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We introduce a control strategy to solve the regulation control problem, from the perspective of trajectory planning, for

an uncertain 3D overhead crane. The proposed solution was developed based on an adaptive control approach that takes

advantage of the passivity properties found in this kind of systems. We use a trajectory planning approach to preserve the

accelerations and velocities inside of realistic ranges, to maintaining the payload movements as close as possible to the

origin. To this end, we carefully chose a suitable S-curve based on the Bezier spline, which allows us to efficiently handle

the load translation problem, considerably reducing the load oscillations. To perform the convergence analysis, we applied

the traditional Lyapunov theory, together with Barbalat’s lemma. We assess the effectiveness of our control strategy with

convincing numerical simulations.
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1. Introduction

Due to the vast range of actual applications, the control

of the overhead crane systems has attracted the attention

of several researchers in both mechanical engineering

and control communities. This heavy machinery has

a significant load capacity and high transportation

efficiency, and we widely use them, for instances, in

building sites, product lines, ports, to transport hazardous

materials, and so on. From the theoretical point of view,

these cranes belong to underactuated systems and are

not input-output linearizable, which make their control

a challenging problem. In practice, these cranes are

manually operated by experienced workers, having the

inconveniences of low efficiency and safety, long time

training for operators, and so on (Ramli et al., 2017).

We can overcome these inconveniences by providing this

kind of cranes with automatic control and secure means,

improving their performance and increase the safety of the

∗Corresponding author

people who work with and operate them.

In general, overhead crane systems mainly consist of

two parallel rails on which a girder slides perpendicularly

forwards and backward. There is a cart, mounted on the

girder, that moves left and right, and the payload hangs

from it using a rope. It is clear that the central control

task is bringing the payload from some initial position

to another desired final position keeping the oscillations

of the suspended payload mass as small as possible. At

present, we can find in the literature several techniques to

solve the position regulation and the tracking trajectories

problems applied to cranes. Due to the kind of tasks that

overhead cranes are used for, and despite their nonlinear

nature, we can assume that they behave as if they were

linear systems because the cart speed is low and the

rope angle is small. Additionally, we can easily adapt a

Luenberger observer to estimate unavailable velocities.

Consequently, several authors use linearized versions

of the crane model when developing control strategies.
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Therefore, PID and PD based controllers have been

widely used in this context. For instance, they have

been successfully used when combined with intelligent

techniques like neuron networks (Yu et al., 2014; Saeidi

et al., 2013; Suh et al., 2005; Hamid et al., 2016),

fuzzy logic (Smoczek, 2013; Liu et al., 2014), particle

swarms optimization (Fujioka et al., 2015; Hajdu and

Gáspár, 2016). Others widely used linear techniques are

the ones based on the linear quadratic regulator LQR

(Kim et al., 2011) and linear matrix inequalities (Sano

et al., 2011). The LQR method has also been used in

conjunction with genetic algorithms (Adeli et al., 2011).

On the nonlinear spectra, optimal control based

methods have been used, like model predictive control

(Wu et al., 2015; Jolevski and Bego, 2015; Käpernick and

Graichen, 2013; Khatamianfar and Savkin, 2014; Vukov

et al., 2012; Chen et al., 2016; Smoczek and Szpytko,

2017) and the linear quadratic Gaussian predictive

approach (Spathopoulos and Fragopoulos, 2004; 2001;

Smoczek, 2015). The other well established nonlinear

methods that have been applied due to their robustness

are adaptive control (Nguyen et al., 2015; Cho and Lee,

2008; Fang et al., 2012; Sun et al., 2014; 2015a; 2015b;

2016; Yang and Shen, 2011; Tar et al., 2010; Fujioka and

Singhose, 2015a; 2015b; Fujioka et al., 2015; Lee et al.,

2013) and sliding mode control.

