
A train traffic model based on coloured Petri

Nets and its application to a train schedule

planning system

T. Sakaguchi, N. Tomii

Railway Technical Research Institute,

2-8-38, Hikari-cho, Kokubunji-shi, Tokyo 185, Japan

Abstract

We propose an approach to making train schedules by simulation and a train
traffic model suitable for simulation. This model is developed based on a Col-
oured Petri Net (CP-net), an enhancement of Petri Net which is known as a
graphic tool applicable to the analysis of concurrent, asynchronous and dis-
tributed systems. Some of the advantages of our CP-net based train traffic
model are that it is a universal model suitable for various kinds of software
which deal with train schedules; simulation on this model always produces a
feasible train schedule and it is helpful in making the software more compact,
robust, re-usable, efficient and enhanced. In this paper, we introduce the
model together with an outline of a train schedule planning system developed
using the model.

1 Introduction

Train Schedules are by far the most fundamental information for railway admini-
stration. It should be considered for a commercial product of railway companies
They are making continuous efforts seeking for a better train schedule by refin-
ing a current train schedule or by renovating facilities such as rolling stocks,
railway facilities and so on. Also, they are eager to keep their transportation as
stable as possible, hence, when train traffic is disrupted by accidents or some
other troubles, they immediately try to normalize the traffic by changing the
current schedule. This means a new schedule has to be made as soon as possible.
All of these jobs seek one thing in common, that is, to be able to get a good
train schedule in a short time.

In this paper, we propose an approach to making a train schedule by simula-
tion, and a train traffic model which is suitable for simulating train traffic. This
model is a sort of universal model for train traffic, which is effectively applicable
for various kinds of computer systems which deal with train schedules. This
model also has advantages in making software, which is easy-to-develop, port-
able, reusable and enhanced.

Concerning train setting in making train schedules, a sequential approach
has been conventionally employed. That is, users set trains one by one, and the
compatibility of a new train with other trains which are already set is checked
every time a new train is set. Computers could inform them of errors but a lot of
trials and errors are involved in order to fix the errors. Since it is not so easy
even for experts to make a complete and consistent schedule, this approach

 Transactions on the Built Environment vol 18, © 1996 WIT Press, www.witpress.com, ISSN 1743-3509

458 Computers in Railways

requires a long time until a satisfactory result is obtained.
We propose here an approach to making train schedules by simulation. First,

users set trains using their intuitions and imaginations. This is a draft schedule
which may contain contradictions and may be impossible to realize, in other
words, this may be an infeasible schedule. Then, a simulation of train traffic is
conducted on this draft schedule. The simulator detects and resolves the contra-
dictions or modifies the draft into a more reasonable one These operations are
done all at once with the scope of the whole train schedule, hence, the number
of trials and errors is greatly reduced. Another merit of the simulation approach
lies in the fact that we can handle train schedules apart from constraints imposed
by facility conditions and operational rules. Thus, even when some of them are
changed (for example, a new station is constructed or a number of tracks is
added in some station), by performing simulation on the current schedule under
the new facility data, we can get a feasible and reasonable train schedule which
is adaptable to the new situation. This is not the case in the sequential approach,
because train schedules and the constraints are firmly mixed and difficult to seg-
regate

We believe that a model for train traffic plays a quite important role in the
simulation approach. The model should satisfy the following requirements:

1. Simulation results on this model are always feasible. Getting a feasible
schedule is not an easy job, thus to install functions to avoid infeasibility in a
software is not a good idea, because this makes the software too complicated,
too difficult to maintain and reuse, and furthermore, quite probably it will con-
tain deficiencies. But all of these problems disappear if the model is designed in
such a way that simulation results on it are always feasible.

2. The model is universal Railway companies have various kinds of jobs in
which train schedule has to be handled. Some of them are, train schedule plan-
ning, examination of facilities including cars and track facilities to get a better
schedule, enhancement of the schedule to operate extra trains, control of urban
dense traffic so that trains run smoothly, rescheduling of disrupted train traffic
and so on; the purposes, processes, environments of these jobs are all different.
If a train traffic model is universal, i.e. if it is applicable to all of these jobs, it
will be quite beneficial.

