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Abstract

Background

Fatigue is a debilitating condition with a significant impact on patients’ quality of life. Fatigue

is frequently reported by patients suffering from primary Sjögren’s Syndrome (pSS), a

chronic autoimmune condition characterised by dryness of the eyes and the mouth. How-

ever, although fatigue is common in pSS, it does not manifest in all sufferers, providing an

excellent model with which to explore the potential underpinning biological mechanisms.
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Methods

Whole blood samples from 133 fully-phenotyped pSS patients stratified for the presence of

fatigue, collected by the UK primary Sjögren’s Syndrome Registry, were used for whole

genome microarray. The resulting data were analysed both on a gene by gene basis and

using pre-defined groups of genes. Finally, gene set enrichment analysis (GSEA) was used

as a feature selection technique for input into a support vector machine (SVM) classifier.

Classification was assessed using area under curve (AUC) of receiver operator characteris-

tic and standard error of Wilcoxon statistic, SE(W).

Results

Although no genes were individually found to be associated with fatigue, 19 metabolic path-

ways were enriched in the high fatigue patient group using GSEA. Analysis revealed that

these enrichments arose from the presence of a subset of 55 genes. A radial kernel SVM

classifier with this subset of genes as input displayed significantly improved performance

over classifiers using all pathway genes as input. The classifiers had AUCs of 0.866 (SE(W)

0.002) and 0.525 (SE(W) 0.006), respectively.

Conclusions

Systematic analysis of gene expression data from pSS patients discordant for fatigue identi-

fied 55 genes which are predictive of fatigue level using SVM classification. This list repre-

sents the first step in understanding the underlying pathophysiological mechanisms of

fatigue in patients with pSS.

Introduction

Severe, debilitating fatigue is a common symptom in a wide range of chronic diseases including

autoimmune diseases and cancers [1–6], and is a side effect of treatments such as chemothera-

pies, radiotherapies [7, 8] and some medications [9]. Fatigue is a tiredness which may be men-

tal, physical, or both, and that results in an inability to function at normal performance levels.

Chronic fatigue is a disabling symptom that is a major cause of loss of productivity and has a

substantial healthcare-related cost [10, 11]. However, the underlying pathophysiological mech-

anisms of fatigue remain unclear and treatment of fatigue is currently largely ineffective [12].

There is a clear need to identify a biological signature of fatigue in order to advance our

understanding of its pathophysiological mechanisms. Such a signature will inform therapeutic

development, aid in drug target identification, and act as a biomarker to measure responses to

interventions. Although the biological basis of fatigue remains unknown, recent data indicate

that immune dysregulation is common among fatigued patients and may play a key role in the

biological mechanisms of fatigue. Chronic fatigue is a common symptom in many conditions

involving a dysregulated immune system, such as autoimmune diseases [13, 14]. IFNα and

other cytokine therapies often induce fatigue [9]. Conversely, therapies that interfere with, or

modify, cytokine signalling have been found to reduce fatigue [15].

Research suggests that severe fatigue in these diverse conditions is driven by similar biologi-

cal mechanisms [16] and, therefore, a variety of diseases may be valuable as disease models for

fatigue. We propose the multisystem autoimmune disease primary Sjögren’s Syndrome (pSS)
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as a model to investigate the biological signature of fatigue. This disease is characterised by oral

and ocular dryness, profound fatigue and musculoskeletal pain [17]. The disease affects

approximately 0.04% of the population, with a female to male ratio of around 9:1 [18].

There are well-established diagnostic criteria for pSS [19, 20]. Although disabling chronic

fatigue is common among pSS, some suffer minimal symptoms of fatigue. This discordance in

fatigue provides an opportunity to uncover biological changes associated with pSS-related

fatigue by the comparison of patients with different fatigue levels. For instance, it is now estab-

lished that type I IFN signature is present in the majority of, but not all, pSS patients [21], and

that IFNα treatment can induce fatigue. It would therefore be of interest to investigate whether

fatigue in pSS is associated with the presence of this IFN signature. Importantly, the correlation

between fatigue and disease activity in pSS is weak, suggesting that a distinct biological process

may be responsible for fatigue symptoms [22]. Furthermore, the majority of pSS patients do

not receive immuno-modulatory therapies that may confound the study of fatigue-specific

changes in cohort studies [23].

Here, we compare global gene expression profiles of whole blood from a group of pSS

patients with differing levels of fatigue using multiple statistical and machine learning tech-

niques. Gene set enrichment analysis identifies 55 genes which are collectively associated with

fatigue. Using this gene signature a support vector machine classifier is created which is predic-

tive of fatigue level in this group. These genes provide a potential basis for the future study of

fatigue in pSS in order to develop mechanistically-informed approaches to therapy.

Results

Patient Characteristics

Table 1 summarises the demographics of the subjects used in this study. The pSS patient group

covered a range of fatigue levels and symptom profiles to allow analysis of fatigue as a continuous

Table 1. Patient and control characteristics. The demographics and symptom levels of the patients used in
this study.

