
A TRANSCENDENTAL VIEW OF THE SPACE OF 
ALGEBRAIC RIEMANN SURFACES 

H. E. RAUCH1 

The subject of my lecture is not a large-scale and general theory 
but rather a special problem in conformai mapping. By way of justi-
fication for bringing it to the attention of a broader audience I may 
cite, first of all, its deep nature and honorable origin—the problem 
originated in Riemann's memoir [46] of 1857 on algebraic functions, 
and after the passage of a century some definitive insight into it is 
only now emerging as a result of the collective efforts of a group of 
mathematicians. Secondly, it is intimately bound up with a variety of 
topics of more general interest: conformai mapping with particular 
reference to extremal problems, several complex variables, and par-
tial differential equations, on the one hand; topology and algebraic 
geometry, on the other and, in particular aspects, even group repre-
sentations and arithmetic. 

1. Introduction and history. Briefly put, and in modern paraphrase, 
Riemann observed: (a) that for compact (algebraic) Riemann sur-
faces of genus g = 0, i.e., simply connected, one has the analogue of 
the Riemann mapping theorem, that is, all such surfaces not only 
admit topological maps on one another but also conformai maps, in 
particular, on the Riemann sphere (all maps of surfaces in this paper 
are assumed to be homeomorphisms without further mention) ; (b) for 
g > 0 it is no longer true that the existence of a map of one surface 
on another (equivalent to their having the same genus) implies the 
existence of a conformai map; and (c) as a partial compensation for 
(b) and substitute for (a) in case g > 0 , if one considers the conformai 
equivalence classes obtained by identifying surfaces which admit mu-
tual conformai maps, these classes form not an isolated point as in 
(a) but in some sense or other a continuum of finite dimension, in 
fact, of dimension one for g = 1 and 3g — 3 for g^2. Riemann called a 
set of parameters for the continuum moduli (Riemann and his im-
mediate successors often spoke cryptically of the moduli, as though 
some particular set of moduli were implicitly distinguished—this has 
not been borne out by the modern research to be described below). 
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The reader will notice immediately in (c) the vagueness of the 
statement and, indeed, the lapse into archaic language necessitated 
by this vagueness. Indeed, one must consider Riemann's observations, 
profound though they were, as being of heuristic character. The bulk 
of this lecture is devoted to an exposition of the results of recent 
successful attempts to get at least a precise qualitative picture of 
the structure of the set M° of conformai equivalence classes of sur-
faces of a given genus g and thus clarify fully the nature of the 
phenomenon discovered by Riemann. A synthesis of these results can 
be stated roughly as follows: M° can be made into a topological space 
endowed with a certain complex analytic structure of complex di-
mension 3g — 3 on which a set of moduli or more properly local moduli 
can be defined to be an admissible set of local coordinates near a 
point; and the structure of M°y the modulus space, is "natural" in 
the sense that the various sets of parameters which had been pro-
posed over the years as "moduli" can indeed be shown (nontrivially) 
to be so in the new precise sense. 

The qualification "roughly" in the preceding paragraph conceals 
the essence of the matter, namely, that the structure of M° can only 
be defined and discussed after the construction of two auxiliary 
transcendentally defined covering spaces of M°, the Teichmueller 
space T° and the Torelli space 3a, whose descriptions will appear in 
§2. As it develops, both T° and 3° are complex analytic manifolds, 
T° being a smooth covering of 3ff, while the latter is a branched 
covering of M°\ furthermore, the nature of the branching can be com-
pletely and explicitly described, in the course of which description 
it develops that, outside of certain exceptions for g = l, 2, 3, the 
points on M° under the branch locus of 3* are nonuniformizable. In 
the vicinity of such points, then, it is meaningless to define moduli; 
hence, to be able to speak of moduli unexceptionally it is necessary 
to pass to one of the auxiliary covering manifolds T° or 3*. The re-
markable conclusion thus emerges that the fundamental clarification 
of the moduli phenomenon is achieved not by Riemann's continuum 
Ma, even with its newly acquired structure, but by the new spaces 
T° and 3*. This is all the more noteworthy in that, following Rie-
mann, the algebraic geometers had long dreamed of a purely algebraic 
construction by which M° would appear as an open subvariety of an 
irreducible projective algebraic variety of dimension 3g —3. After 
many false starts the construction of such a variety was achieved (cf. 
[9]) but subsequent to most of the transcendental results already 
outlined and at first dependent on them, with a purely algebraic con-
struction finally materializing still more recently (cf. [34]). The point 
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is, however, that whereas the variety M° is defined not only over any 
abstract field but even the ring of integers the construction of T° and 
3a cannot be accomplished except by use of the complex field and 
transcendental methods, and even over the complex field the alge-
braic methods fail to give the insight into the structure of M° that 
the transcendental methods do. These remarks should serve to shed 
some light on the title of my lecture. 

However, the establishment of qualitative structure theorems, no 
matter how satisfactory, for suitable spaces of Riemann surfaces does 
not at all exhaust the store of interesting and unanswered questions 
unearthed by Riemann's discovery of moduli. Rather, according to 
my way of thinking, those theorems form a conceptual substrate for 
the consideration of certain concrete analytical questions such as the 
relationships among various sets of moduli, applications of moduli 
to other function-theoretic questions and, in particular, what I like 
to call the problem of "numerical moduli"—systems of parameters 
(perhaps more than 3g — 3 in number) globally defined on M° (or 
T° or 3*0 and such that numerical equality between respective sets is 
necessary and sufficient for conformai equivalence of the correspond-
ing surfaces. 

In §2 I shall state the principal definitions and theorems whose 
totality constitutes the structural picture of the space of Riemann 
surfaces of which I have been speaking. In addition I shall include 
there some remarks on numerical moduli and also on some major un-
solved problems. In §3 I shall supply the reader with the materials, 
in the form of references to the literature or, where advisable, sketchy 
hints for gaining reasonable ideas of proofs for the results of §2, 
supplying a little more detail for those arguments which either have 
not appeared or are not adequately described in the literature. 
Finally, in §4 there is an account of some typical applications as 
envisaged in the preceding paragraph. 

To conclude this section, some additional remarks by way of 
elaboration on the foregoing will serve to round out the historical 
picture and orient the reader toward the new research. 

First, the situation for g = 1 was already well understood in Rie-
mann^ time in the language of elliptic functions. Given two (origin-
containing) lattices of parallelograms in the z- and z'-planes with 
primitive period pairs (coi, co2) and (Qj, Q2), respectively, with r=co2/wi, 
T' = 0 2 / O I , l m r > 0 , I m r ' X ) , the necessary and sufficient condition 
for the existence of a conformai map (origin preserving) of the s-plane 
on the z'-plane taking (coi, o>2) onto (Qi, fi2) is that r = r ' in which case 
the map is necessarily given by z'=az, a = Qi/a>i = Q2/a>2. Thus the 
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classes of "conformally equivalent period pairs" may be identified 
with the upper half of the T-plane and thus given the structure of a 
one-dimensional complex analytic manifold. As will be seen later, 
in terms of the compact Riemann surfaces of genus one obtained by 
identifying the plane under the action of the translation groups 
generated by the period pairs, this manifold is precisely the Teich-
mueller space Tl and also the Torelli space 31 (the two spaces coin-
ciding in this, and only this, case, g = l ) . Furthermore, if one asks 
merely that the map z' = az take (coi, co2) onto some primitive period 
pair (Q/, S22'), not necessarily the preassigned one, then since 
Qi =aQ2+M2i, Qi =cQ2+dQi, a, b, c, d, integral and ac—bd = \1 one 
has T = (aTf+b)/(cTf+d). In the language of the associated Riemann 
surfaces this means (as it develops) that the set of conformai equiva-
lence classes, i.e., M1, is precisely the upper half-plane identified under 
the modular group. The modular invariant J ( r ) maps a suitable 
standard fundamental domain representing M1 one-one and con-
formally, except for the two vertices, on the sphere minus one point 
(corresponding to the cusp). That is the whole story for g = 1, and in 
retrospect one sees that it contains several clues to the general situa-
tion, g ̂  2, but historically that was not evident. 

Next, whence came the 3g — 3, for g ^ 2 ? Riemann gave two counts, 
the second of which is incorporated as part of Prescription II of §2 
and finds its justification there. The first counts the "essential" num-
ber of branch points in a branched representation with sufficiently 
many sheets n (>2g — 2) and arrives at 3g —3 = 2(w+g — 1) — n 
— (w — g + 1), where the first number is the total number of branch 
points, n is also the number of poles of a representing function to be 
chosen arbitrarily, and the last number is the Riemann-Roch count 
of the number of linearly independent functions with only the pre-
scribed poles giving rise to conformally equivalent surfaces. The first 
justification for this or any other method of using branch points as 
local moduli is found in [43], but its historical significance lies not 
only in the discovery of 3g — 3 but in the impetus it gave to the alge-
braic geometers to at tempt to construct a modulus variety of suit-
ably normalized concrete representatives of surfaces (normal curves) 
and thus consciously formulate the notion of space of surfaces. 

Another, very graphic and very useful, even in the current view of 
things, method of obtaining the count 3g —3 is uniformization by 
means of Fuchsian groups. The groups in question are generated by 
2g transformations Ai, Bi, • • • , A0, B0, satisfying one relation 
AiBiA^Br1 • • • AgBgAf1Bf1 = l. Each generator (being a frac-
tional linear transformation of the unit disk on itself) has three un-
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normalized real parameters whence, subtracting three parameters 
fixed by the relation and three more for a normalization of the entire 
group, one obtains 3-2g — 3 — 3 = 6g — 6, the requisite number of real 
parameters. This remark led Klein and Poincaré to speculate on the 
possibility of a continuity proof for the uniformization of algebraic 
Riemann surfaces, the idea being that the "space" of such surfaces 
has, according to Riemann, the same dimension, 3g — 3, as the set 
of (hopefully) uniformizing groups. Serious efforts at justifying this 
argument were made by Brouwer, Fricke, and Koebe (see [24] for 
an interesting account of these attempts circa 1911). Brouwer empha-
sized the topological difficulties, and his efforts to overcome them led 
to some of his significant contributions to topology. The most am-
bitious attack, embodied in the two-volume work [17], was due to 
Fricke and led to the construction of an auxiliary space resembling 
the later Teichmueller space. The length and complexity of Fricke's 
arguments have contributed to their being eclipsed by the much 
simpler and more lucid construction due to Teichmueller. For a mod-
ern account of a satisfactory approach to continuity proofs of uni-
formization theorems using recent research I refer the reader to [ l2] . 
A more modern version of Fricke's arguments exists, I am told, in 
an unpublished manuscript by Fenchel and Nielsen (cf. [19] which 
also contains applications of this method). The reader is also referred 
to [3l] and references there. 

The next stage was the work of Teichmueller who, in [S3] and [54], 
combined in a surprising way two apparently unrelated ideas con-
nected with moduli to make a decisive break-through. His first ob-
servation (already known to Riemann) was that 3g — 3 (as one easily 
computes from the Riemann-Roch theorem) is the number of every-
where analytic quadratic differentials on a surface of genus g which 
are linearly independent over the complex field. The other idea, based 
on ideas of Grötzsch, is to consider, given two surfaces of genus g, S 
and S'y the possibility of their being conformally equivalent by con-
sidering in each homotopy class of orientation-preserving homeomor-
phisms of S on S' the infimum of the dilations of quasiconformal 
mappings in the class. The linking of these ideas leads to the follow-
ing, collectively known as Teichmueller's theorem: There exists in 
each homotopy class a unique extremal quasi-conformai homeomor-
phism with constant minimal dilation D*£l. If Z>=1, 5 and S' are 
conformally equivalent by a map in the class. If D>\ there is asso-
ciated (essentially) uniquely a pair of analytic quadratic differentials, 
one on 5, the other on S', by means of which in suitable local co-
ordinates the extremal map can be simply and explicitly represented 
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as a locally affine map. For an account of Teichmueller's theorem see, 
besides [ l ] , [ l l ] and [53]. The intuitive part of this theorem, the 
map in the homotopy class, led Teichmueller to the definition of the 
set T° (vide §2) covering M°. The subtle part, the connection with 
quadratic differentials, led him to the definition of a locally euclidean 
structure of dimension 6g — 6 (the real dimension of the space of quad-
ratic differentials) which can be loosely described by saying that any 
element of T° can be obtained from a fixed one by "deforming along 
a quadratic differential" on the latter. In fact Teichmueller proved 
much more: using log D as a metric, he gave T° the structure of metric 
space and then, using the uniqueness assertion of his theorem, he 
proved that this Teichmueller space T° is homeomorphic to the 
euclidean Re°~6. Oddly enough, this beautiful result, the globally 
euclidean nature of T°, has, up to the present writing, not played any 
decisive role in subsequent research in the directions with which I am 
concerned in this exposition. Only the locally euclidean, or manifold, 
character of T° is essential. Here a technical point of great importance 
arises. Bers in [lO] has shown that a suitable use of Teichmueller's 
ideas, in particular, a flexible use of quasi-conformal mapping, leads 
to the same local structure on T° without the use of Teichmueller's 
theorem. This is a considerable technical and conceptual simplifica-
tion in that the difficult proofs of existence and uniqueness of an ex
tremal map are avoided. The uniqueness proof dispensed with uses a 
completely different order of ideas which are not immediately rele-
vant to the applications, while the existence proof is replaced by a 
general treatment of the solution theory of a certain linear partial 
differential equation. The latter simplification is somewhat illusory 
in that the solution theory applied full force is sufficient to prove the 
existence part of Teichmueller's theorem. Another difficulty is that 
while one can dispense with Teichmueller's theorem in discussing the 
structure of T°, I find that, at least for the present, I need one conse-
quence of the theorem in treating the structure of M°. I have organ-
ized the exposition accordingly, making no use of the theorem until 
needed. 

