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ABSTRACT This paper concerns the design, analysis, and simulation of a 3D non-stationary channel

model fed with inertial measurement unit (IMU) data. The work in this paper provides a framework for

simulating the micro-Doppler signatures of indoor channels for human activity recognition by using radio-

frequency-based sensing technologies. The major human body segments, such as wrists, ankles, torso, and

head, are modelled as a cluster of moving point scatterers. We provide expressions for the time variant

(TV) speed and TV angles of motion based on 3D trajectories of the moving person. Moreover, we present

mathematical expressions for the TV Doppler shifts and TV path gains associated with each moving point

scatterer. Furthermore, a model of the non-stationary time variant channel transfer function (TV-CTF) is

provided, which takes into account the effects caused by a moving person as well as fixed objects, such

as furniture, walls, and ceiling. The micro-Doppler signatures of the moving person is extracted from the

TV-CTF by employing the concept of the spectrogram, whose expression is also provided in closed form.

Our model is confirmed by channel state information (CSI) measurements taken during walking, falling, and

sitting activities. The proposed channel model is fed with IMU data that has been collected. We evaluate the

micro-Doppler signature of the model and CSI measurements. The results show a good agreement between

the spectrograms and the TV mean Doppler shifts of our IMU-driven channel model and the measured CSI.

The proposed model enables a paradigm shift from traditional experimental-based approaches to future

simulation-based approaches for the design of human activity recognition systems.

INDEX TERMS Human activity recognition, non-stationary fading channels, channel state information,

channel transfer function, spectrogram, time-variant Doppler power characteristics, micro-Doppler signa-

ture, channel measurements, inertial measurement units, Internet of things, wireless sensing.

I. INTRODUCTION

The unsupervised monitoring of human mobility parameters

during the activities of daily living is generating a high

interest in the medical community, especially after the ex-

plicit recommendation of the US Food and Drug Administra-

tion [1] and the European Medicines Agency [2] that it is de-

sirable to include information from portable or context-aware

systems in clinical trials. Other reasons for the high interest

are the increase of fall incidents among adults over 65 years

according to the US fall report [3] and the high mortality rate

caused by fall incidents according to the World Population

Ageing Report of the United Nations [4]. Although there

are still many problems to solve, mainly in the lack of gold

standards, a good indication of the growth prospect of these

context-aware systems is their adoption and development in

the next five years by the main pharmaceutical companies

of the diseases related to pathological human movement [5].

Monitoring systems can detect movement disorders, which

can be signs of physical and mental illness and fragility.

Small changes in the quality and complexity of movements

can be indicators of an impending deterioration in health

status, which in many cases can be reversed with appropriate

rehabilitation measures.

The first challenge in the development of monitoring sys-

tems is to clearly identify the main types of movements used

in clinical practice, such as cadence when walking, stride

length, sit to stand, stand to sit, turns, and adverse events

such as falls. The accurate and convenient measurement of

the above parameters at the user’s home over long periods of

time is a milestone that may lead to significant advances in
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geriatrics.

This article is part of a recent line of research that tries to

extract knowledge from human activities at home using con-

ventional Wi-Fi systems. Such systems have the advantages

over wearable systems as they are easy to use, comfortable,

have low cost, no stigmatization, and universal availability.

The enormous penetration of Wi-Fi systems in all households

carries a high degree of acceptance. In addition, such systems

do not violate the users’ privacy like human activity recog-

nition (HAR) systems based on camera surveillance [6]–

[9]. Moreover, they do not require user involvement, which

is mandatory when using smartphones or wearable sen-

sors [10]–[13] that may be forgotten to wear. With Wi-Fi

systems, it is possible to collect radio-frequency (RF) sensing

data continuously while the users can carry out their daily

living activities without disturbance.

The literature describes radar systems for classifying hu-

man activities [14]–[19], such as arm motion recognition

for human-computer interaction in smart homes [20], ges-

ture recognition [21]–[23], differentiation of unarmed and

armed people for security services [24], and the detection

of gait asymmetries [25], [26]. In all these mentioned appli-

cations the spectrogram was employed. The spectrogram is

a quadratic time-frequency power distribution that provides

insight into the micro-Doppler signature of non-stationary

multicomponent signals influenced by human activities.

A tool for capturing the complex channel state information

(CSI) has been developed by the authors of [27]. Such a tool

enables the collection of RF data over 30 subcarriers and op-

erates according to the IEEE 802.11n standard [28]. Laptops

equipped with the NIC 5300 wireless network module are

able to run this tool. The authors of [29] provided a survey on

many contributions of different activity recognition systems

by analyzing the amplitude of the CSI data acquired by the

NIC 5300 module. The main drawback of the CSI tool is

that the phases of the data collected are highly distorted. This

is due to the clock asynchronization between the transmitter

and receiver stations which makes it challenging to analyze

the micro-Doppler signatures of the collected CSI data. If the

spectrogram of the measured CSI is very noisy, it does not

provide a clear insight into the time variant (TV) Doppler

power characteristics. For noise supression, the principle

component analysis [30] was applied to the amplitudes of

measured CSI data, and then the one-sided spectrogram

was computed. An alternative approach is to apply a linear

transformation to the highly distorted phases to eliminate

the phase distortions [31]. Although this approach succeeds

in providing a good pattern of the transformed phases, it

can partially eliminate the desired phases, which might limit

the insight into the true micro-Doppler signature. A reliable

solution to eliminate the phase distortions is to employ a

physical back-to-back (B2B) connection. This approach was

introduced, implemented, tested, and verified in [32].

