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A transcomplementing gene drive provides a
flexible platform for laboratory investigation and
potential field deployment
Víctor López Del Amo 1, Alena L. Bishop 1, Héctor M. Sánchez C. 2, Jared B. Bennett3, Xuechun Feng 1,

John M. Marshall 2, Ethan Bier1,4 & Valentino M. Gantz 1*

CRISPR-based gene drives can spread through wild populations by biasing their own trans-

mission above the 50% value predicted by Mendelian inheritance. These technologies offer

population-engineering solutions for combating vector-borne diseases, managing crop pests,

and supporting ecosystem conservation efforts. Current technologies raise safety concerns

for unintended gene propagation. Herein, we address such concerns by splitting the drive

components, Cas9 and gRNAs, into separate alleles to form a trans-complementing

split–gene-drive (tGD) and demonstrate its ability to promote super-Mendelian inheritance

of the separate transgenes. This dual-component configuration allows for combinatorial

transgene optimization and increases safety by restricting escape concerns to experimentation

windows. We employ the tGD and a small–molecule-controlled version to investigate the

biology of component inheritance and resistant allele formation, and to study the effects of

maternal inheritance and impaired homology on efficiency. Lastly, mathematical modeling of

tGD spread within populations reveals potential advantages for improving current gene-drive

technologies for field population modification.
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C
RISPR gene-drive systems offer tremendous potential for
engineering wild populations due to their ability to self-
propagate, biasing inheritance from Mendelian (50%) to

super-Mendelian (>50%)1–7. This technology has important
applications in fighting vector-borne diseases (e.g., malaria) by
suppressing3,7 or modifying4 mosquito populations to decrease
their burden on public health, managing crop pests8,9, and sup-
pressing invasive rodents to support island restoration efforts10,11.
While the scientific community welcomes the enormous promise
of this technology for solving significant global issues, it also
acknowledges that it is currently in its infancy and that several
gaps need to be filled before it can be safely deployed12–14. In
particular, concerns have been raised about accidental release
during laboratory research or premature release of insects into the
field, highlighting a need for the development of strategies to
increase safety during optimization phases15.

Gene-drive systems use an allelic conversion process that occurs
in the germline, changing heterozygous to homozygous cells
that can achieve the super-Mendelian inheritance necessary for
population engineering. Currently, two different approaches based
on the RNA-guided endonuclease Cas9 have been experimentally
evaluated: (1) a full gene drive (full GD) is the traditional format,
consisting of a Cas9 and a guide RNA (gRNA) gene inserted at
the target location as a single unit. The two gene products combine
to induce a double-strand break at the same position on the
wild-type allele, which is then repaired via homology-directed
repair (HDR) using the intact chromosome carrying the gene-drive
element as a template2–4,7,16–18. (2) The gRNA-only gene drive
(gRNA GD) is based on CopyCat gRNA elements19 that are cap-
able of allelic conversion in the presence of a separate genetic
source of Cas9. Since only the gRNA element is propagated in this
case, its spread is regulated by the presence of a separate, static
Cas9 transgene10,19–21. The use of a full GD is causing concern to
the scientific community as an accidental release could spread
unchecked15. While a gRNA GD would address such concerns, its
application in the field for large-scale population engineering is
unlikely to succeed since it would require that a large percentage of
the population carried a Cas9 transgene22.

Here, we develop a CRISPR gene-drive method in Drosophila
called trans-complementing gene drive (tGD), which combines
the strengths of both approaches described above. This arrange-
ment splits the Cas9 and gRNA into two different transgenic lines.
When separated, neither component displays gene-drive activity,
providing the same safety profile of a gRNA-only drive. When
combined by genetic cross, however, the two complementary
components reconstitute the properties of a full GD, resulting in
both elements propagating together. Here, we demonstrate that a
tGD system can bias the inheritance of two interdependent
transgenes, and that such a split arrangement can be used to
deconstruct specific drive parameters. We exploit the modularity
of the tGD to dissect specific features influencing gene-drive
efficiency: (1) the functionality of different Cas9 promoters and
their maternal effect on the tGD that has been shown in other
systems to be a potential source of resistance2,4,16,17, (2) how
genomic context can affect gene-drive efficiency, and (3) the effect
of impairing homology between the drive construct and the tar-
geted allele. In addition, we apply a drug-regulation technology to
the tGD system such that super-Mendelian inheritance can be
controlled by the presence of a small molecule in the fly diet, and
use this tool to restrict Cas9 activation in the adult germline and
study gene-drive function in this tissue. Last, we simulate the
propagation of tGD elements and uncover their potential to
spread transgenes to a higher fraction of a population than a
corresponding full-drive system, highlighting the tGD’s potential
for future field applications.

Results
The tGD system displays super-Mendelian behavior. The tGD
system was designed to split the two genetic elements, Cas9 and a
two-part gRNA gene construct (gRNA-A and gRNA-B), into two
distinct genomic locations, which when separated, behave as
regular Mendelian transgenes (no gene-drive activity) (Fig. 1a).
Once combined by genetic crossing, gRNA-A cleaves the genome
at the Cas9 integration site while gRNA-B cuts at the gRNA locus
(Fig. 1a). Because the cleaved ends match with perfect homology
to the sequences flanking each of the transgenic elements, the
HDR pathway inserts a copy of each transgene into the wild-type
allele (Fig. 1a).

