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ABSTRACT: This paper proposes a novel data-centric framework for microscopic traffic flow simulation with intra and inter 

driver heterogeneity. We utilized a naturalistic driving corpus of 46 different drivers to learn and model the behavior 

divergence of Japanese drivers. First, ego-driver behavior signals are used to extract unique features of each driver with an 

auto-encoder. Then, using these features, drivers are divided into groups using unsupervised clustering algorithms. For each 

driver group, a feedforward neural network is trained for predicting the desired speed given the road topology. The trained 

network is then used in a microscopic traffic flow model for simulations. We used a macroscopic traffic survey conducted in 

Japan to evaluate the proposed framework.  Our findings indicate that the proposed framework can simulate a realistic traffic 

flow with high driver heterogeneity. 
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1. Introduction

Traffic is a complex multi-agent human-machine network 

where the nondeterministic nature of human driving styles 
poses a challenge for modeling. Over the years, various 

kinds of methods have been developed for modeling the 

traffic flow(1)-(4).  However many of the early works, which 

used rule-based or physics-based models, disregarded the 

human diversity in traffic because of the complexity of the 

problem(5).  

More recently, several studies proposed various concepts 

to model the traffic flow heterogeneity (5)-(13). Majority of 

these employed rule-based approaches. While some of the 

models can capture certain characteristics of heterogeneous 

flow, the naturalness of the simulation completely depends 
on the rules and features designed by the researcher. 

Furthermore, driver heterogeneity is often generalized, 

which often leads to the neglection of regional and 

demographic differences between drivers and the traffic 

flows. For instance, it is very difficult for a model developed 

this way to simulate driver heterogeneity realistically in 

different countries.  

With the advancement of data acquisition techniques, 

information such as speed and acceleration of individual 

drivers can be collected more easily in comparison to 

previous decades. This progress led the development of 

machine-learning based models for traffic simulations(14)-(16) 
and driving behavior analysis(17)-(18). Learning-based models 

require datasets to be trained and they perform well for 

imitating particular drivers’ car following behaviors. 

Datasets used for learning-based models can be separated 

into two groups. The first one comprises detailed ego-

behavior signals(19)-(21) such as steering and pedal operations, 

which are crucial for learning particular behavior patterns. 

However, since these datasets requires an instrumented data 

collection vehicle to be driven by human subjects, quite 

often the amount of drivers are low.  Therefore, the diversity 

of the learned behaviors are limited. The second type of 
datasets include huge amount of drivers but they lack 

detailed ego-behavior signals. For example, hundreds of 

vehicles’ trajectories on a patch of road network have been 

collected with a camera on top of a high building in US 

highway 101 dataset(22). This kind of datasets are very 

suitable for validating traffic flow simulations but they are 

insufficient for extracting individual behavior as they lack 

human input signals such as steering angle and pedal 

operation. 

Our main contribution in this study is a data-centric 

framework for microscopic traffic simulation that utilizes 
both kind of datasets for learning intra and inter driver 

behavior heterogeneity. First, we utilized detailed ego-

behavior signals of 46 drivers and used auto-encoder based 

clustering to group them in an unsupervised manner. The 

inter-driver heterogeneity comes from these groups. For 

each group, we trained an feedforward neural network to 

predict their desired speeds with respect to road topology. 

We assume that the behavior of an individual driver can be 

affected by road conditions such as number of lanes, 

curvature or existence of junctions. The change of car 

following behavior with respect to these conditions causes 

intra-driver behavior heterogeneity. We modified a 
microscopic car following model proposed in(4) to be used 

with the trained networks. The simulated traffic is then 

compared to a macroscopic traffic survey data for validation. 

2. Model Formulation

Homogeneous car following models can be written in the 
form; 𝑣"(𝑡 + 𝑇') = 𝑓+𝑣"(𝑡),∆𝑣"(𝑡), 𝑠"(𝑡)/ (1) 
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where vα is the speed of the αth vehicle in the traffic at time 

t +Ts, Δvα is the speed difference between the vehicle α and 

α-1 and sα is the net distance between vehicle α and α-1.  f  

is modeled differently amongst models. Intelligent driver 

model(4) (IDM) is regarded as an up-to-date, depictive 

microscopic car following model in(23). Furthermore, IDM 

models the following characteristics with intuitive, human-

centric parameters such as desired velocity. This aspect is 

crucial for us as we use machine learning methods to extract 

driver behavior from naturalistic data. As such, we utilized 
IDM in our framework. 