Based on a second order sliding mode in conjunction

with partial feedback linearization, Kairuz et al. (2018)

present a robust strategy to solve the regulation problem

for a 3D underactuated crane. Results based on the same

methodology are presented by Vazquez et al. (2012;

2015). Solis et al. (2016) use a control strategy for a

Cartesian 3D crane based on a terminal optimal control

together with an integral sliding mode component (Chwa,

2017) develops a robust finite-time anti-swing tracking

control method for a 3D overhead crane system. A full

review of this topic is beyond the scope of this study;

however, we suggest the interested reader the survey by

Ramli et al. (2017).

In this work, motivated by the passivity properties

found in this kind of systems, and using the adaptive

control approach, we developed a control strategy to

solve the regulation problem for an underactuated 3D

overhead crane. In our solution, we used the trajectory

planning approach for two purposes: firstly, to preserve

in the actuated coordinate the physical restrictions,

like acceleration and velocity, within realistic ranges;

secondly, to maintain the payload movements as close

as possible to the origin. We made the corresponding

convergence analysis applying the traditional Lyapunov

theory, together with Barbalat’s lemma. To test the

effectiveness of our control strategy, we conducted

numerical simulations.

We organize the rest of this work as follows. In

Section 2, we present the 3D overhead crane dynamic

model, and we formulate the control problem we solve

in this study. In Section 3, we develop the corresponding

control approach. We present the numerical simulations

that allow us to assess the effectiveness of our control

strategy in Section 4, while we give the concluding

remarks in Section 5.

2. Dynamical model and problem statement

The dynamical model of the 3D overhead crane,

mentioned above and depicted in Fig. 1, is described in

its coordinate form by the following equation:

M(q)
..
q+ Fc(q,

.
q) +G(q) = U − Fd. (1)

The system state is q = [x, y, θx, θy]
T

, where x,y ∈ R

are the cart positions in the horizontal plane and denote

its displacement in the x and y axes, respectively. The

angular positions of the rope projections in the plane XZ
are as follows: θx is the swing angle projected onto the

XZ-plane, and θy is the swing angle measured from the

XZ-plane. The system inertia matrix M(·) is defined as:1

M(q)

=

⎡
⎢⎢⎣

Mx +m 0 lmCxCy −lmSxSy

0 My +m 0 lmCy

lmCxCy 0 l2mC2
y 0

−lmSxSy lmCy 0 l2m

⎤
⎥⎥⎦ ,

where Fc(·) is referred to as the centripetal-Coriolis vector

force, and is defined as

Fc(q,
.
q)

=

⎡
⎢⎢⎢⎢⎣

−lmCySx

.

θ
2

x − 2lmCxSy

.

θx
.

θy − lmCySx

.

θ
2

y

−lmSy

.

θ
2

y

−2l2mSyCy

.

θx
.

θy

l2mSyCy

.

θ
2

x

⎤
⎥⎥⎥⎥⎦
.

The gravity force effect, denoted by G(·), is

expressed as

G(q) =
[
0 0 mglSxCy mglCxSy

]T
.

Finally, the control input vector U and the dissipative

force Fd are given by

U =
[
fx fy 0 0

]T
,

Fd =
[
dx

.
x+ fcx(

.
x) dy

.
x+ fcy(

.
y)

dθx
.

θx dθy
.

θy
]T

,

1We use the notation Cθ = cos θ and Sθ = cos θ, with θ =
{θx, θy}.
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where fx is the driving force of x motion, and fy is

that of y motion. The constant system parameters Mx

and My are respectively the components in directions x
and y of the crane mass and the equivalent masses of

the rotating parts, i.e., motors and their drive trains; m
is the load mass, g is the gravitational acceleration, l is

the rope length. dx, dy , dθx , and dθx denote the viscous

damping coefficients related with x, y, θx and θy motions,

respectively. Finally, fcx(
.
x) and fcy(

.
y) are the Coulomb

friction forces approximated by the following continuous

function:

fcw(
.
w) =

−βw
.
w√

.
w

2
+ α

, βw > 0, α > 0, α → 0 (2)

with w = {x, y} (cf. Gómez-Estern et al., 2004).

