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Abstract

We present a subsampling strategy for the offline stage of the Reduced Basis Method. The

approach is aimed at bringing down the considerable offline costs associated with using a

finely-sampled training set. The proposed algorithm exploits the potential of the pivoted

QR decomposition and the discrete empirical interpolation method to identify important

parameter samples. It consists of two stages. In the first stage, we construct a low-fidelity

approximation to the solution manifold over a fine training set. Then, for the available low-

fidelity snapshots of the output variable, we apply the pivoted QR decomposition or the

discrete empirical interpolation method to identify a set of sparse sampling locations in the

parameter domain. These points reveal the structure of the parametric dependence of the

output variable. The second stage proceeds with a subsampled training set containing a by

far smaller number of parameters than the initial training set. Different subsampling strategies

inspired from recent variants of the empirical interpolation method are also considered. Tests

on benchmark examples justify the new approach and show its potential to substantially speed

up the offline stage of the Reduced Basis Method, while generating reliable reduced-order

models.
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1 Introduction

Mathematical models in many areas of science and engineering are described by parametric

ordinary differential equations (ODEs) or partial differential equations (PDEs). The analyti-

cal solution of such ODEs and PDEs is usually intractable, therefore engineers prefer detailed

numerical simulations of the models to obtain useful insights into the underlying processes.

However, a detailed simulation of the model necessitates a very fine discretization of the gov-

erning ODEs or PDEs, both in space and time. The resulting discretized system of equations

is referred to as the high-fidelity model or the full-order model (FOM). Numerical solutions

of the FOM are computationally expensive to obtain, especially when computing resources

are limited or when repeated simulations of the FOM are needed. The latter scenario is com-

mon in a multi-query task, such as uncertainty quantification, optimization, etc. With the goal

of speeding up simulations, the area of model order reduction (MOR) has gained popularity

in the last decades [3,4,7–9]. Different MOR algorithms have been proposed to obtain sur-

rogate models for the FOMs. These surrogates are often referred to as reduced-order models

(ROMs) since they have a reduced number of degrees of freedom compared to the FOMs.

The simulation results of a suitably developed ROM are indistinguishable from those of the

FOM, yet, the ROM incurs only a fraction of the computational cost spent on the FOM. This

is a big advantage in real-time simulation or multi-query scenarios. Generally, there exist two

classes of ROMs: projection-based ROMs [3] which are obtained by projecting the original

model onto an approximation subspace, and data-driven ROMs, which are obtained through

a data fit [47]. In the following, we shall limit ourselves to projection-based ROMs.

The Reduced Basis Method (RBM) is a popular, projection-based technique to obtain

ROMs of parametric PDEs. The ansatz underlying the RBM is that the solution manifold of

the parametric FOM can be well-approximated by a low-dimensional subspace. To achieve

efficient online simulation, considerable efforts are made to explore the parameter space and

collect solution snapshots in the offline stage. The greedy algorithm explores the param-

eter space based on suitable a posteriori error estimators. At each iteration of the greedy

algorithm, the parameter maximizing the estimated error over a training set is selected and

the corresponding FOM is solved to obtain new snapshots. The training set is, in essence, a

discrete representation of the parameter domain. The snapshots are used to construct a basis

for the low-dimensional approximation space, followed by a (Petrov-)Galerkin projection

to obtain the ROM. We refer to the recent books [32,49] and the survey works [19,50,53]

for a detailed exposition of the theoretical framework underpinning the RBM and also for

applications of the RBM in a variety of problems.

The choice of the training set is critical for the success of the RBM. A poorly-sampled

training set can result in an inadequate representation of all the solution modes, causing

the ROM to fail to meet the desired tolerance criterion for a parameter not present in the

training set. Therefore, it is common practice to adopt a finely-sampled training set. However,

the computational cost of the offline stage scales with the cardinality of the training set,

which becomes high for problems with high-dimensional parameter space. Therefore, a

more efficient sampling strategy is desired.

Many works have attempted to address the issue of optimal training set sampling. Notable

among them are: the Multi-Stage Greedy algorithm from [55] and the Adaptively Enriching

Greedy algorithm in [33]. In the former, the author suggests performing a set of greedy

algorithms over randomly sampled training sets; then the resulting ROM is tested over a

much larger random training set and the greedy algorithm is re-run on those points failing to

meet the tolerance criterion in the larger training set. In the latter work, the authors propose
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a saturation criterion which is used to systematically remove parameters from a randomly-

sampled training set. New random parameters are then added to the current training set.

A larger training set serves as a safety check mechanism at every iteration. However, it

may not be efficient, in general, to estimate a robust saturation criterion. The authors of

[23,30] propose a localized RBM approach, where a hierarchical tree-based partitioning

of the parameter domain is done and separate ROMs for each partition are generated. In

[34], the authors consider a two-stage approach that uses the ANOVA expansion together

with parameter domain decomposition to address training set complexity. The work [37]

considers an anisotropic sampling of the parameter domain using an empirical norm derived

from the truncated Hessian of the solution vector with respect to the parameter. No explicit

partition of the parameter domain is considered. However, the basis vectors are determined

in the online stage. Moreover, the method needs to compute the Hessian at each point in

the training set in order to define a distance metric which is subsequently used to add more

samples to the training set. The calculation of the Hessian can be very expensive, especially

for non-stationary problems. The method proposed in [36] makes only a subset of the finely

sampled training set active at a given iteration of the greedy algorithm. A recent extension

of this work [35] proposes hybrid strategies combining the ideas from [33,55]. Different

strategies are proposed to identify the set of active parameters. The works [17,43] propose

a cheap surrogate model for a certain error estimator, based on Kriging and radial basis

functions, respectively, and use it to obtain the estimated error for any parameter in a fine

training set. A sparse grid-based construction for the training set is suggested in [48].

The authors of [18] perform an eigendecomposition of the Hessian matrix of the output

variable with respect to the parameter to identify a small subspace of the high-dimensional

parameter space by truncation. The parameters that constitute the training set for the RBM

are then sampled from the identified eigenspace. In [56], the so-called active subspace [20]

of the parameter space is identified by relying on gradient information of the output with

respect to the parameter. Both these works are limited to scalar-valued outputs and steady-

state problems.

Most of the existing work related to adaptive training set sampling focuses on steady-state

or quasi steady-state problems. To the best of our knowledge, only [17,23,30,43] address

training set adaptivity for time-dependent problems. The works [23,30] propose a localization

strategy that involves constructing multiple ROMs over local parameter domains, while [17,

43] consider adaptively enriching a coarse training set by observing a cheap error surrogate

over a fine training set.

In this work, we present a goal-oriented training set sampling strategy that relies on

the output quantity of interest (QoI). We aim at identifying the structure of the parameter

dependency of the output through the empirical interpolation algorithm [5,15] or a pivoted QR

decomposition and utilize this information to find out the parameter importance. Our proposed

method is applicable to both steady-state and time-dependent problems with vector-valued

outputs. Our central contribution is a two-stage algorithm to control the cardinality of the

training set. In the first stage, a coarse RB approximation of the problem is obtained using a

fine training set. Then, an approximate output snapshot matrix is derived by time integrating

the coarse ROM at all the parameter samples in the fine training set. We apply the pivoted QR

decomposition or, alternatively, the discrete empirical interpolation method (DEIM) (or its

variants) to the approximate output snapshot matrix. This procedure identifies regions of the

parameter space that have a greater contribution to the current RB approximation space. In the

second stage, the fine training set is subsampled based on the parameter distribution identified

using the pivoted QR decomposition or the DEIM algorithm and leads to a subsampled coarse
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training set. The RBM is continued over the coarse training set, until a targeted error tolerance

is met.

The paper is organized as follows. In Sect. 2 we describe the preliminaries including the

problem setting for the proposed methodology, the RBM and the related hyper-reduction

techniques. In Sect. 3 we detail the issue of training set sampling for the RBM and present

our main algorithm for efficient training set subsampling. Section 4 is dedicated to numerical

examples through which we illustrate various aspects of the proposed subsampling strategy

and demonstrate the speedup it offers for two numerical benchmark problems. We conclude

by summarizing the proposed method and highlighting possible research directions for the

near future. Throughout this work, we have used MATLAB® notation in the presentation of

algorithms and numerical experiments.

2 Preliminaries

In this section, we present the continuous problem and the discretized system that the proposed

subsampling strategy is valid for. Then, we briefly review the RBM and the associated issue

of training set sampling. Afterwards, some hyper-reduction algorithms are reviewed in order

to introduce our proposed subsampling algorithms.

2.1 High-fidelity Models

A wide variety of physical and engineering phenomena are modelled via PDEs. Consider the

spatial domain Ω ⊂ R
d with (d = 1, 2, 3). Let a model of PDEs defined in Ω be denoted by

L (v, w, t,µ) = 0, (2.1)

where v is the (vector-valued) state variable and describes the particular physical quantity the

PDE models, w ∈ Ω is the spatial variable, 0 ≤ t ≤ T denotes the time and µ ∈ P ⊂ R
p

defines the parameters. The above form is a general description of any time-dependent or

steady-state problem with or without parameter variations. The output of the model is usually

a function of the solution v and the parameter µ. After numerical discretization in space and

time, we get

E x(tk,µ) = A x(tk−1,µ) + f
(

x(tk−1,µ),µ

)
+ B u(tk−1,µ),

y
(

x(tk,µ),µ

)
= C x(tk,µ).

