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A transcriptomic axis predicts state 
modulation of cortical interneurons

Stéphane Bugeon1 ✉, Joshua Duffield1, Mario Dipoppa1,2, Anne Ritoux1, Isabelle Prankerd1, 
Dimitris Nicoloutsopoulos1, David Orme1, Maxwell Shinn1, Han Peng3, Hamish Forrest1, 
Aiste Viduolyte1, Charu Bai Reddy1,4, Yoh Isogai5, Matteo Carandini4 & Kenneth D. Harris1 ✉

Transcriptomics has revealed that cortical inhibitory neurons exhibit a great diversity 
of fine molecular subtypes1–6, but it is not known whether these subtypes have 
correspondingly diverse patterns of activity in the living brain. Here we show that 
inhibitory subtypes in primary visual cortex (V1) have diverse correlates with brain 
state, which are organized by a single factor: position along the main axis of 
transcriptomic variation. We combined in vivo two-photon calcium imaging of mouse 
V1 with a transcriptomic method to identify mRNA for 72 selected genes in ex vivo 
slices. We classified inhibitory neurons imaged in layers 1–3 into a three-level 
hierarchy of 5 subclasses, 11 types and 35 subtypes using previously defined 
transcriptomic clusters3. Responses to visual stimuli differed significantly only 
between subclasses, with cells in the Sncg subclass uniformly suppressed, and cells in 
the other subclasses predominantly excited. Modulation by brain state differed at all 
hierarchical levels but could be largely predicted from the first transcriptomic 
principal component, which also predicted correlations with simultaneously 
recorded cells. Inhibitory subtypes that fired more in resting, oscillatory brain states 
had a smaller fraction of their axonal projections in layer 1, narrower spikes, lower 
input resistance and weaker adaptation as determined in vitro7, and expressed more 
inhibitory cholinergic receptors. Subtypes that fired more during arousal had the 
opposite properties. Thus, a simple principle may largely explain how diverse 
inhibitory V1 subtypes shape state-dependent cortical processing.

The cerebral cortex contains a rich diversity of neurons, particularly 
amongst inhibitory cells. Although this diversity was visible to early anat-
omists8,9, its full complexity has emerged only with the advent of tran-
scriptomics1–6. Single-cell RNA sequencing (scRNA-seq) and Patch-seq 
analysis suggest that cortical inhibitory neurons are divided into five 
major subclasses, which are named Pvalb, Sst, Lamp5, Vip and Sncg on 
the basis of their marker genes1–7. However, much finer transcriptomic 
distinctions exist within these subclasses: cluster analysis has defined 
60 fine inhibitory transcriptomic subtypes in visual cortex3. Moreover, 
cortical inhibitory neurons exhibit variations along transcriptomic 
continua2,10, which can predict their intrinsic physiological properties2.

A key open question is whether the molecular diversity of cortical 
inhibitory neurons is mirrored in vivo by diverse patterns of activity, and 
whether there are simplifying principles that can help understand the 
relationship between gene expression and activity in these myriad cell 
groups. Three main methods have been used to characterize the in vivo 
activity of molecularly identified cells. The first is to record from one 
cell at a time juxtacellularly, and then apply post-hoc morphological 
reconstruction and immunohistochemistry11. This method has limited 
throughput. The second is to use electrophysiology or two-photon cal-
cium imaging in transgenic mice12–20. However, transgenic lines can only 

identify one group of cells at a time, and these groups are broad, contain-
ing cells of multiple subtypes, types and even subclasses. The third—
and potentially most powerful—method is to combine two-photon 
calcium imaging with ex vivo molecular identification of the recorded 
neurons21–27. This method can record the activity of large numbers of 
neurons from multiple groups of cells simultaneously, and its ability 
to assign cells to fine molecular groups is limited only by the methods 
that are used to subsequently identify the neurons.

Here, we pursued this last approach, using two-photon microscopy 
to record from large populations of neurons in mouse V1 and apply-
ing in situ transcriptomics to the imaged tissue to localize mRNAs for 
72 selected genes, a method we term functional neuromics. This is a 
substantial increase in the number of detected genes compared with 
previous methods, and allows the identification of fine transcriptomic 
subtypes. Although most differences in sensory tuning appeared at 
the level of the five main subclasses, fine subtypes showed significant 
differences in their modulation by cortical state. These differences in 
state modulation were explained in large part by a single transcriptomic 
continuum, which also correlated with the intrinsic membrane proper-
ties and morphology of these subtypes as assessed in vitro7, and with 
their expression of excitatory and inhibitory cholinergic receptors.
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Identifying recorded inhibitory subtypes
We performed two-photon calcium imaging in mice expressing 
mCherry in inhibitory neurons (Gad2-T2a-NLS-mCherry), injected with 
a pan-neuronal GCaMP6m virus (AAV1-Syn-GCaMP6m-WPRE-SV40), 