The main disadvantage of the systems based on RF sensing

in [14]–[22], [24]–[26] is that they require measurement data

to train the classifier. This consumes a huge amount of time

and effort to collect non-reproducible data. An alternative

approach is to generate simulation-based reproducible data

to train the classifier. In the literature, many attempts have

been done to simulate radar micro-Doppler signatures of

human activities such as walking in [33], [34]. The authors

of [35] have provided a framework to estimate the gait

parameters from simulated radar micro-Doppler signatures of

human walking activity, where the Thalmann human walk-

ing model described in [36] has been incorporated. Motion

capture (MOCAP) databases have been employed in [37]

to simulate the radar micro-Doppler signatures of different

human activities such as crawling, creeping, and running. An

alternative approach was to use the Microsoft Kinect sensor

for collecting the trajectories to simulate the radar micro-

Doppler signatures of human activities, such as walking,

running, leaping, and boxing in [38].

To the best of our knowledge, inertial measurement units

(IMUs) have not been used to simulate the micro-Doppler

signatures of CSI channel models under the influence of

human activities. The trajectories of the moving body seg-

ments can be measured by attaching the IMUs to the moving

body segments. The IMUs collect the accelerations and the

Euler angles. Then, we rotate the accelerations to get their

projections on the reference frame. Finally, the trajectories

computed from the rotated accelerations can be fed to the

channel model. Such an IMU-driven channel model enables

to simulate the micro-Doppler signatures.

In this paper, we present an IMU-driven non-stationary

channel model that enables to simulate the multipath com-

ponents associated with different body segments. Moreover,

such a model allows for in-depth understanding of the param-

eters that have influence on the Doppler shifts caused by the

moving body segments. The contributions of this paper are

listed as follows

• The moving body segments are modelled as a cluster of

moving point scatterers.

• We present expressions of the TV speed, time variant

azimuth angle of motion (TV-AAOM), and time variant

elevation angle of motion (TV-EAOM) corresponding to

each moving point scatterer.

• The expressions of the TV Doppler shift and the TV

propagation delay associated with each moving point

scatterer are provided.

• The TV path gains of the moving point scatterers are

taken into account to make the proposed channel model

more realistic.

• We present a model for the time variant channel transfer

function (TV-CTF).

• The micro-Doppler signature is extracted from the TV-

CTF by means of the spectrogram, of which the closed-

form expressions are provided.

• The proposed channel model is confirmed by perform-

ing the CSI and IMU measurements simultaneously for

human activities.

• The spectrograms of both the CSI measurements and the

IMU-driven channel model are evaluated. In addition,
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the results of the TV mean Doppler shifts (TV-MDSs)

computed from the spectrograms are matching.

The contributions of this paper pave the way towards design

of the simulation-based HAR systems.

The rest of the paper is organized as follows. Section II

describes the 3D multipath propagation scenario and presents

the expressions of the TV Doppler shifts, TV path gains,

and the non-stationary TV-CTF corresponding to the IMU-

driven channel model. Section III presents the expressions of

the spectrogram of the TV-CTF. Section IV shows how the

CSI and IMU data were collected, addresses the challenges

faced while processing the data, and exhibits the results of

the proposed IMU-driven channel model and the measured

CSI data. Section V is left for the conclusion and provides an

outlook to future research.

List of Abbreviations
B2B back-to-back

CSI channel state information

CTF channel transfer function

F2F fixed-to-fixed

HAR human activity recognition

IMU inertial measurement unit

MOCAP motion capture

RF radio-frequency

ST-FT short-time Fourier transform

ST-CTF short-time CTF

TFPD time-frequency-power distribution

TV time variant

TV-EAOA time variant elevation angle of arrival

TV-EAOD time variant elevation angle of depar-

ture

TV-AAOA time variant azimuth angle of arrival

TV-AAOD time variant azimuth angle of depar-

ture

TV-MDS TV mean Doppler shift

TV-EAOM time variant elevation angle of motion

TV-AAOM time variant azimuth angle of motion

TV-CTF time variant channel transfer function

ZUPT zero-update

II. MODELLING THE TV-CTF
A. THE GEOMETRICAL MODEL

In this paper, we consider an indoor propagation scenario

described by the geometrical model in Fig. 1. The geomet-

rical model includes a Wi-Fi transmitter and a Wi-Fi receiver

denoted by Tx and Rx, respectively. Both Tx and Rx are

stationary and located at
(

xT , yT , zT
)

and
(

xR, yR, zR
)

,

respectively, and operate according to the IEEE 802.11n stan-

dard [28]. We consider a person performing some activities

during which the person’s main body segments are mod-

elled by a cluster of N moving point scatterers SM,n for

n = 1, 2, . . . , N . Moreover, the fixed objects, such as walls,

furniture, etc. are modelled as M fixed scatterers SF,m for

m = 1, 2, . . . , M. Single-bounce scattering is assumed,

i.e., any wave transmitted from the Tx reaches the Rx via

either a moving point scatterer SM,n or a fixed scatterer SF,m.

The line-of-sight is assumed to be obstructed.

FIGURE 1. Geometrical model of an indoor propagation scenario with a
fixed transmitter Tx, a fixed receiver Rx, a moving person modelled by
moving point scatterers (▲), and several fixed scatterers (■)
representing stationary objects, such as walls, furniture, etc.