(2.2)

Here, x(tk,µ) ∈ R
n is the state vector, u(tk,µ) ∈ R

m is the input vector and y
(
x(tk,µ),µ

)
∈

R
q is the output or quantity of interest. Further, E, A ∈ R

n×n , B ∈ R
n×m is the input matrix,

C ∈ R
q×n is the output matrix and f

(
x(tk,µ),µ

)
∈ R

n models the nonlinearity associated

with the system.

Remark 2.1 The system matrices (E, A, B and C) can also be time- and/or parameter-

dependent. However, we have not made this dependence explicit for the sake of keeping

the notations concise. For the case of steady-state problems, the time dependence of the

state, input and output vectors and system matrices vanishes and the system simply reads

E x(µ) = f (x(µ),µ) + B u(µ),

y(x(µ),µ) = C x(µ).
(2.3)
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The discretized system in (2.2) or (2.3) is also called the FOM and has a large number of

degrees of freedom, i.e., n is very large. The proposed subsampling strategy is applicable to

both Eqs. (2.2) and (2.3).

2.2 Reduced Basis Method and the Training Set

The Reduced Basis Method relies on the observation that the solution manifold can be

well-approximated by a low-dimensional subspace V . Let [v1, v2, . . . , vr ] =: V ∈ R
n×r

be a basis of the subspace V . The approximated solution for any parameter is obtained

by considering the ansatz x(tk,µ) ≈ x̃(tk,µ) =
∑r

i=1 zi vi . The parameter-dependent

coefficients z = [z1, z2, . . . , zr ]
T are obtained by solving the ROM

Er z(tk,µ) = Ar z(tk−1,µ) + fr

(
Vz(tk−1,µ),µ

)
+ Br u(tk−1,µ),

ỹ
(

z(tk,µ),µ

)
= Cr z(tk,µ),

(2.4)

derived through Galerkin projection of the FOM onto the low-dimensional subspace V .

The reduced system matrices Er , Ar ∈ R
r×r , Br ∈ R

r×m and Cr ∈ R
q×r are obtained

as Er := VTEV, Ar := VTAV, Br := VTB and Cr := CV, respectively. Finally, fr :=

VTf
(
Vz(tk−1,µ),µ

)
.

The greedy algorithm or the POD-greedy (Proper Orthogonal Decomposition-greedy)

algorithm are the most popular techniques for constructing the RBM approximation space

for the steady-state system (2.3) and the time-dependent system (2.2), respectively. In order

to initialize the greedy algorithm, a training set Ξtrain is given a priori, from which parameter

samples are iteratively selected, so that the corresponding solution vector is iteratively added

to the basis matrix V. We summarize the (POD-)greedy algorithm in Algorithm 2.1, which

takes both the steady-state case and the time-dependent case into consideration. In Step 8 of

Algorithm 2.1, the snapshot matrix X for the time-dependent case consists of the solution

vector at discretized time instances {t i }K
i=0 given by:

X(µ) =

[
x(t0,µ) · · · x(t K ,µ)

]
∈ R

n×Nt ,

where Nt := (K + 1). U
X̄

in Step 10 is the left singular vector matrix obtained from the

singular value decomposition (SVD) of X̄, i.e., X̄ = U
X̄

Σ
X̄

VT
X̄

. Here, Σ
X̄

contains all

the non-zero singular values of X̄: σ1 ≥ σ2 ≥ · · · ≥ σrX
≥ 0. If no alternative decision

criterion is used, rPOD is usually taken to be 1. In Step 13, Δ(µ) denotes an error estimator

for the error in approximating the state variable or the output variable. The error estimator

should be much cheaper to compute than the true error. For the sake of clarity, the sketched

algorithm is the basic version of the RBM. Several enhancements in the form of primal-dual

error estimation, hyper-reduction, adaptive basis construction, etc. exist [6,16,26,28,58].

It is noticed that the standard greedy algorithm (Algorithm 2.1) does not address the issue

of properly choosing Ξtrain. When the parameter space dimension is high (p ≫ 2) or when

the number of time steps Nt is large, the overall computational cost for the greedy algorithm

to construct V can be substantial. The technique considered in this work aims at reducing the

offline cost by subsampling a fine training set. We detail this in Sect. 3. Before that, since it

will be used later, we briefly review two hyper-reduction procedures—the DEIM algorithm

(and its variants) and the Gappy-POD method.
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Algorithm 2.1 Reduced Basis Method (RBM)

Input: Training set (Ξ ), tolerance for the ROM (tol), maximum iterations (nmax).

Output: V.

1: Initialize V = [ ], ǫ = 1 + tol, iter = 1.

2: Select µ
∗
(1)

randomly from Ξtrain.

3: while ǫ > tol && iter ≤ nmax do

4: if steady-state then

5: Solve FOM (2.3) at µ
∗
(iter)

and obtain solution x(µ∗
(iter)

).

6: Set V ← orth

([
V x(µ∗

(iter)
)
] )

. % orth means orthogonalizing x(µ∗
(iter)

) against the

column vectors in the current matrix V.

7: else

8: Solve FOM (2.2) at µ
∗
(iter)

and obtain snapshot matrix X.

9: Set X̄ = X − VVTX.

10: Enrich V with rPOD left singular vectors of X̄ as

V ← orth
([

V U
X̄

(: , 1 : rPOD)
])

.

11: end if

12: iter = iter + 1.

13: Set µ
∗
(iter)

= arg maxµ∈Ξtrain
Δ(µ).

14: ǫ = Δ(µ∗
(iter)

).

15: end while

2.3 Discrete Empirical InterpolationMethod

TheDEIM algorithm [5,15,26] was introduced in the context of MOR, for efficient calculation

of nonlinear or nonaffine terms of the ROM. The algorithm proceeds by collecting snapshots

of the nonlinear vector in the FOM in (2.2) or (2.3) for different values of µ ∈ Ξtrain given

by

F =
[
f (x,µ1) · · · f

(
x,µNtrain

)]
∈ R

n×Ntrain .

In order to avoid any n-dependent operations to evaluate the nonlinear vector involved in

simulating the ROM, DEIM considers an approximation of the nonlinear vector given by

f (x,µ) ≈ f̃ (x,µ) = Uα, (2.5)

where α ∈ R
ℓ. The columns of U ∈ R

n×ℓ are the interpolation basis vectors obtained via

SVD of F. The number of basis vectors ℓ can be determined through an information-theoretic

criterion that depends on the relative energy content of the singular values {σi }
rX

i=1 and reads
rX∑

i=ℓ+1

σi

rX∑
i=1

σi

< ǫSVD where ǫSVD is a user-defined tolerance. Since (2.5) is an overdetermined

system with n ≫ ℓ, DEIM solves for α by selecting ℓ rows from U and enforces interpolation

as below:

PTf (x,µ) = PTUα. (2.6)

The indices of the rows where interpolation is enforced are given by {p1, . . . , pℓ}. The i th

column denoted as epi
∈ R

n of the matrix P ∈ R
n×ℓ is essentially the i th canonical unit

vector with zeros at all but the pth
i entry. A greedy procedure, shown in Algorithm 2.2, is

used to identify P. The algorithm ensures that
(
PTU

)
is nonsingular, so that f̃ (x,µ) at any
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Algorithm 2.2 Discrete Empirical Interpolation Method (DEIM) as in [15]

Input: Snapshots of the nonlinear vector (F), tolerance for the SVD (ǫSVD).

Output: U, P and I.

1: Perform SVD of F; collect the first ℓ left singular vectors {u j }
ℓ
j=1

⊂ R
n .

2: Set [∼ , p1] = max(|u1|). % | · | denotes the absolute value.

3: Set U = u1, I = p1 and P = [ep1 ].

4: for i = 2 to ℓ do

5: Solve PTUα = PTui .

6: Define residual r = ui − Uα.

7: Set [∼ , pi ] = max(|r|).

8: Update U := [U ui ], I := [I pi ] and P := [P epi
].

9: end for

parameter µ is given by

f̃ (x,µ) = U
(

PTU
)−1

PTf (x,µ) ,

where U
(
PTU

)−1
∈ R

n×ℓ can be precomputed and stored. Moreover, the original nonlinear

vector needs to be evaluated only at ℓ points, limiting the cost of evaluating the nonlinear

vector to order ℓ and independent of n. The error in approximating the nonlinear vector is

quantified as

∥∥f(x,µ) − f̃(x,µ)
∥∥

2
≤ ‖

(
PTU

)−1
‖2‖f(x,µ) − UUTf(x,µ)‖2. (2.7)

The greedy choice of the interpolation indices in the DEIM algorithm is geared towards

minimizing the term ‖
(
PTU

)−1
‖2 appearing in the error bound. At each iteration, the new

sampling point is chosen as the one resulting in the maximum reduction in ‖
(
PTU

)−1
‖2.

