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Abstract. We describe a fully k-resilient traitor tracing scheme that uti-
lizes RSA as a secret-key rather than public-key cryptosystem. Traitor
tracing schemes deter piracy in broadcast encryption systems by enabling
the identification of authorized users known as traitors that contribute to
unauthorized pirate decoders. In the proposed scheme, upon the confis-
cation of a pirate decoder created by a collusion of k or fewer authorized
users, contributing traitors can be identified with certainty. Also, the
scheme prevents innocent users from being framed as traitors. The pro-
posed scheme improves upon the decryption efficiency of past traitor
tracing proposals. Each authorized user needs to store only a single de-
cryption key, and decryption primarily consists of a single modular expo-
nentiation operation. In addition, unlike previous traitor tracing schemes,
the proposed scheme employs the widely deployed RSA algorithm.

1 Introduction

Broadcast encryption is beneficial in scenarios where a content provider wishes
to securely distribute the same information to many users or subscribers. The
broadcast content is protected with encryption, and only legitimate users should
possess the information (e.g., decryption keys) necessary to access the content.
These keys can be embedded in software or in tamper-resistant hardware devices
such as smart cards.

Current tamper-resistant hardware is vulnerable to a variety of attacks [1],
however. Furthermore, truly tamper-resistant software, which includes programs
that resist unauthorized tampering or inspection of code and data, has yet to be
developed. Thus, authorized users can extract decryption keys from a legitimate
software or hardware decoder. These users can then circumvent the security
of the system by divulging the compromised decryption keys to unauthorized
users. Alternatively, the authorized users may employ the compromised keys
to generate new decryption keys for distribution to unauthorized users. The
authorized users who illegally extract and distribute decryption keys are traitors,
and the unauthorized users who unfairly obtain the keys are pirates. The illegal
decoder software or hardware devices created by the traitors are pirate decoders.
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Traitor tracing schemes, which are also called traceability schemes, protect
keys by enabling the identification of the source of pirated broadcast decryption
keys. In systems that incorporate a traitor tracing scheme, it is possible to iden-
tify one or more contributing traitors upon confiscation of a pirate decoder using
a traitor tracing algorithm. For a traitor tracing algorithm to be valuable, the
scheme must be frameproof. The frameproof property ensures that a collusion of
traitors cannot create a pirate decoder that would implicate an innocent user as
being a traitor.

Past traitor tracing proposals have focused on providing an extensive suite
of security services while reducing encryption and network communication re-
quirements. However, decryption is often slow: existing traceability schemes may
require dozens of modular exponentiations or thousands of symmetric-key de-
cryptions per user per broadcast secret. In this work, we introduce a new secret-
key traitor tracing system that improves upon the decryption performance of
existing proposals by enabling decryption to be performed with essentially a
single modular exponentiation operation.

The paper is organized as follows. In Section 1, we discuss past work in traitor
tracing research and the contributions of this paper. In Section 2, we present the
system model and discuss the RSA encryption algorithm. In Section 3, we present
the implementation of the new traceability scheme. We analyze the security of the
scheme in Section 4, and we present the traitor tracing algorithms in Section 5. In
Section 6, we analyze the performance and implementation costs of the scheme,
and we conclude in Section 7.

1.1 Past Work

Fiat and Naor introduced broadcast encryption in [14]. In their scheme, there
exists a set of n authorized users, and a content provider can dynamically specify
a privileged subset (of size ≤ n) of authorized users that can decrypt certain en-
crypted messages. A message can be securely broadcast to such a privileged sub-
set unless a group of k+1 or more authorized users not belonging to the privileged
subset collude to construct a pirate decoder to recover the message. The commu-
nication overhead, i.e., the factor increase in message size, is O(k2 log2k log n).
Also, each user must store O(k log k log n) decryption keys. Many improvements
to this scheme have been presented, but few enable the identification of traitors
that collude to distribute pirate decryption keys to unauthorized users.

To combat such piracy of decryption keys, Chor, Fiat and Naor introduced
traitor tracing schemes in [7, 8]. These schemes are k-resilient, which means if
k or fewer traitors contribute to the construction of the pirate decoder, at least
one of those traitors can be identified. In the deterministic symmetric-key one-
level scheme of [7, 8], the computation and communication costs depend on the
total number of users, n, and on the largest tolerable collusion size, k. Each user
must store O(k2 log n) decryption keys, and each user must perform O(k2 log n)
operations to decrypt the content upon receipt of the broadcast transmission.
The one-level scheme also increases the communication cost of broadcasting
secret content by a factor of O(k4 log n). The deterministic symmetric-key two-
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level scheme of [7, 8] reduces the encryption complexity and communication
overhead relative to the one-level scheme at the cost of increasing the decryption
complexity and the number of decryption keys per user.

Pfitzmann introduced the concept of asymmetric traitor tracing in [26]. This
feature allows a content provider to unambiguously convince a third party of
a traitor’s guilt. Previous proposals for traitor tracing were symmetric, which
means the content provider shares all secret information with the set of au-
thorized users. In a symmetric scheme, a dishonest content provider can frame
an innocent authorized user as being a traitor by building an “unauthorized”
decoder that contains a particular user’s decryption key.