Patient Control

Age (years—mean, SD) 61.16±12.12 54.40±13.05

Disease duration (years—mean, SD) 7.38±6.29 N/A

Symptom duration (years—mean, SD) 13.95±10.25 N/A

Age at onset (years—mean, SD) 47.22±14.46 N/A

ESSDAI (median, IQ) 5.00, 2.00–9.00 N/A

SSDDI (median, IQ) 5.00, 3.00–5.00 N/A

Fatigue VAS (median, IQ) 55.00, 31.00–77.00 N/A

PROFAD-Physical (median, IQ) 3.75, 2.25–5.00 N/A

PROFAD-Mental (median, IQ) 3.00, 1.50–4.00 N/A

HADS Anxiety (median, IQ) 7.00, 4.00–10.75 N/A

HADS Depression(median, IQ) 5.00, 2.50–9.00 N/A

Total ESSPRI (median, IQ) 5.67, 3.67–7.33 N/A

Pain sub-domain (median, IQ) 4.00, 2.00–7.00 N/A

Fatigue sub domain (median, IQ) 5.00, 3.00–8.00 N/A

Dryness sub domain (median, IQ) 7.00, 4.00–8.00 N/A

SD = standard deviation, IQ = interquartile range, ESSDAI = EULAR Sjögren’s Syndrome Disease Activity

Index, SSDDI = Sjögren’s Syndrome Disease Damage Index, ESSPRI = EULAR Sjögren’s Syndrome

Patient Reported Index, HAD = Hospital Anxiety and Depression, PROFAD = Profile of Fatigue and

Discomfort.

doi:10.1371/journal.pone.0143970.t001
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variable (Fig 1). The Fatigue VAS cutoffs (>75/<25) produced groups of 38 high fatigue and 21

low fatigue patients. Although fatigue was moderately correlated with depression and pain, there

was no association with disease activity (see S1 Table).

Differential gene expression between fatigue groups

Following transformation and normalisation of the raw data, two outliers were detected by the

arrayQualityMetrics package and discarded from the remainder of the analyses (see S1

Fig). Filtering for detection threshold resulted in the loss of 39.8% of the probes. The data were

then batch corrected to remove non-biological effects produced by variation between experi-

mental batches (see S2 Fig).

Although 334 differentially expressed genes (DEGs) were detected between the pSS patients

and the controls, no DEGs were detected between the high and low fatigue groups (Fig 2A and

2B). Comparison of the average expression values between the groups, and Principal Compo-

nent Analysis, indicated that there was no significant difference between the fatigue groups in

terms of expression (Fig 2C and 2D). When the analysis was repeated with correction for the

other clinical factors, no significant DEGs were identified (Fig 3). Finally, the Fatigue VAS was

analysed as continuous variables by fitting a linear regression model to the expression data. No

statistically significantly DEGs were identified for any of the scores either before or after cor-

rection for other clinical variables. When these analyses were repeated using the other available

fatigue scores at comparable cutoffs, no DEGs were identified in any case (see S3, S4, and S5

Figs, S2 and S3 Tables).

Interferon type I score in fatigue groups

IFN activation scores ranged from −5.2 to 22.2 with a mean score of 12.5 (Fig 4A). In total,

69% of the patients (90 of 131) were IFN-active. No significant relationship was observed

between IFN activation score and fatigue level (Fig 4B). Further, IFN activation was not linked

to ESSPRI or SSDDI (see S6 Fig). However, ESSDAI scores were significantly higher in the

IFN-positive group (Fig 4C), consistent with published data [21].

Gene set enrichment in fatigue subsets

Gene set enrichment analysis was carried out using the Fatigue VAS high and low fatigue

groups with both real and absolute gene ordering, in order to identify fatigue-related metabolic

pathways. All available MSigDB C2:CP modules were tested [24], comprising canonical repre-

sentations of biological pathways compiled by domain experts for the BioCarta [25], Reactome

[26] and KEGG [27] databases. Three actin-related BioCarta pathways and 15 G-protein sig-

nalling Reactome pathways were found to be enriched in the high fatigue group (Table 2).

Additionally, an incretin-related Reactome pathway was found to have a non-random distribu-

tion following absolute gene ordering, with enrichment split between the high and low fatigue

groups. No KEGG pathways were enriched in any of the analyses. When the analysis was

repeated using patients and healthy controls, 94 pathways were enriched in the pSS group (see

S4 Table). One of these pathways, “Incretin synthesis, secretion, and activation” overlapped

with those enriched in the high fatigue group.

Leading edge analysis was carried out to identify the genes that contributed to the high

fatigue enrichment of the BioCarta and Reactome pathways and their overlaps. This analysis

indicated that the actin-related pathways had seven overlapping genes, while the G-protein sig-

nalling pathways had just five overlapping genes (Tables 3 and 4). The incretin-related pathway

had five leading edge genes, LEP, DPP4, ISL1, SEC11C and SPCS1, associated with low fatigue

and six genes, SPSC3, GATA4, PCSK1, GIP, FFAR1 and GCG, associated with high fatigue.