B. THE TV TRAJECTORIES

The TV velocity v⃗M,n (t) associated with the nth moving

point scatterer SM,n is presented as

v⃗M,n (t) =
[

vM,n,x (t) , vM,n,y (t) , vM,n,z (t)
]T

(1)

where the vector transpose operation is denoted by [·]T. The

velocities vM,n,x (t), vM,n,y (t), and vM,n,z (t) in x, y, and z
directions, respectively can be expressed in terms of the TV

speed vM,n(t), TV-EAOM βvM,n
(t) and TV-AAOM αvM,n

(t)
as

vM,n,x (t) = vM,n (t) cos
(

βvM,n
(t)
)

cos
(

αvM,n
(t)
)

(2)

vM,n,y (t) = vM,n (t) cos
(

βvM,n
(t)
)

sin
(

αvM,n
(t)
)

(3)

vM,n,z (t) = vM,n (t) sin
(

βvM,n
(t)
)

(4)

respectively. The TV functions αvM,n
(t) and βvM,n

(t) are

computed by

αvM,n
(t) = arctan2 (vM,n,y(t), vM,n,x(t)) (5)

βvM,n
(t) = arcsin





vM,n,z(t)
√

v2M,n,x(t) + v2M,n,y(t) + v2M,n,z(t)





(6)

respectively. The elevation angle βvM,n
(t) described in (6) has

a range from −π/2 to π/2, i.e., βvM,n
(t) ∈ [−π/2, π/2]. The

function arctan2(·) returns an angle with a range from −π
to π, i.e., αvM,n

(t) ∈ [−π, π). From (2)–(4), the TV dis-

placements xM,n(t), yM,n(t), and zM,n(t) can be calculated
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as follows

xM,n(t) = xM,n +

t
∫

0

vM,x(t
′)dt′ (7)

yM,n(t) = yM,n +

t
∫

0

vM,y(t
′)dt′ (8)

zM,n(t) = zM,n +

t
∫

0

vM,z(t
′)dt′ (9)

respectively. The parameters xM,n, yM,n, zM,n designate the

initial positions of SM,n in the x, y, and z directions, re-

spectively. By using the TV displacements in (7)–(9) and the

location of Tx, the TV Euclidean distance dTM,n(t) between

the nth moving point scatterer SM,n and the transmitter Tx is

given by

dTM,n(t) =

(

(

xM,n(t)− xT
)2

+
(

yM,n(t)− yT
)2

+
(

zM,n(t)− zT
)2
)

1
2

. (10)

Similarly, the TV Euclidean distance dRM,n(t) between the

nth moving point scatterer SM,n and the receiver Rx can be

expressed by

dRM,n(t) =

(

(

xM,n(t)− xR
)2

+
(

yM,n(t)− yR
)2

+
(

zM,n(t)− zR
)2
)

1
2

. (11)

By using the expressions in (7)–(11), the time variant az-

imuth angle of departure (TV-AAOD) αT
M,n(t), time variant

azimuth angle of arrival (TV-AAOA) αR
M,n(t), time variant

elevation angle of departure (TV-EAOD) βT
M,n(t), and time

variant elevation angle of arrival (TV-EAOA) βR
M,n(t) can be

expressed by

αT
M,n(t) = arctan2

(

yM,n(t)− yT , xM,n(t)− xT
)

(12)

αR
M,n(t) = arctan2

(

yM,n(t)− yR, xM,n(t)− xR
)

(13)

βT
M,n(t) = arcsin

(

zM,n(t)− zT

dTM,n(t)

)

(14)

βR
M,n(t) = arcsin

(

zM,n(t)− zR

dRM,n(t)

)

(15)

respectively. The TV functions in (12)–(15) are playing an

essential role in providing an expression for the Doppler

frequency caused by the nth moving point scatterer, which

will be discussed later in this section. The TV propagation

delay τM,n(t) of the wave transmitted by Tx via the nth

moving point scatterer SM,n and arriving at the receiver Rx

can be computed by

τM,n(t) =
dTM,n(t) + dRM,n(t)

c0
(16)

where the parameter c0 denotes the speed of light.

C. THE TV MODEL PARAMETERS

Using the relationship fn,q(t) = −(f0 + fq)τ̇M,n(t) in [39],

[40], the TV Doppler shift fn,q (t) caused by the nth moving

point scatterer SM,n and associated with the qth subcarrier

index can be computed by

fn,q (t) = −fn,q,max(t)γn (t) (17)

where the function fn,q,max(t) denotes the maximum

Doppler shift caused by the speed of motion of the nth

moving point scatterer SM,n. It is given by

fn,q,max(t) =
(f0 + fq) vM,n(t)

c0
(18)

where the parameter f0 denotes the carrier frequency. The

parameter fq is the qth subcarrier frequency, which is given

by

fq = q ·∆f. (19)

The parameter q ∈
{

− 28, −26, . . . ,−2, −1, 1, 3,
. . . , 27, 28

}

in the expression above designates the subcar-

rier frequency index in OFDM communication systems that

follow the IEEE 802.11n standard [28]. The parameter ∆f
has a constant value of 312.5 kHz.

The function γn (t) in (17) is calculated by

γn(t) =

cos
(

βvM,n
(t)
)

[

cos
(

βT
M,n(t)

)

cos
(

αT
M,n(t)− αvM,n

(t)
)

+cos
(

βR
M,n(t)

)

cos
(

αvM,n
(t)− αR

M,n(t)
)

]

+sin
(

βvM,n
(t)
)

[

sin
(

βT
M,n(t)

)

+ sin
(

βR
M,n(t)

)

]

. (20)

The TV function described by (20) is a combination of

the trigonometric functions of the TV-AAOD αT
M,n(t), TV-

AAOA αR
M,n(t), TV-EAOD βT

M,n(t), TV-EAOA βR
M,n(t), TV-

EAOM βvM,n
(t), and TV-AAOM αvM,n

(t). Thus, it depends

on the direction of motion and location of the moving point

scatterer SM,n and the fixed locations of the Tx and Rx. Note

that the function γn(t) can have either positive or negative

values and scales the maximum Doppler shift fn,q,max(t). If

the moving point scatterer SM,n moves towards the Tx and

Rx, the propagation delay τM,n(t) decreases, and its rate of

change τ̇M,n(t) is negative. Thus, from (17) it follows that

the function γn (t) is negative and the Doppler frequency

fn,q (t) has positive values according to (17). When SM,n

moves away from the Tx and Rx, the propagation delay

τM,n(t) increases, and the rate of change τ̇M,n(t) has positive

values. Hence, the function γn (t) is positive and the TV

Doppler frequency fn,q (t) becomes negative. This shows

how strongly the locations of the moving point scatterer

SM,n, Tx, and Rx influence the values of the TV Doppler

frequency fn,q (t). Thus, by changing the locations of the

Tx and Rx, we will have different values of the Doppler

frequency fn,q (t). Note that the Doppler frequency fn,q (t)
in (17) is assumed to be linear function of time over short
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time intervals. A special case occurs when the Tx and Rx are

co-located, e.g., as in a mono-static radar configuration, then

the TV functions αT
M,n(t) and βT

M,n(t) become equivalent to

αR
M,n(t) and βR

M,n(t), respectively. Hence, the expression for

γn (t) reduces to

γn(t) = 2×
[

cos
(

βvM,n
(t)
)

cos
(

βT
M,n(t)