Public-key k-resilient traitor tracing schemes have also been introduced (e.g.,
[5, 19, 22, 36]). In such a scheme, publicly known encryption keys can be used to
encrypt and subsequently transmit a secret to the entire set of authorized users.
The authorized users then employ their respective private decryption keys to
decode the transmission. The public-key scheme presented in [5] is symmetric,
and the one described in [22] is asymmetric but requires a trusted third party.
Asymmetric public-key traitor tracing schemes that do not require a trusted
third party are described in [19, 36].

In some situations, a traitor may decrypt the broadcast information and then
transmit the plaintext result to pirates rather than distribute a pirate decoder
that contains valid decryption keys. Researchers have suggested combining dig-
ital fingerprinting and traitor tracing to prevent such piracy [15, 27, 29]. The
systems discussed in [27] employ provably secure, robust digital watermark con-
structions presented in [6, 9]. More efficient and effective integrated fingerprint-
ing and traceability schemes are described in [15, 29]. However, as illustrated
by attacks on digital fingerprinting technologies, it can be difficult to design a
practical fingerprinting scheme that a savvy attacker cannot thwart [10]. In this
paper, we consider only those scenarios in which traitors do not command the
resources necessary to distribute decrypted content efficiently; we assume that
traitors can only distribute decryption keys.

Researchers have presented many other traceability schemes and traitor trac-
ing algorithms that employ a rich variety of mathematical tools (e.g., [8, 13, 17,
20–22, 24, 25, 32, 34, 35]). For instance, Kurosawa and Desmedt describe a
highly efficient k-resilient symmetric traceability scheme in [22]. Their scheme
incurs a communication overhead of O(k) and requires each user to store 1 de-
cryption key and to perform O(k) decryption operations per transmitted secret.
Kiayias and Yung propose a public key traitor tracing scheme with “constant
transmission overhead” [21]. However, in that scheme, the minimum size of the
broadcast message may be impractical if protection against large collusions is
desired. Researchers present systems that efficiently incorporate broadcast en-
cryption and some degree of traceability in [13, 17, 24, 35]. For example, in [24], a
highly efficient trace-and-revoke scheme is described that allows pirate decoders
to be disabled upon confiscation of a pirate decoder without incurring signifi-
cant re-keying costs. However, the scheme does not guarantee identification of
the contributing traitors.
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Table 1. Past work comparison (k is the maximum traitor collusion size, n is the total
number of authorized users, and M is an RSA modulus).

Traitor Communication Decryption Complexity Number of
Tracing Overhead (Dominant Component) Decryption Keys
Scheme per User per User

One-level O(k2 log n)
[7, 8]

O(k4 log n)
sym. decryptions

O(k2 log n)

Two-level O(k2 log2 k log n)
[7, 8]

O(k3 log4 k log(n/k))
sym. decryptions

O(k2 log2 k log(n/k))

Public-key O(k)
[5, 19, 22, 36]

O(k)
exponentiations

O(1)

Our O(max(k log n, ∼1
Proposal k log log M/ log k)) exponentiation

1

Table 1 summarizes the performance and characteristics of certain traitor
tracing schemes that can identify members of a traitor collusion of k or fewer
traitors with certainty. We do not compare our results to trace-and-revoke
schemes or probabilistic traceability schemes that do not guarantee traitor iden-
tification upon confiscation of a pirate decoder. In the table, n is the maximum
number of authorized users, k is the maximum tolerable collusion size, and M is
a typical value for an RSA modulus (e.g., ∼ 21024). “Sym. decryptions” means
symmetric-key decryption operations.

1.2 Our Contributions

We propose Traitor Tracing using RSA (TTR), a fully k-resilient traceability
scheme based upon the RSA encryption algorithm. Although we employ RSA,
TTR is not public-key: we apply RSA as a secret-key cryptosystem rather than
as a public-key cryptosystem. This design choice enables many security features,
including the prevention of common modulus attacks [11, 33]. Our system enables
traceability against collusions of k or fewer traitors if the factoring problem is
hard, and the encryption scheme is secure against known and chosen plaintext
attacks if the RSA problem is hard. Furthermore, TTR prevents traitor collusions
from framing innocent users.

We present both clear-box and black-box traitor tracing algorithms for TTR.
The efficient clear-box algorithm can always identify at least one of the traitors
in a collusion of size k or fewer. The efficient black-box algorithm can identify
all of the contributing traitors in a collusion of size k or fewer, even when keys
cannot be explicitly extracted from the pirate decoder, but only for a limited
and special class of pirate decoders.

TTR improves decryption performance relative to past proposals at the cost
of increasing the computation and transmission requirements of the content
provider. As shown in Table 1, TTR requires only a single modular exponenti-
ation operation and a relatively insignificant number of modular multiplication
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operations to perform decryption upon receipt of a broadcast secret1. Though
modular exponentiations are computationally more expensive than symmetric
key encryptions, TTR still exhibits the highest decryption performance for real-
istic numbers of users and traitors. Furthermore, TTR only requires each autho-
rized user to store a single decryption key, which may be only 256 bytes in size
in realistic scenarios. The communication overhead and encryption complexity
of TTR are O(max(k log n, k log log M/ log k)).

