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Abstract 70 

Nonalcoholic fatty liver disease (NAFLD) is a prevalent, heritable trait that can progress to cancer 71 

and liver failure. Using our recently developed proxy definition for NAFLD based on chronic liver 72 

enzyme elevation without other causes of liver disease or alcohol misuse, we performed a multi-73 

ancestry genome-wide association study in the Million Veteran Program with 90,408 NAFLD 74 

cases and 128,187 controls. Seventy-seven loci exceeded genome-wide significance of which 70 75 

were novel, with an additional European-American specific and two African-American specific 76 

loci. Twelve of these loci were also significantly associated with quantitative hepatic fat on 77 

radiological imaging (n=44,289). Gene prioritization based on coding annotations, gene 78 

expression from GTEx, and functional genomic annotation identified candidate genes at 97% of 79 

loci. At eight loci, the allele associated with lower gene expression in liver was also associated 80 

with reduced risk of NAFLD, suggesting potential therapeutic relevance. Functional genomic 81 

annotation and gene-set enrichment demonstrated that associated loci were relevant to liver 82 

biology. We expand the catalog of genes influencing NAFLD, and provide a novel resource to 83 

understand its disease initiation,  progression and therapy.  84 

  85 
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Introduction 86 

Chronic liver disease is a major contributor to global morbidity and mortality, with complications 87 

of cirrhosis and hepatocellular carcinoma1. In particular, nonalcoholic fatty liver disease (NAFLD) 88 

is an increasingly common cause of chronic liver disease with an estimated world prevalence of 89 

25% among adults and associated metabolic risk factors1-5. In the United States (US), NAFLD 90 

prevalence is projected to reach 33.5% among adult population by 2030, due in large part to the 91 

rising obesity and associated metabolic disorders6. NAFLD is defined by ≥5% fat accumulation in 92 

the liver (hepatic steatosis) in the absence of other known causes for liver disease, based on liver 93 

biopsy and/or non-invasive radiological imaging3,4. The clinical spectrum of NAFLD ranges from 94 

benign steatosis to nonalcoholic steatohepatitis (NASH) involving inflammation and 95 

hepatocellular injury with fibrosis progression. At least 20% of patients with NAFLD develop NASH 96 

with increased risk of consequent cirrhosis and liver cancer5,6. To date, there is no licensed drug 97 

approved to treat NAFLD and prevent its progression.  98 

Individual susceptibility to NAFLD involves both genetic and environmental factors. Risk 99 

factors for NAFLD include obesity (in particular, abdominal adiposity), insulin resistance and 100 

features of metabolic syndrome2,5-7, with current estimates of NAFLD heritability ranging 101 

between 20% to 50%8. Several genetic variants that promote the full spectrum of fatty liver 102 

disease have been identified in genome-wide association studies (GWAS) utilizing cohorts based 103 

on liver biopsy, imaging, and/or isolated liver enzyme values9-22. The most prominent of these 104 

include p.I148M in PNPLA3 and p.E167K in TM6SF2, which increase NAFLD risk, and a loss-of-105 

function variant in HSD17B13 that confers protection against NASH16. However, the limited 106 

number of genetic associations in NAFLD contrasts with other cardiometabolic disorders where 107 

hundreds of loci have been mapped to date, traits that include obesity23,24, type 2 diabetes25 and 108 
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plasma lipids26. This also highlights the need for expanded discovery based on larger sample size 109 

and population diversity, with further integration with existing functional genomics data sets to 110 

identify candidate genes from leading, non-coding associations27.  111 

The Million Veteran Program (MVP) is among the world’s largest and ancestrally diverse 112 

biobanks28. The availability of comprehensive, longitudinally collected Veterans Health 113 

Administration (VA) electronic health records for US Veteran participants in the MVP also makes 114 

it a promising resource for precision medicine. As NAFLD is markedly underdiagnosed clinically 115 

due to limited access to liver biopsy and variable use of imaging modalities4, we recently 116 

developed and validated a proxy phenotype for NAFLD to facilitate case identification in MVP21. 117 

The proxy NAFLD phenotype is based on chronically elevated serum alanine aminotransferase 118 

(cALT) levels while excluding other conditions that are known to increase liver enzymes (e.g. viral 119 

hepatitis, alcohol dependence, autoimmune liver disease and known hereditary liver disease). 120 

We applied this cALT-based proxy NAFLD phenotype to the current build of 430,400 genotyped 121 

MVP participants with defined ancestry classification29, and identified 90,408 NAFLD cases and 122 

128,187 controls (inclusion/exclusion criteria for the remaining samples and study design 123 

described in Supplementary Figure 1 and Figure 1). We performed a primary GWAS and 124 

identified 77 trans-ancestry loci that reached genome-wide significance. We used additional 125 

approaches to define NAFLD heritability and genetic correlations with various traits including 126 

quantitative hepatic fat measured by liver imaging with computed tomography (CT) and magnetic 127 

resonance imaging (MRI), in addition to identifying coding variants in putative causal genes. 128 

 129 

 130 
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Results 131 

Diverse NAFLD case and control subjects enriched for metabolic disorders in MVP. 132 

Our study consisted of 90,408 NAFLD cases and 128,187 controls across two stages and 133 

comprising four ancestral groups, namely European Americans (EA, 75.1%), African Americans 134 

(AA, 17.1%), Hispanic-Americans (HISP, 6.9%), and Asian-Americans (ASN, 0.9%,  Supplemental 135 

Table 1) with the overall sample sizes and study design shown in Figure 1 and Supplemental 136 

Figure 1. Consistent with the US Veteran population, MVP cases and controls (n = 218,595) were 137 

predominantly male (92.3%) with an average age of 64 years at study enrollment (Supplemental 138 

Table 1). With the exclusion of other known causes of liver disease in our phenotype definition21, 139 

our cohort was enriched for metabolic disorders, with higher prevalence in cases as compared to 140 

controls for type 2 diabetes (71% vs. 47%, P<1x10-5), hypertension (73% vs. 60%, P<1x10-5 and 141 

dyslipidemia (82% vs. 70%, P<1x10-5). 142 

 143 

Identification of novel trans-ancestry and ancestry-specific NAFLD-associated loci in the diverse 144 

MVP population 145 

To identify loci associated with NAFLD, we performed ancestry-specific genome-wide scans by 146 

meta-analyzing summary statistics derived from each ancestry followed by trans-ancestry meta-147 

analysis combining data across all ancestries and stages (Methods and Figure 1). In the trans-148 

ancestry scan across stages, 77 independent sentinel SNPs exceeded genome-wide significance 149 

(P < 5x10-8), of which 70 were novel whereas 7 (namely PNPLA3, TM6SF2, ERLIN1, TNKS 150 

[PPP1R3B], MARC1, HSD17B13, and LYPLAL1) had previously reported genome-wide significant 151 

associations with NAFLD (within 500kb and/or CEU r2 LD > 0.05; Figure 2 and Supplemental Table 152 
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2)9-22. In addition, 55 loci in EAs, 8 loci in AAs, and 3 loci in HISPs, exceeded genome-wide 153 

significance (Supplemental Tables 3-5 and Supplemental Figures 2-4). One SNP (rs4940689) 154 

reached genome-wide significance in an ancestry-specific analysis of EAs only (Supplemental 155 

Table 3), whereas two SNPs (rs144127357; rs2666559) reached genome-wide significance among 156 

AAs only (Supplemental Table 4). No loci in ASNs achieved genome-wide significance, likely due 157 

to limited sample size in this group (Supplemental Figure 5). 158 

Among the eight AA-specific lead SNPs, three were intronic: rs115038698 in the ABCB4 159 

locus, rs144127357 in TJP2, and rs2666559 in NRXN2. Two of these variants were nearly 160 

monomorphic in EA but polymorphic in AA (rs115038698 MAF AA: 1.2%, MAF EA: 0%; 161 

rs144127357 MAF AA: 3.14%, MAF EA: <0.001%). In contrast, the tagged variant rs2666559 was 162 

common in both AA (MAF = 19.1% in AA, gnomAD AF = 17.2% in Africans) and EA (AF = 69.1% in 163 

EA, gnomAD AF = 68.4% in non-Finnish Europeans).   164 

 165 

Internal and external replication of NAFLD-associated loci. 166 

We next compared the extent of association across both Stage 1 (primary analysis) and Stage 2 167 

replication stage internally in MVP and externally in the Penn Medicine Biobank (PMBB, 168 

Methods). Of the 77 associated SNPs from the trans-ancestry meta-analysis, 56 reached genome-169 

wide significance in Stage 1 subset, of which 32 passed Bonferroni significance (0.05/56) in Stage 170 

2 replication in MVP (Supplemental Table 2). All 77 SNPs showed directional concordance in 171 

effect estimates between the two stages. External replication for our trans-ancestry lead SNPs in 172 

PMBB (n=72 of our loci were genotyped) with 2,570 cases and 3,802 controls demonstrated that 173 