As a first test of this system, we generated the tGD(y,e)
targeting the coding sequences of the yellow (y) and ebony (e) loci.
Loss-of-function mutations in either of these genes result in
whole-body pigmentation phenotypes, lighter and darker,
respectively, and are therefore readily detectable23. To accomplish
this goal, we introduced a Streptococcus pyogenes SpCas9 (Cas9)
source driven by the vasa promoter into the yellow gene
(X chromosome) marked with a DsRed (Red) fluorescent reporter
expressed in the eye to generate the vasa-Cas9 line (Supplemen-
tary Fig. 1). We placed the second transgene, carrying the gRNA
tandem cassette (gRNA-y1 and gRNA-e1), on chromosome III
(autosome), disrupting the ebony gene. This cassette was instead
marked with EGFP (Green) to generate the e-[y1,e1] line
(Supplementary Fig. 1).

We tested the tGD(y,e) arrangement by individually crossing
vasa-Cas9 males to e-[y1,e1] virgin females (F0, Fig. 1b) and
collecting F1 transheterozygous virgin females carrying both
constructs. These females were single-pair mated to wild-type
Oregon-R (Or-R) males (F1, Fig. 1b). Phenotypic analysis of
the fluorescent markers in the resulting F2 progeny allowed
simultaneous evaluation of the germline output inheritance rates
of both the Cas9 and gRNA transgenes of each single F1 female
(F2, Fig. 1b). We scored the F2 progeny of 11 F1 females and
observed an inheritance of greater than 50% for both transgenes,
with an average of 83% and 85% for Cas9-Red and gRNA-Green,
respectively (Fig. 1c, Supplementary Data 1). In addition, we tested
the tGD(y,e) arrangement using a nanos-Cas9 construct inserted
at the same yellow locus (Supplementary Fig. 1) and observed
similar inheritance rates of the two elements (Supplementary
Data 1). Since the gRNA-Green transgene is targeting the ebony
gene, which is located on an autosome (Chromosome III), allelic
conversion could occur both in females and males at this location.
To test how the gRNA-Green transgene would perform in the
male germline, we crossed F1 males (instead of F1 females)
carrying both Cas9-Red and gRNA-Green transgenes to our wild-
type strain females to score the inheritance rate in the F2 progeny.
In this experiment, the gRNA-Green transgene displayed a 67%
average inheritance. Interestingly, allelic conversion in F1 males
was lower than that observed through the female germline (67%
vs. 85%, respectively; see statistical analysis in Supplementary
Data 1). Similar observations were made in a previous study using
a full gene drive targeting the cinnabar gene, also located on an
autosome17. The Cas9-Red transgene carried on the X chromo-
some of F1 males was, as expected, inherited in a Mendelian
fashion (~50%). Males have only a single X chromosome;
therefore, no gene conversion events are possible in this situation
at the yellow locus. Indeed, the Cas9-Red construct was inherited
by all F2 daughters, while all males inheriting the Y chromosome
were DsRed negative (Supplementary Data 1).

The above results demonstrate that a CRISPR gene drive can be
split into two separate genetic elements located on different
chromosomes, which once combined, can be simultaneously
propagated with super-Mendelian inheritance. This conditional
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property offers flexibility and increases safety while functioning as
a full GD. Furthermore, these findings have implications for other
strategies that similarly use multiple elements driving simulta-
neously such as the proposed “daisy-chain drive”24 or integral
gene drives25.

We next confirmed the tGD strategy in which the gRNA
component was inserted at different chromosomal sites, namely
the white (w) locus1,2,17. We tested the tGD(y,w) by constructing
an EGFP-tagged tandem-gRNA element (w-[y1,w2]) targeting both
y and w (Supplementary Fig. 1). w-[y1,w2] virgin females (F0) were
crossed to y-inserted vasa-Cas9 males, and F1 virgin females were
collected and outcrossed to wild-type Or-R males (Fig. 2a). In the

F2 progeny, we observed 89 and 96% inheritance rates of the
Cas9-Red and gRNA-Green transgenes, respectively (Fig. 2e;
Supplementary Data 2), which were both higher transmission
rates than when the gRNA construct was inserted into the ebony
locus. Interestingly, the same Cas9-Red transgene displayed a
significantly higher inheritance rate in the tGD(y,w) (89%) than in
the tGD(y,e) (83%) (statistical analysis in Supplementary Data 2).
This difference might result from positional effects modulating the
y1-gRNA expression when inserted at a different genomic location
(white or ebony, respectively), or perhaps reflects the distance
of the transgenes in the two systems: tGD(y,w) are close together
on the same chromosome, while tGD(y,e) are on different
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chromosomes. We further tested the impact of genomic location
on allelic conversion efficiency by swapping the locations of the
tGD(y,w) transgenes, placing the Cas9 element in white and the
gRNAs in yellow to generate tGD(w,y) (Supplementary Fig. 1). This
swapped configuration displayed 95 and 98% conversion efficiency
for the Cas9 and gRNA constructs, which are significantly higher
rates than those observed for tGD(y,w) (89% at yellow and 96% at
white; Supplementary Fig. 2, statistical analysis in Supplementary
Data 2). The combined tGD(w,y) systems also copy with higher
conversion rates than those observed in previous studies using full
GDs at the y and w loci2,17,21. These greater copying efficiencies
may reflect differing gRNA efficiencies26,27, or genetic background
effects associated with our Or-R strains vs. the w[1118] and
Canton-S strains used in previous studies2. Regardless, these results

suggest that conversion efficiencies are impacted by the genomic
location of the transgene and that transgene size in the range tested
(3–8.3 kbp) does not seem to negatively affect allelic conversion in
our system.