A Transcriptional Signature of Fatigue in PSS
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Fig 1. The characteristics of the patients. A heatmap of the clinical scores for the 133 patients included in
this study. The values have been scaled between zero (absent) and one (worst). ESSDAI = EULAR Sjögren’s
Syndrome Disease Activity Index, SSDDI = Sjögren’s Syndrome Disease Damage Index, ESSPRI = EULAR
Sjögren’s Syndrome Patient Reported Index, HAD = Hospital Anxiety and Depression, PROFAD = Profile of
Fatigue and Discomfort, VAS = Visual Analogue Scale.

doi:10.1371/journal.pone.0143970.g001

Fig 2. Differential gene expression analysis. (A) Volcano plot of high fatigue against low fatigue. No
significant differentially expressed genes (DEGs) were detected. (B) Volcano plot of patients against healthy
controls. Red points indicate DEGs with a fold change >1.2 and p-value <0.05. (C) The mean expression
values for each gene for the high and low fatigue groups. (D) Plot of the first two principal components of the
expression dataset coloured by high and low fatigue groups.

doi:10.1371/journal.pone.0143970.g002

A Transcriptional Signature of Fatigue in PSS
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Fig 3. Correction for other clinical factors. Volcano plots for the Fatigue VAS fatigue groups corrected for
clinical factors: (A) Age at UKPSSR cohort recruitment. (B) Disease activity measured using the EULAR
Sjögren’s Syndrome Disease Activity Index. (C) Disease damage measured using the Sjögren’s Syndrome
Disease Damage Index. (D) The EULAR Sjögren’s Syndrome Patient Reported Index dryness sub-domain.
(E) The EULAR Sjögren’s Syndrome Patient Reported Index pain sub-domain. (F) Anxiety measured using
the Hospital Anxiety and Depression scale. (G) Depression measured using the Hospital Anxiety and
Depression scale. (H) Pain and depression (E & G). (I) Pain, depression, dryness and anxiety (D-G). (J) All
seven factors (A-G). No significantly differentially expressed genes were identified following any correction.

doi:10.1371/journal.pone.0143970.g003

Fig 4. Interferon type I signature and fatigue. (A) The IFN score ranges for the 133 patients. (B) The
Fatigue VAS scores for the IFN-active and IFN-inactive groups. (C) The ESSDAI scores for the IFN-active
and IFN-inactive groups.

doi:10.1371/journal.pone.0143970.g004

A Transcriptional Signature of Fatigue in PSS
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There was very little overlap between the leading edges of the actin and G-protein signalling

genes, or with the leading edge of the incretin-related pathway (Tables 4 and 5).

SVM classification of the fatigue groups

Support vector machines (SVMs) were applied to predict the Fatigue VAS high and low fatigue

groups (n = 38 and n = 21, respectively), first using all the genes of the identified pathways as

inputs, then using only the 55 leading edge genes. The SVM classifiers were run 10 times, using

10-fold cross-validation over the patient set, producing a mean AUC of 0.525 for all genes and

0.866 for the leading edge genes (Fig 5). The SE(W) values were 0.006 and 0.002, respectively,

indicating that the difference in AUC was statistically significant. When the leading edge genes

were used as inputs in a classifier of patients and healthy controls the mean AUC was 0.597

with an SE(W) of 0.003. Finally, 50 randomly selected lists of 55 genes were used as inputs into

the SVM. AUCs for the random lists had a mean of 0.554 and standard deviation of ±0.080. All

of the AUCs for the random gene lists were significantly lower than the AUC for the 55 leading

edge genes by SE(W). GSEA using the 55 genes as a bespoke gene set also showed no significant

enrichment between patients and healthy controls with an FDR q-value of 0.55.

Discussion

The aim of this study was to analyse the expression of genes between pSS patients discordant

for fatigue, in order to identify factors that may be involved in the pathogenesis of fatigue.

Table 2. Enriched pathways between the Fatigue VAS high fatigue and low fatigue groups.Gene sets were considered to be enriched at an FDR cut-off
of 25%. All the enriched gene sets were associated with high fatigue with the exception of incretin synthesis secretion and inactivation (*), which had a non-
random distribution of enriched genes between the two fatigue groups.

Name Size ES NES Nominal p- value FDR q- value

BioCarta

CDC42RAC pathway 16 -0.798 -1.950 0 0.001

ACTINY pathway 19 -0.651 -1.848 0.002 0.007

MPR pathway 34 -0.506 -1.697 0.004 0.078

Reactome

Regulation of insulin secretion by glucagon-like peptide-1 42 -0.628 -1.983 0 0.027

G beta:gamma signalling through PLC beta 20 -0.762 -1.823 0 0.052

G beta:gamma signalling through PI3Kgamma 25 -0.694 -1.793 0 0.065

Activation of kainate receptors upon glutamate binding 31 -0.629 -1.824 0 0.069

G-protein beta:gamma signalling 28 -0.691 -1.846 0 0.078

Prostacyclin signalling through prostacyclin receptor 19 -0.750 -1.762 0 0.083

Inhibition of insulin secretion by adrenaline/noradrenaline 25 -0.651 -1.697 0.002 0.113

Glucagon-type ligand receptors 33 -0.564 -1.703 0.002 0.116

G-protein activation 27 -0.669 -1.717 0.002 0.126

Thromboxane signalling through TP receptor 23 -0.698 -1.703 0 0.129

Glucagon signaling in metabolic regulation 33 -0.565 -1.664 0.002 0.155

Aquaporin-mediated transport 50 -0.548 -1.646 0 0.174

ADP signalling through P2R purinoceptor1 25 -0.658 -1.625 0.008 0.206

Thrombin signalling through proteinase activated receptors PARs 32 -0.634 -1.592 0.006 0.237

Regulation of water balance by renal aquaporins 43 -0.512 -1.595 0.002 0.247

Incretin synthesis, secretion, and inactivation* 21 0.584 1.522 0.015 0.247

ES = enrichment score, NES = normalised enrichment score, FDR = false discovery rate.

doi:10.1371/journal.pone.0143970.t002
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Extensive subjective and objective clinical data are available for all patients, an ideal basis for

the study of fatigue, since it allows accurate assessment of not only the patients’ fatigue status

but also their levels of other, possibly confounding, factors. In particular, pain, anxiety and

depression have previously been associated with fatigue in pSS [28–30], and may mask fatigue-

related associations.