We introduce a train traffic model which satisfies these requirements. This
model is based on Coloured Petri nets. Petri nets are design and analysis tools
used for discrete events systems[l], and Coloured Petri nets (CP-nets) are
enhancement of Petri nets[2]. In our model, we represent physical constraints,
which are restrictions imposed by facilities, by means of the structure of the net.
Then, we represent control of train traffic (logical constraints) by means of oc-
currence selection logic. This logic selects an event which should be put into
practice from workable events given by the CP-net structure

We have developed a train schedule planning system using this CP-net
based model. We realized that the software was completed in quite a short time
compared with our last experiences. Also, we are now developing other systems

 Transactions on the Built Environment vol 18, © 1996 WIT Press, www.witpress.com, ISSN 1743-3509

Computers in Railways 459

which deal with train schedules using this model.
In chapter 2, we briefly explain Petri nets and Coloured Petri nets, and in

chapter 3, we introduce our train traffic model. Then in chapter 4, a mechanism
which enables our model's universality is introduced. In chapters 5 and 6, we
will describe our train schedule planning system and our model's application to
other systems respectively.

2 Petri nets and Coloured Petri nets

2.1 Petri nets
Petri nets are a graphical and mathematical modeling tool applicable to many
systems. They are a suitable tool for describing information processing systems
characterized as being concurrent, asynchronous, distributed, parallel and non-
deterministic Petri nets (PT-nets) are composed of places, input/output arcs,
transitions and tokens (Figure 1). When each input place of a transition contains
at least one token(we say this transition is enabled), this transition can occur. If
this transition occurs, tokens are removed from the input places and added to
the output places. So, states of PT-nets (markings) vary with occurrences of
transitions, and this feature is used to simulate behavior of dynamic and concur-
rent systems.

token

placetransition

Figure 1: Components of Petri net

2.2 Coloured Petri nets
Coloured Petri nets (CP-nets) are an enhancement of PT-nets An example of
CP-nets is illustrated in Figure 2. Each token is equipped with an attached data
value — called token colour. For a given place all tokens must have token col-
ours that belong to a specified type — called colour set of the place. Token
colours can be inspected by transitions, which means that enabling of a transi-

color T = int
color F = (M, d]
color R = {(t,t) | teT,feF}
color E = [e]

{1,2,3,4} (T

Figure 2: Example of CP-net

 Transactions on the Built Environment vol 18, © 1996 WIT Press, www.witpress.com, ISSN 1743-3509

460 Computers in Railways

tion may depend upon the colours of its input tokens. Arc expressions are used
to describe these conditions. So, in general, arc expressions contain variables. A
binding for a transition is a set of instances assigned for the variables of input
arcs of the transition. For each binding, we can check whether the transition is
enabled or not. A pair (/,£) where / is a transition and b is a binding for t is
called a binding element. In Figure 2, binding element (t2, <x=J>) is enabled
in this marking.

One of the most essential differences between PT-nets and CP-nets is that in
PT-nets the results of transition occurrences are uniquely determined, whereas
in CP-nets, they are different depending upon binding elements. This fact means
that CP-nets have an advantage over PT-nets in that the overall network be-
comes compact and simple, and that it is easy to grasp the behavior of the whole
system.

The reason why we adopted CP-nets for modeling train traffic system is that
a network model by PT-nets was suspected to become too large and compli-
cated if we modeled a real railway network in which several tens of stations and
thousands of trains are included.

3 CP-net Model of Train Traffic

3.1 Outline
Trains have to be operated observing various kinds of rules. Some of them
come from facility conditions. The rule "a train cannot pass another train be-
tween stations'" is a restriction of this type We call restrictions imposed by facil-
ity conditions physical constraints. In our CP-net model, physical constraints
are transformed into the structure of the CP-net, thus simulation using this
model always produces a feasible schedule.