Now Teichmueller observed that his set T° is a covering of Rie-
mann's set M° in the precise sense that M° is the quotient of T° by 
the action of a geometrically defined group T9, the mapping-class 
group, of 1-1 self-maps of T° and that, in his topology on T°, T° acts 
as a properly discontinuous group of homeomorphisms (in fact, isom-
etries in the metric). The result is that M° is endowed with the 
structure of a topological space such that M° minus the points that 
are covered by fixed points of T° is a (6g — 6)-dimensional manifold 
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(the first complete proofs of these statements are in [25]). 
Teichmueller's work left two unanswered questions about the 

space M°: (1) What is the topological character (in particular, mani-
fold or nonmanifold) at the above exceptional points? (2) Does it 
have a complex structure, and, if so, does it have one with a natural 
relationship to his structure? The first part of (2) is critical in the 
realization of the program initiated by Riemann's work while the 
second is critical for the role of Teichmueller's proposals in that 
realization. Happily, despite Teichmueller's conjecture to the con-
trary, the answer to the latter part and hence all of (2) is affirmative, 
and a complete and explicit response to (1), intimately related to the 
complex structure of (2), has been given. 

The answers to these questions have been the major concern, leav-
ing aside the matter of applications, of the current phase of research 
into the topic at hand and, in particular, of my own contributions 
thereto. This phase began in 1955 with the notes [41 ] and [42] in 
which I gave prescriptions for finding sets (each containing 3g —3 
elements) of periods of normal abelian integrals of first kind serving 
as local moduli near a given nonhyperelliptic surface (in fact, local 
coordinates on T° near suitable points covering the surface class) and 
analogous sets of 2g — 1 elements each serving as local coordinates on 
the hyper elliptic locus of T° near a point thereof. The motivating idea 
behind introducing the periods was an at tempt to refine an important 
theorem of Torelli (circa 1912: for some recent treatments see [8], 
[32] and [55]) to the effect that two surfaces with the same period 
matrices are conformally equivalent (more precision in §2). Torelli's 
theorem furnishes a beautiful set of global moduli and gives rise (see 
§2) to a second naturally defined covering of M°, the Torelli space, 
which provides a natural setting for them, the only trouble being 
that the essential periods are superfluous in number, g(g + l ) /2 , in 
contrast to 3g — 3. My work picks out the correct number locally 
but not globally. Ahlfors [2], using my prescriptions and adding 
a vital ingredient of his own for the hyperelliptic surfaces, com-
pounded the first proof of the existence of a natural structure of 
complex analytic manifold on Teichmueller's space T°. Subsequent 
proofs of the existence of an equivalent structure dispensing with 
periods and the consequent special handling of the hyperelliptic sur-
faces were given, the equivalence resulting from my work and Ahlfors'. 
Of these the one due to Bers [lO] is the most simple and useful and 
in the hands of Bers and Ahlfors it has become a powerful tool for 
studying T° and more general Teichmueller-type spaces for Riemann 
surfaces which are uniformized by larger classes of groups than the 
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special Fuchsian groups of the compact surfaces. For an account of 
this latter work I must refer the reader to current publications of 
these authors. Here, I intend to retain a discussion of the original ver-
sion of the complex structure for the simple reason that the periods 
are the sole link with those applications which I mentioned earlier as 
forming a major justification for the theory. 

The relevance of the new-found complex structure on T° to the 
structure of M° stems from the convenient fact that T° now appears 
as a group of complex analytic homeomorphisms. Hence, by a now-
standard process [15], M° as the quotient of T° by Y° now is endowed 
with the structure of normal analytic space—the long-sought goal in 
precise form. Furthermore, there is additional precision. The nature 
of the structure of M° at the points covered by the fixed points of 
T° (all other points being manifold points) yields to analysis by virtue 
of two facts. The first, due to Teichmueller, is that at a point t in T° 
the isotropy subgroup of V9 is canonically anti-isomorphic to the 
group H(S) of conformai automorphisms of a surface S in the class 
represented by the point of M° under t. The second, a property of 
the new complex structure on T°, is that the analysis of the structure 
of M° at the point in question is equivalent to the analysis of the 
representation of H{S) on the (quadratic) differentials of 5. Here one 
is brought into contact with a beautiful and profound meeting of 
analysis and arithmetic originated by Hurwitz [22] and carried on 
by Hecke [21]. In this connection I would like to mention the work 
of J. Lewittes [28], [29] which arose in this context and in turn con-
tributed to my own understanding of it. The first crude level of anal-
ysis already brings out that the points in question (except for some 
cases in genera 2 and 3) are all nontnanifold points [27], [45] justify-
ing the earlier assertion about the unsuitability of the modulus space 
M° as a testing ground for sets of local moduli. 

To conclude this informal outline let me first cite [7], [35], [39], 
[40 ], [52], and [57] and references there for those who may want 
to read up on those parts of Riemann surface theory relevant here, 
and finally let me direct the reader's attention to the recently develop-
ing inquiry into moduli in several complex variables where the situa-
tion is more complex and less completely investigated. Here, a few 
citations of authors and approaches will have to suffice: using har-
monic integrals, Kodaira and Spencer [23], Kuranishi [26]; using 
Weil's approach to abelian varieties, Shimura [51 ]; using coherent 
analytic sheaves, Grauert [18]; and using his general program of 
schemes, Grothendieck [20 ]. 
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2. Definitions and theorems. All references to literature and indi-
cations of proof for the results of §2 are deferred to §3. 

A. Certain sets, maps and groups. Henceforth, the letter 5 with 
any combination of subscripts or superscripts will denote a compact 
Riemann surface of genus g ( i^O), and all maps of compact Riemann 
surfaces will be orientation-preserving homeomorphisms. 

I consider triples (S, S', a), where a: S—»S'. For maps of S, the 
first member of a triple, the symbols ~ , « , and 1 will denote, respec-
tively, "nomotopic," "inducing the same automorphism of Hi(S) (the 
first homology group)," and the identity. Consider, in particular, the 
three notions of equivalence of triples: 

DEFINITION 1. (a) (Si, S{, « i )~ (S 2 , S2', a2), read "Teichmueller-
equivalent," <=>Si = S2 and there exists an ƒ: S{ —>S2, ƒ conformai, 
such that fr^a&L'T1. 

(b) (Si, S i , «i) « (S2, S{, Û!2), read "Torelli-equivalent," <=^same as 
(a) except ~ replaced by « . 

(c) (Si, S / , ai) = (S2, S 2 , a2), read "conformally equivalent," 
<=>same as (a) with the deletion of the phrase after "conformai." 

(a') A class of Teichmueller-equivalent triples containing (S, S', a) 
with common first member S is a Teichmueller surface (S) denoted 
by <S, S', a). 

(b') Substitution of "Torelli-equivalent" for "Teichmueller-equiv-
alent" in (a') defines a Torelli surface (S) denoted by {S, S', a}. 

(c') Similar substitution of "conformally-equivalent" in (a') de-
fines a conformai equivalence class denoted by [S'] (the dependence 
on S being now irrelevant). 

(a") T°(S) is the totality of Teichmueller surfaces (S). (S, S, 1) 
is the origin of T°(S). 

(b") 3'(S) is the totality of Torelli surfaces (S). {S, S, l } is the 
origin of 3a(S). 

(c") M° is the totality of conformai equivalence classes. 
I t will be noticed that in the present exposition the sets T0(S) and 

3°(S) are not unique, being indexed by S. This turns out to be very 
convenient when coupled with the fact, to be developed subsequently, 
that there is a natural set of one-one maps of T°(Si) (3a(Si)) on 
r*(S2) (3*(S2)) for arbitrary Si, S2, which maps preserve all structures 
to be imposed on those sets. On the other hand, it is not possible to 
single out one of these maps canonically. I t will be possible to speak 
of sets T° and 3* only by the same abuse of language that permits 
one to speak of the fundamental group of a space. 

DEFINITION 2. Given S, S' and a map a: S->S', the maps a*: T°(S') 
-+T°(S) and a*: 3'(S')-*3'(S) defined, respectively, by a*(S', S", 0} 
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= (S, 5", Pa) and a* { S \ 5", /?} = {5, S", j8a} are called admissible. 
For S=S' the set of all admissible self-maps of T°(S), respectively 
3*(S), is denoted byI>(S), respectively W(S). A°(S)CT°(S) denotes 
the subset consisting of those a*ÇzT°(S) for which the self-maps a of 
S satisfy a « 1 . 

PROPOSITION 1. a~j3=*a:*=j3*. a«/3=>a#=/3#. 4 / / admissible maps 
are one-one onto, T°(S) and Sft^S) caw &e given natural structures as 
groups of one-one self-maps of T°(S) and 30(S), respectively. A°(S) is a 
fixed-point-free normal subgroup. With these structures one has 3°(S) 
= r*(S)/A'(S) and M'=T'(S)/T'(S) = &(S)/mg(S), where the quo
tient maps T°(S)—*3°(S)—*M0 thus defined coincide with the natural 
projections obviously defined by Definition 1, and one has T°(S)/A°(S) 

B. Metric, topological, and analytic structures for T°(S) and 3°(S). 
DEFINITION 3. A Beltrami differential fx, respectively, a quadratic 

differential <t>, respectively, a density X on S, is a tensor such that 
ydz/dz is invariant and its representatives are essentially bounded 
measurable functions, respectively, such that <{>dz2 is invariant and 
its representatives are holomorphic (and finite), respectively, such 
that \dzdz is invariant and its representatives are continuous positive 
functions. Observing that | \x | is invariant, one defines || JU|| = ess sup | JJL |, 
the sup taken over S. A proper Beltrami differential is one for which 

y<i. 
DEFINITION 4. A map a: S—>S' is quasiconformal if, when repre-

sented as w = w(z, z) in local coordinates, it satisfies the Beltrami 
equation WI = \LWZ for some proper Beltrami differential /x. The deriva-
tives are to be taken in the conventional sense if a is C1, otherwise 
in the generalized sense (see §3). Define k(a) = ||/x|| and K(a) 
- ( l + * ( « ) ) / ( l - * ( « ) ) • 

LEMMA 1. Given a: S—»S', there exists j3: 5—»S' which is homotopic to 
a and quasiconformal (Definition 4). 

THEOREM 1. By defining, for each S, DS((S, S', a), (5, 5", 0 » 
= inf log K(y), where inf is over all quasiconformal maps y: 5'—>S", 
where y^ficr1, one obtains for each S a metric, the Teichmueller metric 
(S) on T°(S). The induced topology is called the Teichmueller topology 
(S) and T°(S) with this topology is the Teichmueller space (S). T°(S) 
is connected in this topology.T°(S) (Definition 2 and Proposition 1) is a 
properly discontinuous group of isometries (in particular, homeomor-
phisms) in the Teichmueller metric (S) and topology (5). In particular 
(Proposition 1) one can put the quotient topology on 3*(S) to define the 
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Torelli space (S) on which Tl°(S) is a properly discontinuous group of 
homeomorphisms. All admissible maps {Definition 2) of T°(S) on T°(S') 
are isometries. All admissible maps of 3*(S) on 3*(S') are homeomor
phisms. 