2 Preliminaries

2.1 System Model

The broadcast encryption system model used in this paper involves several en-
tities:

– Content Provider. The content provider prepares, encrypts, and transmits
broadcast messages.

– Universe of Users. Broadcast messages are transmitted to the universe of
all authorized and unauthorized users, U .

– Authorized Users. Only the members of the set of authorized users, T ,
are provided with the information needed to decode broadcast messages.
The maximum number of authorized users is n, so T = {t1, t2, . . . , tn}, and
T ⊆ U .

We present an open traceability scheme in which the methods employed to
perform encryption and decryption are public, but the keys used to perform
these operations are private. The content provider does not reveal the secret
encryption keys to the users, and authorized users (who are not traitors) do not
reveal their personal decryption keys to other users.

The following six components typically comprise an open traceability scheme:

– Provider Initialization. A content provider generates initial values re-
quired to produce the broadcast encryption keys and the user decryption
keys.

– User Initialization. An authorized user ti is added to the set of autho-
rized users, T , by requesting that the content provider generate and securely
distribute a user decryption key to ti.

– Encryption. The content provider encrypts a message one or more times
using one or more secret encryption keys.

– Transmission. The content provider transmits the encrypted message to
all users.

– Decryption. Upon receipt of an encrypted message from the content
provider, each authorized user decrypts the secret using his respective de-
cryption key.

– Traitor Tracing Algorithms. Upon confiscation of a pirate decoder, the
content provider invokes a tracing algorithm to identify contributing traitors.

1 (1 + O (log n/ log M)) exponentiations are required by a TTR decryption, which is
∼ 1 exponentiation for realistic values of n and M (see Section 6.4).
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2.2 RSA

Since TTR is based upon the RSA encryption algorithm, we will briefly describe
the operation of standard RSA. In RSA, security is related to the computational
difficulty of factoring large integers [28]. Let M be the product of two large
prime integers, p and q, where p and q are roughly the same size. We call M
the RSA modulus. Now, find two integers e and d such that ed ≡ 1 mod φ(M),
where φ is Euler’s totient function: φ(M) = (p − 1)(q − 1). The integers e and
d are called the encryption exponent and the decryption exponent, respectively.
The pair 〈M, e〉 is the encryption key, and the pair 〈M, d〉 is the decryption key.
Given a plaintext block a ∈ Z∗

M , a sender can encrypt a to produce a ciphertext
c using the public key by computing c = ae mod M . The receiver can decrypt
c using the private key by computing a = cd mod M . There are many minor
implementation details required to fortify protocols using RSA against potential
attacks. Boneh summarizes several attacks on RSA implementations in [3].

Consider a very simple traitor tracing scheme based on RSA: the content
provider generates a common modulus M and a key pair 〈ei, di〉 for each user ti.
The provider keeps the encryption exponent ei secret (i.e., unknown to ti) and
passes the decryption key 〈M, di〉 to ti. To broadcast information to authorized
users, the provider simply encrypts messages individually for each user. However,
this scheme is very inefficient, since the number of encryption keys and the
communication overhead are the same as the number of users, n.

We can improve upon the performance of this simple scheme. Using the mul-
tiplicative properties of RSA, we can generate ciphertexts with a few encryption
keys that can be decrypted using many decryption keys. The general method,
which employs techniques also used in RSA-based threshold cryptosystems (ini-
tiated in [12]), operates as follows. Given a plaintext block a and a modulus
M , we generate L ciphertexts C = {c1, c2, . . . , cL} encrypted using L different
non-zero positive encryption exponents e1, e2, . . . , eL:

cj = aej mod M (1)

Now, a user can multiply all L ciphertexts modulo M to obtain a “product
ciphertext”, cPROD, that is equivalent to encrypting a one time using a single
encryption exponent that is the sum of the L encryption exponents:

cPROD =
L∏

i=1

ci mod M =

(
L∏

i=1

aei mod M

)
mod M = aeSUM mod M, (2)

where eSUM =
∑L

i=1 ei. A user could subsequently decrypt the cPROD using a
decryption exponent dSUM ≡ e−1

SUM mod φ(M).
In general, upon obtaining the L ciphertext blocks, a user can multiply (mod-

ulo M) a subset of the ciphertexts in C to obtain a different product ciphertext.
This new product ciphertext could be decrypted using a new decryption expo-
nent. Since there exist 2L − 1 nonempty subsets of C, there exist 2L − 1 product
ciphertexts that can be decrypted with 2L − 1 decryption keys. Hence, we can
generate ciphertexts that can be deciphered using up to 2L − 1 decryption keys
by performing only L encryptions with L encryption keys.
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3 A Traceability Scheme Using RSA

TTR takes advantage of the multiplicative properties of RSA to generate and
support many decryption keys using relatively few encryption keys. TTR is pa-
rameterized by M , n, k, s, L, and α. M is the RSA modulus, and n is the
number of authorized users in T . The parameter k represents the maximum tol-
erable traitor collusion size, and s is the security parameter of the scheme. For
example, in a scenario with k = 10 and s = 20, any collusion of size at most 10
can produce a non-traceable key with probability at most 2−20.