X-chromosome tGD uncovers the maternal effect on inheri-
tance. Previous studies reported that the inheritance of a gene
drive from the female germline could lead to the generation of
early embryogenesis mutations2,4,17, which occur when cleaved-
allele repair results in small insertion/deletions (indels) at the
cut site instead of allelic conversion, through alternative repair
pathways such as nonhomologous end joining (NHEJ)28. Indel
alleles therefore represent an obstacle for CRISPR gene-drive
propagation in subsequent generations; as such alleles would be
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resistant to the gene-drive action, preventing its spread2,4,16,17.
These resistant alleles are generated at a high rate when a gene
drive is inherited from a female parent, most likely due to Cas9
deposition in the egg2–4,17. We therefore performed the reciprocal
cross using our tGD(y,w) approach by collecting F0 vasa-Cas9
females and gRNA-carrying males (Fig. 2b). In the F2 analysis, we
observed similar inheritance rates to the previous tGD analysis of
92% (Cas9-Red) and 97% (gRNA-Green) (Fig. 2e, Supplementary
Data 2), indicating no reduction in inheritance rates when Cas9
but not the gRNA is received from the mother in the tGD
arrangement, paralleling observations from a gRNA-only drive
system21, and differing from what was reported in previous full-
GD approaches2–4,17.

Since the two CRISPR components of our tGD are inherited
separately, we used this system to test whether both components
had to be simultaneously deposited in the egg to observe the
maternal effect. We generated a homozygous line carrying both
elements on the same chromosome to analyze the allelic
conversion efficiency for co-inheritance. As before, we analyzed
the F2 progeny of cross schemes in which the coupled Cas9/
gRNA elements were inherited together from either the F0 male
(Fig. 2c) or female (Fig. 2d) in a configuration mimicking a full-
GD scenario. Here, the F2 progeny from F0 male inheritance had
inheritance rates of 91% (Cas9) and 95% (gRNA) (Fig. 2e). In
contrast, the inheritance rates from the F0 female were 67%
(Cas9) and 53% (gRNAs) (Fig. 2e), suggesting that a strong
maternal effect on a gene drive is generated only when the two
elements are inherited together from a female germline,
consistent with previous observations21. These results encourage
new gene-drive designs that delay Cas9 and/or gRNA functioning
in the embryo to avoid the undesired generation of drive-resistant
alleles.

We next tested how the tGD(y,w) would perform in terms of
inheritance rates and maternal effects when using a different
promoter to drive expression of Cas9. We cloned the nanos
gene regulatory region into our Cas9 construct and inserted it
into the same genomic location (yellow) to generate the nanos-
Cas9 line (Supplementary Fig. 1). Performing the same cross
schemes to combine the nanos-Cas9-Red with the y-[y1,w2] line
(Fig. 2a–d), a similar pattern was seen for the vasa promoter, with
comparable inheritance rates for separated transgenes in the F0
crosses and frequent formation of resistant alleles when the
combined Cas9/gRNA complex was inherited from F0 females
(Supplementary Fig. 3, Supplementary Data 2). An additional
noteworthy result from this experiment was that our tGD(y,w)
driven by nanos did not display the inheritance differences
between the Cas9 and gRNAs as noted in our previous vasa-
driven tGD(y,w) experiment in which both elements were
inherited separately (Fig. 2a, e; Supplementary Fig. 3; statistical
analysis in Supplementary Data 2). These results reinforce the
hypothesis that inheriting a preloaded Cas9–gRNA complex
through the mother is an obstacle to the spread of gene drives,
which did not occur when the elements were inherited separately
in our system.

tGD generates predictable resistant alleles. To better understand
the maternal effect on gene-drive inheritance, we used males
recovered from the F2 generation of the simultaneous-inheritance
tGD(y,w) crosses that carried resistant alleles. Since males have
only a single X chromosome, which is inherited from the F1
female, they are suitable for phenotypic isolation and molecular
characterization of non-conversion events (resistant alleles) that
occurred in each single F1 female. We sequenced resistant alleles
in F2 males from various experimental conditions selecting, from
57 (white) and 60 (yellow) independent F1 female germlines, a

total of 242 and 225 flies per locus, respectively (Fig. 3a, b, Sup-
plementary Fig. 4). Intriguingly, for both w and y, we recovered
three resistant alleles that occurred repeatedly in the germline of
independent F1 females and that covered the majority of all
sequenced flies (named wA, wB, and wC and yA, yB, and yC;
Fig. 3a, b, Supplementary Fig. 4). In addition, we observed fewer
unique occurrences of other indels in white than in yellow, 18/242
(7%) and 43/225 (19%), respectively (Fig. 3a, b, light gray). These
findings highlight the importance of characterizing the range of
possible indels at genomic locations chosen for field gene-drive
applications. In addition, we analyzed the frequency of resistant
mutations generated from conditions meant to resemble full-GD
situations, with both elements inherited simultaneously (Fig. 2c,
d), and observed that the ratios and the type of recurrent alleles
recovered can vary drastically between different drive configura-
tions (Supplementary Fig. 5).