The following proposition plays no role in the development of the 
theory as outlined here but is included because of its intrinsic inter-
est. 

PROPOSITION 2. T°(S), the Teichmueller space (S), is homeomorphic 
to R6o~6, i.e., (6g —6)-dimensional euclidean space, for g^2 (respec
tively, to R2 for g = 1, while T°(S) consists of one point). 

The parenthetical statements are, in essence, well known and will 
be dealt with again later on. 

LEMMA 2. Given a proper Beltrami differential \x on S, in a sufficiently 
small neighborhood of any pre-assigned point on S the associated Bel
trami equation (Definition 4) has a solution which maps the neighborhood 
homeomorphically onto a plane domain. Any two such solutions in their 
common domain are complex analytic f unctions of one another with non-
vanishing derivative. 

DEFINITION 5. Given 5 and a proper Beltrami differential /i, 5M is 
the Riemann surface whose topological base space is that of S and 
whose local parameters are the homeomorphic solutions of the Bel-
trami equation formed with JJL (cf. Lemma 2). In particular, the iden-
tity map 1: 5—>5M is quasiconformal. 

PROPOSITION 3. Let B(S) be the linear space over C of all Beltrami 
differentials on S with the norm of Definition 3. Let A (S) be the linear 
space over C of all quadratic differentials on S. A (S) has dimension 
3g — 3 over Cfor g è 2 , 1 for g = l and 0 for g = 0. Define the bilinear 
functional (<t>, ix) = (i/2)Jfs<t>ixdz/\dz, where <t><EA(S), fx£:B(S), and 
A denotes exterior product] and let N(S) QB(S) be defined by ($, /z) = 0 
for all <I>EA(S). There exists a density X on S. If<t>£A(S), $/\£B(S) 
and the map defined by <£—»$/X is an anti-linear isomorphism of A (S) 
on B(S)/N(S) ; in particular, a basis of B(S)/N(S) consists offXi(EB(S), 
* = 1, • • • , 3g — 3, for g^2, such that (<t>, C1M1+ • • • +Cza-zPz0-z) = 0 
for all<f>(E.A(S), CiE:C,i=l, • • • , 3g —3, implies cx= • • • =c3fl-3 = 0, 
and there exists a basis. For g = 1 replace 3g — 3byl. For g — 0 the state
ment is vacuous. 

THEOREM 2. T°(S), the Teichmueller space (S) (Theorem 1), when 
endowed with the local coordinates of Prescription I below, becomes a 
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complex analytic manifold whose complex dimension is 3g — 3 for g ^ 2 , 
1 for g = 1, and 0 for g = 0. In /few structure, Y°(S), in addition to those 
properties listed in Theorem 1, has the property that each of its elements 
is complex analytic {with Jacobian never zero). By virtue of the fixed-
point-free character ofA°(S) (Proposition I), for sufficiently small neigh
borhoods, 3*(S) can be given the same coordinates by means of the natural 
projection T°(S)—>3°(S) in such a way that it, too, becomes a complex 
analytic manifold and the projection becomes complex analytic. In this 
structure, SDÎ^S) will then also be realized by complex analytic maps. 

PRESCRIPTION I. Let /*i, • • • , /*3a-3 be a basis of B(S')/N(S') 
(Proposition 3), and let c—(c\, • • • , Cz0-Z) be a vector in C3a~z, com-
plex vector space of complex dimension 3g — 3, for g â 2 ; for g = l, 
replace 3g — 3 by 1. For | ^ i | 2 + • • • + | ^ - s | 2 sufficiently small, 
/i = Ci/ii+ • • • +c30_3M3a-3 is a proper Beltrami differential and the 
map c—»(S, 5'**, a) (Lemma 2) is a homeomorphism of a neighborhood 
of the origin in C*°-* on a neighborhood of (5, S', a ) G P ( 5 ) . The 
vectors in the first neighborhood are by prescription a set of co-
ordinates for the second. 

The following closely related proposition is, again, quoted because 
of its intrinsic interest although it plays no role in the developments 
a t hand, and, again, the case g = 1 is known. 

PROPOSITION 4. T°(S) with the structure of Theorem 2 is complex 
analytically homeomorphic to a bounded domain of Cz°~z for g ̂  2 ; of 
Cx,for g = 1. This homeomorphism is not complex analytically equivalent 
to the homeomorphism of Proposition 2 ; indeed the latter is not complex 
analytic on T°(S) even if one imposes the structure of CZa~z on R6°~*. 

There is an alternative mode of introducing the same, i.e., complex 
analytically equivalent structures on the Teichmueller space (S) and 
the Torelli space (5), which mode as observed in §1 is both more 
useful for certain applications and historically antecedent to that of 
Prescription I. As a preliminary to formulating the alternative in 
Prescription II below I shall recall certain standard facts about Rie-
mann surfaces. 

I shall write (7, 8) = (71, • • • , y0; 81, • • • , 5<,) to denote a canonical 
(one-dimensional) homology basis on 5 where the one-cycles satisfy 
KI(yi, 73) = 0, KI(hi, 8y) = 8ty, i, j = 1, • • • , g, KI denoting the (skew-
symmetric, bilinear, integral-valued) intersection number. By abuse 
of language I shall write (7, 8) = (7',8') when the two bases are ele-
ment-wise homologous. Given (7, 8) on S, the normal abelian differ-
entials of first kind dj*i, • • • , dÇ9 with respect to (7, 8) on 5 (I sup-
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press the dependence of dÇ» on S and (7, S)) are uniquely defined by 
(la) /y^ry = ô*7, i,j = l, • • • , g, whence 
(lb) 7Tt7[S, (7, «) W i ^ f c , * \ j = l , • • • • « , 

are uniquely determined. The gXg matrix T[S, (7, 5)] ~Ttf[5, (7, 5)] 
is symmetric with positive-definite imaginary part and thus is a point 
in ©<,, the Siegel upper half-plane of genus g, the totality of such 
matrices. As a subset of C0(0+1)l2, @fl inherits a natural structure of 
complex analytic manifold. 

S is hyperelliptic, for g ̂  2, if and only if S admits a two-sheeted 
representation or, equivalently, there exists a conformai self-map, / , 
of S, which is involutive, Jr2 = 1, and has precisely 2g+2 fixed points. 
J , the "sheet interchange," is uniquely characterized by these prop-
erties. 

The following lemma is a special case of a more general one which 
will appear later on, but its distinct formulation here is useful. 

LEMMA 3. Given a canonical homology basis (7, S) on S and a: 5 -^5 ' , 
let a (7, ô) denote the canonical basis on Sf which is the image of (7, S) 
under a. Every S admits an involutive self-map a such that «(7, S) 
= ("~7> ~8 ) . However, for g ̂  2, when S is hyperelliptic, and only then, 
does there exist such an a which is conformai, and then a = J, the sheet 
interchange. 

Inspection of equations ( la) , (lb) yields immediately the trivial: 

LEMMA 4. The normal differentials of the first kind on S with respect 
to ( - 7 . "à) are -dÇi,i=l, • • • ,gandw[S, ( - 7 , -S ) ]=7r [S , (7,8)] . 

DEFINITION 5. Let U°(S), respectively, 11^(5), g ^ 2 , denote the 
hyperelliptic sublocus of T°(S), respectively, 3°(S), i.e., the totality of 
(S, S', a)<ET<>(S), respectively, {5, 5' , a } € 3 ' ( 5 ) , such that S' is 
hyperelliptic. T2(S) - U2(S); 32(5)==cll2(5). 

The following proposition has played a fundamental role histori-
cally in motivating the introduction of Torelli space and the study of 
periods of abelian integrals as moduli. 

PROPOSITION 5. Given a canonical homology basis (7, 8) on S, g^2, 
define a map *w: 3°(S) —»@y ( / suppress the dependence of #x on (7, 8) 
since it will not cause any difficulty) by #ir{S, S', a} = TT[S', a(y, 8)] 
(cf. equation ( lb)). *w is 2-1 on 39(S) - W(S) and 1-1 on Ug(S). Indeed, 
#T{S,S\p}=«T{S,S'\l3'}^{S,S\p} = {S,S",F}or{S,S^al3'}, 
where a is the map of Lemma 3 and (Lemma 3 and Definition 1) 
{S, S", a/3'} *= {5, S", /3'}<=>£" (and hence S') is hyperelliptic. 
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LEMMA 5. If S, g>2, is not hyperelliptic and (y, ô) is a canonical 
homology basis on it, there exists a set I(S) of 3g — 3 ordered pairs (i,j)t 

i, j , integral and l^i, jtig, such that A(S) is generated by dÇidÇj, 
(i, j)<EI(S), where dÇi is the ith normal differential of first kind with 
respect to (7, ô). For g=l, A(S) is generated by the square of the unique 
normal differential, and for g = 2, even though S is automatically hyper
elliptic, the statement remains true. If S is hyperelliptic and g>2 the 
preceding statement is false and must be replaced by the following: There 
is a (2g — l)-dimensional subspace A'(S) QA(S) which is element-wise 
invariant under J {with suitable notion of invariance), and there exists 
an index set I'(S), analogous to I(S), containing 2g — l index pairs 
such that A'(S) is generated by dÇidÇj, (i, j)<EI'(S). The complement of 
A'(S) in A(S) is a (g —2)-dimensional subspace, each element of which 
changes sign under J and no element of which is generated by products 
ofdt's. 

The following theorem is historically older in its essence than Theo-
rem 2 and contains the first method for providing T°(S) with a com-
plex analytic structure. 

THEOREM 3. Given S, g > 0 , and a canonical homology basis (7, 8) 
on it, the map *ir: 3°(S)—>&0 (Proposition 5) is complex analytic. The 
map *7r: T°(S)—*<&>(, defined as the natural projection Tg(S)-*3a(S) 
(Definition 1) followed by *w is also complex analytic. For g ^ 2 , in 
order to compute the differentials d*w at (S, S', a)^T°(S) and d *ir at 
[S, S', a}£:30(S) consider 7r[S', a(y, 8)] (equation ( lb), Lemma 3, 
Proposition 5) and consider a set of coordinates per Prescription I on 
5 ' ; then both differentials are given explicitly by the one formula 

dicalS', a(y, Ô)] 

(2) z°~z 

- £ - {-WKdti/dzdti/dz, na)dcai i,j = 1, - • • , g, 
a - l 

where z is a typical local variable on S' and the parenthesis symbol is 
that of Proposition 3 on S'. On T°(S)-U°(S) and ^(S)-cii°(S),,¥Tr 
and *TT have (maximum) rank 3g — 3 while on U°(S) and ^(S) they 
have rank 2g — l. The case g — 2 is subsumed in the last statement. The 
case g — \ requires only one term on each side of (2) and the rank is 
everywhere one. The following prescription yields complex analytic struc
tures on T°(S) and 3°(S) equivalent to those of Theorem 2. 