Remark 1. The rope from which the loads hangs from

the crane is a massless and rigid link, with positive and

constant length l. During the transportation process, the

swing angles of the load always remain in the interval θx,

θy ∈ I = (−π, π). That is, for simplicity, we are not

considering the dynamic in the direction of l. We chose

the Coulomb friction forces as an approximation to avoid

control discontinuities and the chattering phenomena.

Additionally, we pointed out that it is easy to see that

system (1) has a subset of stable equilibrium points, if

q = [x = ∗, y = ∗, θx = 0, θy = 0]T .

Motivation. In this work, we solve the regulation problem

for an uncertain damped overhead crane system, based

on a trajectory planning strategy through the actuated

coordinate. The main advantage of our solution consists

in maintaining the payload oscillations as close as pos-

sible to the origin, which is an attractive problem due to

their actual applications. Additionally, the solution that

we propose allows us to set a priori the load translation

Z
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Fig. 1. Overhead crane.

task duration. To this end, we use as a trajectory reference

a Bézier function, which is, in fact, an off-line planning

motion. Using this reference, allows us to program the

admissible convergence period of time, and keep the

linear velocities (
.
x,

.
y) and the accelerations (

..
x,

..
y) within

an admissible set, and the oscillations of θx and θy within

a small vicinity of the origin. It is important to mention

that the Bézier function used, can be seen as a particular

case of the S-curves to solve the overhead crane motion

planning used by Fang et al. (2012) and Lee (2005).

Having described the model of the 3D overhead

crane, we proceed to establish the control goal of this

study.

Control problem. Consider the task of translating the

payload of a 3D overhead crane from some initial posi-

tion2

qi = (xi, yi, θx, θy)
T

to a desired final rest final position

qf = (xf , yf , 0, 0)
T

in some time interval [ti, tf ], with tf > ti ≥ 0, preserving

the following physical restrictions:

∣∣ .x(t)
∣∣ < zv,

∣∣..x(t)
∣∣ < za,∣∣ .y(ti)

∣∣ < zv,
∣∣..y(t)

∣∣ < za

for all t ∈ [0,∞), where constants zi, with i = {v, a},

are known. The control objective consists in accomplish-

ing the above translation task in a given finite time inter-

val [ti, tf ], such that the payload swinging remains close

enough to zero, even when the physical system parameters

are unknown. Formally, we desire that

|x(t) − xf | ≤ δ1, |y(t)− yf | ≤ δ1,

|θx(t)| ≤ δ2, |θy(t)| ≤ δ2,

for t ∈ [ti, tf ] and limt→∞ q(t) = qf , with δ1 and δ2 suf-

ficiently small. The above is to be solved on the following

assumptions: (i) the whole state is always available; (ii)

θx, θy ∈ I = (−π, π); and (iii) all the unknown damping

coefficients are strictly positive, and the physical parame-

ters are unknown.

Assumptions and limitations. We assume that the

position (x, y) and its corresponding velocities are

available. Additionally, the controller does not have

any information about the physical parameters of the

3D crane. On the other hand, in our solution, the

velocity needs to be included in feedback, which in actual

applications is not available, and has to be estimated using

a suitable observation scheme. Besides, our solution

is not immune to external perturbations and unmodeled

dynamics; however, it can be overcome using an extended

2For simplicity, we write zi = z(ti) and zf = z(tf ).
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observer, like the ones used in active disturbance rejection

control (Zheng and Gao, 2010; Huang et al., 2014), or a

convenient slide mode based method (Davila et al., 2006;

Ferreira et al., 2010).

Some useful properties of the Euler–Lagrange sys-

tems.

A1: M(q) is a symmetric and positive definite matrix.

A2: The centripetal-Coriolis vector force admits the

following representation:

Fc(q,
.
q) = C(q,

.
q)

.
q,

where C satisfies the following condition:

.

M(q)− 2C(q,
.
q) = −(

.

M(q) − 2C(q,
.
q))T .