Lastly, in an attempt to clarify at what time point during
development the allelic conversion process occurs, we also
tabulated the number of different resistant alleles recovered in
the F2 progeny of single F1 females. Under the analyzed
conditions, we detected a range of 1–4 different resistant alleles
per vial (Fig. 3c–j). When the Cas9 and gRNA constructs were
inherited from the F0 female (Fig. 2d), we recovered only one
resistant white allele per vial analyzed for both vasa and nanos
promoters (Fig. 3d, f), in line with previous observations using a
full gene drive driven by nanos17. Our results suggest that these
indels are generated as early as fertilization (or zygote),
consistent with the average inheritance of ~50% observed (vasa
Fig. 2d, e and nanos Supplementary Fig. 3). This trend was not
observed for the yellow locus, in which up to three different
alleles were recovered under the same conditions, suggesting
that the promoter used to express the gRNAs or the gRNA itself
results in lower efficiency of cutting at the yellow locus than for
white (Fig. 3h, j). While previous work compiled multiple NHEJ
sequences by directly sequencing F1 females1,2, our results
expand on these observations by showing different resistant
alleles are generated within the germline by tracking the
individual genotypes of multiple F2 progeny.

Regarding the male inheritance (Fig. 2c), we observe 1–4 indels
generated from each F1 female germline for either promoter and
locus analyzed (Fig. 3c, e, g, i). This fact, combined with the high
inheritance rates observed in these experiments, suggests a model
in which resistant alleles are stochastically generated during late
germline development, following pole-cell formation (Fig. 4a).
In addition, under these conditions, adult F1 females display
w-mosaic eyes due to leakiness of the vasa and nanos promoters
in somatic tissues, suggesting that the somatic tissue was not
previously edited during early embryogenesis (Fig. 4a). These
observations differ from previous work using nanos where no
mosaicism was detected when the drive was inherited through the
male17. These discrepancies could derive from the use of
different codon usage for the Cas9 sequences.

Conversely, in female inheritance conditions, the indels seem
to be generated in the syncytial blastoderm embryo before
cellularization of the ~3 primordial pole-cell precursors that have
been estimated to be set aside for the germline at the 128-cell
stage29. In fact, at the white locus, we observed only a single indel
per female germline, which combined with the ~50% inheritance
measured for the gRNA transgene and the fully w- F1 female
phenotype, suggests that Cas9 action occurs efficiently at the
zygote stage (Fig. 4b). For yellow, we instead observed 1–3 indels
generated per F1 female, suggesting that Cas9 cutting happens
later or less efficiently prior to pole-cell formation. In the case of
yellow, our data are also consistent with a few nuclei escaping
Cas9 action in the blastoderm embryo and being converted later
during germline development as we observe super-Mendelian
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inheritance in the offspring of some F1 females (Figs. 4c, 2d, e;
Supplementary Fig. 3).

While our findings are not conclusive, all cases of female
inheritance analyzed here and reported in previous studies
using comparable reagents1,4,16,17 support the hypothesis that

Cas9-mediated cleavage leads either to copying via gene
conversion or to the generation of resistant alleles. The results
also suggest that such events occur during early embryogenesis,
perhaps at differing stages, but prior to formation of the mature
germline. Importantly, our system allowed us to evaluate, in the
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Fig. 3 Analysis of resistant allele formation in the tGD(y,w) configuration. a, b Graphs represent the independent generation of specific indel mutations

generated in the experiments carried out in Fig. 2 and Fig. S3 when allelic conversion failed at the (a) white and (b) yellow loci. At both loci, we observe

three repeatedly isolated indels that are colored with different shades of red for the white locus (wA, wB, and wC, dark, medium, and light red, respectively)

and yellow for the yellow locus (yA, yB, and yC, dark, medium, and light yellow, respectively), the sequence of which is reported under each graph indicating

with dots the missing bases compared with the wild-type sequence, split at the expected cut site. Additional indels recovered more than once are colored

in dark gray, and those recovered only once are colored in light gray. a, b Legends describing symbolism are overlaid on each of the two graphs. c–j Each

panel depicts the number of different indels recovered (y-axis) in ascending order for each F1 female (numbered on x-axis) for which the F2 male progeny

was sampled. Blue bubble size indicates the number of flies analyzed for each specific F1 female, which is also reported under the vial number in

parenthesis. For F1 females producing only one F2 male with an indel, and therefore only one male was sampled, the bubble is represented in magenta

instead of blue.
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same animal, the simultaneous action of two gRNAs and
identify how they differ in the maternal effect on super-
Mendelian inheritance (Fig. 4).

Controlled tGD activation in the adult germline. Our above-
presented studies on female germline resistance suggest that the
Cas9-induced cleavage events could happen as early as the zygote
stage. As resistant alleles pose a potential problem to gene-drive
applications, we wondered how tGD would perform when Cas9
activity was solely restricted to the adult germline. This is an
important question since, to our knowledge, no published gene-
drive work has thus far been able to precisely establish the timing
of drive conversion events.

We recently developed a small-molecule-controlled system for
use in active genetics approaches including CRISPR-based gene-
drive systems30. Briefly, we fused Escherichia coli dihydrofolate
reductase domains to SpCas9 to promote its rapid proteasomal
degradation in the absence of the stabilizing small molecule
trimethoprim (TMP)31,32. We showed that TMP addition to the
fruit fly diet stabilized our modified SpCas9 (DD2-Cas9) and
sustained super-Mendelian inheritance control of a CopyCat
active genetic element30.