)

cos
(

αT
M,n(t)− αvM,n

(t)
)

+sin
(

βvM,n
(t)
)

sin
(

βT
M,n(t)

)

]

. (21)

Note that if the subcarrier frequency fq is much smaller

than the values of the carrier frequency f0, i.e., fq ≪ f0,

the influence of the subcarrier frequency fq on the Doppler

frequency is much smaller than that of the carrier frequency

f0. Thus, the Doppler frequency of the moving point scatterer

SM,n is the same for all the subcarrier frequencies, i.e.,

fn,q (t) ≈ fn,p (t) for p ̸= q.

The TV path gain cM,n(t) associated with the nth moving

point scatterer SM,n is expressed by [41], [42]

cM,n(t) = λ aM,n

[

dRM,n(t) d
T
M,n(t)

]− η
2 . (22)

The TV path gain cM,n(t) depends on the distances dRM,n(t)
and dTM,n(t), the wavelength λ = c0/f0, the transmit and

receive antenna gains and the contribution of the nth moving

point scatterer aM,n [43], and the path loss exponent η. Note

that the TV path gain cM,n(t) in (22) does not change quickly

with respect to time. Hence, it can be assumed that the

path gain cM,n(t) is constant over short-time intervals. The

parameters aM,n in (22) is given by

aM,n =
√

PTx
GTx

PRx
GRx

AM,n (23)

for n = 1, 2, . . . , N , where the symbols PTx
, GTx

, PRx
,

GRx
, and AM,n designate the transmit power, gain of the

Tx antenna, receive power, gain of the Rx antenna, and the

radar cross-section of the nth moving point scatterer SM,m,

respectively. These parameters are unknown. A method for

estimating the parameters aM,n by using the TV-MDS will

be demonstrated in Section IV-B.

D. THE CTF

The TV-CTF H (t, fq) is given by

H (t, fq) =
N
∑

n=1

HM,n (t, fq) +
M
∑

m=1

HF,m (24)

where the first term in (24) denotes the superposition of

N components corresponding to the moving point scatter-

ers. The second term designates the superposition of the

M components corresponding to the fixed scatterers. The

components of the first and the second term in (24) are given

by

HM,n (t, fq) = cM,n(t) e
j[θM,n−2π(f0+fq)τM,n(t)] (25)

HF,m = cF,m ejθF,m (26)

respectively. The TV-CTF HM,n (t, fq) in (25) is charac-

terized by a TV path gain cM,n(t), TV propagation delay

τM,n(t), and phase shift θM,n corresponding to the nth mov-

ing point scatterer SM,n.

The expression in (26) is the TV-CTF associated with the

mth fixed point scatterer SF,m characterized by a constant

path gain cF,m and phase shift θF,m. The phases θM,n and

θF,m are assumed to be identically and independently dis-

tributed (i.i.d.), random variables that follow a uniform dis-

tribution between −π and π, i.e., θM,n, θF,m U (−π, π] [44,

p. 36]. The model presented in (24) corresponds to the

class of 3D non-stationary fixed-to-fixed (F2F) wideband

channels.

The TV-MDS Bfq (t) of the proposed trajectory-driven

channel can be expressed in terms of cM,n(t), cF,m, and

fn,q (t) as

Bfq (t) =

N
∑

n=1
c2M,n(t)fn,q (t)

N
∑

n=1
c2M,n(t) +

M
∑

m=1
c2F,m

. (27)

The expression above represents the first-order spectral mo-

ment, which provides insight into the average Doppler shift

caused by the moving point scatterers in the model. This

quantity is the sum of the Doppler shifts fn,q(t) weighted by

their squared TV path gains c2M,n(t) and divided by the total

sum of the squared path gains of the fixed and moving point

scatterers c2F,m and c2M,n(t), respectively. The fixed scatterers

SF,m do not have any influence on the numerator in (27),

as the Doppler shifts caused by the fixed scatterers in F2F

channels are zero. On the other hand, their squared path

gains c2F,m influence the denominator in (27). Hence, high

values of the path gains cF,m result in small values of the

TV-MDS Bfq (t). The expression in (27) can be evaluated

by simulations, but not by measurements. That is due to

the fact that the values of fn,q(t), cF,m, and cM,n(t) are not

accessible in the measurement data. An alternative approach

for estimating the TV-MDS of CSI measurements by using

the spectrogram is presented in the next section.

III. MICRO-DOPPLER SIGNATURE OF THE TV-CTF
To study the micro-Doppler signature of the non-stationary

TV-CTF presented in Section II-D, a time-frequency-power

distribution (TFPD) is employed. There are different TFPDs

according to the literature [45]–[47]. In this section we use

the spectrogram that requires an even, real, and positive

window w(t) with normalized energy for computation. In

this paper, we utilize a Gaussian window function defined

as

w(t) =
1

√

σw

√
π
e
− t2

2σ2
w (28)

where the parameter σw denotes the Gaussian window

spread.