The parameters L and α are based on the values of M , n, k, and s. L
represents the number of encryption exponents in the scheme, and the value of
L is as follows:

L = O(max(k log n, k log log M/ log k)). (3)

The parameter α equals the probability that an element in a user’s decryption
vector (described below) equals 1, and α = 1/k. The rationale for the values of
L and α will be presented in Section 4.4.

We now present the provider initialization, user initialization, encryption,
transmission, and decryption components of the new scheme. The traitor tracing
algorithms are presented in Section 5.

3.1 Provider Initialization

During provider initialization, the content provider creates the secret encryption
keys and the information required to generate future user decryption keys. First,
the content provider generates a RSA modulus M = pq, where p and q are both
prime. For performance reasons, we require that p and q be safe primes, i.e.,
the integers (p− 1)/2 and (q− 1)/2 are also prime. Second, the content provider
randomly generates a vector E of L unique encryption exponents for M . For each
ej ∈ E, ej ∼ M . The content provider keeps all of the encryption exponents and
the values of p, q, and φ(M) secret.

We assume that the content provider’s secrets are contained in a single de-
vice, but we note that the content provider is not required to be centralized. We
could improve security by using RSA threshold techniques (initiated in [12]) to
securely store the content provider’s secrets and to securely perform key genera-
tion operations across multiple devices. Furthermore, the encryption exponents
and operations can be distributed across multiple content provider devices using
known RSA threshold techniques. Applying such techniques would require an
attacker to compromise most or all of the devices in order to successfully expose
E or φ(M).

3.2 User Initialization

When an authorized user ti joins the system, the content provider generates and
securely distributes a user decryption key DKi to ti as follows:
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1. Randomly generate an L-dimensional Boolean vector v(i). Each element in
the vector is set to 1 with probability α, and each element in the vector is set
to 0 with probability 1 − α. In addition, v(i) must not consist of all zeroes,
and no two v(i)’s are the same. Repeat until v(i) is found where

∑L
j=1 v

(i)
j ej

is relatively prime to φ(M).
2. Using the extended Euclidean algorithm, calculate a decryption exponent di

such that:

di =




L∑

j=1

v
(i)
j ej




−1

mod φ(M) (4)

If di is probabilistically prime, proceed to the next step; otherwise, return
to Step 1 and restart the process.

3. Distribute DKi = 〈v(i), di, M〉 to ti via a secure channel.

3.3 Encryption, Transmission, and Decryption

To encrypt a plaintext message P using this scheme, the content provider per-
forms L RSA encryptions on P using each of the encryption exponents in E.
The resulting ciphertext C is:

C = 〈P e1 mod M, ..., P eL mod M〉. (5)

To ensure semantic security, all plaintext messages P should be prepared
using Optimal Asymmetric Encryption Padding (OAEP) [2, 4, 16, 31] or a sim-
ilar method. OAEP is a provably secure mechanism for padding and encoding
plaintext messages prior to RSA encryption.

The resulting ciphertext C is then broadcast to all users in U .
Upon receiving the ciphertext C, an authorized user ti in T can decrypt the

ciphertext using his decryption key DKi = 〈v(i), di, M〉 as follows:

P =




L∏

j=1

(cj)v
(i)
j




di

mod M, where cj = P ej mod M . (6)

It is easy to see that decryption works by the definition of the decryption keys.

4 Security Analysis

We now analyze the security properties of TTR. Proof sketches are provided
for each of the theorems introduced in this section, and detailed proofs of the
theorems are presented in the full version of this paper. Also, throughout this
section, the terms “polynomial number”, “polynomial size”, and “polynomial
time” imply that a number or running time is bounded by a function that is
polynomial in a reasonable security parameter, such as s or the number of bits
in the chosen modulus M .
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4.1 Resilience Against Known Attacks on RSA

All authorized users possess unique decryption keys based upon the same RSA
modulus M . However, the system is not vulnerable to the common modulus
attacks described in [11, 33].

We classify common modulus attacks into two types. In the first type of com-
mon modulus attack, if an adversary has knowledge of two (or more) RSA en-
cryption exponents used to encrypt the same message, the adversary can recover
the message using the two (or more) ciphertexts without requiring knowledge of
φ(M) or any decryption exponents [33]. The proposed scheme defends against
this attack by treating RSA as a secret-key cryptosystem rather than as a public-
key cryptosystem. The encryption keys employed by the content provider are not
revealed to the authorized users, and therefore neither a collusion of users nor a
passive adversary can implement this attack.

The second type of common modulus attack operates as follows. If an ad-
versary has knowledge of an encryption key and the corresponding decryption
key for a given RSA modulus M , the adversary can factor the modulus using a
probabilistic algorithm or can calculate the decryption key corresponding to any
encryption key [11]. Neither unauthorized nor authorized users can realize such
attacks in the proposed scheme, however, for they do not possess knowledge of
both the encryption and decryption keys for the modulus M .