A3: The vector G(q) is a gradient. That is,

G(q) =
∂P (q)

∂q
,

where P (q) = mgl (1− CxCy).
A4: Given the energy function

E(q,
.
q) =

1

2

.
q
T
M(q)

.
q+ P (q),

if Fd = 0, we have that

.

E(q,
.
q) =

.
xfx +

.
yfy.

This implies

∫ t

0

(
.
xfx +

.
yfy) ds ≥ −E(0).

That is, if f = (fx, fy) and y = (
.
x,

.
y) are, respectively,

the input and output of the system, then it is a passive

system (a complete treatment of the properties of the

Euler–Lagrange systems can be found in the work of

Ortega et al. (2013)).

Trajectory planning. In order to solve the control

problem, we propose the convenient trajectories, referred

here as xd(t) and yd(t), in the form

xd(t) = xi + (xf − xi)λ(t, ti, tf ),

yd(t) = yi + (yf − yi)λ(t, ti, tf ),
(3)

where λ(t, ti, tf ) is a Bézier spline (Sira-Ramirez and

Agrawal, 2004) defined as

λ(t, ti, tf )

=

⎧
⎪⎪⎨
⎪⎪⎩

0 if t < ti,

∆(t)
6∑

i=1

(−1)i+1ri∆
i−1(t) if ti ≤ t ≤ tf ,

1 if t > tf ,

(4)

where

r1 = 252, r2 = 1050, r3 = 1800,

r4 = 1575, r5 = 700, r6 = 126,

∆(t) = (t− ti)/δT , with δT = tf − ti. It is easy to check

that this polynomial satisfies the following properties:

B1:

dk

dtk
λ(t, ti, tf )

∣∣∣∣
t=ti

= 0,

dk

dtk
λ(t, ti, tf )

∣∣∣∣
t=tf

= 0

(5)

for k = {0, 1, . . . , n}.

B2:

.

λ(t, ti, tf ) <
κ1

δT
=

2.61

tf − ti
,

..

λ(t, ti, tf ) <
κ2

δ2T
=

11.01

(tf − ti)2
.

(6)

B3:
.

λ(t, ti, tf) ∈ L2
2 and

..

λ(t, ti, tf ) ∈ L2
2. Hence,

.
xd(t),

.
yd(t) ∈ L2

2 and
..
xd(t),

..
yd(t) ∈ L2

2.

Finally, we say that xd(t) and yd(t) are admissible

trajectories if they satisfy the following inequalities:

max

{
κ1

δT
(xf − xi) ,

κ1

δT
(yf − yi)

}
< zv,

max

{
κ2

δ2T
(xf − xi) ,

κ2

δ2T
(yf − yi)

}
< za.

(7)

For a proof of these properties, see Appendix.

3. Control strategy

In this section, we derive a passivity-based controller,

in conjunction with an adaptive compensator to solve

the trajectories planning problem of a three-dimensional

overhead crane. To achieve this, we first propose the

following nonnegative energy function:

E(q,
.

q) =
1

2

.

q
T
M(q)

.

q+mgl(1− cos θx cos θy), (8)

where

q = [rx, ry, θx, θy]
T
,

rx = x− xd,

ry = y − yd.

(9)

Taking the time derivative of A2 along the

trajectories of (1) is easy to show, using properties B2 and

b3, that the following equality holds:

.

E =
.
rx(fx − fdx

) +
.
ry(fy − fdy

) +W0 +W1, (10)
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where

fdx
= dx

.
x+ fcx(

.
x) + (Mx +m)

..
xd,

fdy
= dx

.
y + fcy(

.
y) + (My +m)

..
yd,

W0 = −dθx
.

θ
2

x − dθy
.

θ
2

y,

W1 = −lmCxCy

.

θx
..
xd + lmSxSy

.

θy
..
xd

− lmCy

.

θy
..
yd.