8 out of 72 variants were directionally consistent and nominally associated (signed binomial-test 174 
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P=4.4x10-4). Furthermore, 4 out of 8 loci discovered in the AA-specific scan (signed bionomial-175 

test P=2.5x10-5) and 1 of 3 loci discovered in the HISP-specific scan (signed bionomial test P=0.07) 176 

were also directionally consistent and nominally associated in PMBB (Supplemental Tables 6-9). 177 

In summary, we found 73 novel loci associated with NAFLD that were identified by trans and 178 

single-ancestry association studies and supported by replication in multiple stages and studies. 179 

 180 

Concordance of cALT-based NAFLD loci with CT/MRI-based quantitative hepatic fat 181 

To place our discoveries into physiological context, we next investigated the extent to which the 182 

77 trans-ancestry SNPs from our NAFLD GWAS associated with quantitative measures of hepatic 183 

fat, derived from CT/MRI imaging studies (Methods). We performed a trans-ancestry meta-184 

analysis among 44,289 participants in the UK Biobank, PMBB, Framingham Heart Study, 185 

University of Maryland Old Order Amish Study, and Multi-Ethnic Study of Atherosclerosis 186 

(Supplemental Table 10). We found that 24 SNPs were nominally associated with quantitative 187 

hepatic fat (P < 0.05), of which 12 (15.6% of 77 loci) exceeded Bonferroni multi-test correction (P 188 

< 6.5x10-4, including PNPLA3, TM6SF2, APOC1;APOE, GPAM, MARC1, KIAA0196 [TRIB1], MTTP, 189 

APOH, PIK3R2;IFI30;MPV17L2, TNKS [PPP1R3B], COBLL1;SCN2A and PPARG). Notably, PNPLA3, 190 

TM6SF2, and TNKS [PPP1R3B] were previously identified using imaging data11,12,14, and the 191 

direction of effect for all significant SNPs was concordant between chronic ALT elevation and 192 

hepatic fat, with the known exception of the variant at the PPP1R3B locus12.  193 

 194 

Identification of additional independent NAFLD-associated variants by conditional analysis 195 
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To discover additional variants independent of our lead NAFLD signals, we next performed 196 

approximate conditional analysis using the leading sentinel variants at our 77 trans-ancestry 197 

associated loci. We detected a total of 41 conditionally independent SNPs flanking three known 198 

(PNPLA3, HSD17B13, and ERLIN1) and 17 novel NAFLD loci in EA (Supplemental Table 11).  Nine 199 

conditionally independent SNPs were observed at the PNPLA3 locus in MVP, indicative of the 200 

complexity of this locus. For one of the novel loci, located on chromosome 12 between 121-201 

122Mb, the trans-ancestry lead variant (rs1626329) was located in P2RX7, whereas the lead peak 202 

for EA mapped to HNF1A (rs1169292, Figure 3).  Both are strongly linked to distinct coding 203 

variants (P2RX7: rs1718119, Ala348Thr and HNF1A: rs1169288, Ile27Leu) and are compelling 204 

candidate genes for metabolic liver disease. In AA, we observed eight conditionally independent 205 

variants at four genomic loci, one at PNPLA3 and three novel loci (Supplemental Table 12), 206 

including four in GPT, two in AKNA, one in ABCB4. In HISP, two conditionally independent variants 207 

in the PNPLA3 locus were identified (Supplemental Table 13). Collectively, 51 additional variants 208 

were identified at 24 loci across ancestries based on conditional analysis. 209 

 210 

Fine mapping to define potential causal variants in 95% credible sets 211 

To leverage increased sample size and population diversity to improve fine-mapping resolution, 212 

we computed 95% credible sets using Wakefield’s approximate Bayes’ factors30 derived from the 213 

trans-ancestry meta-regression, EA, AA, and HISP scans (Supplemental Table 14-17, Methods). 214 

In a comparison of the trans-ancestry and EA-only scans, the trans-ancestry meta-regression 215 

reduced the median 95% credible set size from 9 (IQR 3 - 17) to 7.5 variants (IQR 2 - 13). A total 216 

of 11 distinct NAFLD associations were resolved to a single SNP in the trans-ancestry meta-217 
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regression, with 4 additional loci suggestive a single SNP in the EA (n=2) and AA (n=2) ancestry-218 

specific meta-analyses that were not already resolved to a single SNP via the trans-ancestry 219 

analysis.  220 

 221 

Heritability of NAFLD and genetic correlations with other phenotypes. 222 

To tabulate trait heritability and genetic correlation with others, we utilized LD score regression31-223 

33 (Methods). Consistent with our discovery of novel genetic associations, we estimated the SNP-224 

based liability-scaled heritability at 16% (95% CI: 12-19, P < 1.0x10-6) in EA. Genome-wide genetic 225 

correlations of NAFLD were calculated with a total of 774 complex traits and diseases by 226 

comparing allelic effects using LD score regression with the EA-specific NAFLD summary statistics. 227 

A total of 116 significant associations were observed (Bonferroni correction for 774 traits P < 228 

6.5x10-5, Supplemental Table 18). Consistent with the previous epidemiological associations with 229 

metabolic syndrome traits, we observed strong correlations with cardiometabolic risk factors 230 

including measures of obesity and adiposity, type 2 diabetes, hypertension, dyslipidemia, 231 

coronary artery disease, family history of metabolic risk factors and general health conditions in 232 

addition to educational attainment.  233 

 234 

Liver-specific enrichment of NAFLD heritability 235 

To ascertain the tissues contributing to the disease-association underlying NAFLD heritability, we 236 

performed tissue-specific analysis using stratified LD score regression. The strongest associations 237 

were observed in genomic annotations surveyed in liver, hepatocytes, adipose, and immune cell 238 

types among others (e.g., liver histone H3K36me3 and H3K4me1, adipose nuclei H3K27ac, spleen 239 
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TCRγδ, eosinophils in visceral fat; Supplemental Table 19). Medical subject heading (MeSH)-240 

based analysis showed enrichment mainly in hepatocytes and liver (False Discovery Rate (FDR) < 241 

5%, Supplemental Table 20). Gene set analysis showed strongest associations for liver and lipid-242 

related traits (P-value < 1x10-6, Supplemental Table 21). Enrichment analyses using publicly-243 

available epigenomic data (implemented in GREGOR enrichment analysis, Methods) showed that 244 

most significant enrichments were observed for active enhancer chromatin state in liver, 245 

epigenetic modification of histone H3 in hepatocytes or liver-derived HepG2 cells (e.g. H3K27Ac, 246 

H3K9ac, H3K4me1, H3K4me3; Supplemental Table 22 and 23). These analysis support the 247 

hypothesis that our GWAS captures multiple physiological mechanisms that contribute 248 

heritability to NAFLD. Finally, DEPICT-based predicted gene function nominated gene candidates 249 

for 28 genes, including the known genes PNPLA3 and ERLIN1 (FDR <5%, Supplemental Table 24), 250 

as well as well-known cardiometabolic disease genes (e.g., PPARG). 251 

 252 

Coding variants in putative causal genes driving NAFLD associations. 253 

There were six novel trans-ancestry loci for which the lead SNP itself is a coding missense variant 254 

(Supplementary Table 25): Thr1412Asn in CPS1 (rs1047891, β=0.037, P=2.8x10-8), Glu430Gln in 255 

GPT (rs141505249, β=-2.023, P=9.0x10-62), Val112Phe in TRIM5 (rs11601507, β=0.099, P=1.5x10-256 

14), Ala163Thr in DNAJC22 (rs146774114, β=-0.157, P=2.5x10-8), Glu366Lys in SERPINA1 257 

(rs28929474, β=0.492, P=9.01x10-73) and Cys325Gly in APOH (rs1801689, β=0.17, P=1.5x10-18). 258 

To identify additional coding variants that may drive the association between the lead SNPs and 259 

NAFLD risk, we investigated predicted loss of function (pLoF) and missense variants strongly 260 

linked to the identified NAFLD lead variants (r2 > 0.7, Supplemental Table 25-28). Four previously 261 
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described missense variants were replicated in the current study, including Thr165Ala in MARC1, 262 

Ile292Val in ERLIN1, Glu167Lys in TM6SF2 and Ile148Met in PNPLA3. Among novel loci, missense 263 

variants linked (r2 > 0.7) with lead variants included the genes CCDC18, MERTK, APOL3, PPARG, 264 

MTTP, MLXIPL, ABCB4, AKNA, GPAM, SH2B3, P2RX7, NYNRIN, ANPEP,IFI30 and MPV17L2. Among 265 

the trans-ancestry coding missense variants, ten (CCDC18, MLXIPL, ABCB4, AKNA, DNAJC22, 266 

SERPINA1, ANPEP, APOH, IFI30, MPV17L2, and PNPLA3) were predicted based on two methods 267 