4.2 Security of TTR Encryption

We begin the security analysis with two theorems concerning the security of TTR
encryption. Theorem 1 shows that it is difficult for a passive unauthorized user
to decrypt a given ciphertext in the proposed encryption scheme. For certain
applications, however, it may also be desirable for the scheme to be semanti-
cally secure against an active adversary that can prepare specific content (i.e.,
plaintext) for the content provider to encrypt. Theorem 2 demonstrates semantic
security for TTR against chosen plaintext attacks.

Theorem 1. Given an RSA modulus M and a polynomial number of known
plaintext-ciphertext pairs, a passive adversary cannot decrypt a new ciphertext
with non-negligible probability in TTR, assuming the intractability of the RSA
problem.

Proof Sketch. Assume that there exists a polynomial-time algorithm A such that
a passive adversary can use algorithm A to decrypt a new ciphertext with non-
negligible probability given a polynomial number of plaintext-ciphertext pairs.
We can show how to construct a polynomial time algorithm B that finds a
solution to the RSA problem by using A as a subroutine.

At a high level, given the inputs of an RSA modulus M , a random encryp-
tion exponent e, and a ciphertext C = P e mod M , B operates as follows. B
first randomly defines (but does not explicitly calculate) a set E of L encryption
exponents that are based on a function of the input e. Using these definitions, B
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computes a polynomial number, R, of plaintext-ciphertext pairs that are consis-
tent with E and M . With these results, B prepares a new (R + 1)th ciphertext
that is based on the input C. B applies this new ciphertext with the R plaintext-
ciphertext pairs as inputs to A, and then A returns a valid plaintext P that is
the solution to the instance of the RSA problem.

Theorem 2. The TTR encryption scheme is semantically secure against chosen
plaintext attacks, assuming the intractability of the RSA problem.

Proof Sketch. Using similar ideas as presented in the proof of Theorem 1, we can
show that the encryption scheme is semantically secure against chosen plaintext
attacks (CPA) if RSA-OAEP is semantically secure against CPA. It is well known
that RSA-OAEP is semantically secure against CPA assuming the intractability
of the RSA problem [2, 4, 16, 31].

4.3 Security Against Traitor Collusions

We now discuss the security of TTR against traitor collusions of authorized users
in T . We show that a collusion of up to k traitors cannot produce an “untrace-
able” decryption key, i.e., a key that does not implicate at least one member of
the collusion as being a traitor. Furthermore, we show that for sufficient values
of L, a collusion of up to k traitors cannot produce any key that would implicate
an innocent user as being a traitor.

We define a “traceable key” as follows. Recall that each authorized user is
issued a distinct key with a distinct decryption exponent. We say that a pirate
key is traceable to an authorized user ti if the decryption exponent associated
with ti divides one of the integer components of the pirate key. More formally
stated, given a user ti with a key 〈v(i), di, M〉, a pirate decryption key of the
form 〈v∗, d∗, M〉 is traceable to the user ti if di divides v∗j for any 1 ≤ j ≤ L or
di divides d∗. Thus, an “untraceable key” produced by a traitor collusion is a
new key in which neither the decryption exponent nor any of the vector elements
are divisible by any of the decryption exponents of the traitors’ original keys.

We consider the following two classes of keys that may be produced by a
traitor collusion:

– The first class includes new valid decryption keys of the standard form de-
fined by the scheme.

– The second class includes new decryption keys that are not of the form as
defined by the scheme but can be used to successfully decrypt ciphertext
and obtain correct plaintext.

We will demonstrate security for TTR against keys from both of these classes.
In particular, the vector v(i) generated by the collusion is not required to be a
Boolean vector, and the decryption exponents generated by the collusion are
not required to be large prime numbers. Instead, each vector entry can be any
integer, and each decryption exponent can be any integer. We remark that this
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is a much stronger result than only showing that the collusion cannot produce
a decryption key of the standard form.

We need only to prove security against the strongest possible collusion, i.e.,
a collusion of k traitors with knowledge of k linearly independent decryption
keys. If the k or fewer decryption vectors of the traitor collusion’s decryption
keys are not linearly independent, then there exists a feasible attack that may
allow the collusion to factor M and defeat the scheme. Thus, the vectors must be
constructed by the content provider such that any k vectors chosen at random
will be linearly independent. As we will explain in Section 4.4, our choice for the
value of L ensures that, with overwhelming probability, a collusion’s decryption
vectors are always linearly independent.

We now present two theorems on the security of TTR against traitor col-
lusions. Theorem 3 states that collusions cannot create untraceable keys, and
Theorem 4 states that collusions cannot frame innocent users as being traitors.

Theorem 3. No collusion of k or fewer authorized users can create an untrace-
able decryption key with probability greater than 2−s if L ≥ (k − 1)(s + log2 k+
log2 n)/(e log2 e), assuming the difficulty of factoring.

Proof Sketch. Assume that there exists a polynomial-time memoryless algorithm
A such that a collusion of k authorized users can employ algorithm A to create
a new, untraceable decryption key with non-negligible probability given their k
decryption keys. We show how to construct a polynomial time algorithm B that
factors a given modulus M by using A as a subroutine.