Initially, the microarray data were analysed on a gene by gene basis; no significant changes

in expression were detected. Inclusion of other clinical factors into the analysis did not result in

the detection of any fatigue-related changes. Moreover, treating fatigue as a continuous, rather

than Boolean, variable also resulted in no identification of significant fatigue-related genes.

However, although DEGs were not identified between high and low fatigue patients, a large

number of DEGs were identified between the patients and controls which were consistent with

previously reported DEGs in pSS [31–34]. Additionally, although the IFN signature was not

associated with the fatigue groups, it was associated with pSS disease activity, which is also con-

sistent with previous data [21]. Consequently, the lack of significant fatigue-related results is

unlikely to be due to data quality or the use of an “atypical” pSS cohort. Indeed, previous stud-

ies of chronic fatigue, one using data from monozygotic twins chronic fatigue syndrome (CFS),

the other breast cancer patients, also found no significant DEGs [35, 36].

Since fatigue is a complex phenomenon, expression effects may be relatively low in compari-

son to the noise inherent to high throughput microarray technology, and cannot be detected

on an individual gene basis. GSEA is a technique developed to address such situations by

detecting subtle changes in pre-determined gene sets [37]. GSEA has the advantage of detecting

Table 3. Genes in the leading edge of the enriched actin-related BioCarta pathways.Genes found in
leading edge overlap are shown in bold.

Symbol Name

ACTR2 ARP2 actin-related protein 2 homolog (yeast)

ACTR3 ARP3 actin-related protein 3 homolog (yeast)

ARPC1B Actin related protein 2/3 complex, subunit 1B, 41kDa

ARPC2 Actin related protein 2/3 complex, subunit 2, 34kDa

ARPC3 Actin related protein 2/3 complex, subunit 3, 21kDa

ARPC4 ARPC4 actin related protein 2/3 complex, subunit 4, 20kDa

ARPC5 Actin related protein 2/3 complex, subunit 5, 16kDa

CAP1 CAP, adenylate cyclase-associated protein 1 (yeast)

CDC25C Cell division cycle 25C

CDC42 Cell division cycle 42

GNAI1 Guanine nucleotide binding protein, alpha inhibiting activity polypeptide 1

NCKAP1 NCK-associated protein 1

PAK1 p21 protein (Cdc42/Rac)-activated kinase 1

PAQR7 Progestin and adipoQ receptor family member VII

PIK3CA Phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha

PIK3R1 Phosphoinositide-3-kinase, regulatory subunit 1 (alpha)

PIN1 Peptidylprolyl cis/trans isomerase, NIMA-interacting 1

PIR Pirin (iron-binding nuclear protein)

PRKAR1A Protein kinase, cAMP-dependent, regulatory, type I, alpha

PRKAR2A Protein kinase, cAMP-dependent, regulatory, type II, alpha

RHOA Ras homolog family member A

WASF2 WAS protein family, member 2

WASL Wiskott-Aldrich syndrome-like

doi:10.1371/journal.pone.0143970.t003
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biological changes that are distributed across a group of genes and, therefore, can identify path-

way-level effects. For instance, multiple small changes in a pathway may change its overall met-

abolic flux leading to a disease state. Moreover, the leading edge of a significant gene set,

comprising those genes that account for the enrichment, can include the biologically-relevant

subset within a pathway. We applied the GSEA algorithm to the identification of significant

enrichment in metabolic pathways: either enrichment in the high or in the low fatigue groups

or split distributions between the two groups. Nineteen gene sets from either BioCarta [25] or

Reactome [26] were identified as having significant distributions.

The BioCarta pathways enriched in high fatigue, CDC42RAC, MPR and ACTINY, are

related pathways associated with actin filaments and migration of cells. The CDC42RAC path-

way is involved in several aspect of cell motility including leukocyte movement, fibroblast

response and cancer invasiveness [38]. Notably, both CDC42 and RAC1 have been previously

associated with CFS in a meta-analysis of multiple data types by Pihur and co-workers [39].

The ACTINY pathway also involves the RAC1 protein to facilitate cell motility via the poly-

merisation of actin [40]. The third pathway, MPR, involves triggering of the ACTINY pathway

by progesterone [41]. These pathways involve N-WASP, the Wiskott-Alrich syndrome-like

Table 4. Genes in the leading edge of the enriched ReactomeG-protein signalling pathways.Genes
found in leading edge overlap are shown in bold.