PRESCRIPTION II. Let I(S') be an index set as described in Lemma 
5 for S', assuming S' not hyperelliptic, i.e., (S, S', a)ET°(S) - U°(S), 
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[S, S', a}<E3°(S)-W(S). Then in a sufficiently small neighbor-
hood *iV in the Teichmueller topology of (S, S", a) and its pro-
jection *N in 3ff(S), a neighborhood of {S, S', a}f the functions 
*"*y[S", J3(Y, ô)], (iJ)EI(S'), (5, S", 0) a typical element of *iV, are 
local coordinates in a complex analytic manifold structure on T°(S) 
— U°(S) and a naturally projected such structure on 3Ö(S) — ^ ( 5 ) . 
If (5 , 5 ' , a)<E£/'(S), {5, 5 ' , a } G ^ ( 5 ) , g > 2 , the preceding state-
ment is false (because of the second part of Lemma 5) and must be 
replaced by the following one : 

PRESCRIPTION I I ' . Given any (S, S', a)G Ta(S) and the correspond-
ing {S, S', <x}E3°(S), g^2 (S' need not be hyperelliptic), and a 
sufficiently small neighborhood *N of (S, S', a) and its projection 
*N in 3ff(5), there exists on 5" , where (5, S", jS) ranges over *iV, an 
abelian differential d% of first kind and complex constants di, • • • , d0 

such that d$ has 2g — 2 distinct zeros 20, Si, • • • , 220-3 and 

(3a) di = I if, t = 1, • • • , g, 

where J3(TI) is the transform of y* on S by /3 and the dependence of 
i f and Zo, • • • , 22g-3 on (5, S", /3) and (7, 5) is suppressed in the inter-
est of simple notation. Then, choosing *N (and *N) smaller if neces-
sary, one finds that 

(3b) 

n[S",fty,S)]= f dï, 

r«4[S",0(y,i)]- f"d?, 

i = li * ' ' 1 ft and 

* = 1, • • • , 2g - 3, 

are local coordinates in a complex analytic manifold structure on 
T°(S)f and these structures coincide with those of Prescription II on 
T°(S)-U0(S) and 3ff(5)-cU^(5). Corresponding to formula (2) and 
with the same conventions one has, at (5, 5 ' , a) and {S, S", a}, 

3<7-3 

an = Z - (~l)1/2(#,/<fe #/<&, i*a)dca, i = 1, • • • , g\ 

(4) 
v ' Zg-Z 

drg+i = Z - (-l)1/f(<W<& # / & , M«)^«, * = 1, • • ' , 2g - 3, 

where drji is the normal differential of third kind on S' (i.e., zero 
periods over a(7y), 7 = 1, • • • , g) with residue —1 at z0 and 1 at s,-. 
In addition, the quadratic differentials d£idf, • • • , dÇ0dÇ, diyidj", • • • , 
dr]2o-zdt; span -4(50. 
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The following theorem is of independent interest although not 
needed in subsequent developments. 

THEOREM 3 (BIS). U°(S), g>2, is the union of a countable set of rela
tively closed, isolated complex analytic submanifolds of T°(S) of complex 
dimension 2g — 1. An analogous statement holds for ^(S) and 3°(S). 
A prescription f or local coordinates completely analogous to Prescription 
II holds f or U°(S) and cll(7(5) with the substitution of the index sets V 
of Lemma 5 for the sets I. 

C. Conformai automorphisms and the structure of M°. To avoid 
excessive length and complication of statements I shall deal first 
with the general situation and return later to some special observa-
tions about g = 0, 1, 2, 

LEMMA 6. For g^2, a: S—>S, a conformai, and a^l (in particular, 
a~l) = > a = l . H(S), the group of all conformai automorphisms (self-
maps) of S (composition of maps on the left as usual), is a finite group. 

LEMMA 7. Given f(EH(S) and a differential on S, for example, 
<t>(E:A(S), define f<j>=<f>(w(z))(dw(z))2, where z and w are local param-
eters at PÇzS, say, and f~l(P), and w(z) is the local realization of f~l. 
Given a subgroup G(S) (ZH(S), let R(G, S) be the linear representation 
of G(S) on A(S) defined by <£—»ƒ<£. For g^2, R(G, S) is faithful unless 
g = 2 and S is hyper elliptic in which case the "kernel is {i, ƒ } . In addi
tion, if S is not hyper elliptic, the invariant subspace of R(G, S) is of 
dimension at most 3g — 5. 

PROPOSITION 6. Define **:H(S')-*Tg(S), respectively, M:H(S') 
-^m°(S), by **f=(or1fa)* (Proposition 1), respectively Mf=(orlfa)*. 
A necessary and sufficient condition for a*(S, S', /3)=(S, S', j8), 
respectively a*{S, S', /3} = {S, S', j3}, where a * G ^ ( 5 ) , a^GW(S), 
(S, S', P)GT°(S), {S, S', p}£W(S), is that <** = **ƒ, respectively 
a* = Mf,for some fÇiH(S'). ** and M are anti-homomorphisms. 

At this point I need a consequence of Teichmueller's theorem as 
noted in §1. 

PROPOSITION 7. Consider (S, S', a)£T°(S), respectively {S, S', a} 
e.Z°(S),for g ^ 2 . Given a subgroup G(S') CH(S'), the set F* CTg(S), 
respectively F#C3B(S), of points fixed under **G(S')=TCTd(S), re
spectively **G(S/)=<3Jl and sufficiently close to (S, S', a), respectively 
{S, S', a}, is a cell of real dimension equal to twice the complex dimension 
of the invariant subspace of R(G, S) (Lemma 7). 

COROLLARY. There exists S, for g>2, such that H(S) reduces to the 
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identity, i.e., S admits no nontrivial conformai automorphism. a^l<=»a* 
= 1* and a « l«=»o:# = 1#, where a: S—>S and 1* and 1# are identities of 
T°{S) and 9^ (5) , respectively. The anti-homomorphisms ** and ## are 
anti-isomorphisms onto the isotropy groups T°{S, S', a) CX°{S) and 
W{S, S', a)CWlg(S) of (S, S', a) and {S, S', a}, respectively. 

PROPOSITION 8. Given (S, S', a)E:T°{S), respectively, {S, S', a} 
G3°(S), g^2, there exists a density X on S' which is invariant under 
H{S') {in the sense of Lemma 7). Using the prescription of Proposition 3 
to pass from a basis of A{S') to one of B{S')/N{Sr), one finds that the 
latter undergoes the complex conjugate of the representation R{G, S') for 
any G{S') CH(S'). Furthermore, if the said basis of B{Sf)/N{S') is 
used in Prescription 11 to obtain coordinates near (S, S', a) and 
{S, S', a}, then these coordinates under the action of any subgroup 
r c r * ( S , 5 ' , a), respectively, WlC^iS, S', a), undergo the hermitian 
adjoint of the representation R{G, Sf), where **G = T, respectively, 
##G = 9W. R(G, S') is completely reducible; in particular, for a suitable 
basis of A(Sf) and thus a corresponding one of B(Sf)/N(S') the fixed 
points F* of T, respectively, F* of W {Proposition 7), near {S, S', a), 
respectively, [S, S', a}, form a complex analytic submanifold on which 
the coordinates of the noninvariant sub s pace of the adjoint of R{G, S') 
are zero while the coordinates of the invariant subspace are parameters. 

THEOREM 4. M° = 30{S)/$Jl°{S) for any fixed S, g>2, is a normal 
analytic space. 3°{S) is a branched covering of M°, where the branch locus 
£>°{S)C3°{S) is the totality of fixed points of elements of S)?*(5) and 
the description of T>°{S) near one of its points {S, S', a}, as a union of 
complex analytic submanifolds corresponding to subgroups of H{S'), 
can be given by the prescriptions of Proposition 8. The points of M° on 
which £>°{S) projects are all singular {nonuniformizable) points with 
the following exceptions: all points of Mz representing hyperelliptic sur
faces without additional automorphisms. 

PRESCRIPTION I II . At [Sf]^Ma, g>2, the local ring of germs of 
holomorphic functions on M° near [Sf] is obtained by choosing a set 
of coordinates per Proposition 8 at {S, S', a}£3 f f (5) and choosing 
those germs of functions there which are invariant under the hermi-
tian adjoint of R{H, S'). In particular, in capsule form, to obtain ex-
plicitly a minimal set of generators of w [ 5 ' ] , the maximal ideal of 
Q[S'] containing those elements vanishing at [S'\, which set will 
also be a minimal basis for w [ 5 ' ] , one proceeds as follows. Consider 
on S' a basis for A{S'), the quadratic differentials. Operating on the 
basis by R{H, 5') (Lemma 7) one obtains a set of {3g — 3) X {3g — 3) 
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matrices Ai, • • • , hn, where n is the order of H(S'), representing 
H(S') faithfully. Let h*, • • • , h* (* means hermitian adjoint) act 
on a set of 3g — 3 variables #1, • • • , #3*7-3 in the usual way. Let m be 
the ring of power series in the x's with complex coefficients and no 
constant terms, each of which converges in some neighborhood of the 
origin when the x's are given complex values and is invariant under 
all the h's. There is a finite set of homogeneous nonconstant poly-
nomials in the x's, Qi, • • • , Qn each invariant under the h's such that 
every element of m is a power series in the Q's converging in some 
neighborhood of the origin. Then any irreducible subset of the Q's 
(no member a polynomial in the others) has the same number of ele-
ments, say N, and is a minimal set of generators and a minimal ideal 
basis of m. If one now takes the same basis of A (S') and forms co-
ordinates Ci, • • • , Czg-z near {S, S', a} as per Proposition 8 and 
Prescription I and sets #i = £i, • • - , Xzg-z = ^ - 3 , then m becomes 
m [S'] and the irreducible set of Q's the desired basis. If, for the sake 
of concreteness, one wishes to use Prescriptions II or II ' , then the 
bases of A (5') indicated there are to be used and the c's replaced by 
the increments of the corresponding 7r's (or r 's) , i.e., ir — 7T', where x 
runs over a neighborhood and ir' is the fixed set of coordinates of 
{S, S', a}. 

There are three ingredients in this prescription which have not yet 
been specified explicitly. (1) Given H(S') as an abstract group, how 
does one obtain the matrices hi, • • • , ftn? (2) How does one compute 
explicitly the generating polynomials Qh • • • , Qr? (3) Having the 
Q's, how does one extract an irreducible set? Let me say that to my 
knowledge the answer to (3) lies more in the realm of art than science 
at the present time, that is, there is no known general algorithm; 
rather it requires a judicious and perhaps tedious choice once ques-
tions (1) and (2) have been answered for any given group. However, 
it is possible to give explicit answers, drawn from function theory, 
group theory, and algebra, to (1) and (2). 

PRESCRIPTION I II (ADDENDUM). Given i l (S ' ) as an abstract group, 
suppose that its irreducible linear representations are known. To de-
termine the representation R(H, 5') on the quadratic differentials 
of S' it is sufficient, given any irreducible representation A of H(S') 
of degree r, to find its multiplicity N. Consider the Riemann surface 
5^ of genus g" obtained by identifying 5 ' under H(S'). S' is an n~ 
sheeted covering of Sr, branched over, say, Pi , • • • , PiÇzSr. Sup-
pose that, over P t , S' has branch points of order w» where n.\ n (as it 
will). There is a natural homomorphism of the fundamental group of 
5 "̂— {Pi, • • • , Pi} onto H(S'). The homomorphic image of a simple 
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loop about Pi is a class of mutually conjugate elements of order tii 
whose representations in A have #;th roots of unity as eigenvalues. 
Let exp(2iria/ni) occur Nia times in such a matrix. Then 

(4) N = r(3r ~ 3) + É ï NJ(I --) + (—YL 
»-i «-o LA nj \ tii / J 

where (x) = x — [x] is the fractional part of x. Knowing the matrices 
hi, • • • , hn of R(H, S'), the generating set of invariant homogeneous 
polynomials can be formed by the following algorithm. If hi=(hi

ap)f 

i = 1, • • • , n, a, /?= 1, • • • , 3g — 3 and #1, • • • , Xz0-z is a set of vari-
ables, define 

« 
Xa 

and define 

Then J^--.nk for 0 < J U I + • • • +fXk^n form a generating set of in-
variant polynomials for m (Prescription III) . 

The final issue to be dealt with is the concrete embedding of M° 
which results from the embedding of T°(S) in ©0 in Proposition 5. 

I recall the definitions of two groups. The homogeneous Siegel 
modular group, Sp(g, Z), of degree g, is the set of 2gX2g matrices 9ft, 
with integral entries, satisfying 

m( "'''W-T °)( °'7'ÏÏD T \ - / , oj \B AJ\-I0 O0J\B A J 

/ o, i, 

where T denotes transpose, 00 and Ia are, respectively, the gXg zero 
and unit matrices, and A, B, C, D are gXg submatrices in the indi-
cated positions. The inhomogeneous Siegel modular group 9ft* is iso-
morphic to Sp(g, Z)/{/2(7i """hg], where hg is the 2gX2g unit matrix, 
and acts on ©a by 

(6) ir' = (AT + B)(Cir + D)-1 = 2W o TT, 

where 7r, w'Çz&g a n d the operations are matrix operations. The homo-
geneous and inhomogeneous groups both have the multiplicative 
structures defined by the conventional left composition (matrix 
multiplication for the homogeneous group). 