At a high level, on input M(= pq), algorithm B operates as follows. B begins
by randomly generating k valid and unique decryption keys DKi = 〈v(i), di, M〉
of the same form described in the scheme. These keys represent the keys of the
traitor collusion. B then applies the k keys as inputs to A to obtain a new
decryption key, DKNEW . Next, the algorithm B generates an additional (L−k)
decryption keys of a special form. We can show that B can use the first k valid
keys, DKNEW , and the additional (L− k) decryption keys to obtain a multiple
of φ(M). If the multiple is non-zero, B can efficiently factor M [11]. If the
multiple is zero, we can show that with overwhelming probability given an L of
the required size, the key DKNEW is traceable; at least one of the first k di’s
must divide one of the vector elements or the decryption exponent of DKNEW .

Theorem 4. If the number of possible valid decryption keys exceeds 2s, then the
probability is exponentially small in s that a collusion of k authorized users can
create a decryption key of size that is polynomial in s and that implicates an
innocent user as a traitor.

Proof Sketch. Assume that a collusion of up to k authorized users can use
their respective decryption keys to create a new decryption key. In the proposed
scheme, the selection of the (n−k) innocent users’ decryption vectors and expo-
nents can be performed entirely independently of the selection of the k traitor
keys. That is, the keys that represent the innocent authorized users may be any
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(n − k)-subset chosen uniformly at random from the set of (2s/ logM − k) pos-
sible decryption keys that do not belong to the traitor collusion. Given these
facts, we can show that the probability is exponentially small in s that the new
decryption key will implicate one of the (n − k) innocent authorized users.

4.4 Choosing the Parameters

We now discuss the requirements for the values of the parameters α and L. As
stated in Section 3, α = 1/k. It may possible for this value to be increased or
decreased; determining the optimal value of α is a subject for future work. We
note that, as shown in the full version of this paper, some values of α will cause
the scheme to be insecure. For example, setting α to 1/2 prevents traceability
in some scenarios.

The value of L depends on several factors. First, to satisfy several of the
theorems stated above, we require the following lower bound for the value of L:

L ≥ (k − 1) (s + log2 k + log2 n) / (e log2 e) (7)

Second, we must ensure that there are enough possible distinct decryption
keys to accommodate all of the users in the system. In addition, to satisfy the
frameproofing theorem, we must ensure that the number of possible distinct
decryption keys exceeds 2s. Since the expected number of 1’s in a vector of
length L is Lα, the number of possible vectors is roughly

(
L

Lα

)
=
(

L
L/k

)
. However,

only a subset of these vectors will correspond to a prime (and therefore valid)
decryption exponent. Considering that the probability that a large exponent is
prime is approximately 1/logM , we have

(
L

L/k

) ≥ n logM , and
(

L
L/k

) ≥ 2s log M ,
where log is the natural logarithm. Using Stirling’s approximation, a simple
calculation shows that L ≥ (k(s + log2 n + log2 log M))/ log2 ek is sufficient.

Third, we must ensure that any k vectors produced by the scheme are linearly
independent. Otherwise, a traitor collusion of size k or fewer may be able to
factor M . Hence, to maintain security, L should be large enough such that,
with overwhelming probability, a set of k randomly generated Boolean vectors
of length L are linearly independent. In [18], it is shown that the probability of
linear independence is at least 1−O((1− ε)L) for some ε > 0 if k ≤ L. Thus, the
lower bound for L cited above is sufficient, as that bound requires L > s, and
therefore the probability of linear dependence will be exponentially small in the
security parameter s.

Hence, we have the following expression for L:

L ≥ max
(

(k − 1) (s + log2 k + log2 n)
e log2 e

,
ks + k log2 n + k log2 log M

log2 ek

)
(8)

If the security parameter s is treated as a constant, the size of L and the
communication overhead of the scheme is O(max(k log n, k log log M/ log k)). In
most scenarios, log n > log log M , so the communication overhead would be
O(k log n).
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Finally, we note that the system can be implemented without requiring de-
cryption vectors to be prime. We choose to require all di’s to be prime in order
to simplify the proofs of security.

5 Traitor Tracing Algorithms

Upon confiscation of a pirate decoder device, the content provider invokes traitor
tracing algorithms to identify the authorized users that contributed to the con-
struction of the device. First, we explore the “clear-box” case, where it is possible
to explicitly extract the representations of all the keys embedded in the pirate
decoder. Using the clear-box tracing algorithm, we can always efficiently iden-
tify at least one of the traitors who contributed to a pirate decoder. Second, we
present a limited “black-box” tracing algorithm. In this case, we cannot extract
keys from the pirate decoder, but we can apply inputs to the decoder and observe
the resulting outputs. Unlike the clear-box algorithm, the black-box algorithm
enables the tracing of keys only in special cases.

5.1 A Clear-Box Tracing Algorithm

We assume that a pirate decoder contains easily recognizable representations
of one or more valid decryption keys; these keys are employed by the decoder
to perform all message decryptions. As shown in Section 4, a traitor collusion
can generate new decryption keys only of a certain form. That is, assuming
we choose appropriate values for L, α, and s, traitors cannot create untrace-
able keys (Theorem 3) or create traceable keys that implicate innocent users as
traitors (Theorem 4). Hence, we can use the keys in a pirate decoder to identify
contributing traitors.