The other type of restrictions are the ones imposed by rules of operation.
We call this type of restrictions logical constraints. "Trains must not depart
earlier than their scheduled time'" is an example of logical constraint. Some-
times logical constraints have to be observed and sometimes they should be
broken in order to get a more reasonable schedule. In our CP-net model, logical
constraints correspond to occurrence selection logic. By adopting and combin-
ing appropriate occurrence selection logic, we can give versatility to our simula-
tor.

3.2 Transitions and places
Train traffic is considered to be made up of events and statuses. Events mean
trains' arrivals and departures. Examples of statuses are : a block section is oc-
cupied by a train, a block section is empty, a train is stopping in a track of a
station and so on In a CP-net model, events are described by transitions and
statuses are expressed by places. But unlike PT-nets, there is a lot of freedom in
CP-net modeling One extreme is depicted in Figure 3. In this model, trains,
stations and tracks are considered tokens, and mutual interactions and conflicts
between them are not well described in the structure of the net, i.e. they are

 Transactions on the Built Environment vol 18, © 1996 WIT Press, www.witpress.com, ISSN 1743-3509

Computers in Railways 461

Move from one Depart from
track to any a station Pass through
other track * station

Stopping on
a track I

Stop at the next
station

Figure 3: A reduced model of train traffic

hidden behind it So obviously this modeling is not suitable to our purpose.
We made a model whose net structure exactly corresponds to a physical im-

age of the railway line In our model, events expressed by transitions are: trains'
departure, trains' arrival, trains' passage at stations and so on

Places represent statuses of elements or a pair of elements. In our model.
trains, blocks, tracks and leading tracks are elements Thus, places comprise —

PI: a train T is stopping on a track F. (train, track)
P2: a train T is staying on a leading track L. (train, leading track)
P3: a train T is running between stations SI and S2. (train)
P4: there are n non-occupied blocks between stations SI and S2. (block)
P5: a track F of a station S is empty (track)

and so on.

3.3 Event occurrence
Dynamics of train traffic is described by event occurrences in the model. Events
may occur when a condition of the event occurrence is satisfied and this corre-
sponds to trains movement. Event occurrence conditions relating with physical
conditions are as follows:

(1) Train departure condition For a train to be able to depart from a
station, the next block section from the station must be free. Using CP-net ter-
minology, this corresponds to a condition that the place is available After this
event occurs, the place of the track where the train existed becomes empty, and
the number of free section blocks between the stations is reduced by one

(2) Train arrival condition Trains running between stations can arrive
and stop at the next station in a time specified as minimum running time be-
tween the stations. The arrival event can occur if the place of the track has an
"empty" status.

(3) Temporal condition There are two types of temporal conditions. The
first one is a condition that a status has to be maintained for a certain time, and
this is expressed by a place which has time delay. Constraints concerning mini-
mum running times of trains, minimum stopping time of trains at stations are
examples of this type. The other type is a condition concerning a chronological
conflict among events. When one event occurs, the occurrence of another event

 Transactions on the Built Environment vol 18, © 1996 WIT Press, www.witpress.com, ISSN 1743-3509

462 Computers in Railways

which conflicts with the former has to be delayed. Some of the examples of this
condition are, time interval conflicts (a certain time interval has to be kept be-
tween two departing trains) and crossover conflict which happens between a
departing train and an arriving train both of which use the same facility such as a
crossing point.

In Figure 4, we show a part of our train traffic model. This example is illus-
trating trains movement which run through Stations A, B and C.

/ ̂ Block section \
available

Pass through

Running
(A-»B)

» Flow regarding trains
>Flow regarding pairs of a train and

a track
" "^ Flow regarding pairs of a train and;

a leading track
» Flow regarding tracks
> Flow regarding leading tracks
* Flow regarding block sections

is empty.,'
-~"

Note: A, B and C are any
continuous stations

Figure 4: An example of our train traffic model

4 Occurrence Selection Logic

We have devised a variation of occurrence selection logics. An appropriate logic
should be used depending on the purpose of train traffic simulators. We now
cite a few examples of occurrence selection logics suitable for train schedule
planning system.