There are three steps to calculate the spectrogram of the
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TV-CTF H (t, fq). First, the TV-CTF H (t′, fq) is multi-

plied with the sliding window function w (t′ − t) to obtain

the short-time CTF (ST-CTF) xq(t
′, t) according to [47,

Eq. (2.3.1)] as

xq(t
′, t) = H (t′, fq)w (t′ − t) . (29)

Here, the parameters t and t′ denote the local time at which

we investigate the micro-Doppler signature and the running

time, respectively. The next step is to compute the short-time

Fourier transform (ST-FT) Xq(f, t) associated with the qth

subcarrier by computing the Fourier transform of the ST-CTF

xq(t
′, t) in (29) as follows

Xq(f, t) =

∞
∫

−∞

xq(t
′, t)e−j2πft′dt′

≈ e−j2πft

√

σw

√
π

{

N
∑

n=1

XM,n,q(f, t) +
M
∑

m=1

XF,m

}

(30)

where

XM,n,q(f, t) ≈HM,n (t, fq) G
(

f, fn,q(t), σ
2
x,n,q,M

)

(31)

XF,m =HF,m G
(

f, 0, σ2
x,F

)

(32)

G
(

f, µ, σ2
)

=
1√
2πσ

e−
(f−µ)2

2σ2 (33)

σ2
x,n,q,M =

1− j2πσ2
wkn,q

(2πσw)2
(34)

σ2
x,F =

1

(2πσw)2
(35)

kn,q =
dfn,q(t)

dt
. (36)

The expression in (30) consists of two terms. The first term

designates the superposition of ST-FTs of N components

corresponding to the moving point scatterers. Each com-

ponent of the first term in (30) is associated with the nth

moving point scatterer SM,n. An approximate solution of

each component of the first term is provided in (31), which

has been obtained by assuming that the path gains cM,n(t)
are constant and the Doppler frequencies fn,q (t) are linear

functions of time t, over the window function for each

moving point scatterer SM,n as mentioned in Section II-D.

The function G(·) denotes a Gaussian distribution whose

expression is provided in (33). The second term in (30)

denotes the superposition of M components corresponding

to the fixed scatterers. Each component of the second term

in (32) corresponds to the mth fixed scatterer SF,m. Note

that the ST-FT in (30) is complex valued. The third step is

to compute the spectrogram Sq(f, t) associated with the qth

subcarrier index by taking the magnitude squared of the ST-

FT in (30) as

Sq(f, t) = |Xq(f, t)|2 = S(a)
q (f, t) + S(c)

q (f, t). (37)

The first term in (37) denotes the auto-term S
(a)
q (f, t),

whereas the second term is the cross-term S
(c)
q (f, t). Note

that the spectrogram in (37) is real and positive. The auto-

term S
(a)
q (f, t) in (37) is real and positive, and its approxi-

mation is given by

S(a)
q (f, t) ≈

N
∑

n=1

|XM,n,q(f, t)|2 +
M
∑

m=1

c2F,m G
(

f, 0, σ2
F

)

(38)

where [40]

|XM,n,q(f, t)|2 ≈ c2M,n(t)G
(

f, fn,q(t), σ
2
n,q,M

)

(39)

σ2
n,q,M =

1 +
(

2πσ2
wkn,q

)2

2(2πσw)2
(40)

σ2
F =

1

2(2πσw)2
. (41)

The auto-term in (38) is the superposition of N + M
components. The first term in (38) denotes the superposition

of the auto-terms associated with the N moving point scat-

terers. Each component of the first term in (38) contains the

desired TV Doppler power characteristics of the nth moving

point scatterer SM,n associated with the qth subcarrier. The

expression in (39) represents the approximation of auto-term

corresponding to the nth moving point scatterer SM,n. It is

a Gaussian function, which is centered on the Doppler shift

fn,q(t), has a variance denoted by σ2
n,q,M, and is weighted

by the squared path gain c2M,n(t). The second term in (38)

denotes the sum of the auto-terms of M fixed scatterers.

Each component of the second term in (38) corresponds to

the mth fixed scatterer SF,m. Moreover, each component

of the second term in (38) is a Gaussian function centered

on a zero-frequency value as the Doppler frequencies of

the fixed scatterers in F2F channels are zero. The Gaussian

functions in the second term of (38) are weighted by the

squared path gain c2F,m of the mth fixed scatterer SF,m. The

expression in (38) provides an approximate solution of the

power distribution over time and frequency, jointly.

The cross-term S
(c)
q (f, t) associated with the qth subcar-

rier is expressed in (42), at the top of the next page. It consists

of (N +M) (N +M− 1) /2 components. It represents the

undesired spectral interference term that reduces the resolu-

tion of the spectrogram. This term is real, but not necessarily

positive. The operators ℜ{·} and {·}∗ in (42) denote the

real and complex conjugate operators, respectively. The first

term in (42) denotes the sum of the spectral interference

components between two moving point scatterers SM,n and

SM,i for n ̸= i. The second term in (42) designates the sum of

the spectral interference components between two fixed scat-

terers SF,m and SF,i for m ̸= i. Finally, the last term in (42)

represents the sum of the spectral interference components

between the fixed scatterers SF,m and the moving point scat-

terers SM,n. Averaging the spectrogram Sq(f, t) over the ran-

dom phases θM,n and θF,m by simulations removes the cross-

term S
(c)
q (f, t), i.e., E{Sq(f, t)}|θM,n, θF,m

= S
(a)
q (f, t) [48],

[49]. In the case of measurements, eliminating the cross-term

is still unknown; however, it has been theoretically proven
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that massive MIMO techniques can help [50].

