession of clusters and vacuum. In particular, the key
point in defining this dynamics is to specify what happens when a faster cluster
meets a slower one in front. To define what happens when two clusters meet, we
take inspiration from the examination of the solutions of the Riemann problem,
which is developed in Section 4. In what follows, we construct the cluster (or
block) solutions to (3.1a)-(3.1c).
Now let us consider the density n(x, t), the flux n(x, t)u(x, t) and the quantity
n(x, t)p̄(x, t) given respectively by
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n(x, t) =
N
∑

i=1

n∗
i (t)1Iai(t)<x<bi(t), (3.2)

n(x, t)u(x, t) =

N
∑

i=1

n∗
i (t)ui(t)1Iai(t)<x<bi(t) (3.3)

n(x, t)p̄(x, t) =

N
∑

i=1

n∗
i (t)p̄i(t)1Iai(t)<x<bi(t) (3.4)

with n∗
i (t) = n∗(ui(t)) (or equivalently ui = u∗(ni)) as long as there is no

collision. That is to say aN (t) < bN (t) < aN−1(t) < bN−1(t) < . . . < b1(t) and
the number of blocks N is constant until there is a shock.

If there is no collision, each block i moves freely with a constant velocity,
i.e. ui(t) := ui. Therefore n∗

i (t) = n∗(ui) := n∗
i is also constant. On the other

hand, when a block i + 1 catches up with the block ahead i at time t∗ (that
implies in particular that ui+1 > ui), then a shock wave appears and propagates
gradually inside the block i + 1. The shock speed us is given by

us =
n∗

i ui − n∗
i+1ui+1

n∗
i − n∗

i+1

. (3.5)

We notice that since ui+1 > ui then necessarily n∗
i 6= n∗

i+1.
The dynamics is illustrated by Figure 1.

ai+1(t) bi+1(t) ai(t) bi(t)
x

t

t∗

t∗∗

t0

t1 Ωσ(t)

ui+1, p̄i+1

ui+1, p̄i+1
ui, p̄i

ui, p̄i

ui, p̄i

ui

ui

p̃i+1

p̃i+1

Ω2Ω1

Ω3

Figure 1: The traffic dynamics when two blocks collide.

Let σ(t) be the wave trajectory i.e. σ′(t) = us. In contrast to [5], here the
block (i + 1) does not take instantanously the velocity ui but it adjusts its
velocity gradually through σ(t). Let t∗∗ be the time such that σ(t) reaches
the left boundary of the block i + 1, see Figure 1. Around this shock, the
density n(x, t), the flux n(x, t)u(x, t) and the functional p̄(x, t) are locally given
respectively by
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n(x, t) =



















n∗
i 1Iai(t)<x<bi(t) + n∗

i+11Iai+1(t)<x<bi+1(t) if t < t∗,

n∗
i 1Iai(t)<x<bi(t) + n∗

i 1Iσ(t)<x<ai(t)

+n∗
i+11Iai+1(t)<x<σ(t) if t∗ < t < t∗∗,

n∗
i 1Iai(t)<x<bi(t) + n∗

i 1Iãi(t)<x<ai(t) if t > t∗∗,

(3.6)

n(x, t)u(x, t) =



















n∗
i ui1Iai(t)<x<bi(t) + n∗

i+1ui+11Iai+1(t)<x<bi+1(t) if t < t∗,

n∗
i ui1Iai(t)<x<bi(t) + n∗

i ui1Iσ(t)<x<ai(t)

+n∗
i+1ui+11Iai+1(t)<x<σ(t) if t∗ < t < t∗∗,

n∗
i ui1Iai(t)<x<bi(t) + n∗

i ui1Iãi(t)<x<ai(t) if t > t∗∗

(3.7)

and

n(x, t)p̄(x, t) =



















n∗
i p̄i1Iai(t)<x<bi(t) + n∗

i+1p̄i+11Iai+1(t)<x<bi+1(t) if t < t∗,

n∗
i p̄i1Iai(t)<x<bi(t) + n∗

i p̃i+11Iσ(t)<x<ai(t)

+n∗
i+1p̄i+11Iai+1(t)<x<σ(t) if t∗ < t < t∗∗,

n∗
i p̄i1Iai(t)<x<bi(t) + n∗

i p̃i+11Iãi(t)<x<ai(t) if t > t∗∗,

(3.8)

with
p̃i+1 = p̄i+1 + ui+1 − ui ≥ 0, (3.9)

and
ã′

i = ui, and ãi(t
∗∗) = σ(t∗∗). (3.10)

Remark 3.1. The velocity u and the “pressure” p̄ are assumed to be extended
linearly in the vacuum (n = 0) between two successive blocks. Moreover we
assume that u and p̄ are constant at ±∞.

3.2 Properties of the cluster dynamics

Let us start this section by the following result.

Theorem 3.1. With the above dynamics, the quantities n(x, t), u(x, t) and
p̄(x, t) defined by (3.2)-(3.4) and Remark 3.1 are solutions to (3.1a)-(3.1c).

Proof . When there is no collision, each block i moves freely at a constant
velocity ui(t) := ui. The density n∗

i (t) = n∗(ui) := n∗
i and the “pressure” p̄i(t)

are also constant in each block i. Then, (n, u, p̄) defined by (3.2)-(3.3)-(3.4)
solves the system (3.1a)-(3.1c). Now let us turn to the case of collision of two
blocks at time t∗ in the above dynamics. Let Ω be a domain which only contains
the two blocks concerned with this collision, see Figure 1. Then Ω is given by

Ω = Ω1 ∪ Ω2 ∪ Ω3, (3.11)
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where

Ω1 ={(x, t); ai+1(t) ≤ x ≤ bi+1(t)and t0 < t ≤ t∗}

∪ {(x, t); ai+1(t) ≤ x ≤ σ(t) and t∗ ≤ t ≤ t∗∗}

Ω2 ={(x, t); ai(t) ≤ x ≤ bi(t) and t0 < t ≤ t∗}

∪ {(x, t); ai(t) ≤ x ≤ bi(t) and t∗ ≤ t ≤ t∗∗}

∪ {(x, t); ai(t) ≤ x ≤ bi(t) and t∗∗ ≤ t ≤ t1}

Ω3 ={(x, t); σ(t) ≤ x ≤ ai(t) and t∗ ≤ t ≤ t∗∗}

∪ {(x, t); ãi(t) ≤ x ≤ ai(t) and t∗∗ ≤ t ≤ t1}, ( with ãi(t) ≡ ai+1(t)).