3(7-8 

] £ hapXp, i = 1, • • • , »; a = 1, • • •, 3g - 3, 

JMI-.-M* = 2 (*i)M1 • • • frig-*?*-
« » i 

• 
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LEMMA 8. Given a canonical homology basis (7, S) on S, g è l , lel 
2)?£Sp(g, Z) operate on it on the left as a column vector. Then if (7', 5;) 
is any canonical basis on S one has (7', ô') = 5DÎ(7, ô) for some 
2)?£Sp(g, Z) and the resulting map is {up to homology) one-one from 
Sp(g, Z)/{hg, —Izg] to the set of canonical bases. If ir = ir[S, (7, ô)] 
{equation (lb)) and IT'— TT[S, (7', ô')], then ir' and T are related by (6). 

PROPOSITION 9. Given (7, 5) on S, the map +: Wl°{S)—»Sp(g, Z) 
defined by +j3# = 9ÏÏ, w/*ere 0: S-»S awd 18(7, Ô) = SDÎ(7, Ô) {Lemma 7), « 
aw anti-isomorphism {the dependence of+on S and (7, ô) is suppressed). 
One has #7r/3# = +/3# o #7r = SD? o #7r {equation (6)). Jw particular, *TT induces 
a map +ir: Mg-^<&g/yjlg, g>2 with the following properties: (1) +w is 
one-one into, (2) if ©É7/SDrîflr is provided with its standard structure of 
analytic space, then +w is analytic of rank 3g — 3 on M° — D°1 where D° 
is the critical locus, i.e., the projection of the branch locus £>°{S) {Theo
rem 4). In addition, + and +T are such that (3) at a nonhy per elliptic 
point {S, S', a}<E£>°{S), +2ft*(S, S', a) = <m°{+w[S']), the {full) iso-
tropy subgroup of Wlg at + x [ 5 ' ] , and the analytic action of ^Jlg{S, S', a) 
at {S, 5 ' , a} is analytically equivalent to that given by equation (6) where 
9W = +/3#, j3#£9K*(S), with the substitution on both sides of irki, {k, I) 
(£I{S'), as f unctions of Wij, {i,j), £/(S ')> per Theorem 3. 

There remains now the task of treating the particular cases g = 0, 1, 
and 2. The study of these cases is revealing because the relationship 
of the rather abstract treatment outlined heretofore in the general 
case to the very concrete traditional treatment available for g = 1 and 
to a lesser degree for g = 2 brings the former down to earth, as it were, 
and reveals graphically its necessity and the inadequacy of the latter. 

THEOREM 5. (i) For g = 0, given any S, one has T°{S) = 3°(S) = M° 
= {[S']}, i.e., a set consisting of one point, (ii) For g = 1, given any S, 
one has T*{S) = 31(5) = ©i {which is the usual upper half-plane), i.e., 
the map *7r = #7r of Proposition 5 is not only one-one but onto. Yl{S) 
— 3fll{S). Given a canonical homology basis (7, 8) on S, +($ll{S) 
= Sp(l , Z) = r ( l ) , the classical homogeneous modular group {I empha
size the anti-isomorphic nature of +, cf. Proposition 9). The following 
modifications of Lemmas 6 and 7, Propositions 6, 7 {and corollary), 
8, 9, and Theorem 4 are necessary f or g = l : H{S) contains a normal, 
abelian, transitive, one-complex parameter Lie subgroup N{S) such that 
H'{S)=H{S)/N{S) is finite. The map ## {Proposition 6) induces anti-
isomorphisms of H'{S') onto Wlx{S, S', a). Furthermore, H'(£) contains 
for any S a canonically determined normal cyclic subgroup of order two, 
{ƒ, / } , generated by the sheet interchange {which is not canonically 
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determined on S). The image of {I, j \ in 5Drî1(*S) will be denoted by the 
same symbol; one has that $Jll(S)/{l, j \ is anti-isomorphic to 
r ( l ) / {I2, —12}, and it is this group that should replace 3R°(S) in Theo
rem 4 for g = 1. 9DÎ1 is the classical inhomogeneous modular group and the 
structure of Ml thus resulting from Theorem 4 is identified under +ir 
with the classical one of the upper half-plane identified under 9JJ1 with 
the usual conventions at the vertices of orders 2 and 3 (see the introduc
tion). In particular, there is no singular point of MK (iii) Every S of 
genus 2 admits a canonical sheet interchange J. The image of the normal 
subgroup {J, / } QH(S) in ffi2(S) under ## will again be denoted by 
{I, j}and again in Theorem 49KP(5) should be replaced by 9K2(5)/ {I, / } 

for g = 2. The map *ir (Proposition 5) of 32(S), any S, is one-one onto 
©2— W, where W is the set each element of which is equivalent to a di
agonal matrix of ©2, under 2)?2, and +7r identifies M2 with (©2 — W)/3fl2 

with the usual structure. The only singular point of M2 is the surface 
class containing the surface generated by the equation y2 — x* — x. 

Part (ii) can be demonstrated by a careful straightforward asymp-
totic analysis of the elliptic integral of first kind in the course of 
which not only the structure of M1 but its natural compactification 
emerges. Although I have not seriously attempted it, it seems possi-
ble to do the same for g = 2. For g = 3 the dimensions of 33 and ©3 
still coincide, but the exceptional set has not yet been determined 
although there are indications that the analogous phenomenon oc-
curs: the exceptional matrices are those equivalent under the in-
homogeneous Siegel group to completely reduced matrices. There is a 
beautiful field of research waiting right here. One might hope, in 
plain language, up to g = 3 to dispense with the Teichmueller and 
Torelli structures altogether and obtain, in addition to M1, M2 and 
M3 completely from an asymptotic analysis of the abelian integrals of 
first kind. But for g ̂ 4 , 3g — 3 <g(g + l ) /2 , so that on purely dimen-
sion-theoretic grounds such a naive procedure is no longer adequate. 
The best that one has, then, is Theorem 3 and Prescription II. None-
theless, this still leaves open the question of describing explicitly the 
set +TM° (Proposition 9). Here the hope is, inspired by early work of 
Schottky, that +TTM0 C©^/9Kff is locally given by the zeros of a finite 
set of polynomials in the first order theta-nulls (constants) (vide §4). 
Less deep and closer to realization is the hope of explicitly compacti-
fying M° by means of the embedding +wMoC.<&o/<iSJl0. Indeed, start-
ing with some remarks of mine, other workers in the field are working 
out an application of the asymptotic analysis of the periods noted 
above to the problem, 

To conclude, as promised in the introduction, I offer some remarks 
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on numerical moduli. By that I mean the naive idea of attaching to 
each S a set of numbers (obviously at least 3g — 3 in number for g è 2) 
such that (1) the equality of two such sets is a necessary and sufficient 
condition for the conformai equivalence of the associated surfaces, 
i.e., one wants global moduli; (2) the numbers are intrinsically defined 
by the S without reference to any other surface or, to put it another 
way, one wants absolute moduli not relative moduli ; and there should 
be no arbitrary external normalization of the moduli possible; and (3) 
the moduli should be complex analytic functions on the structure 
spaces of this section. The only numerical moduli in the preceding 
sense for general g known to me are the periods of the normal integrals 
of first kind, and Proposition 5 and Theorem 3 tell the story—a unique 
embedding of 3°{S) as a point set, independent of 5, in a fixed un-
normalizable number space ©<,. These moduli have the particularly 
interesting feature of being classical function-theoretic objects of great 
utility and, in particular, given S as the Riemann surface associated 
with an algebraic equation f(w, z) = 0, they are computable as com-
plex integrals of explicit algebraic functions of z over explicit broken 
rectilinear paths in the z-plane. On all these counts other local or 
global moduli that are known, all deriving from uniformization in 
one way or another are excluded as numerical moduli even though 
they are usually 3g — 3 if complex, or 6g — 6 if real, in number. And 
there's the rub! The only defect of the periods is that they are 
g(g + l ) /2 in number. Theorem 3 shows how certain subsets of 3g — 3 
of them serve locally as moduli, but it is known that no such set 
serves globally (see §3 for references). I t is my conjecture that no 
proper subset will do, but I have not the slightest idea how to prove it. 

3. Comments, references, and hints of proofs. As indicated in 
§1 the essentials of Definitions 1 and 2 and Proposition 1 (with 
the exception of some points I shall mention shortly) stem from 
Teichmueller [53], There are some technical points of an expository 
character here to which attention should be called in order to estab-
lish a liaison with earlier publications. Thus in defining the set T°(S) 
Teichmueller and, following him, Ahlfors (e.g. [l, p. 53] and [5, 
p. 3]) select a fixed 5 and define T°(S) by means of pairs (S', a), 
a: S—>S', a topological. Bers (e.g. [10, p. 351]) demands immediately 
that a be quasi-conformal. Both authors (cf. Ahlfors, preceding refer-
ence) then view any other T°(Si) as a change offrante on Tg(S) with 
the frames being related by what is formalized in Definition 2. 
Kravetz [25, p. 5] is more consistent; he uses pairs, defines T0(S) 
having fixed 5 once and for all and considers no admissible maps 
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other than self-maps (i.e., in my notation, r*(5)) and composes his 
self-maps of S on the left. All of this is unexceptionable. The trouble 
(from an expository point of view) arises (in the papers of first three 
authors) when the time comes to introduce metric and analytic 
structures on T°(S). An examination of the preceding references (or 
[4, p. 168]) shows that an origin, in fact, in my notation, the origin of 
Definition 1, is singled out, the Teichmueller distance from it to any 
other point is defined, and the analytic coordinates in its neighbor-
hood are defined; and then, with a quick shuffle of the feet and a wave 
of the hand, it is asserted that the structure can be carried to the rest 
of the space by a change of frame. All this can be made quite precise 
in the notation of §2: one defines, as in Theorem 1, the distance from 
(5, 5, 1) to (5, S', a) for all T°(S), i.e., all 5 simultaneously and then 
defines the distance between (5, S", /3) and (5, S'", 7), say, on T°(S) 
to be the distance between jS*" 1^, S", /?> = <S", S", 1) and 
jS*- 1 ^ , £ '" , a)=(S", S'", TjS-1) on T°(S"). In the process one is 
forced to use the confusion of topological and diffefentiable functions 
of the first member of a triple which occurs in the writings mentioned 
above by considering 1 in (5, S", 1) to be quasi-conformal. The 
isometry of admissible maps and, in particular, the elements of I>(S), 
is automatic. One can proceed similarly in Theorem 2 to introduce 
coordinates, and again the analyticity of admissible maps is auto-
matic. Upon reconsidering the whole thing, however, one sees that 
the definitions of Theorems 1 and 2 are less cumbersome and more 
natural and have the advantage of keeping the first member of a 
triple in a purely topological role, the second member in a differenti-
able role, and the third member always a topological map. There is 
then no need whatsoever to distinguish (5, 5, 1), say, as an origin 
and, indeed, one will find no further mention of it in §2, and one can 
even then work with pairs and suppress the (5), having picked S 
once and for all. However, precisely for the purpose of keeping all 
functional dependences as explicit as possible and making the pre-
ceding remarks I have retained the notation used. 

The intermediate position of the Torelli space and the role of the 
group A0(S) in Definition 2 and Proposition 1 were pointed out to me 
in very valuable conversations of many years ago by Murray Gersten-
haber. The fixed-point-free nature of A°(S) and the consequence 
(Theorem 2) that 3*(S) is a manifold were first observed by me [43, 
p. 548, footnote 4] , [44, p . 23], and I give the simple proof here be-
cause the manipulations with the symbols of Definitions 1 and 2 used 
in it serve as models for those needed to prove several other state-
ments, namely, those of Proposition 1, Proposition 6, and the corol-
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lary (it will be immediately apparent why one needs the first state-
ment of the corollary when one tries to prove the following ones). 
Namely, suppose j8*(5, S', a) = (5, S', a)> |8: S—>S; then by Definitions 
1 and 2 that means (5, S', a/3-1) = <5, S', a)«=>there exists a n / : S'->S', 
conformai, such that f^aiap-^^^afior1. But since f3*GA9(S), 
j3~ l , a/for1 « 1 and ~ = » « , one has / ~ 1 . But a lemma due to 
Hurwitz (cf. Lewittes [29, p. 737, Corollary l ] ) asserts that ƒ «1=»/ 
= 1. Hence /3~1 and /3* is the identity. The reader can now immedi-
ately verify the other statements mentioned. 