The TV-MDS BHq
(t) can be computed by means of the

spectrogram Sq(f, t) as follows

BHq
(t) =

∞
∫

−∞

fSq(f, t)df

∞
∫

−∞

Sq(f, t)df

. (43)

The expression in (43) can be used in conjunction with simu-

lations and measurements. The numerator of (43) represents

the average frequency computed from the spectrogram at

each time instant. The numerator in (43) is divided by the

total power at each time instant. The TV-MDS BHq
(t) is

influenced by the auto-term S
(a)
q (f, t) and the cross-term

S
(c)
q (f, t) in case of measurements; however, it still provides

insight into the mean Doppler shifts in the presence of

human activities, i.e., BHq
(t) ≈ Bfq (t). In the case of

simulations, the auto-term S
(a)
q (f, t) can be used instead of

the spectrogram Sq(f, t) when computing BHq
(t) in (43).

Hence, the TV-MDSs BHq
(t) and Bfq (t) become equal [48],

i.e., BHq
(t)

∆
= Bfq (t). It is worth mentioning that in the

case of measurement data, a notch filter must be used before

computing the spectrogram. This is due to the fact that the

power spectral density of the signal components associated

with the fixed scatterers is much higher than that of moving

point scatterers.

IV. MEASUREMENTS AND NUMERICAL RESULTS
In this section, the TV Doppler power characteristics, the TV-

MDSs of the measured RF data and the IMU-driven channel

model are presented for some human activities. Moreover,

the measurement scenario and the processing of the RF and

IMU data are discussed.

A. MEASUREMENT SCENARIO

Fig. 2 shows the measurement scenario setup in the xy-plane.

For RF recording, we used a CSI software tool described

in [27], [51] and installed it on two HP Elitebooks 6930p lap-

tops. Both laptops had Intel NIC 5300 network adapters and

Ubuntu 14.04 LTS operating systems. One laptop was oper-

ating in injector mode as Tx while the other was operating in

monitor mode as Rx. The laptops were connected to a pair

of Laird™ YE572113-30SMAM horn antennas. One was a

Tx antenna connected to the transmitter station and the other

one was an Rx antenna connected to the receiver station. We

employed channel number 149 to record the CSI data, i.e.,

f0 = 5.745 GHz [28]. The bandwidth B was 40 MHz. A B2B

connection was used to remove the TV phase distortions,

which occur due to the clock asynchronization between the

Tx and Rx stations, as shown in Fig. 2 and described in [32].

For realizing the B2B connection, the RF cables 141-MSM+,

and RF power splitter ZFSC-2-10G+ with two output and

one input ports have been deployed. The input port of the

splitter was connected to the Tx station. One of the output

ports was connected to a port of the Rx station as a B2B

connection, whereas the other port was connected to the Tx

antenna. Both of Tx and Rx antennas were collocated at a

height of 0.8 m. The source MATLAB code for reading the

measured CSI data can be found in [52].

Six IMUs were used to capture motion data simultaneously

while collecting the CSI data. Four of the IMUs were from

MetaMotionR [53] and the other two were from the Poly-

technic School of Engineering of Vilanova i la Geltrú at the

Technical University of Catalonia (UPC). A 22-year-old male

candidate weighing 76 kg and 1.8 m tall was asked to perform

the following activities (see Fig. 2):

• Walking: The candidate stood in front of the Tx and Rx

antennas. He wore six IMUs, two on his wrists, two on

his ankles, one on his torso, and one on his head. He

walked 4 m away from Tx and Rx antennas, and then he

stopped.

• Falling: The candidate stood still facing the Tx and Rx

antennas at a distance of 4 m. Then, he fell forward on

a 15 cm thick mattress. He was wearing two IMUs. One

attached to the torso, and the other one was placed on

his head.

• Sitting: He stood still facing the Tx and Rx antennas at

a distance of 4 m. Then, he sat down on a chair. He was

wearing two IMUs at the same locations as those in the

falling activity.

The candidate stopped moving for a while after finishing each

activity. In the simulation, the location
(

xT , yT , zT
)

of Tx

and the location
(

xR, yR, zR
)

of Rx and were chosen to be

(0, −0.05, 0.8) and (0, 0.05, 0.8), respectively. The initial

positions (xM,n, yM,n, zM,n) of the moving point scatterers

are exhibited in Table 1 for each activity.

TABLE 1. Initial positions (xM,n, yM,n, zM,n) of each moving point scatterer

SM,n associated with each activity.

Walking Falling Sitting

Left ankle (0.2, 0.15, 0.1) – –

Right ankle (0.2, −0.15, 0.1) – –

Left wrist (0.2, 0.25, 0.85) – –

Right wrist (0.2, −0.25, 0.85) – –

Waist (0.2, 0, 1.1) (4, 0, 1.1) (4, 0, 1.1)
Head (0.2, 0, 1.75) (4, 0, 1.75) (4, 0, 1.75)

B. PROCESSING OF THE COLLECTED DATA

Fig. 3(a) illustrates the steps for processing the recorded CSI

data. The collected CSI data were stored in two matrices

at the Rx station. The first matrix stored the CSI data of

the B2B connection, which includes only the TV phase

distortions caused the clock asynchronization between the

Tx station and the Rx station. The second matrix stored

the data representing the desired fading behaviour of the

measured channels and the TV phase distortions between the

Tx and the Rx stations caused by the clock asynchronization.

The second matrix was divided element-wise by the first

matrix to get a new third matrix containing the channel

transfer function (CTF) Ĥ (t, fq), with the desired channel
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S(c)
q (f, t) ≈ 2

σw

√
π
ℜ
{

N−1
∑

n=1

N
∑

i=n+1

XM,n,q(f, t)X
∗
M,i,q(f, t) +

M−1
∑

m=1

M
∑

i=m+1

XF,mX∗
F,i +

N
∑

n=1

M
∑

i=1

XM,n,q(f, t)X
∗
F,i

}

(42)

FIGURE 2. Measurement scenario in xyxyxy-plane.

behaviour [54], [55]. Then, the CTF Ĥ (t, fq) was summed

over the subcarriers to obtain the complex channel gain µ̂(t)

µ̂(t) =
∑

q

Ĥ (t, fq) . (44)

This procedure reduces the background noise of the spec-

trogram that arises due to measurement imperfections. Be-

cause, as mentioned in Section II-C, the bandwidth B is

much smaller than the carrier frequency f0, the Doppler

frequencies are almost the same for all subcarriers. Hence,

the sum in (44) does not have an impact on the micro-Doppler

signatures. The zero-value Doppler shifts due to static ob-

jects (fixed scatterers) were eliminated by utilizing a notch

filter. The parameters of the filter designed in MATLAB

can be found in Table 2. Finally, the spectrogram Ŝq(f, t)
was computed to reveal the micro-Doppler signature of the

candidate’s activity.