2.1. Intelligent Driver Model 

Intelligent Driver Model(4) (IDM) models f with two 
ordinary differential equations: 

�̇�" = 𝑑𝑥"𝑑𝑡 = 	𝑣" (2) 

�̇�" = 𝑑𝑣"𝑑𝑡 = 	𝑎 51 − 8𝑣"𝑣9:
; − 8𝑠∗(𝑣" , ∆𝑣")𝑠" :=> (3) 

𝑠∗(𝑣" , ∆𝑣") = 	 𝑠9 + 𝑣"𝑇 + 𝑣"∆𝑣"2√𝑎𝑏 (4) 

• v0: desired velocity

• s0: desired minimum spacing

• T : desired time headway

• a: maximum vehicle acceleration

• b : comfortable braking deceleration

• δ : an exponent. usually set to 4.

• sα: distance between vehicle α and α-1

Velocity of each vehicle in the simulation is calculated 

with the above equations in IDM. In summary, IDM models 

the free driving behavior, approaching behavior and 

following in small distance behavior at the same time. For 

example when the distance to the preceeding vehicle is large, 

the final term in equation 3 gets a value close to 0. This 
makes the first term, the free driving term, dominant. IDM 

is a pure rule-based model without vehicle heterogeneity. 

2.2. Proposed Model 

We propose a new car-following model based on IDM by 

including the effect of road topology, u, on driving behavior 

for intra-driver heterogeneity and driving signature o for 

inter-driver heterogeneity. The general form is shown below: 

𝑣"(𝑡 + 𝑇') = 𝑓"+𝑣"(𝑡), ∆𝑣"(𝑡), 𝑠"(𝑡), 𝑢(𝛼)/. (5) 

fα is the modified IDM, where; 

�̇�" = 𝑎(𝒐") 81 − F GH
GI∗(𝒖,	𝒐H)K

; − F'∗(GH ,∆GH)'H K=: (6) 

The term a(𝒐") and v*
0 (𝒖, 𝒐") are the modifications we 

made to the IDM. a( 𝒐" ) is the maximum observed 

acceleration of 𝒐", the driving signature of driver α, and it is 

extracted from driving data. v*
0 is a specific function that 

takes road topology and driving signature as an input and 

predicts the desired speed. This function is trained via a 

neural network. 

𝑣9∗(𝒖, 𝒐") = 𝑔(𝒘N[𝒖, 𝒐"] + 𝑏), (7) 

where 𝑔 is a a hyperbolic tangent sigmoid transfer function. 

Weights w and bias b are learned with conjugate gradient 
back-propagation. The network is shown in Figure 2. 𝒐" is the driving signature of driver α and it is obtained 

with a two-leveled auto-encoder structure. The detailed 

explanation of extraction of 𝒐" is given below in Section 2.3 

and shown in Figure 1.  

2.3. Extraction of Driving Signatures 

Our goal is to learn the distinct driving style groups in the 

dataset which can then be imitated in the traffic simulation 
for heterogeneity. In order to do so we represent each driver 

with an unique vector. We introduced the term “driving 

signature” in(24) for this purpose without the extraction 

method that is proposed in this paper. With driving 

signatures, drivers can be clustered into similarity groups. In 

this study we propose to obtain driving signatures through a 

two-level autoencoder structure.  

Overall structure of the two-level autoencoder network is 

shown in Figure 1. First, we segmented each driver’s ego-

behavior signals with respect to a change in road topology. 

A new segment is created for a driver if any of the following 

has changed during his/her trip:  the number of lanes, 
incoming/outgoing junctions or the curvature of the road 

(over a threshold). After segmenting, ego-behavior signals 

have been vectorized as Xi,s for driver i at segment s. We 

used X as the input of the first autoencoder. The idea behind 

the segmentation is that we want the network to learn to 

“code” the multi-channel time-series driving data on a 

particular road topology into a vector z.  

 An autoencoder consists of an encoder and a decoder. 