Symbol Name

AQP10 Aquaporin 10

AQP2 Aquaporin 2 (collecting duct)

ARRB2 Arrestin, beta 2

CALM2 Calmodulin 2 (phosphorylase kinase, delta)

DLG1 Discs, large homolog 1 (Drosophila)

GCG Glucagon

GIP Gastric inhibitory polypeptide

GNA13 Guanine nucleotide binding protein, alpha 13

GNAI1* Guanine nucleotide binding protein, alpha inhibiting activity polypeptide 1

GNAZ Guanine nucleotide binding protein, alpha z polypeptide

GNB4 Guanine nucleotide binding protein, beta polypeptide 4

GNB5 Guanine nucleotide binding protein, beta 5

GNG10 Guanine nucleotide binding protein, gamma 10

GNG11 Guanine nucleotide binding protein, gamma 11

GNG8 Guanine nucleotide binding protein, gamma 8

GRIK2 Glutamate receptor, ionotropic, kainate 2

IQGAP1 IQ motif containing GTPase activating protein 1

ITPR2 Inositol 1,4,5-trisphosphate receptor, type 2

PIK3CG Phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit gamma

PIK3R6 Phosphoinositide-3-kinase, regulatory subunit 6

PLCB1 Phospholipase C, beta 1 (phosphoinositide-specific)

PRKACA Protein kinase, cAMP-dependent, catalytic, alpha

PRKAR1A* Protein kinase, cAMP-dependent, regulatory, type I, alpha

PRKAR2A* Protein kinase, cAMP-dependent, regulatory, type II, alpha

RAP1A RAP1A, member of RAS oncogene family

RAP1B RAP1B, member of RAS oncogene family

RHOA* Ras homolog family member A

* Overlaps with the BioCarta pathways.

doi:10.1371/journal.pone.0143970.t004
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actin regulating protein, which is known to be highly expressed in neural tissues, associated

with T-cell development [42] and involved in actin filament formation in muscle.

At the core of all three BioCarta pathways is the ARP2/3 complex, a major regulator of cell

shape and motility via actin cytoskeleton assembly [43]. Seven genes of this complex overlap

between the leading edges of the three pathways suggesting that their enrichment in the high

fatigue group may indicate a change in ARP2/3 complex activity in these patients. Two of the

actin-related genes in the leading edge overlap, ACTR3 and ARPC5, have previously been iden-

tified as differentially expressed in CFS by Kerr and colleagues [44], and later confirmed by

Zhang and colleagues [45]. APRC5 has also been linked to fatigue in CFS by Frampton and

co-workers [46]. In addition, two further genes, which were not in the leading edge overlap,

were also identified by previous studies of fatigue in CFS: PIK3RI [44, 45] and PRKAR1A

[44, 46, 47].

The 15 Reactome pathways enriched in the high fatigue patient group are all related to gua-

nine nucleotide binding protein (G-protein) signalling and the leading edge overlap comprises

five G-protein β−/γ− subunits, GNB4, GNB5, GNG8, GNG10 and GNG11. G-protein β and γ

subunits are abundant in immune cells [48], and G-protein coupled receptors (GPCRs) have

been hypothesised to be involved in fatigue-related disorders [49–51]. In particular, the

Table 5. Genes in the leading edge of the incretin-related Reactome pathway.Genes associated with
high fatigue are shown in bold.

Symbol Name

DPP4 Dipeptidyl-peptidase 4

FFAR1 Free fatty acid receptor 1

GATA4 GATA binding protein 4

GCG* Glucagon

GIP* Gastric inhibitory polypeptide

ISL1 ISL LIM homeobox 1

LEP Leptin

PCSK1 Proprotein convertase subtilisin/kexin type 1

SEC11C SEC11 homolog C (S. cerevisiae)

SPCS1 Signal peptidase complex subunit 1 homolog (S. cerevisiae)

SPCS3 Signal peptidase complex subunit 3 homolog (S. cerevisiae)

* Overlaps with the G-protein signalling leading edge.

doi:10.1371/journal.pone.0143970.t005

Fig 5. Support vector machine (SVM) classification of fatigue groups. The receiver operator
characteristic curves for the SVM output. Ten curves are shown on each plot. The area under the curve
(AUC) is calculated as the mean over the ten curves. (A) All 181 enriched pathway genes as input. (B) The 55
leading edge genes as input.

doi:10.1371/journal.pone.0143970.g005

A Transcriptional Signature of Fatigue in PSS

PLOSONE | DOI:10.1371/journal.pone.0143970 December 22, 2015 10 / 21



adrenergic alpha-2A receptor was linked to fatigue in a sub-group of CFS patients by Light and

colleagues [50] and several other GPCRs were linked to fatigue by the authors in a later study

of prostate cancer and CFS [49]. G-protein α-subunits have also been linked to fatigue in CFS

[44, 45]. One gene not found in the leading edge overlap, GRIK2, has been linked to CFS [44,

45, 52] and two further genes, PIK3RI and PRKAR1A, are also members of the enriched Bio-

Carta pathways that have previously been linked to fatigue in CFS [44–47]. A fourth gene not

found in the overlap, PRKACA, is linked to Cushing’s disease, symptoms of which include

severe fatigue [53]. Notably, G-protein signalling pathways have been linked to the cytoskele-

ton and actin fibres [54, 55], and interact with cytoskeleton regulators [56], consistent with the

BioCarta enrichments.