Fig. 3(b) depicts the block diagram for developing the

IMU-driven channel model. The IMU data was recorded si-

multaneously with the CSI data. The sensors were configured

to record accelerations and quaternions simultaneously. Also,

the timestamps were recorded and used to synchronize the

data. The acceleration data was measured on the local axes of

the IMUs. By using the quaternions, the Euler angles and the

rotation matrix were constructed to rotate the measured ac-

celerations to the reference frame. The rotated accelerations

were numerically integrated first to obtain the TV velocities.

The drifts in the obtained TV velocities were removed by

using the zero-update (ZUPT) algorithm [56]. The source

code of the ZUPT algorithm is available on GitHub [57].

After that, the displacements were determined by integrating

the drift-removed velocities.

The spectrogram Ŝq(f, t) and TV-MDS B̂Hq
(t) of the

measured CSI data were computed first. Then, the TV-MDS

B̂Hq
(t) was used to compute the contribution of the nth

moving scatterer SM,n by solving the following mean-square-

error (MSE) optimization problem as follows

EBfq (t)
= argmin

aM,n

n∈{1,2,...,N}

Tobs
∫

0

(

Bfq (t)− B̂Hq
(t)
)2

dt (45)

where Bfq (t) and B̂Hq
(t) were computed by (27) and (43),

respectively. After obtaining the contributions of the moving

scatterers aM,n, TV-CTF H (t, fq) was generated according

to (24). The parameter η was set to 2. Finally, the spectrogram

Sq(f, t) and the TV-MDS Bfq (t) of µ(t) were computed.

Table 3 shows the estimated values of aM,n associated with

each moving point scatterer corresponding to each activity.

TABLE 2. The parameters of the used notch filter.

Name Value

Filter type Highpass FIR

Stopband frequency 0.1 Hz

Passband frequency 1 Hz

Stopband attenuation 25 dB

Passband ripple 0.01

Design method Equiripple

TABLE 3. The values of the estimated parameter aM,n of each moving point

scatterer SM,n corresponding to each activity.

Walking Falling Sitting

Left ankle 0.150 – –

Right ankle 0.138 – –

Left wrist 0.086 – –

Right wrist 0.105 – –

Waist 0.347 0.825 0.652

Head 0.174 0.175 0.348

C. DISCUSSION OF THE RESULTS

Figs. 4(a) and 4(b) exhibit the spectrograms Ŝq(f, t) and

Sq(f, t) corresponding to the walking activity of the mea-

sured CSI and the IMU-driven channel model, respectively.

There is a good match between the two spectrograms in

Figs. 4(a) and 4(b). The spectrogram of the IMU-driven

channel model was computed after the estimation of an for

n = 1, 2, . . . , N as in (45). The walking duration took

almost 5.5 s, i.e., Tobs ≈ 5.5 s. The Doppler frequencies have

negative values as the candidate was moving away from the

Tx and Rx antennas. Thus, the propagation delays τM,n(t)
and their rate of change τ̇M,n(t) were increasing. Hence, the

Doppler frequencies have negative values according to (17)
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in Section II-C. The Doppler frequencies corresponding to

the head and the torso have the highest power values, unlike

the rest of the body segments, as they have the highest

body areas. The Doppler shifts caused by the head and torso

have ranges from 40 to 50 Hz. The values of the parameter

aM,n corresponding to the walking activity are exhibited

in Table 3. These values are associated with the moving

scatterers corresponding the left ankle, right ankle, left wrist,

right wrist, waist, and head. According to this table, the waist

and the head have the highest values, whereas the wrists have

the lowest values.

Figs. 5(a) and 5(b) exhibit the analytical solutions of the

spectrogram Sq(f, t) and the auto-term S
(a)
q (f, t) of the

IMU-driven channel model corresponding to the walking

activity, respectively. Both of Sq(f, t) and S
(a)
q (f, t) were

computed by approximating the Doppler frequencies as men-

tioned in Section III. Although the linear approximations of

the Doppler frequencies are obvious in Fig. 5(b), they do

not have a huge impact on the spectrograms as shown in

the figures. Furthermore, the Doppler frequency patterns de-

picted in the figures still provides useful insights in Figs. 5(a)

and 5(b) of the walking activity. Note that in Fig. 5(b), the

Doppler frequencies corresponding to the moving scatterers

are more obvious as there is no cross-term.

The spectrograms Ŝq(f, t) and Sq(f, t) of the mea-

sured CSI and the IMU-driven channel model are depicted

in Figs. 6(a) and 6(b), respectively. These spectrograms cor-

respond to the falling activity. Surprisingly, there is a good

match between Ŝq(f, t) and Sq(f, t), although the candidate

wore two IMUs in this scenario. The falling duration con-

sumed around 1.5 s. The value of the observation interval Tobs

was set to 3.5 s when evaluating the parameter computation

in (45). The Doppler frequencies had positive values as the

candidate was moving towards the Tx and Rx antennas.