This kind of networks try to reconstruct the input data by 

reducing it to a "code" first. This code can carry the essence 

of the driving behavior on a segment. 
First level autoecnoder: 

• X ® z : Encoder-1. Reduces the multi-channel array of
driving signals and extracts features, z, from the data. Our
objective is to learn the features. This is done on a segment

basis.

• z ® 𝑿R : Decoder-1. Tries to reconstruct the data from the
code. Both of these networks are trained together with the
loss function shown below.

𝐸 = T
U∑ ∑ +𝑥W,X − 𝑥YW,X/= + 𝜆 ∗ Ω\]^_`ab +cWdTUXdT 						 𝛽 ∗ Ωbfghb^ai	, (8) 

where 	𝜆  and 𝛽  are network hyper-parameters, Ω\]^_`ab  is 

the L2 regularization term and Ωbfghb^ai  is the sparsity 

regularization term.  

The objective of training is to minimize the loss between 

reconstructed 𝑿R and the original X. We believe that z, the  
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Fig. 1.	Learning o, the unique driving signature of a driver. (a) First, 
multi-channel driving data is segmented for each road section. 
Then, driving signals have been vectorized and fed into the first 
autoencoder. (b) The latent features learned at each section have 
been concatenated and used as the input of the second autoencoder. 
The final latent features are the driving signature o and it is unique 
to the driver. At this figure, we included only 3 sections for the ease 
of presentation. 

Fig. 2. The fully connected network for predicting the desired speed. 
Desired speed is predicted with the concatenation of the unique 
driving signature and road topology.  

encoded ego-behavior signals obtained this way, can 

represent the general behavior of a particular driver at a 

particular segment.  

For the second-level, all codes from all segments that 
belong to a particular driver, zi,s|s=1, 2, …, S are concatenated 

into a matrix Zi. This new matrix is then fed into a second 

autoencoder.  

Second level autoencoder: 
• Z ® o : Encoder-2. Extracts features from the concatenated

features of the first level. All level-1 features of a driver are 
used to create a single vector. This vector is the driving 
signature, o, and it is unique to the driver. 

Algorithm 1	Generating the traffic flow 

• o ® 𝑍k  : Decoder-2. Tries to reconstruct Z using o. Encoder 
and decoder are trained together to minimize the loss given 
in equation 8. 

2.4. Predicting desired speed 

We assume the desired speed of a driver changes with 

respect to road topology. This assumption is aligned with 

studies such as(25) that investigated the effect of road shape 

on driving behavior. In order to predict the desired speed, 𝑣9|m,'	, of driver i at road segment s we used a feedforward 

fully connected network shown in equation 7. 

For each road segment, oi, the driving signature of driver 

i (constant through all segments) and the segments` road 

topology, us, have been concatenated as the input of the 

network. The output of the network is 𝑣Y9|m,'  . For the 

supervised training of this network, desired speed 𝑣9|m,' 	, of 

every driver at each road segment is required. We explained 
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Fig. 3. The Google Earth image of the experimental route in 
Nagoya, Japan. 

Table 1	Driving signals 

the extraction of desired speed in Section 3 and the network 

is shown in Figure 2. 

2.5. Clustering 

Driving signature of all drivers, O = {o1 ,o2, …, oi ,…, oN}, 

are used to find K cluster centroids with K-means algorithm. 
With driving signatures O and sets C = {c1, c2,..., cj ,…, 

cK}: 

argmint = ∑ ∑ u𝒐 − 𝝁wu=.𝒐∈yzcwdT  (9) 

The cluster that driver i belongs to is C(i) = 𝑐w  and 𝝁w is the 

cluster centroid. These centroids share a common space with 

the driving signature o.  

With clustering, distinct behavior groups that exist in the 

data are learned. This enables us to generalize the behavior 

of all drivers that belong to a particular group with the 

feedforward network. 

2.6. Generating Traffic Flow 

The modified IDM introduced in equation 6 is used to 

generate the traffic flow with the trained desired speed 

predictor. First, the probability mass function of driving 

style groups p, topology of the road u, the incoming vehicle 

flow rate function h and time step duration are set by the user. 

Then, the traffic flow is generated with algorithm 1. We used 

a constant function for h in our implementation. The first  

Fig. 4. We divided the route into sections with respect to road 
topology. A new segment is created if any of the following has 
changed:  the number of lanes, junctions or the curvature of the 
road. 