Here, we first used a comparable DD2-Cas9 line and showed
that the mentioned drug-regulated system could be applied to the
tGD(y,w) for controlling its super-Mendelian inheritance (Sup-
plementary Fig. 6; Supplementary Data 3). Next, we used the
TMP regulation in our tGD system and were able to activate Cas9
only in the adult female germline, showing that super-Mendelian
inheritance can be achieved when the gene-drive process is
restricted to this tissue (Supplementary Fig. 6; Supplementary
Data 3), although resistant alleles were also detected (Supple-
mentary Fig. 7).

This approach opens a new avenue for restricting Cas9
activity to an optimal window when HDR is favored, perhaps
representing a way to bypass the maternal effect. In addition,
future developments of this technology could bias inheritance,
for example, in a spatially restricted fashion, such as by city,
through the addition of the small molecule to urban water
reservoirs, therefore controlling the spread of a gene drive into
a circumscribed locale.

Impaired homology asymmetrically affects drive efficiency.
Recent research has raised concerns that natural polymorphisms
could also hamper gene-drive spread in heterogeneous popula-
tions33. A proposed strategy to increase drive efficiency and work
around resistant alleles or polymorphisms is to use multiple
gRNAs to ensure cutting and lower the chances of an indel17,34,35.
However, in such scenarios one cannot achieve perfect homology
with all possible DNA ends generated when using multiple
gRNAs. For example, when using two gRNAs, one cut can be
generated earlier and repaired by NHEJ generating an indel at
that location. Subsequent cutting by the second gRNA would
generate a repair template carrying a nonhomologous overhang
on one side and perfect homology on the other. We wondered to
what extent such potential homology discordance between the
cleaved chromosome and the allele to be propagated would affect
the efficiency of a gene drive. We reasoned that our tGD system
would be an ideal tool to test this hypothesis, by impairing
homology on the gRNA construct while leaving untouched the
vasa-Cas9 element as an internal control.

For this purpose, we generated three modified versions of our
w-[y1,w2] line that varied the location of a 20 bp lack in
sequence homology: i) the first lacked 20 bp of homology on
each side to generate the w-[y1,w2]-Truncated-HA line (both
sides impaired), ii) the second lacked 20 bp on the side of the

protospacer-adjacent motif (PAM), which is an essential DNA-
homing sequence for CRISPR function, side of the gRNA (PAM
proximal), and iii) the third lacked 20 bp on the side distal to
the PAM (PAM distal) (Fig. 5, Supplementary Fig. 1). We
performed the crosses according to the same scheme as in
Fig. 2a by combining the vasa-Cas9 line with each of the three
lines bearing impaired homology and scoring the F2 progeny
for inheritance rates.

When both homology arms were impaired, we observed a
significantly lower gRNA transgene inheritance, average of 72%
(Fig. 5a, first condition; statistical analysis in Supplementary
Data 4), than the previously observed 96% with perfect homology
(Fig. 2e, first condition). Notably, when we examined drive in the
unilaterally deleted PAM-proximal and PAM-distal lines, we only
observed a significant decrease when the PAM-distal homology
was impaired (Fig. 5a; statistical analysis in Supplementary
Data 4). Our internal control Cas9 transgene averaged ~90%
inheritance rates in all conditions. Interestingly, when homology
on both sides was impaired, we noted a slightly lower rate of
inheritance for the Cas9 transgene. While the difference in
average inheritance was not significant, the distribution of data
points appeared to be altered as reflected by an increased
standard deviation (Fig. 5a; statistical analysis in Supplementary
Data 4). These results indicate that gene-drive applications with
inherent imperfect homology are feasible, although the nature of
the homology should be considered when designing multiplexed
gRNA strategies. To further explore the impact of the homology,
we compared plots showing the correlation between the
inheritance rates for allelic conversion at the two loci, Cas9-red
on the Y axis and gRNA-Green on the x-axis (Fig. 5c–f); we
observe that when the homology is lacking on the PAM-proximal
side, the data distribution resembles the pattern for the perfect
homology construct, with the majority of dots located just over
the diagonal (Fig. 5c). In contrast, an equivalent distribution of
dots is observed on both sides of the diagonal when the homology
is lacking on the PAM-distal side (Fig. 5f). Indeed, when
comparing the fraction of dots below the diagonal, we observed a
significant difference when the PAM-distal side was impaired
(statistical analysis in Supplementary Data 4). It has been shown
that Cas9 can remain bound to the DNA after cleavage for an
extended time36–38 and preferentially releases the PAM-distal,
nontarget strand39. Our data suggest that this skewed outcome
might result in an asymmetrical influence of the bound Cas9/
gRNA complex on the HDR process, and that the released PAM-
distal, nontarget strand may promote efficient HDR. This
property might be harnessed for increasing HDR in systems that
currently display poor efficiency, such as human somatic cells in
therapeutic efforts40. Regarding the use of multiplexing for gene
drives, our data suggest that it should be most efficient to use only
two gRNAs with PAMs pointing toward each other (PAM-in), at
least when generating cuts within the tested range (20 bp).
Increasing the distance between the two cleavage sites would
generate longer overhangs and could result in altered efficiency.
Using three or more gRNAs would, in certain situations, generate
repair templates with two nonhomologous overhangs that should
dramatically lower HDR-mediated repair.