Several variants of the DEIM algorithm have been proposed [21,41,44–46]. Among those,

the QDEIM algorithm from [21] and the DEIM-based oversampling strategies proposed in

[45] shall be of particular interest to our discussion in Sect. 3.

2.3.1 QDEIM

In contrast to the original DEIM algorithm, the QDEIM approach from [21] relies on a column-

pivoted QR decomposition to identify the interpolation points. This is different from the

sequential, greedy choice of interpolation points in DEIM (see Steps 4–9 in Algorithm 2.2).

QDEIM is proven to have a sharper error bound and is also computationally more efficient

and straightforward to implement.

2.3.2 KDEIM

The K in the KDEIM algorithm refers to the k-means clustering algorithm. The k-means

algorithm is applied to the matrix U of (truncated) left singular vectors obtained from SVD

of the snapshot matrix F, then rows with similar response are assigned to the same cluster.

The standard k-means objective function is recast as a relaxed trace maximization problem

which is then solved using the QR decomposition. We refer the interested reader to [45] for

a deeper discussion. Another early work to consider QR decomposition based clustering in

the context of MOR was [39], which used it for reducing networked multi-agent systems.
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2.3.3 Gappy-POD

The number of interpolation points of the DEIM algorithm and its variants discussed so far

equals to the number ℓ of interpolation basis vectors. However, in many cases it is beneficial to

consider m > ℓ interpolation points. The Gappy-POD method and other related approaches

fall into this category [12,24]. The coefficient matrix PTU of the linear system in (2.6) is no

longer square and, therefore, does not possess a unique inverse; instead it is solved using the

pseudoinverse. The Gappy-POD approximation of the nonlinear vector is given as

f̃ (x,µ) = U
(

PTU
)†

PTf (x,µ) , (2.8)

where the matrix P now has m > ℓ columns and we have PTU ∈ R
m×ℓ. In [45], the

authors discuss two different oversampling strategies. The first approach, called Gappy-POD

Eigenvector, considers the optimization point of view – newly added interpolation points

are those that lead to the largest decrease of ‖
(
PTU

)†
‖. The second oversampling strategy,

Gappy-PODClustering, proposed in [45] can be viewed asGappy-POD based on interpreting

the QR decomposition as a clustering algorithm. The additional samples from ℓ + 1 till m

are identified based on the mutual entropy of the columns. For a more elaborate discussion

we refer to [45,57]. In the next section, we aim to make use of DEIM and its variants, as well

as Gappy-POD to select important parameter samples from the parameter domain.

For the pseudocode and the details, we refer the reader to the work [21] for the QDEIM

algorithm and the work [45] in case of the KDEIM and Gappy-POD algorithms.

3 Proposed Subsampling Strategy for the Training Set

A representative training set Ξtrain is crucial for RBM to obtain a ROM that satisfies the

required tolerance. While a densely-sampled Ξtrain is needed to accurately represent the

parameter space, it incurs high computational cost. In contrast, a randomly sampled coarse

training set may fail to capture all the variations of the solution over the parameter space and

result in a ROM that fails to meet the tolerance. Therefore, a wisely sampled coarse training

set is desired to make the greedy algorithm efficient while retaining the required accuracy of

the ROM. We now discuss two observations that motivate our proposed approach for training

set sampling.

3.1 Motivating Observations

We detail two observations that pertain to the greedy algorithm in the RBM, the DEIM

algorithm as well as the QR pivoting. We shall see that these two observations have motivated

us to develop a subsampling strategy for the RBM training set.

3.1.1 Greedy Parameters, QR Pivots, and DEIM Interpolation Points

Our first observation concerns the parameters µ
∗ selected by the greedy algorithm. The

second observation is their resemblance to the QR pivots and the DEIM interpolation points.

From our experience, the greedy algorithm tends to repeatedly pick parameter samples

from a small subset of the training set, especially for time-dependent problems. This same

phenomenon has been reported in other existing works [27,29,31,37,42,50,58]. The solution
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(or output) vectors at these parameter values usually exhibit large variability. While the

greedy algorithm scans through all the parameter samples in the training set, a majority of

those samples are never picked. The fact that a few parameters get repeatedly picked reveals

that there are still unresolved modes and hence more POD modes, corresponding to the

selected parameter, are needed to get a good approximation. These few parameters picked

by the greedy algorithm, usually represent solutions that are less smooth and hence are more

difficult to approximate. An example of this phenomenon occurs in fluid dynamics problems

where the low viscosity solutions develop shock and need a large number of POD modes to

approximate. We illustrate this observation through the standard greedy algorithm applied

to the discretized 1-D viscous Burgers’ equation with n = 1000. The detailed description

of the model is presented in Sect. 4. The parameter considered is the viscosity. We use 100

equispaced parameter samples from the domain P = [0.005 , 1] to form the training set

Ξtrain. A ROM with error below the tolerance tol = 10−6 is requested from the greedy

algorithm. In Table 1a, we provide the parameters picked by the greedy algorithm at each

iteration from the training set. Noticeably, among the 100 parameter samples in the training

set, only 6 contribute to generating the basis V that approximates the solution manifold. Of

these 6 samples, the sample μ = 0.005 is picked fourteen times. This is not surprising since

this parameter corresponds to the solution vector with the smallest viscosity and is the most

difficult to approximate.

Next, we make an important connection between the parameters selected by the greedy

algorithm and the pivots obtained through a pivoted QR decomposition of the transpose of

the output snapshot matrix defined in (3.1).

For the same viscous Burgers’ equation, we collect the snapshots of the scalar-valued

outputs y at all the parameters in Ξtrain into a snapshot matrix given by

Y :=

⎡
⎢⎣

[y(x(t0,µ1),µ1)]
T · · · [y(x(t K ,µ1),µ1)]

T

...
. . .

...

[y(x(t0,µNtrain
),µNtrain

)]T · · · [y(x(t K ,µNtrain
),µNtrain

)]T

⎤
⎥⎦ , (3.1)

Each row of the matrix consists of the snapshots of the output at K + 1 time instances

corresponding to a given parameter. Consider first the well-known pivoted QR decomposition

of a matrix D given by

DΠ = QR =

[
R11 R12

0 R22

]
, (3.2)

where Q is an orthogonal matrix and R is upper triangular. The pivots are given by the column

permutation matrix Π . We apply the QR decomposition to YT and identify the pivots. A

comparison of the parameters corresponding to the first ten pivots and the parameters selected

in the greedy algorithm is shown in Table 1 and Fig. 1. Of the ten pivots, six are identical with

the greedy parameters. This close connection between the pivots of the QR decomposition and

the greedy parameters chosen in the RBM has been, to the best of our knowledge, discussed

only in [2,40]. It is based on the interpretation of the QR decomposition as a greedy column

selection procedure. Note that the application of a QR decomposition assumes the existence

of the FOM solution for all the parameters in the training set. In practice, we do not have this

information. Instead, we propose to apply the pivoted QR decomposition to the transpose of

an approximate output snapshot matrix, in order to identify important parameters which can

then be used to subsample the fine training set in the RBM.

In Sect. 2.3, the usage of DEIM and QDEIM algorithms were discussed in the context

of MOR. The DEIM algorithm uses a greedy sparse sampling of the left singular vector

matrix (U) of the snapshots to identify interpolation points, whereas QDEIM performs a
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Table 1 Greedy parameters and QR Pivots for the Burgers’ equation

(a) Greedy parameters picked by RBM.

Parameter 0.005 0.0151 0.0251 0.0352 0.0553 1

Repetitions 14 1 1 1 1 1

(b) First 10 pivots for the QR decomposition of the transposed true output snapshot matrix Y.

Pivots 0.005 0.0151 0.0251 0.0352 0.0553 0.1055 0.1859 0.3166 0.7487 1

Fig. 1 Greedy parameters for the Burgers’ equation and QR pivots of the true output snapshots matrix Y

QR decomposition with column pivoting on UT. This implicates a similar phenomenon as

observed above: QR with pivoting could select points of importance on different demands.

It is also noticed that QR with pivoting connects the greedy algorithm with DEIM (QDEIM),

which indicates that DEIM and QDEIM could also be used to select representative parameter

samples if either is applied to the output snapshot matrix.

Figure 1 shows that the pivots of the QR decomposition on YT gives similar points as

those selected by the greedy algorithm. It then indicates that sample points selected by the

greedy algorithm in a way are highly related to the interpolation points of QDEIM, if the

same snapshot matrix is considered by both the greedy algorithm and QDEIM, which is, in

our case, the output snapshot matrix Y. By exploiting this interpretation, we propose to use

DEIM or other variants of DEIM in order to adapt the training set during the greedy algorithm.

To further support and motivate our proposed scheme, in the next subsection, we show

that DEIM also has the similar capability of identifying the most representative parameter

samples for dynamics, as that exhibited by the greedy algorithm in the RBM.