That brings up subheading B and, first of all, Theorems 1 and 2 and 
their ancillary Definitions 3-5, Lemmas 1 and 2, and Proposition 3. 
As indicated in §1, Theorem 1 in stronger form is due to Teichmuel-
ler, and, indeed, Proposition 2 is the stronger form. Again, I remind 
the reader that as far as the central fact of Theorem 2, the existence 
of a complex analytic manifold structure on T°(S) is concerned, it was 
first found via Theorem 3 (see §1). However, as formulated, Theorem 
2 is due to Bers in [lO]. Moreover, while many of the ideas and even 
the notation of this section through Theorem 2 occur explicitly in 
Teichmueller's work, the entire spirit and manner of exposition here 
are due to Bers, who emphasized the role of the Beltrami equation 
and its solution theory and devised the important idea of using a 
basis of Beltrami differentials in proving Theorem 2. A few words 
will lay bare the essential ideas and motivation. Consider first Defini-
tion 4. Suppose one has a C1 map with nonvanishing Jacobian 
a : S—>S'. Writing dw = wzdz+wzdz = wz(dz + (wz/wz)dz) and defining 
H=Wz-/wg, one sees that the Jacobian condition, | wz\

2— | ws\
 2 > 0 (a is 

assumed to be orientation preserving), says precisely | wz\
 2(1 — | ju|2) 

> 0 , so that a is quasi-conformal according to Definition 4 where /x 
as defined is proper and continuous. To give geometrical meaning to 
this definition of quasi-conformality fix a point P on S and consider 
dz as a vector there. Writing dw = wzdz(l+fjdz/dz), and dz = ei(i>\dz\, 
one sees that \dw\ = | wz\ | l +/xe"~2^ | has the maximum | wz\ (1 +1 /x| ) 
when <£ = §arg/z and the minimum |w*|(l— |/x|) when $ = |arg/A 
+ 7 T / 2 , i.e., at right angles. In loose geometrical terms an infinitesimal 
circle on S about P goes into an infinitesimal ellipse for which the 
ratio of major to minor axes i s ( l + | ju | ) / ( l — | /X|),JU evaluated at P . 
Calling this expression the dilation at P , K(a, P ) , one sees that K(a) 
= sup K(a, P ) , sup taken over all PÇiS. From the geometrical inter-
pretation one sees immediately (considering affine maps on the tan-
gent planes) that the inverse map has the same dilation at every 
point, hence the same dilation, and the dilation at a point under com-
position of quasi-conformal maps is multiplicative so that K(afi) 
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^K(a)K((3). These two remarks imply immediately that the Teich-
mueller distance in Theorem 1 is symmetric and satisfies the triangle 
inequality once one has dealt with the question of the more general 
(not C1) quasi-conformal mappings. 

According to Definition 4 the non-C1 quasi-conformal maps satisfy 
the Beltrami equation with generalized derivatives. For this notion 
see [ l l , p. 90, §2]. That one can operate with the generalized deriva-
tives of the composition of two quasi-conformal maps as with C1 

maps is contained in [6, p. 393, Lemma 10]. The two geometric facts 
remarked above then follow by the usual computations, i.e., multi-
plication of 2X2 matrices of partial derivatives representing affine 
transformations on tangent spaces. 

A proof of Lemma 1 within the class of C1 maps, i.e., continuous /*> 
is laborious but well accessible. However, even with continuous ju the 
solution theory of the Beltrami equation is as sophisticated as with 
discontinuous fx. One could then appeal to a smoother map, but since 
one is going to deal with general ju anyway, it is much easier as Bers 
remarks in [12, p. 216, Proposition 2] to prove Lemma 1 with maps 
with breaks in the derivatives. Lemma 2 is a consequence of the solu-
tion theory in [ó] under the hypotheses of Definitions 3 and 4. 

The positivity of the Teichmueller metric (5) follows in particular 
from a simple lemma in the solution theory [ l l , p. 95, F ] , which 
shows that from the existence of a sequence of maps yn: S' —^S", 
n = l , • • • , such that K(yn)~->1, i.e., such that ||/i»||—»0, where /zn is 
derived from yn per Definition 4, one can conclude that there is a 
limit map 7 : S'—>S" satisfying in suitable local coordinates the Bel-
trami equation with JU = 0, i.e., the Cauchy-Riemann equations. That 
is, D8((S, S', a) , <S, £", 0 » = 0<=»there exists a 7 : S'-+S", 7conformai, 
y~aft-\ i.e., <S, S', a) = <S, S", |8>. I shall remark here that the 
Beltrami equation is, in unified complex notation, nothing else but 
Beltrami's generalized Cauchy-Riemann equations for the Rie-
mannian 2-metric \ | dz+fxdz\2, where X is a density. The integrability 
condition wiz^{iiwt)z is, up to a constant, the Beltrami-Laplace equa-
tion for that metric. To check this with a standard source in conven-
tional notation (Blaschke, Chapter 6), write Edx2+2Fdxdy+Gdy2 

= i ( £ + G)\dz\2 + Re{(è(E -G) + iF)dz2} = \\dz + iidz\\ Com-
paring, one obtains two equations for X, JJL from which one derives a 
quadratic for X. Solution leads to X= ( E + G ) / 4 + K ^ G - F 2 ) 1 / 2 , fi 
= [\{E — G)+iF}/2\. Insertion in the Beltrami equation and the 
taking of real and imaginary parts complete the story. 

To complete the discussion of Theorem 1, I observe that the iso-
metric nature of the admissible maps is a trivial exercise of the sort 
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mentioned earlier. The proper discontinuity is proved (modulo nota-
tion) in [25, p. 33, Theorem 7.4]. That leaves the task of establishing 
connectedness. To that end consider (5, S", a) , (5, 5 " , /3). By Lemma 
1 one can find y: 5"—»S", y~fiorl and quasi-conformal with associ-
ated proper fx(EB(S') (Proposition 3). Observing that y: S'»—+S" is 
conformai (Lemma 2 and Definition 5), one sees that (5, 5'M, a ) 
= (5, 5" , j3). Hence it is sufficient to prove that the map e—>(S, S'ÉM, a) 
of 0 ^ e ^ 1 into T°(S) is continuous. The continuity at e = 0 is implied 
by the argument showing positivity of the metric. To extend the 
argument to nonzero values one needs a technical device (of great 
importance in the sequel) due to Ahlfors and Bers. 

Namely, consider jtii, /*2 ££(*$") a n d proper, and suppose that 
1: £'->S'"i = S", 1: S ' - ^ ' ^ S " ' are realized locally by u(z, z) and 
w(z, z), respectively. Then, using the chain rule for partial derivatives, 
one verifies easily that S ' " = S"p, where 

(F) p = (/*2 - Mi) / (1 ~ M2M1)(«*/#*), 

all functions being evaluated on S" via the inverse of u(z, z). 
Setting jUi = €/x, JU2= (e+e')/*, e' real and small, one sees immediately 

that the former argument (at e = 0) establishes continuity at e' = 0, 
i.e., at the remaining e. 

Turning to Proposition 3, I remark that the first statement follows 
from the Riemann-Roch theorem and the fact that any <j> has 4g — 4 
zeros, g ̂ 2 . The remaining notions are due to Teichmueller in [53], 
except for the concept of basis which is due to Bers in [lO]. All the 
assertions are obvious once one has the existence of a density. A very 
useful (in the sequel) way to establish this is to uniformize S by the 
unit disk and carry back the Poincaré metric there. 

The references for Theorem 2 are [10, pp. 353-357], [3, pp. 184-
186], and [4, pp. 167-168] for Bers' original approach which is that 
set forth in Prescription I. A later approach due to Bers and Ahlfors 
is found in [14] and [5, pp. 4-5] and leads to the stronger result of 
Proposition 4. Some commentary will be useful in understanding 
Prescription I. The proper character of n for small norm of c follows 
from Schwarz's inequality, and the continuity of the map follows 
from (F) above as in the connectedness argument. The one-one and 
hence homeomorphic character of the map requires deeper considera-
tions, namely a systematic use of the unit disk uniformization. Fol-
lowing Bers in [10, pp. 351-353] (cf. also [ l l , paragraphs 5, 9, 13], 
[3, pp. 177-179], and [2, pp. 46-47]), one sets up a one-one cor-
respondence between T°(S) and normalized standard sets of gen-
erators of uniformizing Fuchsian groups. For the benefit of the reader 
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I indicate the liaison between his notation and mine in the quoted pas-
sage. Bers starts, in fact, with T°(S') (S' is his So), i.e., he uses the 
origin (S', S', 1). However, one can proceed directly with T°(S) as 
follows: uniformize S' to obtain a normalized standard set of gener-
ators which one assigns to (5, S'y a); given (5, S", j3) write it, as in a 
similar situation above, as (5, S'M, a) for some proper JJL(EB(S') ; then, 
as in the quoted passage, obtain another normalized standard set of 
generators via /* and assign that to (5, S", j3), the assignment being 
unique as remarked there. The argument on the bottom of p. 353 and 
p. 354 then completes the proof of the one-one assertion when one 
observes that the hypothesis of Prescription I that /*i, • • • , /%-3 are 
a basis of B(S')/N(S') implies, by the main lemma of p. 354, that they 
are also a complex basis in the sense of p. 354. 

There remains the task of showing that any two sets of coordinates 
per Prescription I are complex analytically related. This is done by 
Bers on pp. 356-357 of the quoted reference. I should like to make 
only two additional comments to enlighten the reader. The first is 
that along with the mapping of T°(S) onto normalized standard sets 
of generators goes an embedding in RGo-Q

f namely, the coordinates of 
the generating matrices (taking account of the normalization), and 
this now becomes central. The second is that equation (11), p. 357 
and equation (12) on the same page seem (to me) at first sight a little 
mysterious. Actually, they stem from (F) above, and I would suggest 
the following clarification. Given vectors b and c, write e = c — b, 
M = £iMi+ • • • +cZg-zfJLzo-Zy v = bifii+ • • • +&3<7-3M3<7-3, and \ = fj, — v 
= eijJLi + • • • + £30-3/*3<7-3, where /xi, • • • , /x3(7-3 are a basis of 
B(S')/N(S'). By formula (F) one has S** = S">, where S" = S'" and 
p = {X/(l — ixv)} (ut/üz). Expanding p for e with small ||e|| (norm) one 
can write p = n+eimi(e)+ • • • + ^-3^3^-3(e), where w»(e) depends 
holomorphically on e (the presence of /x without its conjugate in p is 
critical here) and |m t(^) | =0( | |e | | ) as ||e||—>0, and where n = eitii+ • • • 
+e30-3«3<7-3, ni= {/i*/(l— IH 2)} (uz/üz). Using results of [6], one can 
replace (12) by | S ' « - S " » | = | S " > - S " » | =0(| |e | |2) and proceed with 
the remainder of Bers' argument. 

Now we come to the complex of ideas surrounding Theorem 3. The 
basic facts about hyperelliptic surfaces are due to Hurwitz (see [22]). 
The statement in Lemma 3 about the existence of an involutive map 
a such that a(y, 8) = (—7, — S) follows from the fact that every S 
admits a map j3 on a hyperelliptic S'. Setting a = j8~1Jj8, where / is 
the involution of 5 ' , suffices. Proposition 5 is Torelli's theorem as 
formulated by Weil in [56] (see also the references in §1). The theo-
rem actually proved states that x [5 , (y, ô)]=7r[S', (7', S')]=Hhere 
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exists a n / : S—»S', ƒ conformai, such that / ( Y , 8) == (7', 8') or ( — 7', — 8') 
(the reverse implication is trivial by Lemma 4). That the result is 2-1 
except on ^(S) where it is 1-1 results from Lemma 3. Lemma S is a 
theorem due to Max Noether (cf. [43, p. 560, reference 5]) in the 
nonhyperelliptic case. In the hyperelliptic case it is proved by ex-
plicit computation (cf. [42], [44, p. 22 and p. 27], [2, p. 50]). 