The incretin synthesis, secretion, and inactivation pathway gene set had a non-random dis-

tribution of enrichment, indicating that some genes of the pathways are associated with high

fatigue, and others with low fatigue. Incretins are produced in the gut, with those entering the

bloodstream being rapidly broken down by DPP4 (also known as CD26), a protein found on

the surface of T-calls [57]. Inhibitors of DPP4 are used to treat diabetes and can cause fatigue

[58], consistent with our observation of an association between DPP4 and low fatigue. Abnor-

malities in DPP4 levels have also been observed in the autoimmune condition multiple sclero-

sis, the symptoms of which commonly involve chronic fatigue [59]. Notably, reduced levels of

this protein have been identified as a potential biomarker for CFS [60]. However, significant

expansion of CD26+ T-cell populations has also been observed in this condition [61]. Another

leading edge gene in this pathway, LEP, is involved in the regulation of energy balance, and is

linked to several diseases including type 2 diabetes [62]. Fatigue severity has been associated

with high circulating levels of this gene’s protein product, leptin, in CFS [63] and in chronic

hepatitis [64]. It should also be noted that this pathway is enriched in the pSS group as a whole,

indicating this may be a disease-related process rather than specific to fatigue. However, further

investigation of the link between this pathway and fatigue is warranted.

The GSEA results were used to select input features for machine learning. Support Vector

Machines (SVMs) are machine learning classifiers which aim to separate groups which are

non-linearly overlapping using a kernel function to map the data into higher dimensional

space [65]. Here, we used a radial kernel SVM to assess the association of the identified path-

ways with fatigue by comparing the output of classifiers using all enriched pathway genes, with

those using only the leading edge genes. ROC curves were used to assess the classifiers’ accu-

racy, revealing a markedly significant improvement in classifier performance when only the

leading edge genes were used as classifier inputs. Further investigation will be required to ascer-

tain the relationship between the enriched pathways and their leading edge genes in order to

determine the pathophysiological mechanisms by which these pathways may affect fatigue.

Reliance on patient-reported data is a potential drawback of this study since these patient-

reported measures may not be directly comparable due to individual interpretation of the ques-

tions. Further, the number of patients per group is relatively small since the fatigue level cutoffs

used include only those patients at the extremes of the Fatigue VAS score, which may lower the

power of the analysis between high fatigue and low fatigue groups. However, the results of ana-

lysing fatigue as a continuous variable, and therefore including the entire patient group, were

consistent with the lack of significant DEGs seen between the high and low fatigue extremes.

Further, the inclusion of other clinical factors, such as age and depression level, also revealed

no significant DEGs. Ultimately, in the absence of an objective measure of fatigue, subjective

data must be relied upon. Although the healthy controls were only used in the linear regression

model of fatigue as a continuous variable, it should be noted that it is highly unlikely that these

individuals would score 0 for fatigue if these data were available. Several of the other clinical

factor measurements used in this study are also subjective, and therefore these factors suffer
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from the same weaknesses as the fatigue score. Consequently, the effects of these possibly con-

founding factors are unlikely to be eliminated completely. Additionally, the changes observed

may be related to differences in white cell count, although the total white cell counts were com-

parable between the high and low fatigue groups of pSS. Further investigation of these factors

is currently underway.

It is likely that fatigue is not a single biological phenomenon in pSS or other fatigue-related

disorders. The GSEA results suggest changes in a range of signalling-related processes, poten-

tially indicating multiple pathophysiological mechanisms for the development of fatigue. Strat-

ification of the patients, as is recommended for studies of CFS [66], may therefore aid future

studies of fatigue. Future investigation in a larger cohort of pSS patients is in progress and

could provide scope for the stratification of patients’ fatigue if required.

Despite these potential limitations, the SVM classifier of fatigue performed well and had sig-

nificantly improved accuracy over the control classifier. The identified pathways and genes are

consistent with several previous studies of fatigue. Furthermore, since the identified genes were

neither predictive of pSS nor enriched in the pSS group, they are likely to be related to the

fatigue aspect of the disease process. Although overfitting is a possibility, as with all classifica-

tion techniques, it is unlikely in this case since performance was consistently high on separate

testing and training datasets.

The microarray profiling of 133 patients discordant for fatigue has enabled us to identify a

55 genes which are predictive of fatigue in this group. This study provides the first step towards

the understanding the underlying mechanisms of fatigue in pSS. Although only a weak signal

was observed on a single gene basis, the genes as a group are a strong predictor of fatigue and

suggest that a range of signalling changes may be implicated. The relevance of these genes to

the pathophysiological mechanisms of fatigue remains to be elucidated. However, the existence

and implications of this gene group is of potentially huge importance, and will benefit from fur-

ther investigation. In particular, this gene list could aid in the future development of objective

diagnostics for fatigue-related disorders that are currently non-trivial to diagnose, such as CFS.

Whether the gene signature is related to fatigue in general or is specific to pSS-related fatigue

should also be investigated in other autoimmune diseases and in CFS itself.

Materials and Methods

Patient Recruitment

Contemporaneous patient and healthy control data for this study were obtained from the UK

Primary Sjögren’s Syndrome Registry (UKPSSR) [67]. The registry comprises a cohort of clini-

cally well-characterized pSS patients from 30 UK centres with biobanked peripheral blood

mononuclear cells, serum, DNA and RNA. Informed written consent was obtained from all

patients according to the principles of the Helsinki Declaration. Research Ethical approval for

the study was given by the UK National Research Ethics Committee North West—Haydock.

All patients fulfilled the American European Consensus Group Criteria (AECG) [20]. Exten-

sive clinical profiles are available for the patients, including demographics, disease activity and

damage, past and current treatments, and patient-reported outcome measures. The registry’s

healthy controls were recruited at the same time as the patients comprising a group of non-pSS

individuals, age-matched to ± 3 years of the patient group. Assessment and sample collection

followed a uniform protocol.