3.1.2 DEIM and Parametric Anisotropy

For a function of two variables f(x,µ) : R
n × R

p → R
n , the DEIM algorithm first identifies

a linear subspace U and a small subset of points in the x variable, based on the snapshots

matrix F. One can analogously consider the mapping f(µ, x) : R
p × R

n → R
n through a

transpose of F. However, now the DEIM algorithm identifies a small subset of points in the

µ variable. We illustrate this on a toy example from [1]. Consider the following nonlinear,

two parameter function:

f(x1, x2,µ) =
1 + π2

4
(μ2 − μ1 − (μ1 + μ2)x2)

2 sin2(π
2
(x1 + 1))

1 + (μ1 + μ2) cos(π
2
(x1 + 1))

, (3.3)

where x := [x1, x2] ∈ R
n×2 is the spatial variable obtained from the discretization of the

two dimensional domain Ω := [−1 , 1] × [−1 , 1] with 50 points in each spatial direction,

resulting in n = 2500. The parameter µ := (μ1, μ2) ∈ R
2 belongs to the domain P :=

[−0.4 , 0.4]×[−0.4 , 0.4]. We collect 1600 snapshots of the function in the snapshots matrix

F ∈ R
2500×1600, based on uniform, equally spaced samples of the parameter. In Fig. 2a, the
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singular values of the snapshot matrix F are plotted. The rapid decay clearly demonstrates

the reducibility of this function. We apply a cut-off of ǫSVD = 10−10 for Algorithm 2.2

applied to both F and FT. The greedy interpolation points in Fig. 2b are those corresponding

to the indices in the row vector I, obtained from applying Algorithm 2.2 to F. The greedy

points in Fig. 2b are those µ corresponding to the indices stored in I, obtained from applying

Algorithm 2.2 to FT. The distribution of the points determined byDEIM for both the spatial and

parameter variable have a characteristic structure. The number of interpolation points with

SVD truncation tolerance ǫSVD = 10−10 was 48, a mere 3% of the total points. The spatial

greedy points illustrate that while the variable x1 is equally important over the entire range of

[−1 , 1], the x2 variable has almost all its variation concentrated at x2 ∈ {−1, 0, 1}. For the

parameter variable, the greedy algorithm picks most of the samples from the boundary of the

domain and from the diagonal going from the lower left to the upper right. There is a dense

concentration of points around the corners (−0.4,−0.4) and (0.4, 0.4). The choice of the

greedy points is closely related to the structure of the function f being approximated. In most

of the existing MOR literature, the DEIM algorithm has been used mainly as a tool to speed

up evaluations of nonlinear or nonaffine (parametric) functions in a ROM. However, through

the toy example, we have demonstrated its capability to expose the nature of parametric

dependence of a function. As seen in Fig. 2c, it is able to identify the regions in the parameter

space where the function has large variations.

3.2 Subsampling the Training Set

Based on the observations in Sects. 3.1.1 and 3.1.2, it is evident that a substantial compu-

tational effort can be saved in the offline stage of the RBM if we appropriately (optimally)

sample the training set. The rationale for the proposed approach is the following: the stan-

dard greedy algorithm scans through the entire training set at each iteration and evaluates

the error estimator at each parameter. This approach can incur significant computational cost

for training sets with a large number of parameters. The proposed algorithm aims at picking

out a small subset of the training set containing the most informative parameters. As will

be demonstrated numerically, the parameters match closely to those chosen by the standard

greedy algorithm.

Based on our observation of Fig. 1 in Sect. 3.1.1 and Fig. 2 in Sect. 3.1.2, we propose to

apply the pivoted QR decomposition and theDEIM algorithm (and its variants) to the snapshot

matrix of the approximate output vector ỹ
(
z(tk,µ),µ

)
. More specifically, we consider the

output snapshot matrix given by

Ỹ :=

⎡
⎢⎣

[̃y(z(t0,µ1),µ1)]
T · · · [̃y(z(t K ,µ1),µ1)]

T

...
. . .

...

[̃y(z(t0,µNtrain
),µNtrain

)]T · · · [̃y(z(t K ,µNtrain
),µNtrain

)]T

⎤
⎥⎦ ∈ R

Ntrain×q Nt (3.4)

with each row containing the snapshots of the approximated output quantity at K + 1 time

instances corresponding to a given parameter sample.

Remark 3.1 In case of stead-state systems with a single output we apply the proposed sub-

sampling approach on the approximate state snapshots. For this, we define Ỹ := X̃
T
, X̃

being the snapshot matrix of the approximate state vector (̃x(µ) = Vz(µ)) such that

X̃ :=
[
x̃(µ1), · · · , x̃(µNtrain

)
]

∈ R
n×Ntrain .
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(a)

(b) (c)

Fig. 2 Toy problem demonstrating anisotropic choice of interpolation points. The colourbars indicate the order

of selection of the parameters. Points in the blue end of the spectrum were selected earlier while those in the

green/yellow regions of the spectrum were picked later during the course of the algorithm (Color figure online)

For steady-state systems with multiple outputs, we define Ỹ :=
[
ỹ(µ1), · · · , ỹ(µNtrain

)
]T

∈ R
Ntrain×q .

Note that Ỹ can be obtained from a coarse or low-fidelity ROM of the original system

without doing FOM simulation at all the parameter samples. We propose two sampling

strategies: (i) apply pivoted QR decomposition to ỸT, (ii) apply DEIM or its variants to Ỹ,

in order to identify the structure of the parametric dependence of the output variable. Once

the distribution of the interpolation points is identified, we can then adapt the training set for

subsequent iterations of the greedy algorithm. We now outline the proposed approach and

discuss different computational strategies.

The proposed sampling procedure consists of two stages. The first stage is identical to the

standard RBM procedure outlined in Algorithm 2.1. A finely sampled training set Ξ
f

train is

used. We consider two different stopping criteria for the first stage—(a) the first stage runs
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Algorithm 3.1 Reduced Basis Method with Training Set Subsampling (Scheme 1)

Input: Training set (Ξ
f

train), tolerance for the ROM (tol), coarse tolerance (tolc), maximum iteration (ng).

Output: V.

1: Initialize V = [ ], ǫ = 1 + tol, iter = 1.

2: Select µ
∗
(1)

randomly from Ξ
f

train.

Stage 1

3: while ǫ > tolc do

4: Solve FOM (2.2) at µ
∗
(iter)

and obtain snapshot matrix X.

5: Set X̄ = X − VVTX.

6: Enrich V with rPOD left singular vectors of X̄ as

V ← orth
([

V U
X̄

(: , 1 : rPOD)
])

.

7: iter = iter + 1.

8: Set µ
∗
(iter)

= arg max
µ∈Ξ

f
train

Δ(µ).

9: ǫ = Δ(µ∗
(iter)

).

10: end while

Stage 2

11: Perform pivoted QR decomposition of ỸT, or apply DEIM or a DEIM variant to Ỹ and identify the indices

I of the QR pivots or DEIM interpolation points.

12: Identify new training set Ξtrain using distribution of I.

13: while ǫ > tol && iter ≤ ng do

14: Solve FOM (2.2) at µ
∗
(iter)

and obtain snapshot matrix X.

15: Set X̄ = X − VVTX.

16: Enrich V with rPOD left singular vectors of X̄ as

V ← orth
([

V U
X̄

(: , 1 : rPOD)
])

.

17: iter = iter + 1.

18: Set µ
∗
(iter)

= arg maxµ∈Ξtrain
Δ(µ).

19: ǫ = Δ(µ∗
(iter)

).

20: end while

until the maximum estimated error is below a coarse tolerance denoted by tolc > tol,

where tol is the desired error tolerance for the final ROM, or (b) at two successive iterations,

the number of DEIM interpolation points or QR pivots does not change. The value of tolc is

user-defined and is of order O(1) in this work. Based on the two stopping criteria, two different

schemes of training set subsampling are presented in Algorithms 3.1 and 3.2, respectively.

For both algorithms, we do not reset the value of iter at the end of Stage 1, so the final

value of iter upon convergence for Algorithms 3.1 and 3.2 is the total number of iterations

required by either algorithms to converge to the desired tolerance. It is worth pointing out

that an a posteriori error estimator [16] is used in both stages of the proposed algorithms so

that the parameter sample picked at each iteration is the one at which an estimated output

error is the largest. Furthermore, the adaptive basis enrichment technique proposed in [16] is

implemented and serves as a possible solution to the issue of repeated parameter selection. The

number of POD modes corresponding to a selected parameter sample is adaptively decided:

when the estimated error is large, a higher number of POD modes (rPOD) for the selected

parameter are added; otherwise fewer POD modes are added. This reduces the chance of the

same parameter sample being repeatedly chosen at subsequent iterations. This adaptive basis

enrichment is implemented for both stages of our proposed method. We now discuss several

practical computational strategies in connection with Steps 11 and 12 in Algorithm 3.1 and

Steps 12, 13 and 16 in Algorithm 3.2.
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Algorithm 3.2 Reduced Basis Method with Training Set Subsampling (Scheme 2)

Input: Training set (Ξ
f

train), tolerance for the ROM (tol), maximum iteration (ng).

Output: V.

1: Initialize V = [ ], ǫ = 1 + tol, iter = 1.

2: Select µ
∗
(1)

randomly from Ξ
f

train.

Stage 1

3: while not terminated do

4: Solve FOM (2.2) at µ
∗
(iter)

and obtain snapshot matrix X.

5: Set X̄ = X − VVTX.

6: Enrich V with rPOD left singular vectors of X̄ as

V ← orth
([

V U
X̄

(: , 1 : rPOD)
])

.