Table 2	 Network structures 

generated vehicle needs a lead vehicle in front to follow. 

This is realized by assuming a vehicle in front traveling with 

the speed limit of the road. The distance is a parameter of 

our model and after some trials we found that 30m is an  

acceptable assumption for urban driving. The distance 

affects the acceleration behavior of the vehicle. 

Using a Gaussian distribution to sample drivers is 

proposed in(13).  On line 15 of the above algorithm, we 
resampled the desired speed after predicting it if the driver 

enters a new road segment. We used the predicted speed as 

the mean of a normal distribution and resampled it with s 

=1. This increases the heterogeneity further.  

3. Data and Training

3.1. Naturalistic driving corpus 

We collected 46 drivers’ driving data on Nagoya city in 

Japan in a one-year  period.  Each  driver  followed the same 
path during the experiment at least twice and each driving  

session lasted approximately ten minutes. 122 total driving 

sessions have been held. All the data has been collected with 

the same vehicle, a Toyota Estima shown in Figure 6. 

Seven driving signals obtained from this experiment have 

been used in this study. These signals are: GPS, speed, 

longitudinal and lateral acceleration, steering wheel position, 

force on the brake pedal and the gas pedal. Units of these 

signals are shown in Table 1. Sampling rate of the GPS is 1  

Hz while the original sampling rates of the other signals 

were 16 kHz. However, in our study those signals are down  
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Fig. 5. Sequences of signals collected from 2 different drivers at a 
curved road segment (segment 2 in Fig. 4). The turning pattern is 
easy to detect; steering angle and lateral acceleration increases 
while the speed is decreased for both drivers. Segmenting the 
signals wtr to road enables us to compare these patterns. Blue driver 
is a bit more aggressive, he increased his speed (channel 1) just 
before the curve and had to make a sharp brake (channel 5). Red 
driver had constant speed before the curve, therefore he made a 

light brake. Furthermore, blue driver tends to press the brake pedal 
harder.  Our framework clustered these two drivers into different 
behavior groups.  Normalized data have been used in the analysis. 
However, raw signals (after bias removal) are shown here for the 
sake of intuitive depiction.  

Table 3	Details of the traffic survey 

sampled at 10 Hz. Examples of the signals are shown in 

Figure 5. More detailed information about the corpus can be 

found in(21). 

3.2. Defining desired speed 

The objective of the feed forward neural network is to 

estimate the desired speed of each driver group with respect 

to road topology. Supervised learning is required for this 

task. Therefore, the desired speed of the training data must 

be extracted to train the network. Desired speed is the speed 

the driver wishes to reach given perfect road and free driving 

conditions. We define the desired speed 𝑣9|m,' 	for driver i at 

section s as the following; 

𝑣9|m,' 	= 𝜇+𝑿m,'}f]]~/ + 3𝜎+𝑿m,'}f]]~/ (10) 

where 𝑿m,'}f]]~  is the sequence of speed signals that is

collected from driver i at section s. µ and s are obtained 

through fitting a normal distribution to 𝑿m,'}f]]~. In Figure 7, 

we show an example of a histogram of 𝑿m,'}f]]~ and the fitted 

distribution. Three-𝜎 rule is widely used in statistics for 

Fig. 6. The instrumented vehicle used for collecting the naturalistic 
driving data of 46 drivers. The driving group is comprised of 18 
females and 28 males and the drivers are aged from 22 to 56 with 
an average age of 40.5. 

Fig. 7. Histogram of the recorded speed signals of driver m9507A 
at section 11 and the fitted distribution. Desired speed, 
v0(m9507A,11), is 65.6 km/h.   

significancy. A result is considered as “significant” if the 

confidence level is of the order of a three-𝜎 effect. In our 

case, we believe 𝜇 + 3𝜎 can represent the desire of the 

driver: a speed that is always being aspired but unlikely 

to be reached 

3.3. Network parameters 

We employed three neural network structures in our work; 

autoencoder-1, autoencoder-2 and a fully connected 

feedforward network. They are mentioned in Section 2 and 

the structure details are shown in Table 2.  