The clear-box tracing algorithm simply compares components of the decryp-
tion keys within the pirate device to all existing user decryption keys. The algo-
rithm proceeds as follows:

1. Let 〈v∗, d∗, M〉 be a pirate key extracted from a pirate decoder, where v∗ =
{v∗1 , ..., v∗L}. For 1 ≤ i ≤ n, repeat the following for each authorized user ti
(whose decryption exponent is di):
(a) If di divides v∗j for any 1 ≤ j ≤ L or di divides d∗, then user ti is a

traitor.

We now present a theorem stating that, without framing innocent users, this
clear-box algorithm can identify at least one of the traitors that colluded to build
the pirate decoder.

Theorem 5. Given a pirate decryption key generated by a collusion of at most
k traitors using their respective decryption keys, then with probability exceeding
1 − 2−s, the clear-box traitor tracing algorithm can identify at least one traitor
in the collusion without implicating any innocent users.
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Proof Sketch. As shown by Theorem 3, no group of traitors of size fewer than
k+1 can generate a new decryption key with non-negligible probability that does
not implicate at least one of the colluding traitors using the clear-box traitor
tracing algorithm. Furthermore, as shown by Theorem 4, no collusion of traitors
of size fewer than k + 1 can generate a new decryption key with non-negligible
probability that implicates an innocent user.

Upon discovering the presence of one or more traitors using the proposed
scheme, the content provider must re-issue decryption keys to the set of autho-
rized users. We can address this issue by constructing a protocol that distributes
new decryption keys to individual, legitimate users at fixed intervals, similar to
that described in [30].

5.2 A Limited Black-Box Tracing Algorithm

For the black-box algorithm, we wish to achieve the same goals as desired for the
clear-box tracing algorithm, i.e., the identification of at least one contributing
traitor and no false implications of guilt. We achieve these goals for a limited
class of pirate decoders: limited-ability pirate decoders. We define a limited-ability
pirate decoder to be a device that contains k or fewer decryption keys that are
identical to k or fewer keys issued by the content provider; any one and only one
of these keys can be used to perform a single decryption for a given broadcast
message. Restricting the pirate device model to limited-ability pirate decoders
is reasonable in several practical situations. In a smart card-based decoder or a
mass-produced ASIC decoder, storage space may be available only for a single
decryption key from a single traitor. Also, it may not be feasible for a pirate
decoder to perform multiple decryptions per broadcast message and maintain
adequate throughput.

In the black-box algorithm, we identify traitors by applying random data
as ciphertext input to the pirate decoder. The decryption of the random data
using a decryption key (issued by the content provider) will yield a different
and predictable plaintext result for each distinct decryption key. Thus, we can
infer which keys are stored in a limited-ability pirate decoder without perform-
ing explicit inspection of the pirate device’s contents. The decryption key for
authorized user ti is DKi = 〈v(i), di, M〉, and the black-box algorithm operates
as follows:

1. Randomly generate a set C of L 	log2 M
-bit values, C = {c1, c2, ..., cL}.
2. Repeat for all i such that 1 ≤ i ≤ nCUR, where nCUR is the current number

of authorized users:
(a) Randomly select an integer z such that v

(i)
z = 1.

(b) Construct C′ = {c′1, c′2, ..., c′L} such that c′j = cj for j = z, and c′j = 1
for j �= z.

(c) Apply C′ to the pirate decoder to obtain decrypted result P .

(d) Compute PTEST =
(∏L

j=1(c
′
j)

v
(i)
j

)di

mod M . If PTEST equals P , user
ti is a traitor.
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When ciphertext input is applied to a limited-ability pirate decoder, the
device chooses one of its keys and employs that key to perform the decryption
operation. As a result, the black-box tracing algorithm may identify only one of
the many keys stored in the device. To find all traitors with high probability,
one can simply repeat the black-box tracing algorithm a number of times that
is a multiple of k, e.g., 10k times, assuming the decryption keys are chosen at
random by the pirate decoder.

Without framing innocent users, the black-box algorithm can identify at least
one of the traitors that colluded to build a limited-ability pirate decoder. The
straightforward proof of this statement is given in the full version of the paper.

6 Performance Analysis

This section investigates the computation and storage costs of TTR.

6.1 Provider Initialization Costs

The computation and storage costs of the provider initialization procedure de-
scribed in Section 3.1 are as follows. The one-time computation required to gen-
erate M and E includes O(log2 M) (log M)-bit probabilistic primality tests such
as Miller-Rabin (a summary of which can be found in [23]) and O(L + log2 M)
(log M)-bit random number generations. For convenience of user initialization
and encryption of broadcast messages, it is prudent for the content provider to
store E, M , and φ(M). Thus, the expected storage requirement for the content
provider is at minimum L	log2 M
 + 2	log2 M
 bits.