7: iter = iter + 1.

8: Set µ
∗
(iter)

= arg max
µ∈Ξ

f
train

Δ(µ).

9: ǫ = Δ(µ∗
(iter)

).

10: Perform pivoted QR decomposition of ỸT, or apply DEIM or a DEIM variant to Ỹ and identify the

indices I of the QR pivots or DEIM interpolation points.

11: if iter ≥ 2 then

12: Check if length(Iiter - 1) == length(Iiter).

13: If true break and proceed to Stage 2.

14: end if

15: end while

Stage 2

16: Identify new training set Ξtrain using distribution of I.

17: while ǫ > tol && iter ≤ ng do

18: Solve FOM (2.2) at µ
∗
(iter)

and obtain snapshot matrix X.

19: Set X̄ = X − VVTX.

20: Enrich V with rPOD left singular vectors of X̄ as

V ← orth
([

V U
X̄

(: , 1 : rPOD)
])

.

21: iter = iter + 1.

22: Set µ
∗
(iter)

= arg maxµ∈Ξtrain
Δ(µ).

23: ǫ = Δ(µ∗
(iter)

).

24: end while

Remark 3.2 The active subspaces method (ASM) is an approach for parameter space reduc-

tion that has been recently applied in the context of MOR [20,52,56] mainly for the case

of scalar valued outputs. The ASM identifies a set of important directions in the parameter

space onto which the parameter vectors are projected. It does this by means of Monte Carlo

sampling of the gradients (with respect to the parameter) of the scalar-valued output quantity

at a selection of parameter samples. The active subspaces are the eigenspaces of the (trun-

cated) covariance matrix of the gradients. Compared to ASM, our approach differs in two

significant ways. Firstly, the proposed subsampling strategy is applicable to vector-valued

output quantities. Secondly, ASM requires calculation of the gradient of the output. More-

over, the user still has to define the training set over which the gradient samples are acquired.

Our proposed approach does not require the calculation of any additional quantity.

Remark 3.3 Our proposed subsampling strategy occuring in Step 11 of Algorithm 3.1 and

Step 10 of Algorithm 3.2 shares similarity with the column subset selection problem (CSSP)

in the fields of numerical linear algebra and data mining [38]. For some general data matrix

D ∈ R
N×M , the CSSP aims to identify h < M independent columns of the matrix D such that
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the residual ‖D − PhD‖ is minimized. Here, Ph = SS† is a projection matrix and S ∈ RN×h

consists of the h extracted columns from D. A number of algorithms, both deterministic

and randomized, have been proposed to solve the CSSP [10,11,13]. One popular approach

is to apply some variant of the QR decomposition (column-pivoted, rank-revealing, hybrid,

etc.) either to the data matrix D or to the transpose of the (truncated) left (or right) singular

matrix U (or W) of D. If we consider D as the approximate output snapshot matrix, then our

proposed algorithm using pivoted QR (or QDEIM) can be seen as a special case of the CSSP.

3.2.1 Training Set Subsampling: Scheme 1

We describe the proposed approach for the first scheme detailed in Algorithm 3.1. In the

first stage, a low-fidelity ROM is built with a coarse tolerance tolc, over a finely sampled

training set Ξ
f

train. The intuition is that a low-fidelity approximation is sufficient to discover

the parametric dependence of the output variable. At the end of the first stage, DEIM (or

one of its variants) is applied to Ỹ to identify the interpolation points or a pivoted QR

decomposition of ỸT is used to identify the pivots. Once the set of interpolation points (or

pivots) pi is identified, we proceed to suitably subsample the finely sampled training set based

on the distribution of the identified interpolation points or pivots. Different possibilities exist

to achieve this. A simple approach is to consider the training set for the second stage Ξtrain

populated only by the identified interpolation points or pivots. Consider the fine training set

Ξ
f

train := {µ1,µ2, . . . ,µN
f

train

} with the subscript denoting the index corresponding to the

position of a parameter in the set. Let I be the vector whose elements are the indices of the

chosen interpolation points or pivots. We define the subsampled training set Ξtrain as the

one consisting of all those parameters µz from Ξ
f

train such that their indices are present in

I, i.e., Ξtrain := {µz;z∈I}. If there are only a few interpolation points, this approach would

lead to a rapid second stage of the algorithm. However, there may exist the pitfall that it

may result in an overfit by which we mean that the resulting ROM after Stage 2 satisfies the

desired tolerance tol only over the subsampled training set and does not generalize to other

parameters in the parameter domain. We illustrate this phenomenon in the numerical tests.

Another possible approach is to define a training budget m for the second stage and use an

oversampling strategy like the Gappy-POD to ensure that the training set for the second stage

consists of a total of m parameter samples.

3.2.2 Training Set Subsampling: Scheme 2

The first scheme of our proposed training set adaptation method requires a user-defined

coarse tolerance. Choosing such a tolerance is rather heuristic. For some problems, a rough

approximation may be enough to suitably capture all the parametric dependences, whereas a

finer approximation may be needed for others. Therefore, for the second scheme we define

a heuristic criterion that leads automatically to the second stage. To achieve this, we apply

DEIM approximation (or a variant of DEIM) to the matrix Ỹ or the pivoted QR factorization

to ỸT, at each iteration of the greedy algorithm. Whenever the DEIM interpolations or pivoted

QR decompositions at two successive iterations turn out to be equal, we terminate the first

stage. This can be easily calculated by comparing the number of interpolation indices or the

pivot indices at two successive iterations. Then, the subsampling of the training set for the

second stage is carried out with similar approaches as discussed above. Following this, the

second stage is run, until the required tolerance tol is met. In Algorithm 3.2, Iiter and

Iiter - 1 in Stage 1 refer to the vector containing the interpolation indices identified by
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DEIM or its variants, or the indices of the QR pivots at the current iteration and the previous

iteration, respectively.

Each of the two schemes has its own benefits or shortcomings. For Scheme 1, the burden of

choosing an appropriate coarse tolerance lies with the user. This is highly problem-dependent.

In the limit that tolc = tol, Scheme 1 is just the standard Greedy algorithm (Algorithm

2.1) with fixed training set. If tolc ≫ tol, a very fast second stage can be ensured, leading

to considerable speedup of the offline stage of the RBM. However, it is not known a priori if

the chosen coarse tolerance is good. Scheme 2, on the other hand, automatizes the switching

from Stage 1 to Stage 2 of the subsampling strategy by considering a heuristic criterion for

the subspace approximation of the snapshot matrix Ỹ. But, this comes with the additional

cost of performing the DEIM algorithm or the pivoted QR decomposition, repeatedly. The

success of both schemes is also highly dependent on the strategy adopted to construct the

subsampled training set. In the numerical tests, we shall consider two approaches. In the

first approach, we consider as many parameters in the subsampled training set as the number

of DEIM interpolation points or QR pivots. For the second approach, we fix the cardinality

of the subsampled training set to be m and then use oversampling strategies based on the

Gappy-POD method to choose those m parameters in a principled way.

3.2.3 Complexity Analysis

The fine training set is used in Stage 1 of both Algorithms 3.1 and 3.2. However, the compu-

tational complexity is not high for Algorithm 3.1, since we use a coarse tolerance tolc in

Stage 1, so that the greedy algorithm converges within much fewer steps than when using the

user desired tolerance in Stage 2. The computational complexity will grow with the decrease

of the coarse tolerance used in Stage 1. However, as we have observed, a moderate value of

tolc is enough to figure out the parameter dependency of the output. The number of FOM

simulations is indeed independent of the size of the fine training set, since the FOM simula-

tion is implemented only at those “selected" parameter samples. The situation for Algorithm

3.2 is different since it involves the DEIM or QR algorithms at each iteration (see Step 10)

to compute the interpolation points. A fine training set will indeed increase the cost of this

step. Nevertheless, one can readily use recent techniques based on randomized linear algebra

(such as randomized SVD, randomized QR, etc.) to keep the costs under control, see [22,54].

In this section, we roughly compare the computational complexity of the standard RBM

without training set subsampling in Algorithm 2.1 to that of RBM using the two subsampling

strategies introduced in Algorithms 3.1 and 3.2. Our complexity analysis considers the worst-

case costs involved with each algorithm and is meant as a simplified illustration of the benefits

of subsampling the training set. For simplicity, we only count the dominant costs in each

algorithm.
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We begin by introducing some notation:

– Let CFOM := O(n2) · Nt denote the cost of solving the FOM (for e.g., (2.2)) using some

iterative scheme (GMRES, etc.), at a fixed parameter to obtain the snapshots.

– Let CSVD := O(n3) be the worst-case cost for performing the SVD.

– Let CErr := O(s) be the cost associated with evaluating the error estimator Δ(µ) for a

fixed parameter.

– Note that the dimension of the snapshot matrix in (3.4) is N
f

train × q Nt . For large-scale

systems, usually we have N
f

train ≤ n, if using, e.g., a sparse grid sampling, and often

q Nt ≤ n. Therefore, the cost for the DEIM algorithm (or its variants) or the pivoted QR

decomposition should be less than O(n3). In general, we denote it as Css := O(n3).