Thus, the propagation delays τM,n(t) were decreasing and

their rates of change τ̇M,n(t) were negative. Hence, the

Doppler frequencies had positive values according to (17) in

Section II-C. The Doppler frequencies fn(t) had zero values

before time t ≈ 1.5 s. Then, they increased when the falling

started, until they reached a value of 120 Hz approximately

at time t ≈ 2.5 s. At this time t ≈ 2.5 s, the candidate

almost approached the floor. Then, the Doppler frequencies

fn(t) decreased rapidly until they reached zero values in less

than 0.5 s. The values of the parameter aM,n corresponding

to the falling activity are exhibited in Table 3. These values

are associated with the moving scatterers corresponding the

waist and head. According to the table, the waist has a higher

value than the head.

Figs. 7(a) and 7(b) demonstrate the analytical solutions

of the spectrogram Sq(f, t) and the auto-term S
(a)
q (f, t) of

the IMU-driven channel model corresponding to the falling

activity, respectively. The cross-term in Fig. 7(a) does not

have a high impact as the number of the moving scatterers

N is 2 in the falling scenario. By comparing Figs. 7(a) and

7(b) with Fig. 6(b), there are slight degradation of the linear

Doppler frequencies at time t ≈ 3 s. However, the falling

patterns are still obvious in Figs. 7(a) and 7(b).

Figs. 8(a) and 8(b) illustrate the spectrograms Ŝq(f, t) and

Sq(f, t) corresponding to the sitting activity of the measured

CSI data and the IMU-driven channel model, respectively.

There is also a good match between Ŝq(f, t) and Sq(f, t).
The values of the Doppler frequencies were negative since

the candidate was moving away down from the Tx and Rx.

The value of Tobs was chosen to be 3 s. The sitting duration

was 1.5 s; however, the Doppler frequencies fn(t) reached

values of about -50 Hz, unlike those of the falling activity

in Figs. 8(a) and 6(b). That is because the candidate’s speed

during the sitting activity was slower than that of the falling

activity. The values of the Doppler frequencies started to

decrease at t ≈ 0.5 s until they reached values of about -

50 Hz at t ≈ 1.5 s. Then, they increased slowly until

they reached zero values. The values of the parameter aM,n

corresponding to the sitting activity and associated with the

waist and the head are depicted in Table 3. Again, the waist

has a higher value than the head. Figs. 9(a) and 9(b) show

the spectrograms Sq(f, t) and S
(a)
q (f, t) corresponding to the

sitting activity of the measured CSI data and the IMU-driven

channel model, respectively. A slight difference is depicted

in Figs. 9(a) and 9(b) due to the linear approximation of the

Doppler frequencies; however, the spectrograms still provide

insightful results.

Fig. 10(a) depicts the TV-MDSs B̂Hq
(t) and Bfq (t) corre-

sponding to the walking activity of the collected CSI data and

the IMU-driven channel model, respectively. The TV-MDSs

B̂Hq
(t) and Bfq (t) in Fig. 10(a) are matching. The TV-MDSs

in Fig. 10(a) provide the same trends as those in Figs. 4(a)

and 4(b), but with different values. This happens due to

the impact of the cross-terms. The TV-MDSs B̂Hq
(t) and

Bfq (t) corresponding to the falling activity of the measured

CSI data and the IMU-driven channel model are exhibited

in Fig. 10(b), respectively. There is a good match between

B̂Hq
(t) and Bfq (t) in Fig. 10(b). The TV-MDSs in Fig. 10(b)

show the same trends as those in Figs. 6(a) and 6(b), but

with different values due to the influence of the cross-terms

on the TV-MDSs. The TV-MDSs B̂Hq
(t) and Bfq (t) of the

CSI data and the IMU-driven channel model corresponding

to the sitting activity are shown in Fig. 10(c), respectively.

A good match is shown between the TV-MDSs B̂Hq
(t) and

Bfq (t) in Fig. 10(c). The trends of B̂Hq
(t) and Bfq (t) in

Fig. 10(c) are matching the TV frequency patterns shown in

Figs. 8(a) and 8(b); however, they have different values as

the cross-terms have influences on B̂Hq
(t) and Bfq (t). Note

that in Figs. 10(a) and 10(c) the TV-MDSs Bfq (t) computed

from the analytical solutions of the spectrogram and the auto-

term are still insightful although the Doppler frequencies are

linearly approximated.

V. CONCLUSION
In this paper, we demonstrated the possibility of designing an

IMU-driven non-stationary channel model for human activity

recognition. Such a model enables the reproducibility of
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(a)

(b)

FIGURE 3. Block diagrams for the (a) CSI data acquisition and processing and (b) IMU-driven channel model.

micro-Doppler signatures. We modelled the non-stationary

CTF fed with IMU data, TV path gains, and TV Doppler

shifts. Furthermore, we explored the micro-Doppler signa-

ture of the proposed TV-CTF by means of the spectrogram.

We confirmed our proposed model by comparing the micro-

Doppler signatures of measured CSI data with a channel

model fed with IMU data. Both of the CSI and IMU data were

measured simultaneously. The results showed a good match

between the micro-Doppler signatures of the IMU-driven

channel model and the CSI. For future work, we recommend

training fall classifiers with micro-Doppler signatures or the

TV-MDSs of the proposed model and test them with mea-

sured RF data.
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FIGURE 8. Sitting activity spectrograms Ŝq(f, t)Ŝq(f, t)Ŝq(f, t) and Sq(f, t)Sq(f, t)Sq(f, t) of the (a) measured CSI data and (b) IMU-driven channel model, respectively.
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FIGURE 9. Approximate analytical solutions of the spectrogram Sq(f, t)Sq(f, t)Sq(f, t) and (b) the auto-term S(a)
q (f, t)S(a)
q (f, t)S(a)
q (f, t) of the IMU-driven channel model

corresponding to the sitting scenario.
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FIGURE 10. The TV-MDSs B̂Hq (t)B̂Hq (t)B̂Hq (t) and Bfq (t)Bfq (t)Bfq (t) of the measured CSI and the IMU-driven channel model, respectively, corresponding to the (a) walking,
(b) falling, and (c) sitting activities.
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