Modeling of tGD predicts benefits for field deployment. We
performed mathematical modeling to predict the extent of tGD
spread compared with full GDs and to determine tGD suitability
for population replacement in the field. Four tGD systems were
considered: (i) components linked on an autosome (tGD), (ii)
components unlinked at two autosomal loci (tGDc), (iii) com-
ponents linked on the X chromosome (tGDX), and (iv) compo-
nents unlinked on the X chromosome (tGDXc). We also
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considered full-GD systems: (i) at an autosomal locus (full GD),
and (ii) at an X-chromosome locus (full GDX). For the purpose of
model exploration, we used ballpark parameters for each system:
(i) a cleavage frequency of 100%, (ii) an allelic conversion effi-
ciency of 50–100%, and (iii) no fitness costs associated with the
Cas9 or gRNA alleles. All resistant alleles were assumed to be in-
frame/cost-free. We modeled releases of Aedes aegypti, the mos-
quito vector of dengue, Zika, and chikungunya viruses, and
simulated five weekly releases of 100 adult males homozygous for
each system into a population with an equilibrium size of 10,000
adults. Model predictions were computed using 50 realizations of
the stochastic implementation of the MGDrivE simulation
framework41.

Exploratory results for these parameter estimates suggested
that the tGDc system, spread across two loci, performs very
similarly to a full GD with some potentially beneficial qualities. At
high allelic conversion efficiencies (90–100%), both systems
spread at similar speeds; but as the allelic conversion efficiency
declined (50–90%), the full GD spreads slightly quicker than the
tGDc system (Fig. 6a, b). Resistant alleles accumulated to similar
overall proportions for both systems (Fig. 6a), though because the
tGDc system is spread across two loci, a higher proportion of
individuals had at least one copy of a transgene at equilibrium
(for allelic conversion efficiencies <100%) (Fig. 6c, d), with almost
all individuals having at least one copy of a transgene at
equilibrium for allelic conversion efficiencies of 90–100%. This
could be advantageous for population replacement strategies,
where a disease-refractory cassette could be linked to both the
Cas9 and gRNA components of the tGDc system.

Within the tGD systems, having the components on autosomal
loci seems to be the most effective design based on this
exploratory modeling exercise. Autosomal systems spread faster

than X-linked systems due to their ability to drive in both
sexes (Supplementary Fig. 8a, b). Interestingly, the linked tGD
system spreads slightly faster than the unlinked tGDc system at
moderate-to-low allelic conversion efficiencies (~50%), presum-
ably due to the fact that, in the linked tGD, the elements are more
often inherited together due to linkage, though this difference was
modest or unnoticeable for higher allelic conversion frequencies
(90–100%) (Supplementary Fig. 8c). Autosomal systems also
result in a higher proportion of individuals with at least one copy
of the transgene at equilibrium (Supplementary Fig. 8c, d). While
these results are preliminary, neglecting fitness costs and detailed
ecological considerations, they suggest potential benefits of the
tGD system for population replacement in the field that warrant
further investigation.

To further explore the potential of the tGD system in the
field, preliminary modeling of a system intended for population
suppression was studied in which the gRNA locus targets a
gene required in at least one copy for female fertility. In this
case, the tGD system behaves analogously to an equivalent full-
drive approach intended for population suppression, but we
envisioned some potential benefits in the tGD arrangement
compared with the full GD (Supplementary Fig. 9). For an
allelic conversion frequency of 100%, both the full GD and tGD
systems induce a population crash within 1.5 years of the
releases; however, the population quickly rebounds in both
cases for an allelic conversion frequency of 99% or higher due
to resistant alleles emerging at the female fertility locus that
preserve fertility, thus conferring a selective advantage and
preventing a crash (Supplementary Fig. 9). Tolerable rates of
resistant allele generation are related to the inverse of the
population size that one wishes to suppress34. One potential
advantage of the tGD population suppression system is that a
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disease-refractory cassette could be linked to the Cas9 locus
such that, in the event of resistant allele generation at the
gRNA locus, the disease-refractory trait would still be
propagated (Supplementary Fig. 9).

Discussion
The tGD described herein splits the two genetic components
required for a gene drive into two complementing elements located
at separate chromosomal sites, which, when combined through
genetic crossing, displayed super-Mendelian inheritance at three
different loci (e, y, and w). We provide evidence for the advantages
of a bipartite tGD system that allows flexible mix and match of
gene-drive components to study key drive parameters and optimize
the overall drive efficiency before any field application. As opposed
to a full GD that propagates both Cas9 and gRNA as a single unit
lacking intrinsic malleability to study their behavior, we show that
the tGD is amenable to combinatorial optimization since one ele-
ment can be independently modified to study its effect on the
overall gene-drive efficiency. In addition, this aspect potentially
reduces the number of transgenic lines needed for a given study.

Addressing one of the most pressing issues in the gene
drive engineering community, our tGD approach also increases
laboratory safety practices, since it greatly reduces potential
spreading in the case of accidental escape of the laboratory
animals, as the Cas9 and gRNA elements are kept as different
lines that are combined only during experimentation or
implementation15.

Mathematical simulation suggests significant advantages of
using tGD over full GD technologies for population modification.
Due to its bipartite nature, the tGD can lead to a higher number
of beneficial transgenes in a population at equilibrium (e.g.,
antimalarial gene)42. Indeed, our work paves the way for safer
gene-drive research and provides a quicker and more systematic
gene-drive optimization strategy to help move these technologies
to mosquitoes and other insect pests.