The cost associated with Algorithm 2.1, viz., CI is:

CI :=

(
CFOM + CSVD + CErr · N

f
train

)
· NI

with N
f

train being the cardinality of the fine training set and NI the number of iterations taken

by the greedy algorithm to converge to the desired tolerance. The cost incurred by Algorithm

3.1, CI I , is divided between Stage 1 and Stage 2. This is given by:

CI I :=

Stage 1 cost︷ ︸︸ ︷(
CFOM + CSVD + CErr · N

f
train

)
· NI I ,1

+ Css +
(
CFOM + CSVD + CErr · Ntrain

)
· NI I ,2︸ ︷︷ ︸

Stage 2 cost

.

In the above expression, NI I ,1, NI I ,2 are, respectively, the number of iterations of the greedy

algorithm in Stage 1 and Stage 2 of Algorithm 3.1. Typically, NI I ,2 > NI I ,1 since we use

a coarse tolerance for Stage 1. Moreover, Ntrain is the cardinality of the subsampled training

set Ξtrain. Finally, the computational cost of Algorithm 3.2, CI I I , is as follows:

CI I I :=

Stage 1 cost︷ ︸︸ ︷(
CFOM + CSVD + CErr · N

f
train + Css

)
· NI I I ,1

+
(
CFOM + CSVD + CErr · Ntrain

)
· NI I I ,2︸ ︷︷ ︸

Stage 2 cost

with NI I I ,1, NI I I ,2 being, respectively, the number of iterations of the greedy algorithm in

Stage 1 and Stage 2 of Algorithm 3.2. For Algorithm 3.1 or Algorithm 3.2 to be computa-

tionally better alternatives to Algorithm 2.1, we should have CI > CI I and CI > CI I I .

Cost benefit of Algorithm 3.1: To compare the costs of Algorithms 2.1 and 3.1, we look at

the expression CI − CI I .

CI − CI I := CFOM(NI − NI I ,1 − NI I ,2)

+ CSVD(NI − NI I ,1 − NI I ,2)

+ CErr(N
f

train · NI − N
f

train · NI I ,1 − Ntrain · NI I ,2)

− Css.

By assuming NI ≈ NI I ,1 + NI I ,2 we have for the above expression

CI − CI I ≈ CErr(N
f

train − Ntrain)NI I ,2 − Css.
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For N
f

train ≫ Ntrain, the first term would dominate leading to CI > CI I . Thus, we see

that computational cost incurred by Algorithm 3.1 is less than that of Algorithm 2.1. In our

analysis, we have assumed that NI ≈ NI I ,1+NI I ,2. While this helps to simplify the analysis,

it does not always hold. As we shall see in Sect. 4, for the example of Burgers’ equation this

assumption is true, while it does not hold for the thermal block example. A more relaxed

assumption is NI � NI I ,1 + NI I ,2 using which, it can still be seen that C I > C I I .

Cost benefit of Algorithm 3.2: We look at the difference in costs CI − CI I I .

CI − CI I I := CFOM(NI − NI I I ,1 − NI I I ,2)

+ CSVD(NI − NI I I ,1 − NI I I ,2)

+ CErr(N
f

train · NI − N
f

train · NI I I ,1 − Ntrain · NI I I ,2)

− Css NI I I ,1.

By making the assumption NI ≈ NI I I ,1 + NI I I ,2, we have for the above expression

CI − CI I I ≈ CErr(N
f

train − Ntrain)NI I I ,2 − Css NI I I ,1.

Usually N
f

train ≫ Ntrain and moreover, NI I I ,1 < NI I I ,2. Therefore, the first term would

dominate, leading to CI > CI I I . Once again, we see that the RBM using the subsampling

strategy (Algorithm 3.2) incurs a smaller cost when compared to Algorithm 2.1. In the case

of Algorithm 3.2, just like earlier, the assumption NI ≈ NI I I ,1 + NI I I ,2 need not always

hold. From the numerical tests in the next section, we actually have NI � NI I I ,1 + NI I I ,2.

The numerical results in Tables 2 and 3 show that Algorithms 3.1 and 3.2 indeed achieve

speedups that can only be secured when they possess less computational complexity than

Algorithm 2.1.

Remark 3.4 (High-dimensional parameter spaces) Both Algorithms 3.1 and 3.2, can be used

when the parameter space is high-dimensional. The cost in Stage 2 will not be affected much,

since a small training set identified from Stage 1 is used. The main increase in cost is due

to the need to solve additional ROMs and estimate the error in Stage 1 of the proposed

algorithms (Step 8 in Algorithms 3.1 and 3.2). If sparse grid sampling and a cheap error

estimator are used, the cost will not increase fast. Actually, we can go a step further and

make use of cheaply computable surrogate models of the error estimator as done in [17]. In

that work, we considered a radial basis surrogate for the error estimator that is adaptively

updated during the greedy algorithm. We only evaluate the actual error estimator over a few

parameter samples. We then use this data to form a surrogate model, which can be used to

evaluate the error for different parameter samples in the fine training set in Stage 1.

Remark 3.5 (Role of output quantity of interest) In many cases, there is often the requirement,

based on the application, to have a good approximation for the entire state vector. However, in

this work we have specifically focussed on a goal-oriented approach. For several applications,

like in control systems or fluid dynamics, only a small number of state variables may be of

interest. By focussing on those states alone, the resulting ROM dimension can be considerably

lowered when compared to the case where the entire state needs to be well approximated.

Also, it is indeed true that different output QoIs may have different influences on the parameter

samples chosen. However, if some QoIs give rise to quantities with similar emphasis, then

they may result in similar parameter samples being chosen. For example, a QoI defined by

the mean of the solution over the spatial domain and a QoI defined by the sum of the solution

over the spatial domain should result in similar samples. But a QoI defined by the mean of the
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solution over space probably gives different samples from the QoI defined by the maximum

of the state over the spatial domain.

4 Numerical Results

We test the proposed adaptive training set subsampling algorithm on two examples. They

are:

1. Viscous Burgers’ equation with one parameter,

2. thermal block with four parameters.

The first example is a nonlinear system, while the other is linear. All numerical tests are

carried out in MATLAB® 8.5.0.197613 (R2015a) on a laptop with Intel® CoreTM i5-7200U

@ 2.5 GHz and 8 GB of RAM. Next, we describe the metrics used in all the numerical tests:

– The results of the proposed algorithms (Algorithms 3.1 and 3.2) are compared against

a standard implementation of the POD-Greedy algorithm (Algorithm 2.1) with a fixed

training set. The implementation adopts Galerkin projection. The number of POD modes

rPOD, rEI to enrich the RB and DEIM bases is determined at each iteration based on the

adaptive approach proposed in [16]. We have also used the primal-dual error estimator

proposed by the authors of [16] for our implementation of Algorithms 2.1, 3.1 and 3.2.

The dual RB basis required for the error estimator is generated separately.

– The fixed training set used for Algorithm 2.1 and the initial fine training set used for

Algorithms 3.1 and 3.2 are the same.

– For Algorithms 3.1 and 3.2, we apply (i) the pivoted QR decomposition to the transposed

approximate output snapshot matrix ỸT and, (ii) the DEIM variants on the approximate

output snapshot matrix Ỹ as two approaches to subsample the fine training set.

– The cut-off criterion to determine the number of pivots (h) for the pivoted QR decom-

position in (3.2) of the approximate output snapshot matrix in (3.4) is based on the

magnitude of the diagonal elements in the upper triangular matrix R, i.e., we set

h = q based on the the smallest q such that |R(q + 1, q + 1)|/|R(1, 1)| < ǫQR, with

q ∈ {1, 2, . . . , min(Ntrain, Nt )}. The pivoted QR decomposition can effectively identify

the rank of a matrix with a small diagonal R(q + 1, q + 1). Although there are cases

when the column pivoted QR decomposition fails, they are rare in practice [14]. A more

robust rank-revealing QR factorization [14] can also be straightforwardly applied to our

proposed subsampling algorithm. However, in this work, we simply use column pivoted

QR. The intrinsic MATLAB® command qr is used with the options vector enabled,

i.e., we call [Q, R, pqr] = qr(ỸT, ′vector′). It returns the pivot indices pqr as a vec-

tor, from which we select the first h as our subsampling indices, i.e., I = pqr(1 : h).

Here, I is the vector whose elements are the indices of the QR pivots and it lets us choose

the subsampled training set Ξtrain for Stage 2 of our proposed method, based on the fine

training set Ξ
f

train from Stage 1.

– Our implementation of the k-means algorithm for KDEIM is based on the intrinsic

MATLAB® function kmeans. We use five different initializations and pick the best

configuration among the five.

– The maximum true error over the test set is defined as

ǫmax
t := max

µ∈Ξtest

(
1

K + 1

K∑

k=0

‖y
(

x(tk,µ)

)
− ỹ

(
z(tk,µ)

)
‖

)
.
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– Reported runtimes for all the algorithms are obtained by considering the median value

of five independent runs.

– The quantity Iterations reported in Tables 2 to 6 refers to the total number of iterations

(iter) of the corresponding greedy algorithm (Algorithms 2.1, 3.1 and 3.2) to converge

to the desired tolerance.