(11)

As all the system parameters are unknown, except for

the parameter α associated with approximation functions

of the Coulomb friction force (see (2)), we can express

fdx
and fdy

as follows:

fdx
= ΦT

x (t)̟x, fdy
= ΦT

y (t)̟y,

where

̟x =
[
dx βx Mx +m

]T
,

Φx(t) =

[
.
x

.
x√

.
x
2
+ α

..
xd(t)

]T
,

̟y =
[
dy βy My +m

]T
,

Φy(t) =

[
.
y

.
y√

.
y
2
+ α

..
yd(t)

]T
.

(12)

Therefore, we propose the adaptive tracking

controller as

fx = −kprx − kd
.
rx − ΦT

x (t) ̟̂x, (13)

fy = −kpry − kd
.
ry − ΦT

y (t) ̟̂ y, (14)

where kp and kd are positive control gains; ̟̂x and ̟̂y

are, respectively, the online estimates of ̟x and ̟y,

which evolve according to the following adaptive laws:

.

̟̂ x = ΓΦx(t)rx, (15)

.

̟̂ y = ΓΦy(t)ry (16)

with Γ being a diagonal, positive definite, update gain

matrix.

3.1. Stability analysis. Once we designed the control

law, we propose the required Lyapunov function to make

stability analysis assure convergence. To this end, we

introduce the main result of this study.

Proposition 1. Consider the system (1), in closed-loop

with (13) and (14), and the admissible trajectories xd

and yd, both defined in (3). Then the closed-loop system

asymptotically converges fast to a neighborhood of zero

and lim
t→∞

q(t)=0, with the computable domain of attrac-

tion given by V (0) < 2mgl, with V defined below.

Proof. For simplicity, we assume that dθ = dθx = dθy >
0. Now, consider the following candidate Lyapunov

function:

V (t) = E(q,
.

q) +
kp
2

(
r2x + r2y

)
+

1

2

(
.
r
2

x +
.
r
2

y

)

+
1

2

(
˜̟ T
x Γ

−1 ˜̟x + ˜̟ T
y Γ

−1 ˜̟ y

)
,

(17)

where ˜̟x = ̟x − ̟̂x and ˜̟y = ̟y − ̟̂ y . Computing

the time derivative of (17) and using (10) and the formulas

(13)–(16), is easy to see that

.

V (t) = −kd(
.
r
2

x +
.
r
2

y) +W0 +W1, (18)

where W0 and W1 were previously defined in (11). On the

other hand, we can note that W1 can be upper bounded by

the following inequality:

W1 ≤ lm

2γ

.

θ
2

x +
γlm

2

..
x
2

d +
lm

2γ

.

θ
2

y +
γlm

2

..
x
2

d +
lm

γ

..
y
2

d,

where γ > 0. Hence, selecting γ, such that

−dθ + lm/2γ > −ε,

with ε > 0, is easy to see that

W0 +W1 ≤ −ε
( .
θ
2

x +
.

θ
2

y

)
+

γlm

2

..
x
2

d +
lm

γ

..
y
2

d. (19)

Substituting (19) into (18), we obtain

.

V (t) ≤ −kd(
.
r
2

x +
.
r
2

y)− ε
( .
θ
2

x +
.

θ
2

y

)

+
γlm

2

..
x
2

d +
lm

γ

..
y
2

d.
(20)

Now, integrating both the sides of (20), we have

kd
∫ T

0
(
.
r
2

x +
.
r
2

y) + ε
∫ T

0

( .
θ
2

x +
.

θ
2

y

)
+ V (T )

≤ V (0) +
γlm

2

∫ T

0

..
x
2

d +
lm

γ

∫ T

0

..
y
2

d.
(21)

Since
..
xd(t),

..
yd(t) ∈ L2,

V (T ) ≤ V (0) +
γlm

2

∫ T

0

..
x
2

d +
lm

γ

∫ T

0

..
y
2

d < V < ∞.