(SIFT, PolyPhen-2) to have potentially deleterious and/or damaging effects in protein 268 

function34,35. An AA-specific locus on chromosome (rs115038698, chr7:87024718) was strongly 269 

linked to a nearby missense variant Ala934Thr in ABCB4 (rs61730509, AFR r2=0.92) with predicted 270 

deleterious effect, where the T-allele confers an increased risk of NAFLD (β=0.617, P=1.8x10-20). 271 

In summary, 24 of our 77 trans-ancestry loci prioritized a candidate gene based on a missense 272 

variant in tight linkage with the lead SNP (Supplemental Table 25).  273 

 274 

Additional approaches to nominate putative causal genes 275 

We performed colocalization analyses with gene expression and splicing across 48 tissues 276 

measured by the GTEx project, and overlapped our lead SNPs with histone quantitative trait locus 277 

(QTL) data from livers to identify NAFLD-associated variants that are also associated with change 278 

in gene expression (eQTLs), splice isoforms (sQTLs), or histone modifications (hQTLs, Methods, 279 

Supplemental Table 29). Across all tissues, a total of 123 genes were prioritized with 20 genes in 280 

liver tissue (Methods). In liver tissue alone, a total of eight variant-gene pairs were identified 281 

where the allele associated with protection against NAFLD was also associated with reduced gene 282 

expression (i.e., the direction of effect was concordant between the GTEx eQTL and GWAS 283 
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sentinel variant): AC091114.1, PANX1, FADS2, SHROOM3, U2SURP, NYNRIN, CD276 and EFHD1. 284 

Furthermore, sQTL analysis in GTEx v8 identified two genes in liver, HSD17B13 and ANPEP, and 285 

12 genes (MARC1, HSD17B13, ABO, FADS1-FADS2, TMEM258, MLXIP, ANPEP, KAT7, STRADA, 286 

DDX42, TRC4AP, and APOL3) that were affected in at least two tissues (Supplemental Table 30). 287 

Finally, two of our lead SNPs were in high LD (r2 > 0.8) with variants that regulated H3K27ac levels 288 

in liver tissue (hQTLs), namely EFHD1 (hQTL SNPs rs2140773, rs7604422 in EFHD1) and FADS2 289 

loci (hQTL rs174566 in FADS2)36.  290 

We next mapped our NAFLD loci to regions of open chromatin using ATAC-seq in three 291 

biologically-relevant liver-derived tissues (human liver, liver cancer cell line [HepG2], and 292 

hepatocyte-like cells [HLC] derived from pluripotent stem cells)37. Additionally, we used 293 

promoter-focused Capture-C data to identify those credible sets that physically interact with 294 

genes in two relevant cell types (HepG2 and liver) (Supplemental Table 31). These datasets are 295 

useful entry points for deciphering regulatory mechanisms involved in the pathophysiology of 296 

NAFLD. Most notably, the genes DHODH, H2AFZ, PAQR9, FTO, MIR644A, BCL7B and KRT82 297 

showed interactions with NAFLD loci that were also in open chromatin in both HLC and HepG2 298 

cells.  299 

 Based on DEPICT gene prediction, coding variant linkage analysis, and QTL colocalization 300 

(Supplemental Tables 24-31), 215 potentially relevant genes for NAFLD were identified for the 301 

77 loci. A protein-protein interaction (PPI) analysis revealed that among the 192 available 302 

proteins, 86 nodes were observed, with a PPI enrichment (P < 9.0x10-8) indicating that the 303 

network has substantially more interactions than expected by chance (Supplemental Table 32 304 

and Supplemental Figure 6).  305 
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For each gene identified from all of the above described analyses, we counted the number 306 

of times that the gene was identified for each of the analyses (DEPICT gene prediction, coding 307 

variant linkage, QTL colocalization, promotor Capture-C and/or ATAC-Seq peak overlap, and PPI 308 

network analysis) and divided this by the number of analyses (e.g., 8). We labeled this measure 309 

as the gene nomination score, which reflects the cumulative evidence supporting the respective 310 

gene as causal for the observed association. Based on our gene nomination scheme, we found 311 

evidence for a single gene nomination at 52 genomic loci, two genes at 14 loci, and three genes 312 

at six loci. Six  loci had more than three genes nominated (one of which was HLA), and only two 313 

loci lacked any data to support a nomination (Supplemental Table 33). We further prioritized 314 

those loci which were prioritized by at least 3 sources of evidence (or 4 sources of evidence for 315 

coding variants). This resulted in a total of 27 loci supported by multiple lines of evidence (Table 316 

1), which included 6 loci with co-localizing eQTLs in liver or adipose tissues and connection to the 317 

predicted gene via Promoter CaptureC data (i.e., EPHA2, IL1RN, SHROOM3, HKDC1, PANX1, 318 

DHODH;HP). 319 

Interestingly, 14 of the nominated genes are transcription factors (TF) (Supplemental 320 

Table 34). Of particular interest, two of these TFs have several downstream target genes 321 

identified using the DoRothEA data in OmniPath (Methods). Notably, the CEBPA TF targets the 322 

downstream genes PPARG, TRIB1, GPAM, FTO, IRS1, CRIM1, HP, TBC1D8, and CPS1, but also 323 

NCEH1, a gene in the vicinity of one of our associations that lacked a nominated candidate gene. 324 

Similarly, HNF1A, the lead gene in EA scan (and corresponding to the trans-ancestry P2RX7 locus) 325 

targets SLC2A2, MTTP, and APOH.  326 

 327 
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Polygenic Risk Score analyses. 328 

We calculated a candidate SNP polygenic risk score (PRS) based on Stage 1 350K dataset (primary 329 

set) to perform a Phewas in an independent sample in MVP (Stage 2 replication set). We observed 330 

that an increased NAFLD PRS was associated with abnormal results of function study of liver 331 

(Bonferroni P < 3.1 x 10-5), and showed suggestive significance with bacterial pneumonia, otalgia, 332 

gout and other crystal arthropathies and non-infectious gastroenteritis (P < 0.001, Supplemental 333 

Table 35). Furthermore, a NAFLD PRS based on the Stage 1 set was positively associated with 334 

NAFLD prediction in the Stage 2 replication set (P=3.8 x 10-5, Supplemental Table 36). 335 

 336 

Investigation of pleiotropy of lead NAFLD SNPs.  337 

We next sought to identify additional traits that were also associated with our 77 trans-ancestry 338 

lead SNPs. First, we performed a LabWAS of distinct clinical laboratory test results38 in MVP 339 

(Methods), yielding 304 significant SNP-trait associations (Supplemental Table 37, Supplemental 340 

Figure 7). Second, we performed a PheWAS Analysis in UK Biobank data using SAIGE (Methods), 341 

which identified various SNP-trait associations that mapped to loci previously associated with 342 

liver traits, cardiometabolic traits, as well as additional enriched association for gallstones, gout, 343 

arthritis, and hernias (Supplemental Tables 38 and 39). In particular, we examined all 344 

associations for PheCode 571.5, “Other chronic nonalcoholic liver disease” which comprised 345 

1,664 cases and 400,055 controls. Of the n=73 variants found, we noted that 14/73 were both 346 

nominally associated and directionally consistent with our scan (signed binomial test P=3.4x10-347 

9), providing additional validation for our scan (Supplementary Table 40). Third, we performed a 348 

SNP lookup using the curated data in the IEU OpenGWAS project (Supplemental Tables 41 and 349 
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42), which identified 2,891 genome-wide significant SNP-trait associations for trans-ancestry 350 

SNPs, and additional 283 SNP-trait associations for the ancestry-specific lead SNPs. Finally, we 351 

performed cross-trait colocalization analyses using COLOC of EA, AA, and HISP lead loci with 36 352 

other GWAS statistics of cardiometabolic and blood cell related traits (Methods). This resulted in 353 

significant regional colocalization for 64 SNP-trait pairs in EA, 32 SNP-trait pairs in AA, and 12 SNP 354 

trait pairs in HISP (Supplemental Table 43-45). 355 

Based on the four analyses described above, we categorized relevant phenotypes 356 

observed as liver traits, metabolic traits, or inflammatory traits based on all significant SNP-trait 357 

associations and their nominated candidate genes (Supplemental Tables 37-44, Figure 4). Across 358 

the trans-ancestry lead variants (n=77), ancestry-specific (n=3), and secondary proximal 359 

associations (HNF1A, n=1), 22 SNPs showed association with only liver traits (such as ALT, ALP, 360 

AST, and GGT)  (Figure 4). By contrast, 23 loci showed associations with both liver and 361 

cardiometabolic traits (such as HDL, LDL, and total cholesterol, triglycerides, BMI, glucose, and 362 

HbA1c) whereas 3 loci (IL1RN, TMEM147;ATP4A and RORA) showed association with both liver 363 

traits and inflammatory traits (e.g., C-reactive protein, white blood cell count, lymphocyte count). 364 