4.1 Viscous Burgers’ Equation

We consider the following viscous Burgers’ equation defined on a 1-D domain Ω := [0 , 1]:

∂x

∂t
+ x

∂x

∂w
= μ

∂2x

∂w2
+ s(x, t), x(0, t) = 0 &

∂x(1, t)

∂w
= 0,

y = x(1, t),

(4.1)

where s(x, t) denotes a forcing term defined later. The domain is discretized using the finite

difference method with step size Δw = 0.001. We make use of a second order central

difference discretization for the diffusion term and a first-order upwind scheme for the con-

vection term. The resulting FOM is of dimension n = 1000. For the time variable t ∈ [0 , 2],

we make use of a first order implicit-explicit (IMEX) scheme with the diffusion term dis-

cretized implicitly and the nonlinear convection term discretized explicitly. The step size is

Δt = 0.001. The constant input to the system is set to be s(x, t) ≡ 1 and the initial condition

is x0 := 0 ∈ R
n . The parameter domain of the viscosity μ is P := [0.005, 1]. The training

set Ξtrain consists of 100 equally spaced samples in P . For the RBM, we fix the tolerance to

be tol = 1 · 10−6. To validate the ROM, we use a test set Ξtest containing 300 randomly

sampled parameters, different from those in the training set.

4.1.1 Greedy Algorithmwith Fixed Training Set

We begin by applying the standard greedy algorithm (Algorithm 2.1) to the discretized

model of the Burgers’ equation. The greedy algorithm requires tgreedy = 505.47 seconds and

19 iterations to converge to the defined tolerance of 1 · 10−6. The resulting ROM has RB

dimension rPOD = 32 along with rEI = 33 basis vectors for the DEIM projection matrix.

The maximum true error over the test set is ǫmax
t = 2.07 · 10−8. Although the POD-Greedy

algorithm with a fixed training set results in a ROM that meets the specified tolerance, its

offline time is high and there is scope for improvement by considering a subsampled training

set.

4.1.2 Greedy Algorithm Schemes 1 and 2

We apply Algorithms 3.1 and 3.2 to the Burgers’ equation, making use of both pivoted QR

and the two DEIM variants (QDEIM and KDEIM) to identify the interpolation points I. Further,

we consider three different SVD and QR cut-off tolerances (ǫSVD, ǫQR) for the pivoted QR

and DEIM variants {1 · 10−4, 1 · 10−6, 1 · 10−8} to highlight the progressive refinement of the

adapted training set in ‘difficult regions’ of the parameter space. The results are summarized

in Tables 2 and 3 for Algorithms 3.1 and 3.2, respectively. The matrix Ỹ ∈ R
100×81, for

either algorithms, was assembled by collecting the snapshots of the output vector at every

25th time step. The training set in Stage 2 of both algorithms consists of interpolation points

identified by QR, QDEIM or KDEIM. As revealed in the results, this choice is sufficient to

produce ROMs that meet the required tolerance over the test set. For this example, there is
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Fig. 3 Algorithm 3.2 for the Burgers’ Equation with SVD, QR tolerance ǫSVD, ǫQR = 1·10−4. The crossmarks

denote the parameters in the subsampled training set. For KDEIM each colour represents one cluster; the

centroids of each of the clusters make up the subsampled training set (Color figure online)

Fig. 4 Algorithm 3.2 for the Burgers’ Equation with SVD, QR tolerance ǫSVD, ǫQR = 1·10−6. The crossmarks

denote the parameters in the subsampled training set. For KDEIM each colour represents one cluster; the

centroids of each of the clusters make up the subsampled training set (Color figure online)

not a big difference between the results of the two algorithms. Both schemes produce ROMs

of almost identical RB, DEIM basis sizes (rPOD, rEI) and result in nearly the same maximum

error over the test set.

We show the subsampled training sets resulting from Algorithm 3.2 using the pivoted QR,

QDEIM and KDEIM variants, with different SVD, QR tolerances in Figs. 3, 4, 5. The black

crosses denote those samples from the fine training set which were retained in Stage 2 of the

algorithm. For the QDEIM variant, it is clear that the subsampled parameters are concentrated

more around the lower viscosity regions of the parameter space. Thus, the method is able to

successfully identify the physically more relevant points. Moreover, the parameter samples

identified by QDEIM are very close to the ones identified by the method using a pivoted QR

decomposition. This is not surprising since the former determines the interpolation points

through a pivoted QR decomposition of UT (U is the left singular matrix of Ỹ) whereas

the latter applies the pivoted QR decomposition directly to ỸT. We also show the results of

KDEIM, where the subsampled (selected) parameter samples and their corresponding clusters

are presented. The subsampled points in this case are the centroids of the clusters. The clusters

are smaller in size for the low viscosity regions, while they are comparatively larger in the

high viscosity zone. The resulting subsampled training sets from Algorithm 3.1 display a

similar trend.
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Fig. 5 Algorithm 3.2 for the Burgers’ Equation with SVD, QR tolerance ǫSVD, ǫQR = 1·10−8. The crossmarks

denote the parameters in the subsampled training set. For KDEIM each colour represents one cluster; the

centroids of each of the clusters make up the subsampled training set (Color figure online)

For a given ǫSVD or ǫQR, the runtimes for the QDEIM and KDEIM based training set

adaptation are very close. Using the pivoted QR leads to a subsampled training set with one

sample more than that generated by using QDEIM or KDEIM. This results in a marginally

higher offline time for this method. One observation worth remarking is that, for some

instances, using the KDEIM approach to identify the adapted training set leads to the greedy

algorithm converging in fewer iterations. This is most likely due to the fact that the identified

parameters in this case represent cluster centroids and are more representative of the average

behaviour. This yields a more uniform approximation throughout the parameter domain, with

each cluster average being well-represented. The QDEIM version, on the other hand, tends to

identify points based on the SVD of the output snapshot matrix and tends to favour points

away from the mean behaviour. We illustrate this in Fig. 6 for the case of ǫSVD = 10−8 for

Algorithm 3.1. It is evident that while the subsampling strategy using QDEIM results in a

smaller magnitude of the maximum error over the test set (4.55 · 10−8 vs. 6.88 · 10−8), the

approach using the KDEIM-based sampling leads to a more uniform distribution of the error

over the test set.

On average, for a given SVD tolerance, Algorithm 3.1 is faster than Algorithm 3.2. This can

be attributed to the fact that for the latter, the DEIM variant or the pivoted QR decomposition

needs to be performed repeatedly to check the criterion in Step 12 of Algorithm 3.2. Since

this involves performing an SVD, the associated costs are higher. The proposed subsampling

algorithms result in a noticeable speedup of the POD-Greedy algorithm. For Algorithm 3.1,

the maximum achieved speedup was 5.6 for ǫSVD = 1 · 10−4 using QDEIM. However, the

least speedup noticed was 4.0 for ǫSVD = 1 · 10−8 using QDEIM. Also, for Algorithm 3.2 the

maximum achieved speedup was 5.7 for ǫSVD = 1 · 10−4 using KDEIM while the minimum

speedup was 3.5 for ǫSVD = 1 · 10−8 using QDEIM. Finally, we see from Tables 2 and 3 that

the number of iterations to converge for Algorithm 2.1, Algorithms 3.1 and 3.2 are nearly

the same. Thus, our assumption in the analysis from Sect. 3.2.3 that NI ≈ NI I ,1 + NI I ,2

and NI ≈ NI I I ,1 + NI I I ,2 holds true.

4.2 Thermal Block

The second example is a benchmark model of the time-dependent heat transfer in a thermal

block. The governing PDE is given by
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(a)

(b)

Fig. 6 Error plot for Algorithm 3.1 with tolerance ǫSVD = 10−8 applied to the Burgers’ equation. The

error between the true and reduced outputs ‖y
(

x(tk , µ)

)
− ỹ

(
z(tk ,µ)

)
‖ is plotted over the duration of the

simulation for all parameters in the test set

∂θ(w, t,µ)

∂t
+ ∇ · (−γ (w,µ)∇θ(w, t,µ)) = 0, t ∈ [0, T ]. (4.2)

The domain Ω := (0, 1) × (0, 1) ∈ R
2 is partitioned into five regions — Ω = Ω0 ∪ Ω1 ∪

Ω2 ∪ Ω3 ∪ Ω4 as shown in Fig. 7. The left boundary of the domain (Γin) is associated with

an input heat flux of unit magnitude, the top and bottom boundaries (ΓN) are associated

with a Neumann boundary condition with zero flux and finally the right boundary (ΓD)

is fixed at zero. The state variable is the temperature θ(w, t) at a given spatial location

w ∈ Ω , for a given time t . The initial condition is θ(w, 0) = 0. The output is the average

temperature measured at Ω2. The problem is parametrized by the heat conductivity γ in

the subdomains (Ω0,Ω1,Ω2,Ω3 and Ω4); γ (w,µ) = 1 when w ∈ Ω0 and γ (w,µ) = κi

whenever w ∈ Ωi , i = 1, 2, 3, 4. We define the parameter vector µ = [κ1, κ2, κ3, κ4].