A group of 133 pSS patients with variable degrees of fatigue were chosen for the gene

expression study. Additionally, 29 healthy individuals also selected from the cohort as a control

ensuring no history of fatigue, dry eyes/mouth or autoimmune disease. Peripheral blood sam-

ples were collected and kept in PAXgene blood RNA tubes (Becton, Dickinson and Company,
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Oxford), which contain blood cell-lysing and RNA-stabilizing reagents. Samples were stored at

−80°C prior to RNA extraction.

Laboratory Techniques

RNA was extracted from peripheral whole blood samples using the PAXgene Blood miRNA kit

(PreAnalytix GmbH, Switzerland). The extractions were performed according to the manufac-

turer’s protocol. The RNeasy MiniElute kit (QIAGEN, Manchester) was used to obtain the

required concentration and volume for the Globin mRNA reduction procedure.

Globin mRNA was removed from the RNA samples using the Human GLOBINclear kit

(Ambion Inc., Texas, USA). The purity and the concentration of the globin-cleared samples

were assessed using the Nano-drop ND-1000 spectrophotometer (Willmington, USA). The

samples were stored at −20°C, according to the GLOBINclear manufacturer’s protocol [68].

The quality of all samples was analysed with the Agilent 2100 Bioanalyzer using the Agilent

RNA Nano kit (Agilent, Santa Clara, USA). Samples with a RNA integrity number (RIN) of

above seven were used for whole genome microarray using the Illumina HumanHT-12 v4

BeadChip. Both techniques were performed at Cambridge Genomic Services (Cambridge, UK).

Fatigue and Other Clinical Factors

Fatigue was defined using the patient-reported abnormal fatigue as scored on a visual analogue

scale of 0–100 [69]. Patients were considered “high fatigue” with a score>75 and “low fatigue”

<25.

Several other factors were included in the linear fits:

• Depression and anxiety: measured using the Hospital Anxiety and Depression (HAD) scale

[70]

• Pain and dryness: measured using the ESSPRI pain and dryness sub-domains [71]

• Age at cohort recruitment (the date of blood sample collection)

• Disease activitymeasured using the EULAR Sjögren’s Syndrome Disease Activity Index (ESS-

DAI) [72]

• Disease damagemeasured using the Sjögren’s Syndrome Disease Damage Index (SSDDI)

[73]

Gene Expression Analysis

Gene expression data were prepared for analysis using the microarray packages provided by

BioConductor [74] as described by Cockell and colleagues [75]. Data were transformed to sta-

bilise the variance across probes before robust spline normalisation using the lumi package

[76]. The arrayQualityMetrics package was used to detect outliers [77]. The lumi

command detectionCall was used to filter out probes with a detection p-value less than

0.01. This filtering step was not included prior to gene set enrichment analysis (GSEA) since

the algorithm requires unfiltered data [37]. Batch effects were removed using the combat

package [78]. Gene annotations were retrieved from the lumiHumanAll.db package [79].

The expression data were then analysed using several parallel approaches (Fig 6):

1. Differentially expressed genes between “high fatigue” and “low fatigue” pSS patients were

identified using the limma package [80] at a fold-change cutoff of 1.2 and a p-value cutoff
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of 0.05 after adjustment using the Benjamini-Hochberg false discovery rate [81]. Other clin-

ical factors were corrected for by inclusion in the linear fits.

2. The Fatigue VAS scores were analysed as a continuous variable by fitting a linear regression

model to the expression data including both the pSS and healthy control groups. Since

fatigue data were not available for the controls, their individual scores were considered 0.

Other clinical factors were corrected for by inclusion in the regression models. The p-values

were adjusted using the Benjamini-Hochberg false discovery rate [81] and a p-value signifi-

cance cutoff of 0.05 was applied.

3. The IFN type I signature was calculated for all the patients based on the five INF induced

genes identified by Brkic and colleagues [21]. Scores were calculated for each patient as the

number of healthy control standard deviations above the healthy control mean, summed

over all five genes, as described by Kirou and co-workers [82]. Patients with a score exceed-

ing 10 were considered to be IFN-positive [21].

4. GSEA and leading edge analysis were carried out using the GSEA software package [37, 83].

Gene sets were taken from version 4 of the Molecular Signature Database (MSigDB) [24].

All 1320 canonical pathway gene sets (collection C2:CP) were tested. Additionally, the

Fig 6. A workflow of the gene expression analysis. The gene expression data were analysed to produce a
list of fatigue-related features which were used as inputs for a support vector machine classifier of fatigue. 1.
Differentially expressed genes were identified between fatigue groups. 2. Linear regression was used to
analyse fatigue as a continuous variable. 3. The interferon type I signature was calculated for all the patients
and compared to fatigue levels. 4. Gene set enrichment analysis was carried out using the high and low
fatigue groups. 5. A support vector machine classifier was created using fatigue-related features as inputs
and its performance assessed using receiver-operator characteristic (ROC) curves.

doi:10.1371/journal.pone.0143970.g006
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fatigue-related features identified (point 5) were analysed as a bespoke input gene set. Gene

sets were considered significant at an FDR cut-off of 25%. Real gene ordering was used to

detect enrichments in the low and high groups, while absolute gene ordering was used to

detect other non-random distributions.