Let ϕ(x, t) be a smooth function with compact support in Ω. For any con-
tinuous function S, denoting by <, > the distribution duality brackets, we have

< ∂t(nS(u, p̄)) + ∂x(nuS(u, p̄)), ϕ > = −

∫∫

Ω

nS(u, p̄)(∂tϕ + u∂xϕ)dxdt

= A1 + A2 + A3

where Aj =

∫∫

Ωj

nS(u, p̄)(∂tϕ + u∂xϕ)dxdt, for j = 1 . . . 3.

For all i = 1 . . .N , we have
∫ bi(t)

ai(t)

∂xϕ(x, t)dx = ϕ(bi(t), t) − ϕ(ai(t), t). (3.12)

On the other hand
∫ bi(t)

ai(t)

∂tϕ(x, t)dx =
d

dt

[

∫ bi(t)

ai(t)

ϕ(x, t)dx

]

− ϕ(bi(t), t)b
′
i(t) + ϕ(ai(t), t)a

′
i(t).

Furthermore, for a given block i, we have b′i(t) = a′
i(t) = ui and on the shock

wave σ′ = us. Therefore, since ϕ has a compact support Ω, we compute

A1 =

∫ σ(t∗∗)

ai+1(t∗∗)

n∗
i+1S(ui+1, p̄i+1)ϕ(x, t∗∗)dx

+

∫ bi+1(t∗)

σ(t∗)

n∗
i+1S(ui+1, p̄i+1)ϕ(x, t∗)dx

+

∫ t∗∗

t∗
n∗

i+1S(ui+1, p̄i+1)(ui+1 − us)ϕ(σ(t), t)dt;

(3.13)

A2 = 0; (3.14)

A3 =

∫ σ(t∗)

ai(t∗)

n∗
i S(ui, p̃i+1)ϕ(x, t∗)dx

+

∫ ãi(t
∗∗)

σ(t∗∗)

n∗
i S(ui, p̃i+1)ϕ(x, t∗∗)dx

+

∫ t∗∗

t∗
n∗

i S(ui, p̃i+1)(us − ui)ϕ(σ(t), t)dt.

(3.15)
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Now

ai(t
∗) = bi+1(t

∗) = σ(t∗), σ(t∗∗) = ãi(t
∗∗), ai+1(t

∗∗) = σ(t∗∗), (3.16)

then

< ∂t(nS(u, p̄)) + ∂x(nuS(u, p̄)), ϕ >

=[n∗
i (us − ui)S(ui, p̃i+1) − n∗

i+1(us − ui+1)S(ui+1, p̄i+1)]

∫ t∗∗

t∗
ϕ(σ(t), t)dt.

(3.17)

For S(u, p̄) = 1, (3.17) turns to

< ∂tn, ϕ > + < ∂x(nu), ϕ >

=[n∗
i (us − ui) − n∗

i+1(us − ui+1)]

∫ t∗∗

t∗
ϕ(σ(t), t)dt.

(3.18)

From (3.5), we have

n∗
i (ui − us) = n∗

i+1(ui+1 − us), (3.19)

therefore
< ∂tn, ϕ > + < ∂x(nu), ϕ >= 0. (3.20)

For S(u, p̄) = u + p̄, we obtain:

< ∂t(n(u + p̄)), ϕ > + < ∂x(n(u + p̄)u), ϕ >

=[(ui + p̃i+1) − (ui+1 + p̄i+1)] × n∗
i (us − ui)

∫ t∗∗

t∗
ϕ(σ(t), t)dt,

(3.21)

which implies, thanks to (3.5) and (3.9)

< ∂t(n(u + p̄)), ϕ > + < ∂x(n(u + p̄)u) >= 0. (3.22)

Proposition 3.1. We have the maximum principle

essinf
y

u0(y) ≤ u(x, t) ≤ esssup
y

u0(y), (3.23)

where esssup and essinf denote respectively the essential sup and the essential
inf. We also have the bound

0 ≤ p̄(x, t) ≤ esssup
y

u0(y) + esssup
y

p̄0(y). (3.24)

Assume furthermore that the initial data in the blocks u0
i and p̄0

i are BV func-
tions. Then we have for all t ∈ [0, T ]

TVK(u(., t)) ≤ TVK̃(u0), (3.25)

TVK(p̄(., t)) ≤ TVK̃(p̄0) + 2TVK̃(u0), (3.26)

for any compact K = [a, b] and with K̃ =
[

a − t esssup
∣

∣u0
∣

∣ , b − t essinf
∣

∣u0
∣

∣

]

where TVK (resp. TVK̃) denotes the total variation on the set K (resp. K̃).
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Proof . We gave below the proof of (3.26) for some extreme cases but the proof
is general. For all i = 1 . . .N , when the block i + 1 collides with the block i
then, p̄i+1 becomes p̃i+1 = p̄i+1 +ui+1−ui. We assume the following dynamics:
in a time interval [0, t] ⊂ [0, T ], j blocks collide successively at t1, · · · , tj−1 ≤ t
for instance and then N − j + 1 blocks collide at the same time ts ≤ t, then we
have

TVK(p̄(t, .)) =
∣

∣p̄0
1 − p̃t1

2

∣

∣+
∣

∣p̃t1
2 − p̃t2

3

∣

∣+ . . . +
∣

∣

∣p̃
tj−2

j−1 − p̃
tj−1

j

∣

∣

∣

+
∣

∣p̃ts

j − p̃ts

j+1

∣

∣+ . . . +
∣

∣p̃ts

N−1 − p̃ts

N

∣

∣

≤
∣

∣p̄0
1 − p̄0

2

∣

∣+
∣

∣p̄0
2 − p̄0

3

∣

∣+ . . . +
∣

∣p̄0
j−1 − p̄0

j

∣

∣+

2
(∣

∣u0
1 − u0

2

∣

∣+
∣

∣u0
2 − u0

3

∣

∣+ . . . +
∣

∣u0
j−1 − u0

j

∣

∣

)