Theorem 3 through Prescription II is my own work (in [41 ] and, 
more carefully in [44]). The moduli used in Prescription I I ' were first 
suggested by Riemann in [46, pp. 120-122], then utilized by Schiffer 
and Spencer in [49, p. 333, Theorem 7.12.1], and finally cast into the 
form of Prescription I I ' by Ahlfors in [2], although it should be 
emphasized that the precise form of equation (4) with the fx's does 
not appear there—rather they follow easily from the technique used in 
[44, pp. 38-39]. As matters presently stand, Theorem 3 is derived 
from Theorem 2 as indicated in [44] by means of formulas (2) and 
(4) and the implicit function theorem, the key point being to show 
thereby that the coordinates of Prescription II (and II ') are in one-
one correspondence with those of Prescription I and, hence, with 
the points of a neighborhood of T°(S). However, in invoking the 
implicit function theorem on p. 28 of [44] there is a gap, namely, 
equation (2) (or (4)) shows merely that the periods are differentiable 
functions of the c's at the origin, whereas one needs differentiability in 
a neighborhood. But that is easily obtained from the derivation of 
formulas (2) and (4) given in [44, pp. 38-39] by using formula (F) 
and a technical device analogous to that in [38, pp. 228-231]. After 
doing this, one sees immediately from the considerations on pp. 28-29 
of [44] that the periods are complex analytic functions of the c's and 
one can use the complex form of the implicit function theorem instead 
of the real form used there. That all this is highly nontrivial is seen 
from the fact that Ahlfors uses the full strength of Teichmueller's 
homeomorphism result to prove merely that the periods depend con
tinuously on the c's ([2, p. 56, last paragraph and p. 50, last para-
graph of §3], all this being implicit). But having gone so far, I point 
out that, conversely, Prescription I follows from II and I I ' by using, 
respectively, the one-one dependence of all the periods on those in II 
and Torelli's Theorem and Theorem 7.12.1 of [49] for the coordinates 
of I I ' to establish the one-one character of all these coordinates on a 
neighborhood of T°(S). Theorem 3 (bis) except for the "countable, 
relatively closed, isolated" is due to me in [42]. That the hyper-
elliptic locus U°(S) is, in fact, topologically a union of disjoint sub-
spaces of ,R6*-6 was known to Teichmueller. That the union is counta-
ble (in particular, not finite and not connected) is due to Kravetz in 
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[25] where one will also find the preceding statement (cf. also [2, 
pp. 50-53]). 

Turning to heading C, I remark that my observations earlier in this 
section, together with Lewittes' papers, [29] and [27], will readily 
dispose of anyone's questions about Lemmas 6 and 7, Proposition 6, 
and the Corollary to Proposition 7. Coming to Propositions 7 and 8, 
I consider the latter first. The first sentence follows as remarked above 
from the existence of the carried back (via uniformization) Poincaré 
density X. Let <t>\, • • • , ̂ - 3 form a basis of A{S'). Setjui = $i/X, • • • , 
JU3<7-3 = <?3(7-3/A. Given ƒ G G (50, set f<f>i= YLiaa<t>h * = 1 , • • • , 3g —3 
(Lemma 7). Then, clearly, X being invariant, one has /jUt = X)i <*#/*/> 
which is the second statement. Setting /x = Ci/xi+ • • * +C30-3M30-3 o n e 

finds ffi = Ci MI + • • • +C30-3M30-3, where c{ = ]£y â^ch which, coupled 
with the assertion ƒ**<S, 5'", a)=(S, S'f», a) (Prescription I) is the 
third statement. To prove the asserted equation, one observes that 
it is equivalent to <5, S'*, û5cr1/a> = <5, S'», fa) = (S, S'f", a) (here ƒ 
is viewed as a topological map of 5'M on itself), i.e., there exists 
g: Sfft—^Sffli conformai, such that f~g, where g is now interpreted 
(Definition 5) as a topological map g: 5'—»S'. But one can prove 
more; in fact, ƒ interpreted as a topological map ƒ: Sffl-^S'fli is con-
formal. Indeed, this follows from the Beltrami equation. Let z and w 
be local parameters on S' a t P and f^1(P)1 respectively. Let 1 : S'—tS'" 
be realized at f~l(P) by u(w, w) satisfying u^ = fx(w)uw. Let 1: S' 
—>S'fft be realized at P by v(z, z) satisfying Vi=ffj,(z)vzi where, per 
Lemma 7, ffx(z) = ix{w)(dw/dz){dz/dw), where now w(z) is the local 
realization of/"1. Then with the same use of w, the change of variable 
rule applied to the first Beltrami equation leads to Ui=fjj,(z)uz, i.e., 
u and v as functions of z satisfy the same Beltrami equation, i.e., 
symbolically u(J"1)=g'^1(v)f say, where g is analytic with nonzero 
derivative. That proves the third statement. The complete reducibil-
ity of R(G, 5 ;) follows immediately from the finiteness of G(S'). The 
prescription of the last sentence of Proposition 8 by the above then 
certainly gives a set of fixed points of T. If, however, one assumes 
Proposition 7, then by dimenson-theoretic considerations it is clear 
that it gives all. 

That leaves us with Proposition 7 and its corollary. To understand 
the difficulty here one must see that what is needed is to reverse the 
preceding argument, i.e., from/**(5, 5'M, a)= (5, 5" , a) to conclude 
that 5 / / = 5 / /^, in particular, if (5, S'*, a) is fixed, that ƒ/* = At; that 
would show that every fixed point of/** near (5, S', a) is obtained by 
the prescription of Proposition 8 and thus, in particular, prove 
Proposition 7. Now if from the equation one could deduce g: S'^—tS" 
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conformai and =ƒ (as a point map) one could simply revise the entire 
argument of the preceding paragraph and finish. However, by defini-
tion one has only g ~ / . Hence, one needs a stronger tool, something 
that will conclude equality from the weaker assumption of homotopy. 
But that is precisely Teichmueller's theorem with its uniqueness 
assertion. Indeed if /: S'—>£'>*, t = 1 as a point map, is Teichmueller's 
extremal quasi-conformal map, then t~lgt\ Sf—»S' is extremal quasi-
conformal and ~ / . But, by uniqueness, t~lgt=f. Examining Teich-
mueller's theorem, this implies not that /M —M but rather frn = m, 
where m is a Teichmueller differential [10, p. 355, paragraph 7], 
rn = k<l>/\<j>\, where 0 <k < 1 , <££^4(S')> and ƒ#=<£. In other words, if 
one forms m = k(c{$i+ • • • +c^_z$3o-.z)/\c{<j>1 + • • • +^.-803*-* | 
and, say, fa, • • • , fa span the/-invariant subspace of H(S') then the 
fixed-point locus of/** is described by c£+i = • • • = ^ _ 3 = 0. That 
proves Proposition 7, but it is not the same as Proposition 8; for if 
5/m = 5'M then the ci are not even differentiate, let alone holomor-
phic, functions of the c». 

The Corollary to Proposition 7 follows from the observation that 
by Lemma 7 and Proposition 7 and the finiteness of any isotropy sub-
group of T°(S) the totality of fixed points of (nontrivial) elements of 
T°(S) is locally a countable union of submanifolds of codimension at 
least 4. Using Hausdorff's definition of dimension (I am indebted to 
my esteemed colleague, D. J. Newman, for this ingenious observa-
tion) one sees that the fixed points cannot exhaust any neighborhood 
of T°(S), whence the corollary. Another proof patterned after [2, 
p. 52, 4] , remarks that if (5, S", j8> is fixed under hET'(S), h?*l*, 
and close enough to (5, 5 ' , a ) , then (5, S", j3) is also fixed under/** for 
some ƒ G H(S'). Indeed, if t: S'—^S", t^fîor1, is the Teichmueller map, 
with dilation K, and if ft = Aj*f h0EH(S"), then rlhot:S'->S' is a 
Teichmueller map with dilation at most K2 which is not ~ 1 . If K 
is sufficiently small, i.e., (5, S", ]8) sufficiently close to (5, S\ a ) , 
then (by the proper discontinuity of the mapping-class group) t~lhot 
must be conformai, which proves the lemma. 

Theorem 4 follows immediately from the representation of M° as a 
quotient space and the results in Cartan's paper [15]. In particular, 
Prescription III results from Proposition 8 and pp. 91-92 of the Car-
tan paper, together with the remarks on p. 69 of [37]. The statement 
about the singular character of the critical locus (the projection of 
the branch locus) comes from [45], where it is observed that, except 
for the special cases noted, which are also treated in the same note, 
the statement follows from the last statement of Lemma 7 and the 
purity of the branch locus. 
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The first formula of Prescription III (Addendum) is taken ver-
batim from the paper [16], and the second from [36]. 

Equation (5) defining Sp(g, Z) is merely a transcription of Lemma 
8. Indeed, writing down the conditions that 9JÏ transform a canonical 
basis to another one gives (5). The peculiar arrangement of A, B, 
C, D is due to the desire to write the matrices in (6) in alphabetical 
order. In fact, writing 2)?(Y, ô) = (Dy + Cô, By+AS) and (equation 
(lb)) 

T'U = f da = E ba, f #/ + E ** f da 

and d$i = E * LndÇi, L nonsingular, one has 

v*i ~ JLI bjkLnbik + 2 ^ O'jkLiiTTiki 
k,i k,i 

using equation (la) . In matrix notation one has T' = LBT+LirAT. 
Similarly, one derives Ig = LDT+LirCT. Taking transposes and using 
the symmetry of irf and w one deduces T' = (Air-\-B)LT and LT 

= (CTT+D)~1, whence (6) follows. 
Turning to Proposition 9, one sees immediately that + is an anti-

isomorphism into (Definition 2). That + is onto follows from the more 
comprehensive theorem to Dehn and Nielsen that every automor-
phism of the fundamental group of S is induced by a self-map of S. 
To prove the second statement, observe that by Definition 2, Lemma 
3, Proposition 5, and Lemma 8, given {5, 5 ' , a} one has to consider 
the basis «18(7, Ô) on S' and TT[5', «18(7, 5)]. But ap(y, 5) =a2»(7, 5) 
= 9Jîa(7, 5) because of the linearity of the map induced on Hi(S) by 
a. But Lemma 8 implies that T[S', ïSRa(y, ô)] = 3Dî 0 ^ [ 5 ' , «(7, S)], 
which proves the statement. The next statements follow immediately 
from the preceding one (TT "commutes" with the quotient operation 
by m°(S) on 3'(S)) and Theorems 3 and 4 ( ^ ( 5 ) is in £>'). 

In Theorem 5, (i) follows immediately from the known topological 
fact that any orientation-preserving map of a 2-sphere is homotopic 
to the identity, (ii) follows from the classical theory of elliptic func-
tions (cf. §1) and the relevant parts of §2. The statement in (iii) 
anent ©2 — W is known from a study of Torelli's theorem (cf. [55, 
p. 37, Satz 2]), that about singularities is in [45]. The rest follows 
from the relevant parts of §2. 

For Schottky's result see [50]. 
That no set of periods per Prescription II will serve as global mod-

uli was proved by Bers in [13]. 
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4. Applications. In this section I want to illustrate by some exam-
ples drawn from my own work and that of my students the applica-
tion of the ideas of §2 to what seems to me from my reading to be 
two typical problems in this area. 

From the time Riemann first introduced the concept of moduli, one 
finds repeated reference in his work and that of his successors in 
algebraic function theory and algebraic geometry of curves to the 
question as to whether a particular property of a Riemann surface (or 
algebraic curve) holds for "general moduli" or only for "special mod-
uli. " As a general approach to such questions I have proposed [43], 
[44] that to a surface 5 ' of genus g ^ 2 to be "tested" one apply 
the following procedure: assign to the point P= [S']ÇzM° a con-
venient t=(S, S', a) or r = { S , S', a}G30(S) (for some 5) over 
it. To / (or r) and (some or all of) its neighbors one attaches pa-
rameters appropriate to the property and lying in a (sufficiently 
small) domain such that every set of values therein corresponds to a 
surface with the desired property. One verifies (if possible) that the 
7r's (Proposition 5 and Theorem 3) are analytic functions of these 
parameters by means of concrete variational formulae and then one 
computes the rank of the Jacobian at the values corresponding to t 
(or r) . If the number of parameters is 3g — 3 and the rank is 3g — 3 
then the property is general by definition. If the number is smaller 
than 3g —3 but the rank is maximal the property holds only for 
special moduli, again by definition, and one has an explicitly para-
metrized submanifold of exceptional (Teichmueller or Torelli) sur-
faces. Another approach to the special moduli situation is to set up 
appropriate local moduli (see §1) near t and then write down implicit 
equations (depending analytically on the moduli) for the property 
in question. These will describe an analytic set in T°(S) (3^(5)), in-
deed, a submanifold if the rank is maximal. 