Finally, 25 loci showed association with all three traits: liver, cardiometabolic, and inflammation. 365 

Notably, among 12 loci that showed significant association with hepatic fat (color-coded in red 366 

in Figure 4), 11 were associated with both liver and metabolic traits, including five that were also 367 

associated with inflammatory traits.  Collectively, our findings identify novel NAFLD-associated 368 

genetic loci with pleotropic effects that may impact hepatic, metabolic and inflammatory traits. 369 

 370 

  371 
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Discussion 372 

In this study, the largest and most diverse GWAS of NAFLD to date, we report a total of 77 trans-373 

ancestry (of which 70 are novel) and 3 additional ancestry-specific loci that show significant 374 

genome-wide association with NAFLD. While our NAFLD definition is a proxy for chronic 375 

hepatocellular injury in the absence of other known causes of liver disease, we further used 376 

CT/MRI imaging data to compare to what extent these SNPs also associated with hepatic fat 377 

accumulation. Overall, 24 (~30%) of these loci were nominally associated with hepatic fat based 378 

on CT or MRI, and the majority of these overlapping SNPs were associated with metabolic and/or 379 

inflammatory traits. Thus, SNPs that are associated with liver enzymes, metabolic risk factors, 380 

and inflammatory biomarkers may be the most likely to be associated with liver steatosis and 381 

should be prioritized for further follow-up.  Furthermore, detailed genetic correlation analyses 382 

showed significant enrichment of these SNPs for cardiometabolic traits, metabolic pathways, and 383 

genomic annotations relevant for NAFLD. We found that most of our index NAFLD-associated 384 

SNPs were associated with metabolic and/or inflammatory traits - the most common being lipid-385 

related, followed by glycemic traits, hypertension, and cardiovascular disease, as well as 386 

cholelithiasis (gallstones), cholecystitis, osteoarthritis, hypothyroidism, and thrombophlebitis. 387 

Collectively, our findings offer a comprehensive and refined view of the genetic contribution to 388 

NAFLD with potential clinical, pathogenic, and therapeutic relevance. Integration of these with 389 

extant phenotypic association data sets allowed us to further characterize the functional 390 

mechanisms through which our identified loci may mediate NAFLD risk.  391 

 Previous studies for liver enzyme levels, particularly serum ALT activity, have been 392 

performed 10,11,16. While there is overlap in the discoveries made by studies of natural variation 393 
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in circulating levels of this biomarker, our cohort and approach to phenotyping make our results 394 

and interpretation unique. First, the diversity of our cohort provides both additional power and 395 

potential for discovery, as the bulk of studies to date have been performed in predominantly 396 

European-ancestry cohorts. Second, our approach ascertains individuals with chronic elevation 397 

of this enzyme, consistent with genuine chronic liver disease. At the same time, we excluded 398 

individuals with known causes of liver disease outside of NAFLD via ICD code definition, which 399 

served to further enrich for metabolic disorders in our cohort. We further excluded control 400 

individuals who maybe have intermittent ALT elevation, focusing on a healthier, ‘super-control’ 401 

subset of the population. The result is that our approach should have higher specificity to 402 

ascertained risk alleles that predispose to metabolic-induced fatty liver disease. In contrast, a 403 

standard-ALT scan would be powered to discover the full spectrum of causes of liver disease (and 404 

perhaps many more loci), many of which will not be specific to NAFLD and may be due to other 405 

causes. As we have shown in validation studies using quantitative measures of hepatic fat as well 406 

as ICD-code definitions of NAFLD, our results are highly directionally concordant, demonstrating 407 

the relevance of our proxy phenotype to liver disease and physiology. Genetic correlation analysis 408 

demonstrated strong correlation with cardiometabolic traits and disease, again consistent with 409 

the relevance of our trait relative to simple enzyme measures. 410 

There are several aspects of our study that are worth highlighting. We demonstrate the 411 

strength of trans-ancestry GWAS for the discovery and interrogation of NAFLD susceptibility loci, 412 

discoveries made possible by the diversity and sample size of the Million Veteran Program cohort, 413 

of which 25% of participants are of non-European ancestry. Utilizing this data allows us to narrow 414 

down putatively causal variants through trans-ancestry fine-mapping and construction of 415 
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credible sets likely to harbor the likely culprit variant(s). Construction of credible sets using trans-416 

ancestry data has been shown to facilitate fine-mapping by producing smaller credible sets 417 

compared to sets based on single ancestries39, an effect we also observed at our loci. Moreover, 418 

we identified eight NAFLD-associated loci in AAs. In particular, the lead SNP at the ABCB4 locus 419 

(rs115038698) was in high LD with the missense variant rs61730509 (Ala934Thr, AFR r2=0.92) and 420 

segregated a very potent effect (OR=1.87, CI=1.64-2.14, P=1.8x10-20). This variant is of low 421 

frequency in AA (MAF=1.2%) but virtually absent in EA and ASN. ABCB4, also known as multidrug 422 

resistance protein 3 (MDR3), is a compelling candidate gene, as it has been previously implicated 423 

in cholestasis, gallbladder disease, and adult biliary fibrosis/cirrhosis40-42. Finally, for a number of 424 

variant gene-pairs, the observed effect on NAFLD risk and the impact of gene expression in the 425 

liver was consistent with our understanding of the expected effect given what is known about 426 

gene function, suggesting possible relevance as therapeutic targets. Among those, genetic 427 

deletion of Pannexin 1 (encoded by PANX1) was reported to have a protective effect in mouse 428 

model of acute and chronic liver disease43,44, and is consistent with the data we report here.  429 

 Twelve of our loci were associated with quantitative measures of hepatic fat after 430 

multiple-test correction.  These included loci previously associated with NAFLD or all-cause 431 

cirrhosis (e.g., PNPLA3, TM6SF2, TNKS [PPP1R3B], KIAA0196 [TRIB1], and MARC1), but also 432 

included novel loci reported here (e.g., GPAM, APOE;APOC1, MTTP, APOH, IFI30;MPV17L2, 433 

SCN2A;COBLL1, and PPARG). In all cases except TNKS [PPP1R3B], the directional effect on hepatic 434 

fat was consistent with cALT levels. A discordance between measures of hepatic fat based on 435 

radiological and histological evaluation has been noted12 and may be explained by the role of the 436 
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PPP1R3B-encoded protein in promoting  the accumulation of hepatic glycogen45 which may 437 

influence the contrast in hepatic images46,47.  438 

 Through functional genomic and bioinformatics prioritization analyses beyond those 439 

based on coding variants or eQTLs, we were able to nominate loci that have at least one 440 

candidate gene nominations at 75 out of our 77 (97%) identified loci. We found that these genes 441 

were often highly expressed in liver and have prior biological connections to liver physiology and 442 

disease, making this list compelling for further interrogation. As an example, GPAM, tagged by 443 

the missense variant rs2792751 (Ile43Val, EA r2 = 0.99), encodes the mitochondrial glycerol-3-444 

phosphate-acyltransferase 1, a protein used in the mitochondria to convert saturated fatty acids 445 

into glycerolipids. GPAM is highly expressed in liver48,49 and associated with metabolic disease50, 446 

consistent with our pleiotropy analyses. Mouse knockouts of GPAM had reduced weight, lower 447 

hepatic triacylglycerol content, and decreased plasma triacylglycerol51. Another example is MTTP 448 

which is tagged by the missense variant rs3816873 (Ile128Thr, EA r2=1.0) and encodes the 449 

microsomal triglyceride transfer protein, which loads lipids onto assembling VLDL particles and 450 

facilitate their secretion by hepatocytes.  Liver-specific MTTP knockout mice have reduced VLDL 451 

secretion and increased hepatic steatosis52. Lomitapide, a small molecule inhibitor of MTTP, is 452 

approved as a treatment for lowering LDL cholesterol in homozygous familial 453 

hypercholesterolemia, but increases liver lipid by inhibiting VLDL secretion53. TRIM5 (Val112Phe) 454 

is a member of the tripartite motif (TRIM) family with E3 ubiquitin ligase activity with a key role 455 

in innate immune signaling and antiviral host defense54, and TRIM5 SNPs have been associated 456 

with increased risk of liver fibrosis in HIV/HCV co-infected patients55. APOH (Cys325Gly) encodes 457 

the apolipoprotein H which is exclusively expressed in liver tissue48 and which is associated with 458 
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ALT, AST, triglycerides, LDL cholesterol and platelets in the MVP labWAS. Two coding variants 459 

(strongly linked) in MerTK (Arg466Lys and Ile518Val, r2=0.98) were associated with NAFLD; MerTK 460 

signaling in hepatic macrophages was recently shown to mediate hepatic stellate cell activation 461 

and promote hepatic fibrosis progression56, and variants in MERTK were associated with liver 462 

fibrosis progression in HCV-infected patients57, raising the possibility for MerTK as a novel 463 

therapeutic target against fibrosis58. We emphasize that functional studies of our nominated 464 

causal genes are needed to demosntrate casual relevance, their impact on hepatosteatosis, and 465 

ultimately to determine their underlying mechanisms. 466 

 Given the complex etiology and progression of NAFLD, we anticipated that our study 467 

would identify novel loci with putatively causal genes that span multiple molecular pathways. 468 