(1) Logic 1: Occurrence selection logic which does not allow trains to
depart and arrive earlier than their scheduled times This logic is appro-
priate when users want to give a slight modification to finish almost completed
schedule. This is because, if trains are allowed to start without restrictions of
scheduled times, the whole schedule may be changed, which is usually not de-
sirable when users have almost completed their draft.

 Transactions on the Built Environment vol 18, © 1996 WIT Press, www.witpress.com, ISSN 1743-3509

Computers in Railways 463

(2) Logic 2: Occurrence selection logic which allows trains to depart
and arrive earlier than their scheduled times This logic plays an impor-
tant role when users want to give a significant change to a schedule. For exam-
ple, let us assume that users want to examine how much the current train sched-
ule would be improved by introducing new cars of high performance. In this
case, if Logic 1 is employed, trains which consist of new cars cannot run at their
full performance as illustrated in Figure 5(A). So, in such cases Logic 2 should
be used (Figure 5(B))

Delays caused by
crossover conflict

Delays caused by
crossover conflict

Station C

Station D
(A): Early departures not allowed (B): Early departures allowed

Figure 5: Improvement of schedule

(3) Logic 3: Occurrence selection logic which imposes constraints on
departing orders of trains When this logic is applied, departing orders of
trains are kept unchanged as long as no contradictions occur. This logic is effec-
tively used combined with Logic 2. Let us assume that the departing order of
trains Tl and T2 is specified as T1-T2. Then, even if train T2 is allowed to start
earlier than its scheduled time, it cannot depart earlier unless Tl starts, and
when Tl starts; train T2 can depart accordingly. So, even when early departures
are allowed, the whole schedule will not be essentially changed.

(4) Other occurrence selection logics Other than Logics 1 - 3 , we have
installed a logic for track selection, a logic for delayed departure, etc. The logic
for track selection works to select an appropriate track in a station when the
originally assigned track for the train is in trouble such as a deadlock The logic
for delayed departure is useful to keep intervals between trains as equal as pos-
sible. A combination of logics which apparently look like contradictory often
works very well In Figure 5(B), The logic of early departure and the logic of
delayed departure are used. You can see that these logics working very well to
get a reasonable schedule.

 Transactions on the Built Environment vol 18, © 1996 WIT Press, www.witpress.com, ISSN 1743-3509

464 Computers in Railways

5 Train Schedule Planning System — an Application of

the Train Traffic Model

5.1 Outline
We have developed a train traffic schedule planning system using our train traf-
fic model. This system consists a man-machine interface part and a simulator
part which performs simulation based on the given draft schedule. Draft and
final schedules are kept in a database system Users examine the results of the
simulator and they gradually brush up their draft schedules into complete ones
by adding new trains or modifying unsatisfactory parts of the simulation results.
This process is depicted in Figure 6.

Draft schedule,
Simulation Results

Tram Traffic Scheduling
GUI program

input data

Draft Schedule
Control Message

Figure 6: System configuration

5.2 Examples
In Figure 7 we show an example which illustrates how to use our train traffic
schedule planning system. A case where several express trains have to be newly
created is assumed. Figure 7(a) shows a draft train diagram just after those
trains are set. You can see the schedule infeasible because there are a lot of con-
flicts and contradictions. By conducting simulation, these contradictions are
resolved and adjustment of departing times and change of train departing orders
are also done and a feasible and more reasonable schedule is obtained as shown
in Figure 7(b). Please note that the track of a train is also changed to avoid a
conflict

5.3 Evaluations
We realized that we can make feasible and reasonable schedules quite easily on
our prototype system. This means our simulation-based approach to schedule
planning was proved effective. Simulation time is about 90 seconds for 24 hour
train schedule of an urban railway line near Tokyo (the number of simultane-
ously running trains is about 40), which we think is quite acceptable for practi-
cal use.