+
∣

∣

∣p̄
ts−1

j − p̄
ts−1

j+1

∣

∣

∣+ . . . +
∣

∣

∣p̄
ts−1

N−1 − p̄
ts−1

N

∣

∣

∣+

2
(∣

∣

∣u
ts−1

j − u
ts−1

j+1

∣

∣

∣+ . . . +
∣

∣

∣u
ts−1

N−1 − u
ts−1

N

∣

∣

∣

)

≤ TVK̃(p̄0) + 2TVK̃(u0).

3.3 Existence of a weak solution

In the previous section we have proved the existence of solution to (3.1a)-(3.1c)
for some particular data. We prove now that these particular initial data are
dense, in some sense, in the set of desired initial data.

Lemma 3.1. Let n0 ∈ L1(R), u0 ∈ L∞(R) ∩ BV (R) such that 0 ≤ n0 ≤
n∗(u0), then there exists a sequence of block initial data

(

n0
k, u0

k, 0
)

k≥0
such that

∫

R

n0
k(x)dx ≤

∫

R

n0(x)dx, essinf u0 ≤ u0
k ≤ esssup u0 and TV (u0

k) ≤ TV (u0)

for which the convergences n0
k ⇀

k→∞
n0 and n0

ku0
k ⇀

k→∞
n0u0 hold in the distrib-

ution sense.

Proof . The proof is widely inspired from the one of Lemma 4.1 in [3]. Let
k ∈ N

∗ and let set ∀ i ∈ Z

mik =

∫
i+1

k
− 1

k2

i
k

n0(x)dx.

If mik 6= 0, we set

u0
ik = inf

[ i
k

, i+1

k
]
u0(x)dx,

n0
ik = n∗(u0

ik).
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We note that since n0(x) ≤ n∗(u0(x)) ≤ n∗(u0
ik) = n0

ik, then we have mik

n0
ik

< 1
k .

We finaly set, for any x ∈ R,

n0
k(x) =

k2

∑

i=−k2

n0
ik1I�

i
k

, i
k
+

mik

n0
ik

�(x), (3.27)

n0
k(x)u0

k(x) =

k2

∑

i=−k2

n0
iku0

ik1I�
i
k

, i
k
+

mik

n0
ik

�(x). (3.28)

We extend the definition of u0
k in the vacuum as in Remark 3.1. We notice that

we have
TV[a,b](u

0
k) ≤ TV[a−1/k,b+1/k](u

0). (3.29)

Let ϕ ∈ D(R) and let k0 ∈ N such that supp ϕ ⊂ [−k0, k0]. We have

∫

R

n0
k(x)ϕ(x)dx =

k2

∑

i=−k2

∫ i
k
+

mik

n0
ik

i
k

n0
ikϕ(x)dx

=

k2

∑

i=−k2

[

ϕ

(

i

k

)

mik + ϕ′(xi
k)

m2
ik

2n0
ik

]

=

k2

∑

i=−k2

[

∫
i+1

k
− 1

k2

i
k

n0(x)ϕ

(

i

k

)

dx + ϕ′(xi
k)

m2
i,k

2n0
ik

]

where xi
k ∈

[

i

k
,

i

k
+

mik

n0
ik

]

.

For k > k0, we have

∣

∣

∣

∣

∫

R

n0
k(x)ϕ(x)dx −

∫

R

n0(x)ϕ(x)dx

∣

∣

∣

∣

≤

kk0−1
∑

i=−kk0

∫
i+1

k
− 1

k2

i
k

∥

∥n0
∥

∥

∞

∣

∣

∣

∣

ϕ

(

i

k

)

− ϕ(x)

∣

∣

∣

∣

dx +

kk0−1
∑

i=−kk0

∫
i+1

k

i+1

k
− 1

k2

∥

∥n0
∥

∥

∞
|ϕ(x)| dx

+

kk0−1
∑

i=−kk0

∣

∣ϕ′(xi
k)
∣

∣

m2
i,k

2n0
ik

≤
∥

∥n0
∥

∥

∞
‖ϕ′‖∞

kk0−1
∑

i=−kk0

∫
i+1

k
− 1

k2

i
k

(

x −
i

k

)

dx +
∥

∥n0
∥

∥

∞
‖ϕ‖∞

kk0−1
∑

i=−kk0

∫
i+1

k

i+1

k
− 1

k2

dx

+ ‖ϕ′‖∞

kk0−1
∑

i=−kk0

∥

∥n0
∥

∥

∞

(

∫
i+1

k
− 1

k2

i
k

dx

)2

≤
k0

k

∥

∥n0
∥

∥

∞
‖ϕ′‖∞ +

2k0

k

∥

∥n0
∥

∥

∞
‖ϕ‖∞ +

2k0

k

∥

∥n0
∥

∥

∞
‖ϕ′‖∞ = O

(

1

k

)

and then
〈

n0
k, ϕ
〉

−→
k−→∞

〈

n0, ϕ
〉

. (3.30)
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Similarly we have

∫

R

n0
k(x)u0

k(x)ϕ(x)dx =

k2

∑

−k2

[

∫
i+1

k
− 1

k2

i
k

n0(x)u0
ikϕ

(

i

k

)

dx + u0
ikϕ′(xi

k)
m2

ik

2n0
ik

]

,

and the main difference to prove that

〈

n0
ku0

k, ϕ
〉

−→
k−→∞

〈

n0u0, ϕ
〉

, (3.31)

is to show that

A =

kk0−1
∑

i=−kk0

∫
i+1

k
− 1

k2

i
k

∣

∣n0(x)
∣

∣

∣

∣u0
ik − u0(x)

∣

∣

∣

∣

∣

∣

ϕ

(

i

k

)∣

∣

∣

∣

dx −→
k−→∞

0.