Indeed, our novel loci include genes that play roles in obesity (e.g., FTO, PPARG), insulin 469 

resistance (e.g., COBLL1, MIR5702 [IRS1]), and diabetes (e.g., HNF1A). Relevant for hepatic 470 

inflammation in the two-hit hypothesis of NAFLD59, our novel loci also implicate immune-471 

mediated or inflammatory contributions to NAFLD progression, including HLA, RORA60,61, 472 

IFI3062,63, CD27664, ILRN62,65, ITCH66,67 and P2RX768-70. Among these, RORA encodes the retinoic 473 

acid receptor related orphan receptor A which may be involved in NASH pathogenesis through 474 

macrophage polarization and miRNA122, which comprises 70% of the total miRNA in liver 60,61. It 475 

is also known that loss of TRIB1 substantially decreases miR-122 levels via its impact on HNF4 and 476 

HNF1A71. IFI30 encodes gamma-interferon-inducible lysosomal thiol reductase (GILT) which is 477 

involved in antigen processing and presentation and the production of reactive oxygen species 478 

during cellular stress and autophagy. Finally, P2RX7 encodes the purinergic receptor P2X7 which 479 

is involved in inflammasome activation and IL-1β processing in liver inflammation and fibrosis68-480 
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70. Encouragingly, these and additional pathways have emerged despite the proxy nature of our 481 

phenotype, and almost certainly underestimate the true number of loci contributing to NAFLD.  482 

In conclusion, we define 77 trans-ancestry loci (70 novel) with 3 additional ancestry-483 

specific loci associated with NAFLD by using chronic ALT elevation in a large, ancestrally diverse 484 

cohort enriched for metabolic disorders without other known causes of liver disease. The 485 

abundance of NAFLD loci identified by our analyses constitutes a much-needed large-scale, multi-486 

ancestry genetic resource that can be used to build prediction models, identify causal 487 

mechanisms, and understand biological pathways contributing to NAFLD initiation and disease 488 

progression. 489 

 490 

 491 

Methods 492 

We performed a large-scale trans-ancestry NAFLD GWAS in the Million Veteran Program. We 493 

subsequently conducted analyses to facilitate the prioritization of these individual findings, 494 

including transcriptome-wide predicted gene expression for NAFLD, secondary signal analysis, 495 

coding variant mapping, phenome-wide association analyses in various public data sources, and 496 

various forms of cardiometabolic cross-trait colocalization analyses to fine-map the genomic loci 497 

to putatively causal genes. 498 

 499 

Discovery cohort. 500 

The Million Veteran Program (MVP) is a large cohort of fully consented veterans of the United 501 

States military forces recruited from 63 participating Department of Veterans Affairs (VA) medical 502 

facilities28. Recruitment for this ongoing sample started in 2011, and all veterans are eligible to 503 
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participate. This study analyzed clinical data through July 2017 for participants who were enrolled 504 

since January 2011. All MVP study participants provided blood samples for DNA extraction and 505 

genotyping, completed surveys about their health, lifestyle, and military experiences. Consent to 506 

participate and permission to re-contact was provided after veterans received information 507 

materials by mail and met with research staff to address their questions. Study participation also 508 

includes access to the participant’s electronic health records for research purposes. Each 509 

veteran’s electronic health care record is integrated into the MVP biorepository, including 510 

inpatient International Classification of Diseases (ICD-9-CM and ICD-10-CM) diagnosis codes, 511 

Current Procedural Terminology (CPT) procedure codes, clinical laboratory measurements, and 512 

reports of diagnostic imaging modalities. Researchers are provided with de-identified data, and 513 

have neither the ability nor authorization to link these details with a participant’s identity. Blood 514 

samples are collected by phlebotomists and banked at the VA Central Biorepository in Boston, 515 

where DNA is extracted and shipped to two external centers for genotyping. The MVP received 516 

ethical and study protocol approval from the VA Central Institutional Review Board (IRB) in 517 

accordance with the principles outlined in the Declaration of Helsinki. 518 

Genotyping: DNA extracted from buffy coat was genotyped using a custom Affymetrix Axiom 519 

biobank array. The MVP 1.0 genotyping array contains a total of 723,305 SNPs, enriched for 1) 520 

low frequency variants in AA and HISP populations, and 2) variants associated with diseases 521 

common to the VA population 28.  522 

Genotype quality-control: The MVP genomics working group applied standard quality control and 523 

genotype calling algorithms to the data in three batches using the Affymetrix Power Tools Suite 524 

(v1.18). Excluded were duplicate samples, samples with more heterozygosity than expected, and 525 
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samples with an over 2.5% missing genotype calls. We excluded related individuals (halfway 526 

between second- and third-degree relatives or closer) with KING software72. Before imputation, 527 

variants that were poorly called or that deviated from their expected allele frequency based on 528 

reference data from the 1000 Genomes Project were excluded73. After prephasing using EAGLE 529 

v2, genotypes were imputed via Minimac4 software74 from the 1000 Genomes Project phase 3, 530 

version 5 reference panel. The top 30 principal components (PCs) were computed using FlashPCA 531 

in all MVP participants and an additional 2,504 individuals from 1000 Genomes. These PCs were 532 

used to unify of self-reported race/ancestry and genetically inferred ancestry to compose 533 

ancestral groups29. 534 

Phenotype classification: MVP NAFLD phenotype definitions were developed by combining a 535 

previously published VA CDW ALT-based approach with non-invasive clinical parameters 536 

available to practicing clinicians at the point of care.  The primary NAFLD phenotype (labeled 537 

“ALT-threshold”) was defined by: (i) elevated ALT >40 U/L for men and >30 U/L for women during 538 

at least two time points at least 6 months apart within a two-year window period at any point 539 

prior to enrollment and (ii) exclusion of other causes of liver disease (e.g. presence of chronic 540 

viral hepatitis B or C [defined as positive hepatitis C RNA > 0 international units/mL or positive 541 

hepatitis B surface antigen], chronic liver diseases or systemic conditions [e.g. hemochromatosis, 542 

primary biliary cholangitis, primary sclerosing cholangitis, autoimmune hepatitis, alpha-1-543 

antitrypsin deficiency, sarcoidosis, metastatic liver cancer, secondary biliary cirrhosis, Wilson’s 544 

disease], and/or alcohol use disorder [e.g. alcohol use disorder, alcoholic liver disease, alcoholic 545 

hepatitis and/or ascites, alcoholic fibrosis and sclerosis of liver, alcoholic cirrhosis of liver and/or 546 

ascites, alcoholic hepatic failure and/or coma, and unspecified alcoholic liver disease). The 547 
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control group was defined by having a: normal ALT (≤30 U/L for men, ≤20 U/L for women) and 548 

no apparent causes of liver disease or alcohol use disorder or related conditions21. Habitual 549 

alcohol consumption was assessed with the age-adjusted Alcohol Use Disorders Identification 550 

Test (AUDIT-C) score, a validated questionnaire annually administered by VA primary care 551 

practitioners and used previously in MVP75,76. 552 

 553 

Single-variant autosomal analyses. 554 

We tested imputed SNPs that passed quality control (i.e. HWE > 1x10-10, INFO > 0.3, call rate > 555 

0.975) for association with NAFLD through logistic regression assuming an additive model of 556 

variants with MAF > 0.1% in European American (EA), and MAF > 1% in African Americans (AA), 557 

Hispanics (HISP), and Asians (ASN) using PLINK2a software77. Covariates included age, gender, 558 

age-adjusted AUDIT-C score, and 10 principal components of genetic ancestry. We aggregated 559 

association summary statistics from the ancestry-specific analyses and performed a trans-560 

ancestry meta-analysis. The association summary statistics for each analysis were meta-analyzed 561 

in a fixed-effects model using METAL with inverse-variance weighting of log odds ratios78. 562 

Variants were clumped using a range of 500kb and/or CEU r2 LD > 0.05, and were considered 563 

genome-wide significant if they passed the conventional p-value threshold of 5.0x10-8. 564 

 565 

Secondary signal analysis. 566 

GCTA79 was used to conduct conditional analyses to detect ancestry-specific distinct association 567 

signals at each of the lead SNPs utilizing the GWAS summary statistics in EA, AA, and HISP; these 568 

ancestry-stratified MVP cohorts were used to model LD patterns between variants. The reference 569 
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panel of genotypes consisted of the variants with allele frequencies > 0.1% in EA, >1% in AA, and 570 

>1% in HISP that passed quality control criteria in the MVP-specific NAFLD GWAS (INFO > 0.3, 571 