5. Machine learning was carried out on the high and low fatigue groups using radial kernel

support vector machines (SVMs) [84] run in the e1071 package [85]. Hyperparameter

inputs were selected and inputs pre-processed using the carat package [86] and 10-fold

cross-validation was applied. The performance of the classifiers was evaluated using the area

under curve (AUC) of receiver operator characteristic (ROC) curves [87]. The error of the

AUC was calculated using the standard error of the Wilcoxon statistic SE(W) [87, 88] using

Eq (1), where θ is the AUC, Cp is the number of positive examples, Cn is the number of nega-

tive examples, and Q1 and Q2 are the probabilities of incorrect group assignment as defined

by Eqs (2) and (3), respectively.
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S1 Table. Correlations between fatigue and clinical factors. The correlations between the

three fatigue scores and the other clinical factors included in the analyses.
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S2 Table. Fatigue as a continuous variable. The top 10 genes from the linear fits of the three

fatigue scores. In all three cases no genes were statistically significant after p-value adjustment.
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S3 Table. Correction for clinical factors. The top five genes for the linear fits of the three

fatigue scores corrected for the other clinical factors. Factors were included in the regression

fits individually and in combination. No significantly differentially expressed genes were

found. Disease activity was measured using the EULAR Sjögren’s Syndrome Disease Activity

Index. Disease damage was measured using the Sjögren’s Syndrome Disease Damage Index.

Dryness and pain were measured using the EULAR Sjögren’s Syndrome Patient Reported

Index dryness and pain sub-domains, respectively. Anxiety and depression were measured

using the Hospital Anxiety and Depression scale.

(DOCX)

S4 Table. Enriched pathways in pSS. Gene sets were considered to be enriched at an FDR cut-

off of 25%.

(DOCX)

S1 Fig. Outlier Detection. Bar charts of the three outlier detection methods. In each case the

bars are shown in the original order of the arrays. Two arrays, numbers 61 and 121, were
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identified as outliers (red crosses). A) Hoeffding’s statistic Da. A threshold of 0.15 was used,

which is indicated by the vertical line. No arrays exceeded the outlier threshold. B) The sum

of distances to other arrays Sa. Based on the distribution of the values across all arrays, a thresh-

old of 34.8 was determined, which is indicated by the vertical line. Two arrays significantly

exceeded the threshold and were considered outliers. C) The Kolmogorov-Smirnov statistic Ka.

Based on the distribution of the values across all arrays, a threshold of 0.0558 was determined,

which is indicated by the vertical line. One array significantly exceeded this threshold and was

considered an outlier.

(PNG)

S2 Fig. Batch correction. Principle component plots of the data pre- (A) and post-batch cor-

rection (B). Points are coloured and shaped by experimental batch.

(PNG)

S3 Fig. Differential gene expression analysis. Volcano plots for fatigue groups using PRO-

FAD and ESSPRI fatigue scores. The ranges of these scores are 0–7 for PROFAD and 0–10 for

ESSPRI, respectively. No significantly differentially expressed genes were identified in either

case. A. PROFAD, high fatigue>5 (n = 32) and low fatigue�2 (n = 32). B. ESSPRI, high

fatigue>7 (n = 36) and low fatigue�3 (n = 34).

(PNG)

S4 Fig. PROFAD correction for clinical factors. Volcano plots for the PROFAD fatigue

groups corrected for clinical factors. High fatigue>5 (n = 32) and low fatigue�2 (n = 32). A.

Age at UKPSSR cohort recruitment. B. Disease activity measured using the EULAR Sjögren’s

Syndrome Disease Activity Index. C. Disease damage measured using the Sjögren’s Syndrome

Disease Damage Index. D. The EULAR Sjögren’s Syndrome Patient Reported Index dryness

sub-domain. E. The EULAR Sjögren’s Syndrome Patient Reported Index pain sub-domain. F.

Anxiety measured using the Hospital Anxiety and Depression scale. G. Depression measured

using the Hospital Anxiety and Depression scale. H. Pain and depression (E & G). I. Pain,

depression, dryness and anxiety (D-G). J. All seven factors (A-G). No significantly differentially

expressed genes were identified following any correction.

(PNG)

S5 Fig. ESSPRI correction for clinical factors. Volcano plots for the ESSPRI physical

fatigue groups corrected for clinical factors. High fatigue>7 (n = 36) and low fatigue �3

(n = 34). A. Age at UKPSSR cohort recruitment. B. Disease activity measured using the

EULAR Sjögren’s Syndrome Disease Activity Index. C. Disease damage measured using the

Sjögren’s Syndrome Disease Damage Index. D. The EULAR Sjögren’s Syndrome Patient

Reported Index dryness sub-domain. E. The EULAR Sjögren’s Syndrome Patient Reported

Index pain sub-domain. F. Anxiety measured using the Hospital Anxiety and Depression

scale. G. Depression measured using the Hospital Anxiety and Depression scale. H. Pain

and depression (E & G). I. Pain, depression, dryness and anxiety (D-G). J. All seven factors

(A-G). No significantly differentially expressed genes were identified following any correc-

tion.

(PNG)

S6 Fig. Interferon type I signature. The clinical scores in the IFN type I positive and negative

groups. ESSDAI scores were significantly higher in the IFN positive group. However, there was

no significant relationship between IFN signature and ESSPRI, SSDDI or the three fatigue

scores.

(PNG)
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