We vectorized the sequence of normalized driving signals 

for driver i at section s, 𝑿m,', into a 1-dimensional vector. For 

each channel we took 500 samples. If 𝑿m,' 	had less frames 

than 500, we zero padded the missing frames and trimmed if 

it had more than 500. After that, we reshaped the 500x6 

matrix into a vector of size 3000x1. This one-dimensional 

vector is the input of autoencoder-1. A vector of 25x1 is 

obtained (z) as the latent features from the autoencoder. This 
process is repeated for all sections. In our case we had 15 

road segments for testing and 1 for validation, therefore we 

obtained 15 of these 25x1 vectors. All of these are 

concatenated and reshaped into a one-dimensional vector of 

375x1 for one driver, which is the input of autoencoder-2. 
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Fig. 8. RMSEs of the predicted desired speeds. Two-level 
autoencoder outperformed the regular autoencoder. 

Fig. 9. 3D representation of the simulation. UNITY is used for the 

visualization. Colors indicate the distinct driving style groups. The 
complete video is uploaded to: https://youtu.be/ziAyBTLpYnU 

A vector with the size of 5x1 is obtained as the latent features 

from autoencoder-2, which is the driving signature oi of 
driver i. 

The feedforward network is used to predict the desired 

speeds. The input of this network is the concatenation of 

road topology u and driving signature oi. u is a 4x1 vector 

and o is 5x1. The output is 1x1 𝑣Y9. The network structures 

are shown in Figure 1, 2 and Table 2. 

3.4. Traffic survey data 

The benchmark dataset presented in(26) by Horiguchi et al. 

is utilized to validate the simulated traffic flow. This survey 

is conducted with more than 200 observers in Tokyo-

Kichijoji area. Observers were placed at intersections near 

the beginning and end the of links and they recorded passing 
vehicles’ license plate numbers with time stamps. Each 

vehicle’s entry and exit time has been logged this way. The 

resolution of time stamps is 1 minute.  

We selected 4 links from this dataset and used it to 

evaluate the proposed simulation framework. Details of the 

selected links are shown in Table 3. Direction indicates the 

nodes and the traffic flow orientation of the link in the 

Kichijoji benchmark. For example, 7 ® 35 stands for the 

link that starts from the 7th node and ends with the 35th node. 

4. Results

The proposed simulation framework has been evaluated 

in two steps. First, we evaluated the performance of 

behavior prediction. We compared the predicted desired 

speeds to the desired speeds obtained from the naturalistic 

data. For the second step, the macroscopic traffic flow 

validation, vehicle trajectories of the simulated traffic is 

compared to the traffic survey data.  

 Table 4	Car following model parameters 

Fig. 10. Traveled distance versus time of each simulated vehicle. 
Colors indicate the distinct driving style groups. Macroscopic 
effects of heterogeneity can be seen in this image. There are two 
traffic lights on this route; one at the 250th meter and the other one 
in the 1750th meter. When the lights turn red, the first vehicle 
before the light slows down and comes to a full stop.  

4.1. Validation of the behavior prediction 

In the first experiment, we examined the performance of 

the proposed two-level structure against a conventional 
autoencoder. The driving signals are not segmented with 

respect to road topology in the conventional structure. All 

driving signals that belong to driver i, 𝑿m =+𝑿m,T, 𝑿m,=, … , 𝑿m,�/  is used as the input of a single 

autoencoder and the latent features obtained from the 
encoder are used as the driving signatures for the final 

feedforward network.  

Leave-one-out-cross-validation is carried for all road 

segments. Fifteen segments are used to train the networks 

and the final segment is used for validation. The held-out 

ground truth, the desired speed calculated with equation 9, 

of every driver has been averaged for each cluster. Then, the 

cluster centroid of each driving style group obtained through 

training and the held-out segment`s road topology have been 

concatenated and fed into the trained feedforward network. 

RMSE of predicted desired speeds of each driving style 

group with the proposed structure and the conventional 
autoencoder have been compared in Figure 8. The proposed 

network outperformed the conventional structure.  

We believe the better prediction performance is due to the 

existence of the inherent differences between drivers and the 
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Fig. 11. An example of vehicle travel time histograms (link 2). The 

proposed framework is the most similar amongst the three methods 
in comparison to the benchmark data.   