This last fact comes from the majoration

A ≤

kk0−1
∑

i=−kk0

∫
i+1

k
− 1

k2

i
k

∥

∥n0
∥

∥

∞
‖ϕ‖∞

∣

∣u0
ik − u0(x)

∣

∣ dx

≤
∥

∥n0
∥

∥

∞
‖ϕ‖∞

kk0−1
∑

i=−kk0

∫
i+1

k
− 1

k2

i
k

∣

∣

∣

∣

∣

∣

sup
[ i

k
, i+1

k ]
u0 − inf

[ i
k

, i+1

k ]
u0

∣

∣

∣

∣

∣

∣

dx

≤
1

k

∥

∥n0
∥

∥

∞
‖ϕ‖∞

kk0−1
∑

i=−kk0

TVx

(

u0;

[

i

k
,
i + 1

k

])

≤
1

k

∥

∥n0
∥

∥

∞
‖ϕ‖∞ TVx(u0; [−k0, k0]).

In this paper, due to the finite wave speed, we have uk −→ u in L1 (we will
come back to this assertion in the proof of the Theorem 3.2 below) , therefore
the passage to the limit is easier than in [5] where the technical Lemma 3.2 of
[3] was required since we have not this strong convergence.

Lemma 3.2. [3] Let us assume that (γk)k∈N is a bounded sequence in
L∞(R×]0, T [) that tends to γ in L∞

w∗(R×]0,∞[), and satisfies for any Γ ∈
C∞

c (R),
∫

R

(γk − γ)(x, t)Γ(x)dx −→
k−→∞

0, in L1
t (]0, T [). (3.32)

Let us also assume that (ωk)k∈N is a bounded sequence in L∞(R×]0, T [). If
ωk −→ ω in L1, then γkωk ⇀ γω in L∞

w∗(R×]0,∞[), as k −→ ∞

We are searching solutions with the following regularities

n ∈ L∞
t (]0,∞[ , L∞

x (R) ∩ L1
x(R)), (3.33)

u, p̄ ∈ L∞
t (]0,∞[ , L∞

x (R)), (3.34)

0 ≤ n ≤ n∗(u), p̄(n∗(u) − n) = 0. (3.35)

and the existence result is:
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Theorem 3.2. Let (n0, u0, 0) be some initial data such that

n0 ∈ L1(R) ∩ L∞(R), (3.36)

u0 ∈ L∞(R) ∩ BV (R), (3.37)

with 0 ≤ n0 ≤ n∗(u0). (3.38)

Then there exists (n, u, p̄) with regularities (3.33)-(3.35), solution to the system
(3.1a)-(3.1c) with initial data (n0, u0, 0). Moreover, this solution satisfies

essinf
y

u0(y) ≤ u(x, t) ≤ esssup
y

u0(y), (3.39)

0 ≤ p̄(x, t) ≤ esssup
y

u0(y). (3.40)

Proof . Let n0
k, u0

k and p̄0
k = 0 (k ∈ N) be the blocks initial data associated

respectively to n0, u0 and p0 = 0 provided by Lemma 3.1. For all k, the results
of Section 3.2 allow us to get (nk, uk, p̄k) solution of (3.1a)-(3.1c) with initial data
(n0

k, u0
k, p0

k), satisfying (3.33)-(3.35). We are going to use the compactness result
in Lemma 3.2 to prove that up to a subsequence, as k −→ ∞, (nk, uk, p̄k) ⇀
(n, u, p̄) where (n, u, p̄), with regularities (3.33)-(3.35), is a solution to (3.1a)-
(3.1c) for initial data (n0, u0, p̄0).
Since (nk) is bounded in L∞, then there exists a subsequence such that

nk ⇀ n in L∞(R×]0,∞[)w ∗ . (3.41)

Thanks to (3.23) and the bounds on u0
k provided by Lemma 3.1, the sequence

(uk)k≥0 is uniformely bounded in L∞(R×]0,∞[) and similarly (p̄k) is bounded
in L∞, then we can extract subsequences such that we also have

uk ⇀ u in L∞(R×]0,∞[)w∗, p̄k ⇀ p̄ in L∞(R×]0,∞[)w ∗ . (3.42)

We want now to prove the passage to the limit in the equation.
First, we study an important new property of the model which is directly related
to the finite speed of propagation and gives a strong compactness for the velocity.
In order to get it, we study the variation with respect to t of the L1

x norm of
uk. From the figure (2), we see that the worst case of evolution of this quantity
is related to the computation of an area which is bounded by ‖uk‖∞ |t2 − t1|
times the variation of uk between two blocks. According to the definition of uk

on the vacuum, the sum of all this quantity makes appear TV (u0).
Finally, we get that

∫

R

|uk(x, t2) − uk(x, t1)| dx ≤ ‖uk‖∞ |t2 − t1|TV (u0) = C |t2 − t1| . (3.43)

From the BVx bound on uk from (3.25), this equicontinuity with respect to t
and a Cantor diagonal process argument implies

uk −→
k→∞

u in L1(R × [0, T ]). (3.44)

Similarly we also have

p̄k −→
k→∞

p̄ in L1(R × [0, T ]). (3.45)
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x

u(x, t)

u(x, t1) = u(x, t2)

u(x, t1) = u(x, t2)

u(x, t1)

u(x, t2)

block i + 1 block i

Figure 2: The L1 equicontinuity with respect to t .