Another thing we want to insist on is that it took quite a short time until we
implemented a satisfactory prototype system. This is an effect of CP-net model-

 Transactions on the Built Environment vol 18, © 1996 WIT Press, www.witpress.com, ISSN 1743-3509

Computers in Railways 465

ing which separates the treatment of physical constraints and that of logical
constraints. Programmers do not have to write even one single line of code con-
cerning observance of physical constraints They can also use modules of occur-
rence selection logic which are already prepared and ready to use. We believe all
of these lead to a reliable software with versatile functions and realize a short
development time.

(a) Infeasible diagram (b) Simulated output

Figure 7: Example of simulation

6. Other Applications of CP-net based Train Traffic Model

We are now developing the following systems using our train traffic model.
(1) Train traffic rescheduling system The purpose of this system is to
normalize a disrupted train traffic schedule. The whole framework of our train
schedule planning system can be used But as for occurrence selection logics, a
logic to change departure orders is useful, and logics for adjustment of train
intervals and early departures should not be used.

(2) Train traffic simulator for urban traffic control This simulator is
designed to investigate a traffic controlling algorithm for railway lines of dense
traffic. On such lines one of the most important things is to secure a stable
transportation and normalize congestion of trains The following occurrence
selection logics seem to be helpful to keep proper intervals of trains: 1) Logic 1
described in chapter 4 (early departures are not allowed), 2) Adjustment of train
intervals, 3) To keep departing orders (normally, scheduled departing orders
should be maintained, but in case traffic is disrupted, logic to change departing

 Transactions on the Built Environment vol 18, © 1996 WIT Press, www.witpress.com, ISSN 1743-3509

466 Computers in Railways

orders should be used.)

(3) Simulator for diagram-less train operations On some railway lines
where a lot of trains are operated, passengers do not care about train schedules.
All they need is that trains which are not too crowded come with proper inter-
vals. In order to realize this, there are a lot of things to be investigated. The
simulator we are now developing is expected to be useful for these investiga-
tions We think the following occurrence selection logics will be promising: 1)
Adjustment of train intervals Not only trains' departure times but trains' arrival
times should be changed by adjusting trains' running time 2) Adjustment of the
number of trains which is suitable for the necessary volume of transportation.

(4) Decision making support system As we mentioned earlier, train
schedule should be considered a commercial product of railway companies.
They want to introduce new cars which run at a higher speed, renovate facilities
so that trip times become shorter, or sometimes construct new stations so that
their railway can attract more passengers. These are all done with an intention
to get a better train schedule. Thus, train schedule exists at the core of these
decision makings, and a decision making support system with which users can
instantaneously know how much a train schedule would be improved by facility
renovation is needed. We are now developing such a decision making support
system by combining the train schedule planning system and train performance
evaluating system SPEEDY which we have already developed and which is in
use[3].

7. Conclusions

We proposed a simulation approach to making a train schedule and introduced a
train traffic model based on Coloured Petri net. We also introduced a train
schedule planning system using the model. Then we showed the model' univer-
sality, which means it is applicable to various kinds of systems related with train
schedules.

Acknowledgments

The authors wish to express their sincere gratitude to Mr Ikeda, Mr. Nozue and
Mr. Hasegawa for their useful comments and discussions.

References

1. MURATA, T. Petri Nets: Properties, Analysis and Applications, Proceedings
q/VAe/EEE, 1989, 77, 541-580.

2. JENSEN, K. Coloured Petri Nets - Basic Concepts, Analysis Methods and
Practical Usê Springer-Verlag, Berlin and New York, 1992.

3. HIRANO, J. et al. Development of a train performance computation system
on an engineering workstation, Proceedings 0/COMPRAIL92, 1992.

 Transactions on the Built Environment vol 18, © 1996 WIT Press, www.witpress.com, ISSN 1743-3509