HWE P > 1.0x10-10, call rate > 0.975). For each lead SNP, conditionally independent variants that 572 

reached locus-wide significance (P < 1.0x10-5) were considered secondary signals of distinct 573 

association. If the minimum distance between any distinct signals from two separate loci was less 574 

than 500kb, we performed an additional conditional analysis that included both regions and 575 

reassessed the independence of each signal.  576 

 577 

Credible Sets. 578 

We calculated Wakefield’s approximate Bayes’ factors 30 based on the marginal summary 579 

statistics of the trans-ancestry meta-analysis and ancestry specific summary statistics using the 580 

CRAN R package corrcoverage80. For each locus, the posterior probabilities of each variant being 581 

causal were calculated and a 95% credible set was generated which contains the minimum set of 582 

variants that jointly have at least 95% posterior probability (PP) of including the causal variant.  583 

 584 

Concordance of NAFLD with qHF. 585 

For 77 lead trans-ancestry SNPs a concordance analysis was performed to evaluate the extent to 586 

which genetic predictors of hepatocellular injury (cALT) correspond with quantitative hepatic fat 587 

derived from computed tomography (CT) / magnetic resonance imaging (MRI)-measured hepatic 588 

fat in the Penn Medicine Biobank (PMBB), UK Biobank, Multi-Ethnic Study of Atherosclerosis 589 

(MESA), Framingham Heart Study (FHS), and University of Maryland Older Order Amish study. 590 

Attenuation was measured in Hounsfield units. The difference between the spleen and liver 591 
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attenuation was measured for PMBB; a ratio between liver attenuation/spleen attenuation was 592 

used for MESA and Amish; and liver attenuation/phantom attenuation ratio in FHS as previously 593 

described by Speliotes et al12. Abdominal MRI data from UK Biobank data were used to quantify 594 

liver fat using a two-stage machine learning approach with deep convolutional neural networks81. 595 

CT-measured hepatic fat was estimated using a multi-stage series of neural networks for 596 

presence of scan contrast and liver segmentation using convolutional neural networks. The PMBB 597 

included CT data on 2,979 EA and 1,250 AA participants82, the FHS included a total of 3,011 EA 598 

participants, the Amish study 754 EA participants, and MESA contributed 1,525 EA, 1,048 AA, 923 599 

HISP, and 360 ASN participants for concordance analysis. The UK Biobank included MRI image 600 

data from 36,703 EA participants. All cohorts underwent individual-level linear regression 601 

analysis on hepatic fat, adjusted for the covariates of age, gender, first 10 principal components 602 

of genetic ancestry, and alcohol intake if available. If the lead SNP was not available in any of the 603 

studies, a proxy SNP in high LD with the lead variant was used (r2 > 0.7) or if no such variant was 604 

identified, the SNP was set to missing for that respective study. The study-specific ancestry-605 

stratified summary statistics were first standardized to generate standard scores or normal 606 

deviates (z-scores), and then meta-analyzed using METAL in a fixed-effects model with inverse-607 

variance weighting of regression coefficients78. In a first round of meta-analysis, ancestry-specific 608 

summary statistics were generated, which then served as input for a subsequent round of meta-609 

analysis that represents the trans-ancestry effects of our lead SNPs on quantitative hepatic fat.  610 

 611 

Heritability estimates and genetic correlations analysis.  612 
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LD-score regression was used to estimate the heritability coefficient, and subsequently 613 

population and sample prevalence estimates were applied to estimate heritability on the liability 614 

scale83. A genome-wide genetic correlation analysis was performed to investigate possible co-615 

regulation or a shared genetic basis between T2D and other complex traits and diseases. Pairwise 616 

genetic correlation coefficients were estimated between the meta-analyzed NAFLD GWAS 617 

summary output in EA and each of 774 precomputed and publicly available GWAS summary 618 

statistics for complex traits and diseases by using LD score regression through LD Hub v1.9.3 619 

(http://ldsc.broadinstitute.org). Statistical significance was set to a Bonferroni-corrected level of 620 

P < 6.5 x 10-5. 621 

 622 

Tissue- and epigenetic-specific enrichment of NAFLD heritability.  623 

We analyzed cell type-specific annotations to identify enrichments of NAFLD heritability. First, a 624 

baseline gene model was generated consisting of 53 functional categories, including UCSC gene 625 

models, ENCODE functional annotations84, Roadmap epigenomic annotations85, and FANTOM5 626 

enhancers86. Gene expression and chromatin data were also analyzed to identify disease-relevant 627 

tissues, cell types, and tissue-specific epigenetic annotations. We used LDSC31-33 to test for 628 

enriched heritability in regions surrounding genes with the highest tissue-specific expression. 629 

Sources of data that were analyzed included 53 human tissue or cell type RNA-seq data from 630 

GTEx27; human, mouse, or rat tissue or cell type array data from the Franke lab87; 3 sets of mouse 631 

brain cell type array data from Cahoy et al88; 292 mouse immune cell type array data from 632 

ImmGen89; and 396 human epigenetic annotations from the Roadmap Epigenomics Consortium 633 

85. 634 
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 635 

Pathway Annotation enrichment.  636 

Enrichment analyses in DEPICT90 were conducted using genome-wide significant (P < 5x10-8) 637 

NAFLD GWAS lead SNPs. DEPICT is based on predefined phenotypic gene sets from multiple 638 

databases and Affymetrix HGU133a2.0 expression microarray data from >37k subjects to build 639 

highly-expressed gene sets for Medical Subject Heading (MeSH) tissue and cell type annotations. 640 

Output includes a P-value for enrichment and a yes/no indicator of whether the FDR q-value is 641 

significant (P < 0.05). Tissue and gene-set enrichment features are considered. We tested for 642 

epigenomic enrichment of genetic variants using GREGOR software91. We selected EA-specific 643 

NAFLD lead variants with a p-value less than 5x10−8. We tested for enrichment of the resulting 644 

GWAS lead variants or their LD proxies (r2 threshold of 0.8 within 1 Mb of the GWAS lead, 1000 645 

Genomes Phase I) in genomic features including ENCODE, Epigenome Roadmap, and manually 646 

curated data (Supplemental Table 24). Enrichment was considered significant if the enrichment 647 

p-value was less than the Bonferroni-corrected threshold of P=1.8x10−5 (0.05/2,725 tested 648 

features). 649 

 650 

Coding variant mapping. 651 

All imputed variants in MVP were evaluated with Ensemble variant effect predictor92, and all 652 

predicted LoF and missense variants were extracted. The LD was calculated with established 653 

variants for trans-ancestry, EA, AA, and HISP lead SNPs based on 1000 Genomes reference 654 

panel73. For SNPs with low allele frequencies, the MVP dataset was used for LD calculation for 655 

the respective underlying population. For the trans-ancestry coding variant, the EA panel was 656 
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used for LD calculation. Coding variants that were in strong LD (r2 > 0.7) with lead SNPs and had 657 

a strong statistical association (P-value < 1x10-5) were considered the putative causal drivers of 658 

the observed association at the respective locus. 659 

 660 

Colocalization with gene expression 661 

GWAS summary statistics were lifted over from GRCh37 to GRCh38 using LiftOver 662 

(https://genome.ucsc.edu/cgi-bin/hgLiftOver).  Colocalization analysis was run separately for 663 

each of the 49 tissues in GTEx v827.  For each tissue, we obtained an LD block for the genome with 664 

a sentinel SNP at P < 5x10-8, and then restricted analysis to the LD blocks. For each LD block with 665 

a sentinel SNP, all genes within 1Mb of the sentinel SNP (cis-Genes) were identified, and then 666 

restricted to those that were identified as eGenes in GTEx v8 at an FDR threshold of 0.05 (cis-667 

eGenes).  For each cis-eGene, we performed colocalization using all variants within 1Mb of the 668 

gene using the default prior probabilities in the ‘coloc’ function for the coloc package in R. We 669 

first assessed each coloc result for whether there was sufficient power to test for colocalization 670 

(PP3+PP4>0.8), and for the colocalization pairs that pass the power threshold, we defined the 671 

significant colocalization threshold as PP4/(PP3+PP4)>0.9. 672 

 673 

Overlap with open chromatin.  674 

At each of the 77 NAFLD-associated loci from the trans-ancestry meta-analysis, we looked for 675 

overlaps between any variant in the credible set, and regions of open chromatin previously 676 

identified using ATAC-Seq experiments in two cell types—3 biological replicates of HepG293 and 677 

3 biological replicates of hepatocyte-like cells (HLC)94 produced by differentiating three biological 678 
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replicates of iPSCs, which in turn were generated from peripheral blood mononuclear cells using 679 

a previously published protocol36. 680 

 681 

Overlap with Promoter Capture-C data.  682 

We used two promoter Capture-C datasets from two cell/tissue types to capture physical 683 

interactions between gene promoters and their regulatory elements and genes; three biological 684 

replicates of HepG2 liver carcinoma cells, and hepatocyte-like cells (HLC)93. The detailed protocol 685 

to prepare HepG2 or HLC cells for the promoter Capture-C experiment is previously described36. 686 