6.2 User Initialization Costs

The computation and storage costs of the 3-step user initialization procedure
described in Section 3.2 are as follows. Since the probability of the summation
in Step 1 being relatively prime to φ(M) is 1/2, and since the probability that
a possible decryption exponent is prime is approximately 1/ logM , Step 1 will
be executed fewer than 2 logM times on average, and Step 2 will be executed
fewer than log M times on average. Hence, the total time required by Steps 1
and 2 to generate a prime decryption key is dominated by O(log M) (log M)-bit
probabilistic primality tests and O(log M) L-bit random number generations.
Following key generation, the costs required to securely distribute the user de-
cryption key in Step 3 highly depend on the method that is chosen to secure the
channel.

A user decryption key, which consists of a Boolean vector v, a prime de-
cryption exponent d, and a modulus M , requires at most L + 2	log2 M
 bits
of storage. This equates to a decryption key size of approximately 256 bytes
in realistic scenarios when using a 1024-bit modulus. The content provider also
needs to store a copy of each issued decryption key to avoid issuing the same
decryption key to two different users.
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Table 2. Decryption computation cost for 2−s = 2−80.

Number of Number of exponentiations
Users (n) k = 2 k = 10 k = 100 k = 1000

2 1.006 - - -

10 1.006 1.012 - -

100 1.007 1.013 1.015 -

1000 1.007 1.013 1.015 1.016

1 million 1.008 1.015 1.017 1.018

1 billion 1.010 1.016 1.019 1.019

6.3 Encryption and Transmission Costs

To encrypt a broadcast message in TTR as described in Section 3.3, the content
provider must perform L multiple-precision modular exponentiations using L
different encryption exponents. We note that we can reduce the bit length of
the encryption exponents to improve the speed of the encryption operations
without compromising security. Since one encrypted block is transferred for each
encryption exponent, the communication overhead is O(L). Though L may range
in the hundreds, in many broadcast encryption systems, the transmission costs
may apply only to a small portion (e.g., the header) of broadcast messages.

6.4 Decryption Costs

To decrypt a broadcast message in TTR as described in Section 3.3, an autho-
rized user must perform αL multiple-precision modular multiplications and a
single multiple-precision modular exponentiation. For reasonable values of M ,
n, and k, the O(αL) = O(max(log n, log log M/ log k)) modular multiplications
require much less computation than the single modular exponentiation.

Table 2 lists the computation required to perform decryption for various sizes
of n and k when 2−s = 2−80. The values in the table are normalized to a single
random 1024-bit modular exponentiation. For example, a value of 1.015 indicates
that the decryption operation requires 1.5% more computation than an average
1024-bit modular exponentiation. Some table cells do not have entries because
the maximum collusion size k cannot exceed the number of users. If k = 10,
2−s = 2−80, and n equals one million users, then L is 237. The number of
modular multiplications required to obtain the product ciphertext is therefore
Lα − 1 = 237/10 − 1 ≈ 23. If the size of the RSA modulus is 1024 bits, the
exponentiation requires 1535 modular multiplications on average [23]. Hence, in
this case, generating product ciphertext requires only 1.48% of the computation
involved in decryption. As shown in Table 2, the cost of generating the product
ciphertext never exceeds 2% of the overall decryption computation.

In practice, a 1024-bit modular exponentiation can be 1000 times slower per
decrypted bit than a 128-bit symmetric key decryption operation [23]. However,
for realistic numbers of authorized users and traitors, the new scheme still ex-
hibits the highest decryption performance among the past proposals listed in
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Table 1. When k is 10 or greater, TTR outperforms the schemes of [8]. In a real-
istic implementation where n is one million and k is 10, the decryption speedup
of TTR over the schemes of [8] exceeds 7.86x.

6.5 Tracing Algorithm Costs

The clear-box tracing algorithm runs in polynomial time. The algorithm requires
at most O(nL) integer division operations to identify a traitor. We note that the
actual computational complexity of the algorithm is a function of nCUR, which
is the current number of authorized users, rather than a function of n, which is
the maximum number of authorized users. This is an important distinction, as
the values of nCUR and n can differ by orders of magnitude in practice.

The limited black-box tracing algorithm runs in polynomial time. The values
of PTEST for each user can be precomputed (at user initialization time) and
can be stored in a hash table. Using this precomputed hash table, the expected
computation required by the black-box tracing algorithm for single-key decoders
is 1 modular exponentiation and an insignificant number (i.e., O(αL)) of modular
multiplications. In the multiple-key case, we repeat the algorithm O(k) times, so
the computation would be O(k) modular exponentiations and O(kαL) modular
multiplications.

7 Conclusion

We presented TTR, a fully k-resilient traitor tracing scheme based on RSA that
improves upon the decryption efficiency of past traitor tracing proposals. The
scheme employs a single RSA modulus that is shared by multiple users, and we
realize our security goals by applying RSA as a secret-key cryptosystem rather
than a public-key cryptosystem. TTR is also frameproof against collusions of
k or fewer traitors, and the scheme enables black-box traitor tracing in cer-
tain scenarios. In future work, we will investigate parameter optimizations and
extensions to this scheme to enable higher performance and other security fea-
tures. Furthermore, we will explore constructions for generalizing TTR and other
traceability schemes based on similar cryptographic primitives.
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