Methods
Fly rearing and maintenance for experiments. Fly stocks were raised at 18 °C
with a 12/12-h day/night cycle on regular cornmeal medium. Experimental flies
were grown at 25 °C with a 12/12-h day/night cycle. For TMP experiments, we used
Formula 4-24 Instant Drosophila Food (Carolina Biological Supply Company,

Cat. # 173214). After weighing 1 g of food per tube, we reconstituted it by adding
3 ml of water or water containing different concentrations of TMP (Oakwood
Chemical, Cat. # 036441) dissolved in DMSO (Fisher Scientific, Cat. # D128). Flies
were anesthetized using CO2 to select individuals for crossing and phenotyping,
and were scored by tracking fluorescent markers with a Leica M165 FC Stereo
microscope with fluorescence. We used the DsRed and EGFP (referred to in the
main text as GFP) markers as evidence for successful conversion. For the yellow
body phenotype, we did not track mosaicism. For the eye phenotype, we scored
white, red, or mosaic eyes (see Supplementary Data 1–4). All the work presented
here followed procedures and protocols approved by the Institutional Biosafety
Committee from the University of California San Diego, complying with all rele-
vant ethical regulations for animal testing and research. Gene-drive experiments
were performed in a high-security Arthropod Containment Level 2 (ACL2) barrier
facility. For such experiments, shatterproof polypropylene plastic vials (Genesee
Scientific Cat. # 32-113RL) were used and all gene-drive containing flies were
disposed of by freezing for 48 h and subsequent autoclaving before being discarded
as biohazardous material.

Plasmid construction. Standard molecular biology techniques were used to
generate all constructs analyzed in this work. Constructs were built by Gibson
assembly using NEBuilder HiFi DNA Assembly Master Mix (New England Biolabs,
Cat. # E2621). Tables listing the PCR template and a pair of oligos used to amplify
each DNA fragment used to build plasmids generated in this work can be found in
the “Supplementary Methods” section in the Supplementary Information file. After
assembly, plasmids were transformed into NEB 5-alpha Electrocompetent Com-
petent E. coli (New England Biolabs, Cat. # C2989). Correct clones were subse-
quently confirmed by restriction analysis and Sanger sequencing. The final DNA
sequence information for the constructs is available on NCBI; accession numbers
are provided for each construct in the Supplementary Information file.

Transgenic line generation and genotyping. Constructs inserted at the ebony,
yellow, and white loci were co-injected with a Cas9-expressing plasmid (pBS-
Hsp70-Cas9 was a gift from Melissa Harrison & Kate O’Connor-Giles & Jill
Wildonger [Addgene plasmid # 46294; http://n2t.net/addgene:46294; RRID:
Addgene_46294]) and a pCFD3 plasmid (pCFD3-dU6:3gRNA was a gift from
Simon Bullock [Addgene plasmid # 49410; http://n2t.net/addgene:49410; RRID:
Addgene_49410])43 expressing previously validated gRNA-e143, gRNA-y11,44, or
gRNA-w244, respectively. Constructs used for transgenesis are outlined in Sup-
plementary Fig. 1. We marked the Cas9 and gRNA constructs with either a DsRed
(Red) or an EGFP (Green) fluorescent reporter expressed in the eye using the 3xP3
promoter. All injections to generate transgenic flies were performed by BestGene,
Inc. or Rainbow Transgenic Flies, Inc. All constructs were injected into an iso-
genized Oregon-R (Or-R) strain from our laboratory to ensure a consistent
background throughout all our experiments. After sending the constructs to the
injection companies, we received 80–120 injected larvae. Once they hatched, we
placed all G0 adults in different tubes (5–6 females crossed to 5–6 males). Then, G1
progeny were screened for positive flies with the fluorescent marker expressed in
the eyes, which was indicative of the successful transgene insertion. Flies positive
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Legend:

Fig. 6 Comparison of full-drive and tGD spread in modeled populations. Model predictions for releases of Ae. aegypti mosquitoes homozygous for the

tGD and full-drive systems, parameterized with ballpark estimates: (i) a cleavage frequency of 100% in females and males, (ii) an allelic conversion

efficiency, given cleavage, of 50–100% in females and males, and (iii) no fitness costs associated with the Cas9 or gRNA alleles. All resistant alleles are

assumed to be in-frame/cost-free. Five weekly releases are simulated, consisting of 100 adult males homozygous for each system, into a population having

an equilibrium size of 10,000 adults. Model predictions were computed using 50 realizations of the stochastic implementation of the MGDrivE simulation

framework. a Stacked allele counts over time for the full-drive and tGD systems for allelic conversion efficiencies of 100, 90, and 50%. b Allelic conversion

efficiency plotted against time to steady state for the full-drive (turquoise) and tGD (yellow) systems. c Fraction of the population carrying at least one

transgene over time for the full-drive (turquoise) and tGD (yellow) systems for allelic conversion efficiencies of 100, 90, and 50%. d Allelic conversion

efficiency plotted against the fraction of the population carrying at least one transgene at equilibrium for the full-drive (turquoise) and tGD (yellow)

systems.
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for the marker were crossed individually to the same Or-R flies used for injection to
make a homozygous stock in subsequent generations by identifying the e, y, or w
visible marker. Last, we sequenced each stock to confirm correct transgene
integration.