Briefly, for each dataset, 10 million cells were used for promoter Capture-C library generation. 687 

Custom capture baits were designed using an Agilent SureSelect library design targeting both 688 

ends of DpnII restriction fragments encompassing promoters (including alternative promoters) 689 

of all human coding genes, noncoding RNA, antisense RNA, snRNA, miRNA, snoRNA, and lincRNA 690 

transcripts, totaling 36,691 RNA baited fragments. Each library was then sequenced on an 691 

Illumina NovoSeq (HLC), or Illumina HiSeq 4000 (HLC), generating 1.6 billion read pairs per sample 692 

(50 base pair read length.) HiCUP95 was used to process the raw FastQ files into loop calls; we 693 

then used CHiCAGO96 to define significant looping interactions; a default score of 5 was defined 694 

as significant. We identified those NAFLD loci at which at least one variant in the credible set 695 

interacted with an annotated bait in the Capture-C data.  696 

 697 

Protein-Protein Interaction Network Analysis 698 

We employed the search tool for retrieval of interacting genes (STRING) v1197 (https://string-699 

db.org) to seek potential interactions between nominated genes. STRING integrates both known 700 
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and predicted PPIs and can be applied to predict functional interactions of proteins. In our study, 701 

the sources for interaction were restricted to the ‘Homo Sapiens’ species and limited to 702 

experimentally validated and curated databases. An interaction score > 0.4 were applied to 703 

construct the PPI networks, in which the nodes correspond to the proteins and the edges 704 

represent the interactions (Figure 4, Supplemental Table 32).  705 

 706 

Gene Nomination. 707 

Based on DEPICT gene prediction, coding variant linkage analysis, QTL analysis, and annotation 708 

enrichment, and PPI networks (Supplemental Tables 24-33), a total of 215 potentially relevant 709 

genes for NAFLD were mapped to trans-ancestry 77 loci. For each locus with multiple mapped 710 

genes, we counted how many times each gene was identified through each of the analysis, and 711 

divided this by the total number of experiments (i.e., 8) to calculate an evidence burden that 712 

ranges from 0 to 100%. For each genomic locus, the gene that was most frequently identified as 713 

potentially relevant was selected as the putative causal gene. In the case of a tie break, and if 714 

the respective genes have identical nomination profiles, the gene with more eQTLs was 715 

selected as the putative causal gene. Similarly, gene nomination was preferred for loci that 716 

strongly tagged (r2 > 0.8) a coding variant. Loci that scored with 3 pieces of evidence or greater 717 

are listed for coding variant (Table 1A) and non-coding variants (Table 1B), respectively. 718 

 719 

MVP LabWAS. 720 

A total of 21 continuous traits in the discovery MVP dataset, e.g. AST, ALP, fasting TG, HDL, LDL, 721 

TC, random glucose, HbA1c, albumin, bilirubin, platelet count, BMI, blood urea nitrogen (BUN), 722 
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creatinine, eGFR, SBP, DBP, ESR, INR, and C-reactive protein were tested in 186,681 EA’s with 723 

association of 77 SNPs using linear regression of log-linear values. Covariates included age, 724 

gender and first 10 principal components of EA ancestry.  725 

 726 

PheWAS with UK Biobank data. 727 

For the 77 lead trans-ancestry SNPs and EA and AA specific SNPs, we performed a PheWAS in a 728 

genome-wide association study of EHR-derived ICD billing codes from the White British 729 

participants of the UK Biobank using PheWeb98. In short, phenotypes were classified into 1,403 730 

PheWAS codes excluding SNP-PheWAS code association pairs with case counts less than fifty99. 731 

All individuals were imputed using the Haplotype Reference Consortium panel 100, resulting in 732 

the availability of 28 million genetic variants for a total of 408,961 subjects. Analyses on binary 733 

outcomes were conducted using a model named SAIGE, adjusted for genetic relatedness, gender, 734 

year of birth and the first 4 principal components of white British genetic ancestry101. SAIGE 735 

stands for Scalable and Accurate Implementation of GEneralized mixed model and represents a 736 

generalized mixed-model association test that accounts for case-control imbalance and sample 737 

relatedness101.  738 

 739 

IEU OpenGWAS project SNP lookup. 740 

An additional phenome-wide lookup was performed for 77 lead trans-ancestry SNPs and EA and 741 

AA specific SNPs in Bristol University’s MRC Integrative Epidemiology Unit (IEU) GWAS 742 

database102. This database consists of 126,114,500,026 genetic associations from 34,494 GWAS 743 

summary datasets, including UK Biobank (http://www.nealelab.is/uk-biobank), FinnGen 744 
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(https://github.com/FINNGEN/pheweb), Biobank Japan (http://jenger.riken.jp/result), NHGRI-745 

EBI GWAS catalog (https://www.ebi.ac.uk/gwas), blood metabolites GWAS103, circulating 746 

metabolites GWAS104, the MR-Base manually curated database105, and protein level GWAS106. 747 

 748 

Regional cardiometabolic cross-trait colocalization. 749 

Bayesian colocalization tests between NAFLD-associated signals and the following trait- and 750 

disease-associated signals were performed using the COLOC R package107. To enable cross-trait 751 

associations, we compiled summary statistics of 36 cardiometabolic and blood cell-related 752 

quantitative traits and disease from GWAS studies conducted in EA ancestry individuals, and for 753 

MVP-based reports also on AA and HISP. To summarize, for total, HDL, and LDL cholesterol, 754 

triglycerides, alcohol use disorder, alcohol intake, systolic blood pressure, diastolic blood 755 

pressure, type 2 diabetes, BMI, CAD, we used the summary statistics available from various MVP-756 

based studies26,75,108. Of these, the summary statistics for CAD and BMI GWAS have not been 757 

published or deposited as of yet. Data on WHR were derived from GIANT Consortium109, whereas 758 

summary statistics on CKD, gout, blood urea nitrogen, urate, urinary albumin-to-creatinine ratio, 759 

microalbuminuria, and eGFR were derived from CKD Genetics Consortium110-112. Finally, 760 

summary statistics of blood cell traits (e.g. platelet count, albumin, white blood cells, basophils, 761 

eosinophils, neutrophils, hemoglobin, hematocrit, immature reticulocyte fraction, lymphocytes, 762 

monocytes, reticulocytes, mean corpuscular hemoglobin, mean corpuscular volume, mean 763 

platelet volume, platelet distribution width, and red cell distribution width) were derived from a 764 

large-scale GWAS report performed in UK Biobank and INTERVAL studies113. A colocalization test 765 

was performed for all 77 NAFLD loci spanning 500kb region around the lead SNP for all 36 766 
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compiled traits. COLOC requires for each SNP data on allele frequency, sample size, beta-767 

coefficients and variance or p values. For each association pair COLOC was run with default 768 

parameters and priors. COLOC computed posterior probabilities for the following five 769 

hypotheses: PP0, no association with trait 1 (NAFLD GWAS signal) or trait 2 (e.g., co-associated 770 

metabolic signal); PP1, association with trait 1 only (i.e., no association with trait 2); PP2, 771 

association with trait 2 only (i.e., no association with trait 1); PP3, association with trait 1 and 772 

trait 2 by two independent signals; and PP4, association with trait 1 and trait 2 by shared variants. 773 

Evidence of colocalization114 was defined by PP3 + PP4 ≥ 0.99 and PP4/PP3 ≥ 5.  774 

 775 

NAFLD Polygenic risk score and NAFLD risk. 776 

We constructed polygenic risk score (PRS) for NAFLD in the Stage 2 replication data set containing 777 

of 73,580 MVP participants of EA ancestry by calculating a linear combination of weights derived 778 

from the discovery MVP dataset of lead 77 trans-ancestry variants. The PRS was divided into 779 

quintiles and the risk of NAFLD was assessed using a logistic regression model using the lowest 780 

decile as a reference (e.g. the 20% of participants with lowest of NAFLD PRS), together with the 781 

potential confounding factors of age, gender, age-adjusted AUDIT-C, and the first 10 principal 782 

components of EA ancestry.  783 

 784 

NAFLD PRS Phewas  785 

For the NAFLD PRS that was generated using the Stage 1 350K dataset, we performed a PheWAS 786 

study in the Stage 2 108K replication dataset to fully leverage full catalog of available ICD-9/ICD-787 

10 diagnosis codes. Of genotyped veterans, participants were included in the PheWAS analysis if 788 
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their respective electronic health record reflected two or more separate encounters in the VA 789 