From the mass conservation equation, for any ϕ ∈ C∞
c (R), the sequence

∫

R
nk(t, x)ϕ(x) dx is bounded in BVt. Then by Lemma 3.2, we have

nkuk ⇀
k→∞

nu in L∞
w∗(R×]0,∞[). (3.46)

Similarly, we get the convergences

nkp̄k ⇀
k→∞

np̄ in L∞
w∗(R×]0,∞[). (3.47)

and
nk(uk + p̄k)uk ⇀

k→∞
qu in L∞

w∗(R×]0,∞[), (3.48)

with q = nu + np̄.
To complete the proof, we are going to show that n∗(uk)p̄k −→

k→∞
n∗(u)p̄ in

L1(R × [0, T ]). From (3.44) and (3.45), we have

uk(x, t) −→
k→∞

u(x, t), p̄k(x, t) −→
k→∞

p̄(x, t) a.e. (x, t) ∈ R × [0, T ]. (3.49)

and there exists h ∈ L1(R × [0, T ]) such that for a subsequence |p̄k| ≤ h a.e.
Since n∗ is continuous, we get

n∗(uk)p̄k −→
k→∞

n∗(u)p̄ a.e., and |n∗(uk)p̄k| ≤ n∗(0)h ∈ L1(R × [0, T ]), (3.50)

then by dominated convergence

n∗(uk)p̄k −→
k→∞

n∗(u)p̄ in L1(R × [0, T ]). (3.51)

Finally we get a solution of (3.1a)-(3.1c). Moreover, this solution satisfies also
(3.39)-(3.40).

Remark 3.2. We study here only the case where p0 = 0. For the particular
case of block initial data, we can nevertheless take any p0 as in the corresponding
section. The result can be extended to initial data such that on any interval
n = n∗, the initial pressure is piecewise constant with 0 for the last constant,
and 0 on other sets.
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4 The Riemann Problem analysis

4.1 The Riemann problem for the RMAR* model (2.31)-
(2.32)

In this section, we briefly study the simple waves and then discuss the Riemann
problem for the RMAR* system (2.31)-(2.32). And we refer the reader to [1]
for more details on the derivation.

4.1.1 Simple waves for the RMAR* system (2.31)-(2.32)

Since the system (2.31)-(2.32) inherits the properties of the Modified AR* model
(2.23)-(2.24), the solution of the RMAR* model (2.31)-(2.32) consists of either
a wave of the first family (1-shock or 1-rarefaction) or a wave of the second
family (2-contact discontinuity). In this paragraph, we analyse the properties
of these two families of waves.

First characteristic field. We obtain the wave of the first family when a left
state Uε

l = (nε
l , u

ε
l ) is connected with a right state Uε

r = (nε
r, u

ε
r) through the

curve

uε
r + εp(nε

r, u
ε
r) = uε

l + εp(nε
l , u

ε
l ). (4.1)

• If uε
r < uε

l , this wave (of the first family) is a 1-shock i.e. a jump discon-
tinuity, travelling with the speed

σε =
nε

ru
ε
r − nε

l u
ε
l

nε
r − nε

l

. (4.2)

• On the other hand, if uε
r > uε

l , this wave of the first family is a 1-rarefaction
i.e. a continuous solution of the form (nε, uε)(ξ) (with ξ = x

t ) given by

(

(nε)′(ξ)
(uε)′(ξ)

)

=
rε
1(U

ε(ξ))

∇λε
1(U

ε(ξ)).rε
1(U

ε(ξ))
, λε

1(U
ε
l ) ≤ ξ ≤ λε

1(U
ε
r ), (4.3)

(nε, uε)(ξ) =

{

(nε
l , u

ε
l ) for ξ < λε

1(U
ε
l ),

(nε
r, u

ε
r) for ξ > λε

2(U
ε
r ).

(4.4)

Second characteristic field. We obtain a wave of the second family i.e. a
2-contact discontinuity when uε

l = uε
r. In this case, this cantact discontinuity

between the left state Uε
l = (nε

l , u
ε
r) and the right state Uε

r = (nε
r, u

ε
r) travels

with speed uε = uε
r = uε

l .

4.1.2 Solution to the Riemann problem for the RMAR* sys-
tem (2.31)-(2.32)

Let Uε
l = (nε

l , u
ε
l ) and Uε

r = (nε
r, u

ε
r) be two given states respectively on the left

and on the right. The general solution to the Riemann problem for the RMAR*
model (2.31)-(2.32) consists of two simples waves separated by an intermediate
state Ũε = (ñε, ũε) which is the intersection point between the 1- wave curve
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through Uε
l and the 2-contact discontinuity through Uε

r . First, Uε
l is connected

with Ũε through a wave of the first family (i.e. either 1-shock or 1-rarefaction
according to the above discussion) and then Ũε is connected with Uε

r through
a 2-contact discontinuity. Therefore,

ũε + εp(ñε, ũε) = uε
l + εp(nε

l , u
ε
l ) and ũε = uε

r. (4.5)

Hence, the density of the intermediate state Ũε = (ñε, ũε = uε
r) is given by

ñε = p(., uε
r)

−1[ε−1(uε
l − uε

r) + p(nε
l , u

ε
l )]. (4.6)

Remark 4.1. If uε
r > uε

l , equation (4.6) admits a solution if and only if
ε−1(uε

l − uε
r) + p(nε

l , u
ε
l ) > 0. Otherwise i.e. if uε

l + εp(nε
l , u

ε
l ) < uε

r, then
a vacuum state (n = 0) separates the two states Uε

l and Uε
r .

Now let us discuss the solution to the Riemann problem in different cases.

(1) uε
r < uε

l . First, a 1-shock connects Uε
l = (nε

l , u
ε
l ) to the intermediate

state Ũε = (ñε, uε
r) and then a 2-contact discontinuity connects Ũε to

Uε
r = (nε

r, u
ε
r).

(2) uε
l < uε

r < uε
l + εp(nε

l , u
ε
l ). The left state Uε

l = (nε
l , u

ε
l ) is connected to

the intermediate state Ũε = (ñε, uε
r) by a 1-rarefaction wave and then a

2-contact discontinuity connects Ũε to the right state Uε
r = (nε

r, u
ε
r).

(3) uε
l + εp(nε

l , u
ε
l ) < uε

r. First a 1-rarefaction wave connects the left state
Uε

l = (nε
l , u

ε
l ) to the vacuum ((0, ũε) with ũε = uε

l + εp(nε
l , u

ε
l )) and

then a 2-contact discontinuity connects the vacuum to the right state
Uε

r = (nε
r, u

ε
r).