Interestingly enough, the same approach is of value in treating the 
appearance of moduli in certain more modern questions of function 
theory, namely, extremal problems of conformai mapping, particu-
larly in the work of Schiffer and those inspired by him. Indeed, those 
with some familiarity with this research will recognize one major 
source of the techniques to be demonstrated here and in the problems 
of the preceding paragraph. The first illustration I cite is precisely 
in this area and is contained in the paper [38], which is essentially 
Pat t ' s Yeshiva thesis. It has been pointed out that there is a certain 
fuzziness in the hitherto existing treatment of a central difficulty in 
extremal problems on multiply connected surfaces. For example, if 
one wishes to solve an extremal problem for the coefficients of normal-
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ized schlicht mappings of a multiply connected plane domain by the 
method of interior variation it is immediately clear that, in general, 
such variations change the conformai type of the domain so that one 
is no longer in the set of competing mappings. I t is, therefore, neces-
sary to exhibit sufficiently general variations which leave the type 
unchanged. The first satisfactory handling of this problem to my 
knowledge is in Pat t ' s paper, where he points out that, more gener-
ally, to obtain type-preserving concrete variations of any given char-
acter of a surface S' of genus g (in the example, S is the double of the 
plane domain) one proceeds exactly as outlined in the preceding para-
graph, using, however, more than 3g —3 variational parameters, and 
sets the 7r's (or r 's) (Theorem 3) equal to the constant values they 
have on (5, S', a). The resulting implicit equations describe a sub-
manifold of type-preserving variations. Pat t considers a particular 
kind of variational process, but the method is immediately applica-
ble to the various known techniques. 

My second example belongs to the first-mentioned circle of classi-
cal problems and deals with the conditions imposed on the moduli 
by existence of special divisors of degree at most g. To the divisor 
a = Pixi • • • Pn

xn on S associate the integers d e g a = ^ X ; , dim a 
= dimension of the space L(a) of functions ƒ on S for which ct| (ƒ), 
and ind a ̂ dimension of the space of differentials w on 5 for which 
a\ (co). The Riemann-Roch theorem then reads dim a~1 = deg a — g+1 
+ind a. In particular, if a is integral (all X»^0), L(crl) is, in plain 
language, the space of meromorphic functions on S having a pole at 
Pi a t most of order X» for i = 1, • • • , n and, hence, dim c r 1 ^ 1. If, in 
addition, d e g a ^ g then the Riemann-Roch theorem shows that in 
general, i.e., among divisors on S whose degree equals deg a, dim a""1 

= 1. If dim a"1 è 2 , i.e., if L(orl) contains a nonconstant function, 
then a is special (of degree at most g). However, if S bears a special 
divisor a with deg a ^g this may be special in the sense of moduli. 
To give meaning to this and study the phenomemon, at least locally, 
I have proposed two devices. In the first I take a nonconstant 
function /GL(a""1) and use it to represent S as a branched cover-
ing of the Riemann sphere. I then use the branch points as param-
eters by invoking variational formulae for the 7r's as functions of 
them. Now, I consider the differentiable product structure with 3ff(5) 
and S(d) as factors, where d = deg a and S(<n is the d-fold symmetric 
product of the underlying differentiable manifold of 5. It is easy to 
show that by means of any one of several concrete variational meth-
ods or a suitable choice of /i's one can introduce a structure V[d) of 
complex manifolds on the product in such a way that V[d) is an analytic 
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fibre space over the base space 3a(5) with fibre S{d) over r = {5, S', a} 
Çz3°(S) embedded as a complex submanifold. The structure of V\d) 

is generated by local complex analytic product structures of suitable 
neighborhoods. In particular, the point (a, r) £ V[d) has such a prod-
uct neighborhood N. Variation of the branched representation then 
describes an analytic set V in N whose dimension is the rank of the 
Jacobian at (S, 5 ' , a). If this rank is maximal, F is a submanifold. If 
the dimension is 3g —3, then (a, r) is "general," otherwise "special." 

In [43] this technique was applied in particular to study the dis-
tribution of Weierstrass points. In this connection I wish to call atten-
tion to some remarkable work by Lewittes on automorphisms of 
Riemann surfaces and their relation to Weierstrass points with spe-
cial relevance to those surfaces which arise from normal subgroups of 
the modular group T(l ) . In particular, two small remarks, by-
products of his investigations, deserve comment here. First, another 
worker in the field has made the statement that a surface S with only 
general Weierstrass points, i.e., g(g2 —1) distinct Weierstrass points 
each with gap sequence (1, • • • , g — 1, g + 1 ) lies in a class [ S ] £ ¥ J 

which is not a singular point. But Lewittes observes that the surface 
belonging to the level seven group T(7), discovered by Klein, has 
genus g = 3, 24 Weierstrass points each with gap sequence (1, 2, 4), 
and admits the group r ( l ) / r ( 7 ) containing 168 automorphisms. A 
glance at Theorem 4 of §2 shows that this surface is not one of the 
lower genus exceptions and is, therefore, in a singular class of M°. The 
statement is false with a vengeance. On the other hand, in [43] I 
showed that any surface with general Weierstrass points gives rise to 
Teichmueller and Torelli surfaces which are general in the sense of 
moduli! The second observation is that any normal subgroup G of 
r ( l ) with finite index gives rise to a surface S' whose representatives 
in M°, 3°(S), and T°(S) are isolated in the sense that the components 
in T°(S) of the fixed locus of that subgroup of T°(S) which is iso-
morphic to T( l ) /G, the automorphism group of 5 ' , are precisely the 
points over [S']ÇzM°. This follows, using Proposition 8, from the 
fact noted by Lewittes that there is no quadratic differential in S' 
invariant under the group. 

I have devised a second method (details of which will appear in a 
forthcoming Yeshiva thesis) for handling special divisors. Again one 
considers an analytic fibre space W[d) with base 3°(S) where the fibre 
over r = {5, 5", a} is S[d)XS'(d). Observing that the triple (a, a', r) 
= w, where a is an integral divisor and a' is an equivalent divisor with 
deg a = deg a' (a is the polar divisor, a' the zero divisor of a function on 
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5'), is a point of W°d)f one sees that Abel's theorem gives implicit 
equations describing an analytic set of surfaces with pairs of equiva-
lent divisors of order d neighboring w (this in contrast with the ex-
plicit parametrization of the preceding method). More explicitly, if 

* = P\1-.- P)\ 

a' = QÏ • • • (fu , Xi + • • • + \i = Mi + • • • + Hk = d, 

are equivalent, there exist integers, mt:, niy i= 1, • • • , g, such that 

l çPa h /*Qp o 

a « l ^ P0 / S — « 1 ^ P0 /-I 

where df » and 7r»y are defined in §2 and P 0 is not in a or a' but is other-
wise arbitrary and fixed. Applying a concrete variational method due 
to Schiffer and Spencer [49] and the corresponding variational 
formulae as developed in [38] one can study the locus on W[d) defined 
by these equations. The reader should compare the approaches to the 
special divisor problem I have sketched here with alternative meth-
ods due to Röhrl [48] and Meis [33] who used the theory of analytic 
spaces and coherent sheaves. I believe that my methods are both 
more elementary and more explicit and are capable of yielding more 
detailed results. 

A related problem of classic origin (Riemann in [2]) is to determine 
the conditions imposed on the moduli by the vanishing of an even 
"theta-null." A modern account of the properties of the Riemann 
theta function is to be found in Lewittes' paper [30], where, in addi-
tion to new results, one will find the first correct function-theoretic 
proofs of some delicate but hitherto obscure assertions of Riemann. 
From this paper I borrow the following: one defines the Riemann 
theta function by 

6(u, IT) = 22 exp(tt'7rtt + Itt'u) 
n 

where n ranges over all integral g-dimensional column vectors, u is a 
column of g complex variables, ir is the period matrix of §2, and the 
dot signifies the usual dot product. Consider the half-period vectors 
e = irie'/2+T€/2 where €, e' are integral g-vectors. The first w is the 
usual number and the second is the matrix x (multiplied by e in the 
usual manner to give a vector). This is embarrassing, but it is un-
equivocal if one examines the context carefully, e is even or odd ac-
cording as e-e'^O, 1 (mod 2). Defining 
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[ e l / € • T€ €'U € • € ' \ 

€,J(«,*) se(u + e,T)exp{— -y + 2Y~ + 2TiTT/' 
one finds an even or odd function of u according as e is even or odd. 
Hence for even e, 0|y](O,7r) (or, equivalently, d(e, ir)) is not necessar-
ily zero. But the theory states that, given PoGS' , 0{et w) = 0 is equiva-
lent to the existence of a divisor a = PÎ1 • • • P*1 and integers w», 
»i, i=l, • • • , g, with Xi+ • • • +Xj = g —1 such that 

]C *« I rffy + Kj(Po) = - ey + wyTri + X) *Wy*> i = 1, • • • , g, 
a - l J P 0 *=1 

where dfy now has the period 7ri over Sy and (i£i(P0), • • • , Kg(P0)) is 
the vector of Riemann constants with base point P 0 , and e, is the j t h 
component of e. Applying on the one hand Riemann's theorem on the 
index of a and on the other the concrete variational method used 
above, one can investigate the locus 0|y](O, w) = 0 on H^-i). 

To appreciate the subtlety of this attack consider a more direct one. 
Setting 0£'](O, ir) = 0«', from 0e<=> = 0 one concludes J0«/ 
= y£ij(d9te'/d'irij)dTrij = Q, where one has written diTij, (i, j)(£l(S'), 
as a linear combination per Theorem 3 of dir^ (i,j)<E:I(S'). Consider 
a one-parameter variation of structure at PÇzS' per [38, p. 234, 
formula 29], where v is the parameter. Then the last equation becomes 
(dO€€t/dv)vm.o== Sf.ƒ (dO*t'/dirij)Çi ( P ) f / ( P ) = 0 , i.e., a fa'wear relation 
among the quadratic differentials dÇidÇj on 6" (with periods 
7r = 7r[S,

> (7, ô)] for some (7, ô) on S'). But there is more. Consider, 
with Riemann, 0[«'](w, w) with Wi=/pdfi, i = l , • • •, g, resulting in 
0««'(0. Since e is assumed #/e», the derivatives 30[y](O, w)/duj = 0, 
i = l » * • • » £• Hence taking the second partial of 0«'((?) with respect 
to 2, the parameter value of Q in a local parameter at P , and setting 
<2=:P (2 = 0) one finds 

d%AP)/dz* = Z (d*d [ * J (0, T)/du#u?) -f/ (P)f/ (P). 

But using the "heat equations" for 0: 

2M f ' J (0,»)/«*•<, = d20 f \ J («, T)/du$uh ijéj, 

and 

1 . . J O , . . t ydV^](«,x)/3«?, 
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one sees by writing ^ i j = 2 X)»</+ X ) w (using symmetry of the 7r's 
and the second partials) that the last expression is precisely 4 times 
the preceding one whence the former is zero. But this is no surprise 
since by the Riemann "vanishing theorem" [30, p. 48, Theorem 6], 
0ee' = O=>0€€'(()) = 0 . What is surprising is that 0t€> = 0 should manifest 
itself as an explicit linear combination of dÇidÇj, i, j==l, • • • , g, 
vanishing on Sf in two different ways, one purely on the "fibre" 5' , 
and the other as a consequence of the structure of the zero locus of 
0ee> on 3*(S). The point is that if all first partials of 0«' vanish at 7r, 
i.e., at {5, S', a}, that is, if TT is a singular point on the locus 0€€> = 0 
in ©a then the preceding is vacuous. But the Riemann vanishing 
theorem [30, p. 54, Theorem 8] shows that then the divisor a above 
satisfies ind a ̂ 4 . Thus when ind a > 2 (the generic situation is 
ind a = 2) one needs the subtler method of abelian sums sketched 
above to investigate 0€€> = 0. 

Added in proof. In the context of the paragraph following Theorem 
5, A. Mayer and D. Mumford in work still under way have made some 
progress. In particular, Mayer tells me that g = 3 is settled. In addi-
tion, in connection with §4 mention must be made of Mayer's paper 
[58] on the Riemann vanishing theorem, the first correct treatment, 
and his characterization of the Torelli sublocus of the Siegel half-plane 
in genus four by the presence of singularities on the zero locus (on 
the Jacobi variety) of the theta function. 
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