Consequently, V (T ) ∈ L∞ and the set of signals:

{
q,

.

q, rx, ry,
.
rx,

.
ry, ˜̟x, ˜̟ y

}
∈ L∞. (22)

Notice that if the above conditions are fulfilled, then

the following conditions are also fulfilled:

{
q,

.
q, x, y,

.
x,

.
y, ̟̂x, ̟̂ y

}
∈ L∞.

From the definitions of q and
.

q , both given in (9), we

have that (q,
.
q) ∈ L∞. Therefore, according to the
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definitions of Φx(t) and Φy(t), both given in (12), we

conclude that (Φx(t),Φy(t)) ∈ L∞, implying that fx and

fy also belong to L∞ (see (13) and (14)). These facts

and Eqn. (1), allow us to conclude that (
..
q,

..

q) ∈ L∞.

Consequently, (
..
rx,

..
ry) ∈ L∞. Summarizing,

{..x, ..y,
..

θx,
..

θy,
..
rx,

..
ry} ∈ L∞. (23)

From the inequality (21), we have

kd

∫ T

0

(
.
r
2

x +
.
r
2

y) + ε

∫ T

0

( .
θ
2

x +
.

θ
2

y

)
≤ V ,

which implies that {
.

θx,
.

θy,
.
rx,

.
ry} ∈ L2

2. Now, as

{
.

θx,
.

θy,
.
rx,

.
ry} ∈ L2 ∩ L∞ and {

..

θx,
..

θy,
..
rx,

..
ry} ∈ L∞,

then, according to Barbalat’s lemma (Khalil, 2015), we

have that

lim
t→∞

.

θx(t) = 0, lim
t→∞

.

θy(t) = 0,

lim
t→∞

.
rx(t) = 0, lim

t→∞

.
ry(t) = 0.

(24)

From the facts above and the definition of
.
rx =

.
x−xd and

.
ry =

.
y−yd, we conclude that

.
x and

.
y converge

asymptotically to zero. Hence, Φx(t),Φy(t) → 0, as

long as t → ∞, implying that ΦT
x (t) ̟̂x,ΦT

y (t) ̟̂ y → 0.

Therefore, using the definitions of fx and fy, respectively

given in (13) and (14), it is clear that

lim
t→∞

fx = −kp lim
t→∞

rx, lim
t→∞

fy = −kp lim
t→∞

ry.

(25)

Now, as the set of signals { .
x,

.
y,

.

θx,
.

θy} is well

defined, and {..x, ..y,
..

θx,
..

θy} ∈ L∞, once again applying

Barbalat’s lemma, we have that

lim
t→∞

..

θx(t) = 0, lim
t→∞

..

θy(t) = 0,

lim
t→∞

..
x(t) = 0. lim

t→∞

..
y(t) = 0. (26)

Based on (24)–(3.1), is easy to see that Eqn. (1) leads

to

[
−kp lim

t→∞

rx −kp lim
t→∞

rx −mgl lim
t→∞

SxCy

−mgl lim
t→∞

CxSy

]
= 0.

Because we assume that (θx, θy) ∈ (−π/2, π/2), we

conclude that {x → xd, y → yd, θx → 0, θy → 0}.

Notice that the assumption (θx, θy) ∈ (−π/2, π/2) can

be assured if the set of initial conditions satisfies

V (0) < mgl.

�

4. Numerical simulations

In order to test the effectiveness of our control strategy,

we designed two hypothetical numerical experiments:

First experiment. The task consists in translating

the payload from the initial position given as qi =
[0.1m, 0.1m, 0.2 rad,−0.15 rad] with pi = 0, to the final

rest position qf = [1m, 1.1m, 0, 0] with pf = 0, within

the time interval [ti, tf ] = [0, 10 s], and an integration step

of order h = 10−4. For the set-up, we fixed the constant

physical parameters as follows:

Mx = 90 kg, My = 100 kg, m = 50 kg,

l = 1m, dx = 0.5, dy = 0.5,

dθx = 0.2, dθy = 0.15, βwx = 0.3,

βwy = 0.25, zv = 1m/s, za = 0.5m/s2,

with α = 5 × 10−3. We fixed the control gains as

kp = 50 and kd = 53; the matrix Γ = diag(1, 1, 2, 2).
Additionally, in this experiment, we made a behavior

comparison between our control strategy (OCS) and

the traditionally PD-based controller (PD), where the

trajectory planning for PD was not included. We

presented the obtained results in Fig. 2, where we can

see that OCS accomplishes the control task satisfactorily

within the programmed time interval.