4.2 Simple waves for the SOMC system (2.34)-(2.36)

We recall that the SOMC system (2.34)-(2.36) is the formal limit of the RMAR*
system (2.31)-(2.32) when ε −→ 0. As for the CPGD system (2.19)-(2.21), due
to (2.36), p̄ plays the role of a Lagrangian multiplier. Therefore one has to
distinguish between the cases n = n∗(u) and n < n∗(u). Throughout the
discussion below we consider the three quantities n, u and p̄. Let Ul = (nl, ul, p̄l)
and Ur = (nr, ur, p̄r) be two given states respectively on the left and on the right
such that

(nε
l , u

ε
l , εp(nε

l , u
ε
l )) −→

ε−→0
(nl, ul, p̄l)

and
(nε

r, u
ε
r, εp(nε

r, u
ε
r)) −→

ε−→0
(nr, ur, p̄r).

If nl,r = n∗(ul,r), then lim
ε−→0

εp(nε
l,r, u

ε
l,r) = p̄l,r with 0 ≤ p̄l,r < ∞.

4.2.1 First characteristic field: 1-shocks.

The 1-shock waves appear in the SOMC system only if ur < ul and if (4.5) is
satisfied.
We shall distinguish the following cases.
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1. nl < n∗(ul), nr = n∗(ur) i.e. p̄l = 0 and 0 < p̄r < ∞.
In this case, when ε −→ 0, from (4.1) we have ul = ur+p̄r > ur. Therefore,
we have a 1-shock between the states Ul = (nl, ul, p̄l = 0) and Ur =
(n∗(ur), ur, p̄r) travelling with a speed σ given by

σ =
n∗(ur)ur − nlul

n∗(ur) − nl
. (4.7)

This situation models a “cluster growing” upstream: as soon as a faster
vehicle catches up the cluster, it adapts its velocity to the saturation
density n∗(ur) and “is swallowed by” the cluster.

2. nl = n∗(ul), nr = n∗(ur) i.e. 0 < p̄l < ∞ and 0 < p̄r < ∞.
When p̄r > p̄l, from (4.1), we have

ul + p̄l = ur + p̄r =⇒ ul = ur + p̄r − p̄l > ur. (4.8)

Therefore we have a 1-shock travelling with the speed

σ =
n∗(ur)ur − n∗(ul)ul

n∗(ur) − n∗(ul)
. (4.9)

This situation models a “cluster slowing down” that leads to a merging of
two clusters since the left cluster is faster than the right one. In contrast
with the corresponding discussion in [5], here the wave speed σ is always
finite. As soon as the collusion occurs, the velocity of the left cluster ad-
justs gradually to the right one through the shock wave. This propagation
also involves the functional p̄l, see below.

4.2.2 First characteristic field: 1-rarefaction Waves.

The 1-rarefaction waves appear in the SOMC system if ur > ul and (4.5) is
satisfied.
Here also we shall distinguish two cases.

1. nl = n∗(ul), nr < n∗(ur), therfore 0 < p̄l < ∞ and p̄r = 0.
When ε −→, from (4.1) we have ur = ul + p̄l > ul. This case describes a
“cluster acceleration” leading to a “cluster growing” downstream. Indeed,
the vehicles downstream are faster than the cluster: the cluster accelerates
in order to reach its preferred velocity ul + p̄l = ur.
Here also, in contrast to [5], the velocity of the left state ul changes grad-
ually to ur, therefore the functional p̄l changes also gradually to p̃l −→ 0.

2. nl = n∗(ul), nr = n∗(ur), therefore 0 < p̄l < ∞ and 0 < p̄r < ∞
When p̄l > p̄r, from (4.1) we have

ur + p̄r = ul + p̄l =⇒ ur = ul + p̄l − p̄r > ul. (4.10)

This situation also models a “cluster acceleration” that leads to a merging
of two clusters. The right cluster being faster than the left one, the left
cluster accelerates and catches up the right one since ur = ul + p̄l − p̄r <
ul + p̄l. Hence the left cluster adjusts gradually its velocity to the velocity
ur of the right one.
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4.2.3 Second characteristic field: 2-contact discontinuities

The 2-contact discontinuities appear in the SOMC system if ur = ul.
We have following cases.

1. nl < n∗(ul), nr < n∗(ur), therefore p̄l = p̄r = 0,

2. nl = n∗(ul), nr = n∗(ur) with 0 < p̄l = p̄r < ∞.

In each of these two cases, at the limit ε −→ 0 in (4.1), we get ul = ur =
ũ. Therefore, the solution consists of a 2-contact discontinuity travelling with
velociy ũ from Ul = (nl, ũ, p̄l) to Ur = (nr, ũ, p̄r).

4.3 Solution to the Riemann problem for the SOMC sys-
tem (2.34)-(2.35)

In this subsection, we describe the solutions to the Riemann problem for the
SOMC system (2.34)-(2.35), by combining the previously described elementary
waves depending on whether n = n ∗ (u) or n < n∗(u).
Let Ul = (nl, ul, p̄l) and Ur = (nr, ur, p̄r) be the initial data on the left and on
the right, respectively. The solutions to the SOMC system (2.34)-(2.36) system
for these initial data consist of the following cases.

4.3.1 Case 1 nl < n∗(ul), nr < n∗(ur) i.e. p̄l = p̄r = 0.

x

tσ

Ur = (nr, ur, 0)

Ũ = (n∗(ur), ur, ul − ur)

Ul = (nl, ul, 0)

ur

(a)

x

t

Ur = (nr, ur, 0)Ul = (nl, ul, 0)

ur

(b)

x

t

Ur = (nr, ur, 0)

V acuum

Ul = (nl, ul, 0)

ur

ul

(c)

Figure 3: (a): Subcase 1.1, (b): Subcase 1.2, (c): Subcase 1.3
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Subcase 1.1 ur < ul. In this case we have a cluster formation. In fact
the density of the intermediate state ñ increases and tends to n∗(ur). At the
same time, εp(ñ, ur) −→ p̃ = ul − ur. Therefore the intermediate state that
characterizes the cluster is given by Ũ = (n∗(ur), ur, p̃ = ul − ur). This inter-
mediate is separated from the left state Ul = (nl, ul, p̄l = 0) and the right state
Ur = (nr, ur, p̄r = 0) respectively by a 1-shock travelling with velocity σ and a
contact discontinuity with velocity ur. The schock speed σ is given by

σ =
nrur − nlul

nr − nl
.