Healthcare System in MVP up to July 2017. Using this method, a total of 73,580 veterans of EA 790 

ancestry were available for PheWAS analysis. ICD-9/ICD-10 diagnosis codes were collapsed to 791 

clinical disease groups and corresponding controls using predefined groupings 99. Phenotypes 792 

were required to have a case count over 25 in order to be included in the PheWAS analysis, and 793 

a multiple testing thresholds for statistical significance was set to P < 2.8x10-5 (Bonferroni 794 

method). The NAFLD PRS was used as a continuous exposure variable in a logistic regression 795 

adjusting for age, sex, age-adjusted AUDIT-C, and 10 principal components in an additive effects 796 

model using the PheWAS R package in R v3.2.065. The results from these analyses are reported 797 

as odds ratios, in which the estimate is the average change in odds of the PheWAS trait per 798 

NAFLD-increasing polygenic risk score. 799 

 800 

Transcription Factor Analysis. 801 

We identified nominated genes (Supplemental Table 34) that encode for TFs based on known 802 

motifs, inferred motifs from similar proteins, and likely sequence specific TFs according to 803 

literature or domain structure115. Target genes for these TFs were extracted using DoRothEA 804 

database116 in OmniPath collection117 using the associated Bioconductor R package 805 

OmnipathR118, a gene set resource containing TF-TF target interactions curated from public 806 

literature resources, such as ChIP-seq peaks, TF binding site motifs and interactions inferred 807 

directly from gene expression. 808 

 809 

 810 
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Legends 863 

 864 

Table 1a. Gene nominations at loci with strongest evidence for coding variants.  865 

SNP Position Gene AA-Change SIFT/PP2* e/sQTL** Other † Pleiotropy‡ 

rs6541349 1:93787867 CCDC18 p.Leu1134Val +/- + . M 

rs2642438 1:220970028 MARC1 p.Thr165Ala -/- + (A) + M 

rs11683409 2:112770134 MERTK p.Arg466Lys -/- . ++ . 

rs17036160 3:12329783 PPARG p.Pro12Ala -/- + ++ M 

rs17598226 4:100496891 MTTP p.Ile128Thr -/- + + . 

rs115038698 7:87024718 ABCB4 p.Ala934Thr +/+ + + M,I 

rs799165 7:73052057 MLXIPL p.Gln241His -/+ + + M,I 
   p.Ala358Val -/- + + M,I 

rs7041363 9:117146043 AKNA p.Pro624Leu +/- + + M 

rs10883451 10:101924418 ERLIN1 p.Ile291Val -/- . ++ M 

rs4918722 10:113947040 GPAM p.Ile43Val -/- + ++ M 

rs11601507 11:5701074 TRIM5 p.Val112Phe -/- . ++ M,I 

rs1626329 12:121622023 P2RX7 p.Ala348Thr -/- + + . 

rs11621792 14:24871926 NYNRIN p.Ala978Thr -/- + (L,A) + M,I 

rs28929474 14:94844947 SERPINA1 p.Glu366Lys -/+ . +++ M,I 

rs7168849 15:90346227 ANPEP p.Ala311Val -/- + (L) + . 

rs1801689 17:64210580 APOH p.Cys325Gly +/+ . ++ M,I 

rs132665 22:36564170 APOL3 p.Ser39Arg -/- + (A) + . 

rs738408 22:44324730 PNPLA3 p.Ile148Met +/+ . +++ M,I 

Genes nominated with various sources of evidence are listed as follows. 866 
*Prio to the slash symbol: '+' indicates 'deleterious' in SIFT and '-' otherwise. After slash symbol: '+' 867 

denotes probably damaging in Polyphen-2 and '-' otherwise.  868 
** The '+' indicates colocalization between NAFLD GWAS variant and GTEx QTL varint (COLOC 869 

PP4/(PP3+PP4) > 0.9). (L) denotes QTL effect in Liver, (A) denotes QTL in Adipose.  870 

†Each '+' represent evidence from DEPICT, PPI data, or if the lead SNP is within the transcript; coding 871 

variants also include '+' from hQTLs/Capture-C evidence.  872 

‡Pleiotropy is limited to association with Metabolic (M) or Inflammatory (I) Traits 873 

 874 

  875 
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Table 1b. Gene nominations at loci with strongest evidence for non-coding variants.  876 

SNP Position Gene hQTL  CaptureC  e/sQTL** Other † Pleiotropy‡ 

rs36086195 1:16510894 EPHA2 . + + (L,A) + M 

rs6734238 2:113841030 IL1RN . + + (A) ++ I 

rs10201587 2:202202791 CASP8 . + + + M 

rs11683367 2:233510011 EFHD1 + . + (L) + . 

rs61791108 3:170732742 SLC2A2 . + . +++ M 

rs7653249 3:136005792 PCCB . . + ++ M,I 

rs12500824 4:77416627 SHROOM3 . + + (L) + M 

rs10433937 4:88230100 HSD17B13 . . + (L,A) + M,I 

rs799165 7:73052057 BCL7B . + + + M,I 

rs687621 9:136137065 ABO . . + + M,I 

rs35199395 10:70983936 HKDC1 . + + (L,A) + M 

rs174535 11:61551356 FADS2 + . + (A) ++ M,I 

rs56175344 11:93864393 PANX1 . . + (L,A) ++ . 

rs34123446 12:122511238 MLXIP . + + + M,I 

rs12149380 16:72043546 DHODH . + + + M,I 

  HP . + + (A) . M,I 

rs2727324 17:61922102 DDX42 . + + + M 

  SMARCD2 . . + + M 

rs5117 19:45418790 APOC1 . . + ++ M,I 

Genes nominated with various sources of evidence are listed as follows. 877 
*Prio to the slash symbol: '+' indicates 'deleterious' in SIFT and '-' otherwise. After slash symbol: '+' 878 

denotes probably damaging in Polyphen-2 and '-' otherwise.  879 
** The '+' indicates colocalization between NAFLD GWAS variant and GTEx QTL varint (COLOC 880 

PP4/(PP3+PP4) > 0.9). (L) denotes QTL effect in Liver, (A) denotes QTL in Adipose.  881 

†Each '+' represent evidence from DEPICT, PPI data, or if the lead SNP is within the transcript; coding 882 

variants also include '+' from hQTLs/Capture-C evidence.  883 

‡Pleiotropy is limited to association with Metabolic (M) or Inflammatory (I) Traits 884 

 885 
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Figure 1. Overview of analysis pipeline. 887 

 888 

Left side of the flow diagram shows our study design with initial inclusion of 430,000 Million Veteran Program 889 

participants with genotyping and ancestry classification by HARE, exclusion of individuals with known liver disease 890 

or alcohol dependence and inclusion of subjects based on chronic ALT elevation (case) or normal ALT (control). This 891 

resulted in 90,408 NAFLD cases and 128,187 controls with EA, AA, HISP and ASN ancestries that were examined in 892 

primary trans-ancestry and ancestry-specific genome-wide association scans in discovery (stage 1) and internal 893 

replication stages (stage 2) with further meta-analysis. Right side of the flow diagram highlights our results of trans-894 

ancestry and ancestry-specific meta-analyses identifying 77 trans-ancestry loci + 1 EA-specific + 2 AA-specific loci 895 

that met genome-wide significance, with additional results of external replications, locus fine-mapping via GCTA, 896 

signal fine-mapping (95% credible sets), heritability estimation and genetic correlations by LDSC, physiological 897 

categorization of discovered loci based on pleotropic trait associations (mainly liver, metabolic and inflammation), 898 

candidate gene nomination and polygenic risk score. 899 

 900 
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Figure 2. Manhattan plot of NAFLD GWAS of 90,408 NAFLD and 128, 187 controls in trans-901 

ancestry meta-analysis.  902 

 903 

Nominated genes are indicated for 77 loci reaching genome-wide significance (P<5x10-8). 904 

Previously reported NAFLD-loci with genome-wide significant association are indicated in green 905 

font. 906 

 907 
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Figure 3. Chromosome 12 locus points to different genes in trans-ancestry (left) and European-909 

only (right) analyses.  910 

 911 

The lead variants in each analysis are highlighted. The orange arrow refers to the proxy SNP of 912 

rs1626329 in the European-only analysis. 913 
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Figure 4. Venn diagram depicting overlapping liver, metabolic and inflammatory traits among 915 

NAFLD-associated loci.  916 

 917 

Overlapping liver (light blue), metabolic (pink) and/or inflammatory (green) traits are shown in 918 

association with 77 trans-ancestry and additional ancestry-specific lead SNPs. The trait 919 

categorizations reflect significant SNP-trait associations identified by: 1) LabWAS of clinical 920 

laboratory results in MVP; 2) PheWAS with UKBB data using SAIGE; 3) SNP lookup using the 921 

curated data in the IEU OpenGWAS projects; and 4) cross-trait colocalization analyses using 922 

COLOC of EA, AA and HISP lead loci with 36 other GWAS statistics of cardiometabolic and blood 923 

cell related traits. Red/bold font refers to the loci also associated with quantitative hepatic fat 924 

on imaging analyses. 925 

 926 
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