It is worth of mentioning that, after 10 seconds,

positions x and y almost reach the desired rest position,

and angles θx and θy converge in the small vicinity of

±0.04 rad; conversely, the closed-loop response of the

traditional PD remains oscillating after 10 s. That is,

the position variables have an average error of ±0.12 m,

while the error of the angular variable θx and θy is on

the average ±0.1rad. From the comparison, we can see

that OCS outperforms the traditional PD. We show the

system velocities in Fig. 3. As we can see in this figure,

the velocity closed-loop responses of OCS are very close

to zero, that is |p| ≈ 10−3, while the corresponding

velocities for the closed-loop of PD are almost |p| ≈ 0.1.

Once again, from this figure, we can claim that OCS has a

much better performance than the PD controller. Finally,

we show the corresponding control action behavior in

Fig. 4, where we can see that OCS is ranging in |fx| ≈
0.01Nw and |fy| ≈ 0.05Nw, while the PD is ranging

in |fx| ≈ 0.5Nw and |fy| ≈ 1 Nw. We pointed

out that the OCS closed-loop response is able to follow

admissible trajectories, as we formally established in (7).

On the other hand, it is easy to see in the figures that the

PD closed-loop response exhibits an abrupt behavior in

comparison with OCS.

Second experiment. Here we carry out a numerical

comparison between our control strategy and a first-order

slide-mode control strategy (SMS), based on the

approaches found in the work of Qian and Yi (2016) or



A trajectory planning based controller to regulate an uncertain 3D overhead crane system
699

Sira-Ramirez and Agrawal (2004). To this end, we use

the same parameters set up as in the previous simulation,

except that we take the following physical parameters

values from the work of Kairuz et al. (2018): Mx = 3.3
kg, My = 1.5 kg, m = 1 kg, and l = 0.6m. To

make the experiment more interesting and challenging, we

add the following perturbation in the actuated coordinates:

δx = 0.2 sin(3t) cos(2t) and δy = 0.25 sin(3t) cos(5t).
To implement the first-order slide-mode controller,

we select the following two sliding surfaces:

σx = (z1 − κxf ) + 3z2 + 3z3 + z4,

σy = (w1 − κyf ) + 3w2 + 3w3 + w4,

where

z1 = θx + κx, z2 =
.

θx + κ
.
x,

z3 = −g

l
θx, z3 = −g

l

.

θx,

w1 = θy + κy, w2 =
.

θy + κ
.
y,

w3 = −g

l
θy, w4 = −g

l

.

θy,

with κ = 1/l. In our case, fx and fy are proposed, such

that
.
σx = −sign(σx), σy = −sign(σy).

We show the outcomes of this simulation in Fig. 5,

where we can see the evolution of coordinates x and y,

with their corresponding angles. As we expected, the

SMS behavior outperforms OCS. However, SMS exhibits

the undesirable chattering phenomena and needs more

information about the system structure and the knowledge

of the values of the parameters. In favor of OCS, we

can say that it solves the regulation problem in a practical

manner because the angles oscillate close to the origin due

to the presence of non-vanishing external perturbations.

Also, in this figure, we can see the control behavior of

both controllers, where once again it becomes evident the

presence of both chattering phenomena in SMS and the

nonvanishing perturbations in OCS.

Remark 2. Our control approach was designed

taking advantage of the passivity property found in the

kind of mechanical systems that we are dealing with.