Fig. 12. KL divergence scores of each method in comparison with 
respect to benchmark data. X axis indicates the link ID. The 
proposed method generated the most similar traffic flow to the 
benchmark data on all links 

way they change with respect to road topology. The 

conventional method disregarded these changes. This result 

shows that the proposed framework is useful for learning the 

inherent differences between drivers and is able to represent 

them. 

4.2.  Validation of the traffic flow 

After training the desired speed predictors, we used the 

traffic generation procedure explained in Algorithm 1. We 
created a road with different segments, used 3 different 

driving style groups and ran the simulation. The generated 

vehicle trajectories are shown in Figure 9 and Figure 10. We 

used MATLAB for the implementation of the algorithm and 

UNITY for visualizing the traffic flow.  The parameters of 

the IDM that is used in the proposed network have been 

showed in Table 4. 

In Figures 9 and 10 the colors represent the driving style 

groups. Figure 9 is a 3D representation of the simulation and 

Figure 10 shows the traveled distance vs time of each 

simulated vehicle. In these figures inter driver heterogeneity, 

the distinctively different characteristics of each group, can 
be discerned by looking at the following distances. For 

example, in Figure 9 the green vehicles keep a conservative 

following distance. In contrast, the red and blue vehicles 

tend to follow the preceding vehicles very closely. The 

difference between red and blue vehicles can be seen better 

in Figure 10; the following behavior of red and blue is 

affected by the road shape differently. E.g., the red vehicles 

tend to slow down between the 900th-1300th meters of the 

route. Intra driver heterogeneity can be noticed especially on 

the curved road segments. Moreover, realistic macroscopic 

effects of heterogeneity can be seen as the wave propagation 

in Figure 10.  

In the second traffic flow experiment we measured the 

simulation accuracy of the proposed method. The 

conventional IDM without heterogeneity is used as a 

baseline for comparison. We also compared the proposed 

algorithm to a conventional heterogeneity model which 
samples the desired speed of each vehicle with a Gaussian 

distribution. The parameters used for these methods are also 

shown in Table 4.   

The Tokyo-Kichijoji benchmark traffic survey has been 

accepted as the ground truth for the simulation accuracy 

experiment. The initial values of the simulations such as the 

road topology and incoming traffic flow rate are set as the 

same with the benchmark data. The remaining initial value, 

the probability mass function of 3 driving style groups, is set 

to [0.33 0.33 0.33].  We compared the histogram of travel 

times of the simulated vehicles with the histogram of the 
recorded travel time of the surveyed vehicles in the 

benchmark data. 

In Figure 11. an example of four travel time histograms 

are shown: benchmark data of link 2, simulation with the 

proposed method, with IDM and with the conventional 

heterogeneity model. We used KL-divergence score to 

compare the histograms. The KL-divergence is defined as; 

𝐷��(𝑃 ∥ 𝑄) = −� 𝑃(𝑖)	log 𝑄(𝑖)𝑃(𝑖)m 	, (11) 

where P and Q are discrete probability distributions of travel 

times and i is the histogram bin index. P is the histogram of 

the survey data and Q is the compared simulation. We 

normalized the histograms before the comparisons. The KL 

divergence of the three models in comparison with respect 
to the benchmark data is shown in Figure 12. 

The proposed framework got the lowest KL divergence 

score with respect to the benchmark data amongst the 

compared methods. We believe these results show that our 

framework is capable of generating a realistic traffic flow 

with heterogeneity learned from naturalistic driving data.  

5. Conclusion and future works

A novel framework for utilizing naturalistic driving data 

to learn heterogeneous driving behavior is proposed in this 

work. The experiments show that the framework is capable 

of representing the traffic dynamics of Japan. We believe 

this framework can be used to learn the driving behavior of 

different regional and demographic environments if 

adequate amounts of data is provided. Furthermore, with the 

rapid development of data acquisition techniques and 

machine-learning research, data driven methods can become 
much more effective in the future for traffic simulations.  

In this paper we have not used inter-vehicular distances. 

We intend to use a naturalistic driving dataset with LIDAR 

and point cloud data in the near future. We believe the use 

of a large naturalistic driving dataset which consists of ego-

signals and surrounding vehicle information together can 
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increase the data-driven methods performance to a great 

extent. Our final goal is to develop a pure deep-learning car 

following model and simulation framework that can be 

trained for various regional and demographical backgrounds 

with a data-driven approach.  
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