This situation is illustrated by Figure 3 (a).

Subcase 1.2 ul < ur < ul + pl , therefore ul = ur. This case is solved by
a single contact discontinuity travelling with the velocity ũ = ul = ur that
connects Ul = (nl, ul, p̄l = 0) with Ur = (nr, ur, p̄r = 0). An example is shown
in Figure 3 (b).

Subcase 1.3 ul + pl < ur i.e. ul < ur. In this situation the vacuum appears.
It is separated from the left state Ul = (nl, ul, p̄l = 0) by contact discontinuity
(with velocity ul) and another contact discontinuity (with velocity ur) connects
the vacuum with the right state Ur = (nr, ur, p̄r = 0), see Figure 3 (c) for
illustration.

4.3.2 Case 2 nl = n∗(ul), nr < n∗(ur) i.e. 0 ≤ p̄l < ∞ and p̄r = 0.

x

tσ

Ur = (nr, ur, 0)

Ũ = (n∗(ur), ur, p̄l + ul − ur)

Ul = (n∗(ul), ul, p̄l)

ur

(a)

x

t

Ur = (nr, ur, 0)

Ũ = (n∗(ur), ur,

pl + ul − ur)

λ̄1(ul)

ur

λ̄1(ur)

Ul = (n∗(ul), ul, p̄l)

(b)

x

t

Ur = (nr, ur, 0)

V acuum

λ̄1(ul)

ur

ul + p̄l

Ul = (n∗(ul), ul, p̄l)

Ũ = (n∗(ul + p̄l), ul + p̄l, p̄l)

(c)

Figure 4: (a): Subcase 2.1, Subcase 2.2, (b): Subcase 2.3
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Subcase 2.1 ur < ul. Here we have a “cluster growing” downstream. The
cluster being faster than the vehicles ahead, must adapt its velocity gradu-
ally to ur through a 1-shock connecting ur to the intermediate state Ũ =
(n∗(ur), ur, p̃ = p̄l + ul − ur). This is illustrated by Figure 4 (a).

Subcase 2.2 ul < ur < ul + p̄l. The vehicles ahead of the cluster are faster
than this one. However, their velocity ur is less than the cluster preferred
velocity ul+p̄l therefore, we have a “cluster acceleration” that leads to a “cluster
growing” downstream. The solution is of the following form: The left state
Ul = (n∗(ul), ul, p̄l) is connected to the intermediate state Ũ = (n∗(ur), ur, p̃ =
p̄l +ul−ur) with a 1-rarefaction wave, then Ũ is connected to Ur = (nr, ur, p̄r =
0) with a contact discontinuity of velocity ur. This is illustrated by (b) of
Figure 4.

Subcase 2.3: ul + p̄l < ur. Here the velocity ur of the vehicles ahead of the
cluster is greater than the cluster preferred velocity ul + p̄l. Therefore we have
a “cluster acceleration” to reach the preferred velocity ul + p̄l but a vacuum
appears since ur > ul + p̄l. The solution is as follows: The left state Ul =
(n∗(ul), ul, p̄l) is connected to the intermediate state Ũ = (n∗(ul+ p̄l), ul+ p̄l, p̄l)
through a 1-rarefaction wave. Then Ũ is connected to the vacuum by a 2-
contact discontinuity. Then the vacuum is connected with Ur by a 2-contact
discontinuity. An example is described in Figure 4 (c).

4.3.3 Case 3 nl < n∗(ul), nr = n∗(ur) i.e. p̄l = 0 and 0 ≤ p̄r < ∞.

x

tσ

Ur = (n∗(ur), ur, p̄r)

Ũ = (n∗(ur), ur, ul − ur)

Ul = (nl, ul, 0)

ur

(a)

x

t

Ur = (n∗(ur), ur, p̄r)Ul = (nl, ul, 0)

ur

(b)

x

t

Ur = (n∗(ur), ur, p̄r)

V acuum

Ul = (nl, ul, 0)

ur

ul

(c)

Figure 5: (a): Subcase 3.1, (b): Subcase 3.2, (c): Subcase 3.3
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Subcase 3.1 ur < ul. In this situation we have a “cluster growing” upstream.
The vehicles behind the cluster are faster that this one. As soon as a vehicle
catches up the cluster, it slows down, adapts its velocity to the saturation dentity
n∗(ur) through a 1-shock connecting it to an intermediate Ũ and becomes a part
of (or “is swallowed by”) the cluster. The solution is quasi similar to that of
Subcase 1.1 and the only difference is that here pr 6= 0. See Figure 5 (a).

Subcase 3.2 ul < ur < ul + p̄l = ul , therefore ul = ur. Like in the Subcase
1.2, here also the solution consists of a single contact discontinuity with velocity
ũ = ul = ur, connecting the left state Ul = (nl, ul, p̄l = 0) and the right state
Ur = (n∗(ur), ur, p̄r). See Figure 5 (b).

Subcase 3.3 ul + p̄l < ur , therefore ul < ur. The downstream cluster being
faster than the vehicles behind, a vacuum state appears between them. Since
p̄l = 0, the left state Ul = (nl, ul, p̄l = 0) is connected to the vacuum with a
contact discontinuity of velocity ul. Then the vacuum is separated from the
right state Ur = (n∗(ur), ur, p̄r) with another contact discontinuity of velocity
ur. See (c) of Figure 5 for illustration.