Therefore, our controller is simple, and it only uses

the positions and their corresponding velocities. Even

more, due to its nature, our approach does not use any

angular information, unlike other control laws based on

sliding modes, which need information about the angular

variables and the knowledge of the physical parameters

(Qian and Yi, 2016; Kairuz et al., 2018). In the light of

these facts, our approach is less efficient and less robust

against external perturbations and unmodeled dynamics,

than the ones based on sliding modes. However, the

latter exhibit the chattering phenomena and need more

information than our approach.

Fig. 2. Comparison of the closed-loop response positions be-

tween OCS and a traditional PD.

Fig. 3. Comparison of the closed-loop response velocities be-

tween OCS and a traditional PD.

5. Conclusions

Based on trajectory planning, we have solved the

regulation problem for an uncertain 3D overhead crane.

To program the reference trajectory, we use a Bézier

function. This function can be considered as a particular

case of S-curves, which have been widely suggested by

the control community to solve the trajectory motion

planning problem due to some suitable properties. We

designed the control strategy taking advantage of the

passivity properties found in the kind of crane systems

we are dealing with, together with the traditional adaptive

control approach.

Off-line trajectory planning has two purposes. First,

it allows us to program the admissible period of time, in

which the control task has to be accomplished, preserving

the realistic physical restrictions in the linear velocities

and accelerations, while the payload angles always remain

inside of a small vicinity of the origin. Intuitively, this

means that the longer the translation time, the smaller the

payload oscillation angles. We made the corresponding

convergence analysis applying the traditional Lyapunov

theory, together with Barbalat’s lemma. To test the

effectiveness of our control strategy, we conducted
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Fig. 4. Comparison between the control actions of OCS and a

traditional PD.

Fig. 5. Comparison between the control actions of OCS and

SMS.

numerical simulations. We finish mentioning that

our control scheme could be improved if an extended

high-order observer were added to actively reject bounded

unknown perturbations, as it is done in ADRC.
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Appendix

Convergence analysis

Properties of the Bézier function. Note that

.

λ(t, ti, tf ) = −1260
(t− ti)

4(t− tf )
5

δ10T
, (A1)

..

λ(t, ti, tf ) = −1260
(t− ti)

3(9t− 5ti − 4tf )(t− tf )
4

δ10T
.

(A2)

Evidently, B1 is fulfilled. If we iteratively derive (A1) and

(A2), B1 always holds. From (A1) and (A2), we prove

that B2 also holds. That is, from (A2) we conclude that

either the maximum or the minimum of
.

λ is given by

9t− 5ti − 4tf = 0,

leading to

t1 =
5ti + 4tf

9
. (A3)

Now, substituting (A3) into (A1), we obtain

.

λ(t1, ti, tf ) =
112000000

43046721δT
≈ 2.61

δT
.

Similarly, it is easy to see that
...

λ(t, ti, tf ) = 0 implies that

the maximum or the minimum are located at

t2 =
10ti + (ti + tf )

√
105ti + 8tf

18
.

Substituting the above values of t2 into (A2), we get

..

λ(t2, ti, tf ) =
8
(
1415 + 8048

√
10
)

δ2T
≈ 11.01

δ2T
.

To prove property B3, we must note that
.

λ(t, ti, tf ) ≥ 0 for all t ∈ (ti, tf ). Therefore, we

have

∫
∞

0

.

λ
2

(s, ti, tf ) ds

≤ κ1

δT

∫ tf

ti

.

λ(s, ti, tf ) ds =
κ1

δT
≤ ∞,

implying that
.

λ(t, ti, tf ) ∈ L2
2. In a similar fashion, we

can show that
..

λ(t, ti, tf ) ∈ L2
2. Notice that

.
xd(t) =

(xf − xi)
.

λ(t, ti, tf ) and
.
yd(t) = (xf − xi)

.

λ(t, ti, tf)
(see (3)). Accordingly, we can conclude that

.
xd(t),

.
yd(t)

∈ L2
2. Evidently,

..
xd(t),

..
yd(t) ∈ L2

2 also holds.
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