The governing PDE is discretized in space using linear finite elements with respect to a

simplicial triangulation of the domain Ω obtained via the software gmsh [25]. It is further

discretized in time using the implicit Euler scheme for a time ranging from t ∈ [0 , 1],

with step size Δt = 0.01. The spatially discretized system has dimension n = 7488. For

more details on the model and the spatial discretization, the reader is referred to [51]. The

discretized heat equation can be written in the form of (2.2). Since the problem is linear,

we have f ≡ 0. For the numerical results, the parameter µ is sampled from the domain

P := [1 · 10−5 , 1 · 10−2]×[1 · 10−5 , 1 · 10−2]×[1 · 10−4 , 1]×[1 · 10−1 , 1]. For purposes
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Fig. 7 Thermal Block Example: Spatial domain and boundaries

of illustration, we consider the three parameter version of the thermal block problem by

fixing κ4 to its mean value, i.e., κ4 = 0.5. The training set Ξtrain consists of a tensor grid of

Ntrain = 63 = 216 parameters, with 6 parameters sampled for each κi , i = 1, 2, 3. The test

parameter set consists of 100 parameters, randomly sampled from P . The tolerance for the

greedy algorithm is set to be tol = 1 · 10−3.

4.2.1 Greedy Algorithmwith Fixed Training Set

Applying Algorithm 2.1 with a fixed training set to the thermal block example results in a

ROM of dimension rPOD = 74, taking 53 iterations to converge in tgreedy = 694.73 seconds.

The maximum error over the test set is ǫmax
t = 9.78 · 10−4. In Fig. 8, the training set Ξtrain

and the greedy parameters identified by Algorithm 2.1 are shown. Of the 216 parameters

in the training set, only 44 are chosen. The greedy parameters have a larger concentration

at and around (0.01, 0.01, 0.0001), the upper right corner of the figure. In fact, the regions

around the vicinity of the upper and right wall of the grid posses many greedy samples near

them.

4.2.2 Greedy Algorithm Schemes 1 and 2

Similar to the Burgers’ equation, we now apply the proposed training set subsampling

schemes to the thermal block example. We shall also illustrate the advantages of using

oversampling. For both Algorithms 3.1 and 3.2, we consider ǫQR, ǫSVD = 1 · 10−10

and a coarse tolerance tolc = 1. The approximation to Y is obtained by taking snap-

shots at every time step of the implicit Euler scheme. The results are summarized in

Tables 4 and 5 for Algorithms 3.1 and 3.2, respectively. The first scheme does not lead

to a successful ROM for both QDEIM and KDEIM whereas using the pivoted QR decom-

position on ỸT to identify the subsampled training set produces a successful ROM.
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Fig. 8 Thermal Block: Fine training set with 216 parameters and the 44 greedy parameters picked by Algorithm

2.1

Table 4 Thermal Block Results for Algorithm 3.1 for QDEIM, KDEIM and QR

Method Fixed Adapted

ǫSVD, ǫQR = 1 · 10−10

QDEIM KDEIM QR

Nc 216 19 19 20

ǫmax
t 9.78 · 10−4 1.10 · 10−3 2.10 · 10−3 6.45 · 10−4

rPOD 74 64 64 66

Iterations (iter) 53 42 43 44

Offline time (s) 694.73 121.36 123.27 126.35

Speedup – 5.7 5.6 5.5

For the second scheme of the proposed algorithm, both QDEIM and KDEIM result in a

subsampled training set of cardinality Nc = 19 while the pivoted QR approach gives

Nc = 20. However, both QR and QDEIM are unsuccessful in meeting the required

ROM tolerance for the test set. On the other hand, KDEIM results in a ROM satisfy-

ing the tolerance, taking a significantly smaller number of iterations (40) to converge.

The results seem to indicate that the subsampling approach is not entirely able to cap-

ture the full range of features over the training set. This is mainly due to the smaller

number of parameters Nc = 19, that the algorithm results in. Recall that for the stan-

dard greedy approach, 44 unique greedy parameters were determined. However, it is also

to be noted that the performance of the ROMs resulting from either scheme on the test

set is not bad. The maximum error is only slightly higher than the desired tolerance of

tol = 1 · 10−3.

Next, we perform oversampling to identify more parameters. For the standard DEIM

approach, the number of interpolation points is equal to the rank ℓ of the truncated left

singular vectors of the snapshots matrix. For oversampling, we set the number of interpola-

tion points to be m = 2ℓ and test the approaches based on maximizing the smallest singular

value (Gappy-POD Eigenvector) and the approach based on clustering (Gappy-POD Clus-

tering), both originally proposed in [45]. The results are given in Table 6. We see that both

oversampling approaches result in ROMs that are validated to be accurate over the test set.

The Gappy-POD Clustering method results in the smallest test error among the two and
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Table 5 Thermal Block Results for Algorithm 3.2 for QDEIM, KDEIM and QR

Method Fixed Adapted

ǫSVD, ǫQR = 1 · 10−10

QDEIM KDEIM QR

Ntrain 216 19 19 20

ǫmax
t 9.78 · 10−4 1.10 · 10−3 9.36 · 10−4 1.60 · 10−3

rPOD 74 65 62 57

Iterations (iter) 53 45 40 35

Offline time (s) 694.73 121.58 110.13 73.38

Speedup – 5.7 6.3 9.5

Table 6 Thermal Block Results for Algorithm 3.1 with oversampling

Method Oversampling

m = 2ℓ

Gappy-POD Eigenvector Gappy-POD Clustering

Nc 38 38

ǫmax
t 9.91 · 10−4 7.96 · 10−4

rPOD 70 62

Iterations (iter) 47 40

Offline time (s) 177.51 151.39

Speedup 3.9 4.6

takes 40 iterations to converge. Notice that, compared to the previous two approaches based

on QDEIM and KDEIM, the oversampling approach requires more time. This is not surpris-

ing, since a larger number of parameters is included in the coarse training set at Stage 2 of

Algorithms 3.1 and 3.2. The speedup of the Gappy-POD Eigenvector variant is 3.9, while a

speedup of 4.6 is achieved by the Gappy-POD Clustering variant. We show the subsampled

training sets of both the approaches in Fig. 9. In particular, parameter samples anticipated by

the Gappy-POD Clustering variant bear a close resemblance to the greedy parameter distri-

bution in Fig. 8. In Fig. 10, we plot the mean error over time for each parameter in the test

set. It is evident that both the proposed oversampling strategies, Gappy-POD Eigenvector

(Fig. 10a) and Gappy-POD Clustering (Fig. 10b) have been successful in keeping the error

below the desired tolerance, uniformly for all the parameters in the test set. Lastly, for the

thermal block example, the total number of iterations to converge for Algorithms 2.1, 3.1 and

3.2 is not equal and varies based on the particular subsampling strategy used (see Tables 4, 5

and 6). Our initial assumptions in Sect. 3.2.3 that NI ≈ NI I ,1 + NI I ,2, NI ≈ NI I I ,1 + NI I I ,2

do not hold while we see that NI � NI I ,1 + NI I ,2, NI � NI I I ,1 + NI I I ,2 is always the

case.
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(a)

(b)

Fig. 9 Subsampling strategy using Gappy-POD with oversampling for the Thermal Block
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(a)

(b)

Fig. 10 Error plot for Algorithm 3.1 with coarse tolerance tolc = 1 and subsampling based on Gappy-POD
Eigenvector and Gappy-POD Clustering applied to the thermal block example. The mean error over time

between the true and reduced outputs - (1/K + 1)
∑K

i=0 ‖y
(

x(tk ,µ)
)

− ỹ
(

z(tk , µ)
)

‖ - is plotted for all

parameters in the test set

5 Conclusions

We presented an efficient method to subsample the training set in the offline stage of the

RBM. The proposed two-stage strategy is goal-oriented. It uses the pivoted QR decompo-

sition, the DEIM algorithm or its variants to approximate the parameter-to-output map for

time-dependent problems, taking advantage of the information from the pivots or the inter-

polation points to generate the subsampled training set. Different strategies to identify the

interpolation points based on variants of the DEIM algorithm were discussed. The strategy

of retaining as many parameters as the number of DEIM interpolation points is simple and

leads to considerable speedup. However, there may be occasions where it is not robust, as
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demonstrated in the thermal block example. For such scenarios, we propose a principled

oversampling strategy based on the Gappy-POD approach, to add additional parameters to

the subsampled training set. This approach, while slightly more expensive, is robust and

leads to reliable ROMs. The different subsampling strategies were tested on two numerical

examples and were shown to yield, on average, a speedup of up to 5 for the offline stage of

the RBM, without compromising the quality of the generated ROMs.

There exist several promising possibilities for further applications and improvements.

One possible idea is in relation to the KDEIM-based subsampling strategy. It is worthwhile

to consider the development of localized RBMs for each cluster identified by the algorithm.

Such an approach could help overcome existing challenges related to training set adaptation

methods that partition the parameter domain based on binary trees [23,30]. Another promising

idea is related to data assimilation within the model-based RBM framework. Assuming output

data is available by means of sensors or other measurements, it should be possible to consider

a QR decomposition of this parametric data matrix to identify a good initial training set. Such

an approach is capable of incorporating data in a natural fashion, to aid the development of

problem-tailored ROMs.
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