4.3.4 Case 4 nl = n∗(ul), nr = n∗(ur) i.e. 0 < pr < ∞, 0 < p̄l < ∞.

x

tσ

Ur = (n∗(ur), ur, p̄r)

Ũ = (n∗(ur), ur, p̄l + ul − ur)

Ul = (n∗(ul), ul, p̄l)

ur

(a)

x

t

Ur = (n∗(ur), ur, p̄r)

Ũ = (n∗(ur), ur,

pl + ul − ur)

λ̄1(ul)

ur

λ̄1(ur)

Ul = (n∗(ul), ul, p̄l)

(b)

x

t

Ur = (n∗(ur), ur, p̄r)

V acuum

λ̄1(ul)

ur

ul + p̄l

Ul = (n∗(ul), ul, p̄l)

Ũ = (n∗(ul + p̄l), ul + p̄l, p̄l)

(c)

Figure 6: (a): Subcase 4.1, (b): Subcase 4.2, (c): Subcase 4.3

Subcase 4.1 ur < ul. Here we have a “cluster slowing down”, a 1-shock
leading to a merging of two clusters. The left cluster is faster than the right
one. When the two clusters meet, the left one slows down and adapts gradually
its velocity to the velocity ur of the right one. The solution is therefore almost
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similar to the one of Subcase 1.1 except that here the intermediate state is now
given by Ũ = (n∗(ur), ur, p̃ = p̄l + ul − ur), with here pl 6= 0 and pr 6= 0. See
Figure 6 (a) for illustration.

Subcase 4.2 ul < ur < ul + pl. In this situation we have a “cluster acceler-
ation” leading to the merging of two clusters. The right cluster is faster than
the left one, but its velocity ur is less than the preferred velocity ul + p̄l of the
left cluster, which then accelerates and gradually adapts its velocity to ur. The
solution is almost similar to the one of Subcase 2.2, except that here pr 6= 0.
An example is given by Figure 6 (b).

Subcase 4.3 ul+p̄l < ur. The velocity ur of the right cluster is larger than the
preferred velocity of the left cluster ul + p̄l. Therefore the left cluster accelerates
to reach its preferred velocity. However, the two clusters do not collide since
ur > ul + p̄l, so that a vacuum state appears between them, as in Subcase 2.3
(with here pr 6= 0). We have illustrated this situation in Figure 6 (c).

5 Concluding remarks

The model presented in this paper, contrarily to [5], takes into acount the fact
that the maximal density depends on the velocity. Furthermore, the proposed
model behaves as the Lighthill & Whitham model [17] when the maximal den-
sity constraint is saturated, and on the other hand in the free flow regime, it
becomes a pressureless gas model. This double-sided bihaviour has been high-
lighted in the analysis of the Riemann problem. We have proved an existence
result of weak solution for the model and discussed the associated Riemann
problem. This work is motivated by the fact that in practice a correlation exists
between the maximal density constraint and the velocity. The approach in this
paper opens many perspectives, and futur research can be carried out towards
several directions. First, this model is designed on a single highway framework.
A further interesting issue is to extend the model to the case of multilanes high-
ways with overtaking possibilities. Also an extension to road networks and a
comparison with other traffic models would be worthwhile.

Appendix

Proof of Lemma 2.1. We have

∇λ1.r1 = −2∂np − n





1

−∂np
1+∂up





t



∂nnp ∂unp

∂unp ∂uup









1

−∂np
1+∂up



 . (5.1)

As ∂np ≥ 0, the first term at the right hand side of the equation (5.1) is non
positive.

Let us denote by H(n, u) the Hessian matrix of p





∂nnp ∂unp

∂unp ∂uup



 .

Rewriting, H(n, u) in terms of (n, n∗) and the derivative of n∗, we obtain,
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H(n, u) =







∂nnp† ∂nn∗p† dn∗(u)
du

∂nn∗p† dn∗(u)
du ∂n∗n∗p†

(

dn∗(u)
du

)2

+ ∂n∗p† d2n∗(u)
du2







=





1 0

0 dn∗(u)
du









∂nnp† ∂nn∗p†

∂nn∗p† ∂n∗n∗p†









1 0

0 dn∗(u)
du



+





0 0

0 ∂n∗p† d2n∗(u)
du2



 .

with

p†(n, n∗) =

(

1

n
−

1

n∗

)−γ

and γ > 0. (5.2)

Let us denote by H̃(n, n∗) the matrix





∂nnp† ∂nn∗p†

∂nn∗p† ∂n∗n∗p†



 .

In order to show that ∇λ1.r1 keeps a constant sign ( ∇λ1.r1 < 0) we are looking
for a condition such that H(n, n∗) is, positive definite. Since ∀ γ > 0, we have

∂np† =
γ

n2Zγ+1
> 0; ∂n∗p† =

−γ

(n∗)2Zγ+1
< 0; ∂nn∗p† =

−γ(γ + 1)

n2(n∗)2Zγ+2
< 0;

∂nnp† =
−2γ

n3Zγ+1
+

γ(γ + 1)

n4Zγ+2
> 0; ∂n∗n∗p† =

2γ

(n∗)3Zγ+1
+

γ(γ + 1)

(n∗)4Zγ+2
> 0;

with Z =

(

1

n
−

1

n∗

)

,

Then the Hessian matrix of p̃†(n, n∗) is given by

H̃(n, n∗) =





−2γ
n3Zγ+1 + γ(γ+1)

n4Zγ+2 − γ(γ+1)
n2n∗2Zγ+2

− γ(γ+1)
n2n∗2Zγ+2

2γ
n∗3Zγ+1 + γ(γ+1)

n∗4Zγ+2





and its determinant is

det(H̃(n, n∗)) =
2γ

n3n∗3Zγ+1

(

γ(γ + 1)

Zγ+1
−

2γ

Zγ+1

)

.

For all γ > 1, det(H̃(n, n∗)) > 0, therefore H̃(n, u) is positive definite. Then,
H(n, u) is positive definite if

(

∂p

∂n

)2
∂p

∂n∗

d2n∗

du2
≥ 0. (5.3)
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The inequality (5.3) is satisfied since

(

∂p

∂n

)2

≥ 0,
∂p

∂n∗
≤ 0 and due to the

assumption (A-3),
d2n∗

du2
≤ 0. Therefore, the eigenvalue λ1 is genuinely non

linear.
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