Molecular analysis of resistant alleles. For resistant allele sequence analysis, we
performed single-fly DNA extractions following the protocol described by Gloor
GB and colleagues45. We added 200 µL of water to dilute each sample to a final
volume of 250 µL and used 1–5 µL of each DNA extraction as a template for a
25-µL PCR reaction. We performed PCRs covering the gRNA cute site for either
the yellow or white locus in order to sequence the resistant allele present. The oligos
used can be found in the Supplementary Information.

Graph generation and statistical analysis. We used GraphPad Prism 7 to gen-
erate all our graphs. For statistical analysis, we used the Statkey analysis tool
[http://www.lock5stat.com/StatKey/index.html]. We performed a Randomization
Test for a Difference in Means when comparing our experimental conditions
(Supplementary Data 1, Supplementary Data 2 and Supplementary Data 4). In
Fig. 5 we also performed a Randomization Test for a Difference in Proportions
(Supplementary Data 4) to evaluate differences in the distribution of the fraction of
data points below the diagonal. In both cases we have performed 5000 randomi-
zations of our data.

Mathematical modeling. To model the expected performance of the transcom-
plementing gene-drive system in populations of Aedes aegypti, the mosquito vector
of dengue, chikungunya, and Zika viruses, we simulated release schemes for the
transcomplementing system with: (i) components linked on an autosome (tGD),
(ii) components unlinked at two autosomal loci (tGDc), (iii) components linked on
the X chromosome (tGDX), and (iv) components unlinked at two loci on the X
chromosome (tGDXc). We also compared the system with standard full gene
drives at an autosomal locus (Full-GD), and at an X-chromosome locus (Full-
GDX). Releases were simulated consisting of 5 weekly releases of 100 adult males
homozygous for each system using the MGDrivE simulation framework41 [https://
marshalllab.github.io/MGDrivE/]. This framework models the egg, larval, pupal,
and adult mosquito life stages (both female and male adults are modeled) imple-
menting a daily time step, overlapping generations, and a mating structure in
which adult males mate throughout their lifetime, while adult females mate once
upon emergence, retaining the genetic material of the adult male with whom they
mate for the duration of their adult lifespan. Density-independent mortality rates
for the juvenile life stages are assumed to be identical and are chosen for con-
sistency with the population growth rate in the absence of density-dependent
mortality. Additional density-dependent mortality occurs at the larval stage, the
form of which is taken from previous studies46. The inheritance patterns for the
tGD, tGDc, tGDX, tGDXc, Full-GD, and Full-GDX systems are modeled within the
inheritance module of the MGDrivE framework41. We parameterized our trans-
complementing and full gene-drive models using ballpark parameter estimates for
model exploration: (i) a cleavage frequency of 100% in females and males, (ii) a
frequency of accurate homology-directed repair, given cleavage, of 50–100% in
females and males, (iii) no fitness costs associated with the Cas9 or gRNA alleles,
and (iv) all resistant alleles being in-frame/cost-free. We implemented the sto-
chastic version of the MGDrivE framework to capture the randomness associated
with low genotype frequencies and rare events such as resistant allele generation
under some parameterizations. The code for running the simulation is freely
available from the MGDrivE GitHub repository [https://github.com/MarshallLab/
MGDrivE], and the package can be installed on R through CRAN [https://cran.r-
project.org/web/packages/MGDrivE/]. The inheritance cubes used in these simu-
lations are the “cubeTGD” and “cubeTGDX” variants of the codebase. Parameter
values used in Aedes aegypti population model are reported here below:

β: Egg production per female (day−1)47—value: 20
TE: Duration of egg stage (days)48—value: 5
TL: Duration of larval stage (days)48—value: 6
TP: Duration of pupal stage (days)48—value: 4
r: Daily population growth rate (day−1)49—value: 1.175
μM: Daily mortality rate of adult stage (day−1)50,51—value: 0.090
N: Adult female population size52—value: 10,000

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The sequence of all plasmid constructs generated in this paper has been deposited into

the GenBank database with accession codes:

MN551085[https://www.ncbi.nlm.nih.gov/nuccore/MN551085],

MN551086[https://www.ncbi.nlm.nih.gov/nuccore/MN551086], MN551087[https://

www.ncbi.nlm.nih.gov/nuccore/MN551087], MN551088[https://www.ncbi.nlm.nih.gov/

nuccore/MN551088], MN551089[https://www.ncbi.nlm.nih.gov/nuccore/MN551089],

MN551090[https://www.ncbi.nlm.nih.gov/nuccore/MN551090], MN551091[https://

www.ncbi.nlm.nih.gov/nuccore/MN551091], MN551092[https://www.ncbi.nlm.nih.gov/

nuccore/MN551092], MN551093[https://www.ncbi.nlm.nih.gov/nuccore/MN551093],

MN551094[https://www.ncbi.nlm.nih.gov/nuccore/MN551094].

In this study, we accessed the Addgene plasmid # 49411 [http://n2t.net/

addgene:49411]; RRID:Addgene_49411. All raw phenotypical scoring data collected are

reported in Supplementary Datas 1–4 files in Microsoft Excel format (.xlsx). All other

data are available from the authors.

Code availability
The code for running the simulation of the mathematical modeling presented in the

paper is freely available from the MGDrivE GitHub repository [https://github.com/

MarshallLab/MGDrivE], and the package can be installed on R through CRAN [https://

cran.r-project.org/web/packages/MGDrivE/]. The inheritance cubes used in the

simulations are the “cubeTGD” and “cubeTGDX” variants of the codebase.
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