and then applied in situ transcriptomics to sagittal slices of the imaged 
region. During imaging, mice were free to run on an air-suspended Sty-
rofoam ball, and their behavioural state was monitored through facial 
videography. Spontaneous activity was recorded in front of a uniform 
grey screen, and visual responses were elicited by presenting drifting 
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Fig. 1 | Post-hoc transcriptomic identification of recorded neurons.  
a, Three-dimensional (3D) representation of an example reference z-stack 
(white: GCaMP6m, expressed in all neurons, red: mCherry, expressed in 
inhibitory neurons) . b, Digital sagittal section of this z-stack (maximum intensity 
projection, 15-μm slice); colours as in a. Scale bar, 100 μm. c, Portion of ex vivo 
slice aligned to section in b after 72-fold mRNA detection with coppaFISH. Dots 
represent detected mRNAs (colour code: top of i). Scale bar, 100 μm. d, Expanded  
view of dashed rectangle in b,c showing in vivo mCherry fluorescence (red) and 
ex vivo Gad1 mRNA detection (blue). Scale bar, 20 μm. e, mRNAs detected in this 
same region, plotted as in c. White lines indicate two functional imaging planes. 
Grey background: DAPI stain for cell nuclei. Scale bar, 20 μm. f, Hierarchical 
classification of in-vivo-recorded cells into 5 subclasses, 11 types and 35 subtypes. 
Within each type, subtypes are sorted by their mean first transcriptomic 
principal component (tPC1) score (see Fig. 5b). Lect1 is also known as Cnmd; 
Fam19a1 is also known as Tafa1. g, Higher-magnification view of cells 1 and 2 from 

e. Gene detections are indicated by coloured letters (code: top of i). Grey 
background: DAPI image. Below: pie charts indicating probabilities of 
assignment to subtypes. Scale bars, 5 μm. h, Deconvolved calcium traces for the 
two example cells, together with running speed. i, Mean expression of the  
72 genes (pseudocoloured as log(1 + gene count)) for the 35 subtypes, ordered as 
in f (n = 4 mice). Left: number of unique cells of each subtype. Nov is also known as 
Ccn3. j, Comparison of the median cortical depth of each subtype found using 
coppaFISH (as a fraction of total depth; n = 14 sections from a brain in which 
mRNAs were detected down to layer 6), and its median cortical depth found 
independently using Patch-seq7 (Pearson correlation: r = 0.91, P = 1 × 10−13; 
analysis of covariance (ANCOVA) controlling for subclasses and types: 
F(1) = 163.6, P = 6 × 10−12). Only subtypes with at least four cells for each dataset 
were considered. Symbols for subtypes imaged in vivo are shown in f; for 
subtypes too deep to image, symbols are shown on the right.
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gratings, natural images and sparse noise. Recordings typically spanned 
0–250 μm below the brain surface, targeting cortical layers 1–3. At 
the end of each session, we obtained a high-resolution two-photon 
z-stack volume (Fig. 1a). After functional imaging was complete, brains 
were removed and frozen unfixed, and the imaged volume was cut into 
15-μm-thick sections with a cryotome.

To identify the locations of 72 pre-selected genes we built on a previ-
ous approach of in situ sequencing28 to obtain a method termed cop-
paFISH (combinatorial padlock-probe-amplified fluorescence in situ 
hybridization). This method amplifies selected transcripts in situ using 
barcoded padlock probes29 and reads out their barcodes combinato-
rially through seven rounds of seven-colour fluorescence imaging 
(Methods and Extended Data Fig. 1). The method detected 144 ± 57 
transcripts per cell (mean ± s.d.). The slices were aligned to the in vivo 
z-stacks with a point cloud registration algorithm using inhibitory 
neurons as fiducial markers, identified in vivo with mCherry and ex 
vivo through gene expression (Fig. 1b–e and Extended Data Fig. 2). We 
applied this method to 17 recording sessions from 4 mice, and obtained 
89 ± 31 (mean ± s.d.) molecularly identified inhibitory cells together 
with 393 ± 173 pyramidal neurons per session, making a total of 1,090 
unique molecularly identified inhibitory cells (some of which were 
recorded in multiple sessions; Supplementary Data 1).

We classified these inhibitory cells using a three-level hierarchy 
(Fig. 1f). The lowest hierarchical level ('subtype') comprised the fine 
transcriptomic clusters defined previously3, and the top level ('sub-
class') was the Pvalb, Sst, Lamp5, Vip and Sncg groupings that were 
defined in the same previous report. An intermediate level ('type') 
was suggested by uniform manifold approximation and projection 
(UMAP) analysis of scRNA-seq data (Extended Data Fig. 3), which 
revealed collections of clusters that we could putatively associate to 
morphological cell types (see Methods for full explanation). We named 
these intermediate-level types Pvalb-Tac1 (putative Pvalb basket cells); 
Pvalb-Vipr2 (putative chandelier cells); Sst-Reln (putative Martinotti 
cells); Sst-Tac1 (putative non-Martinotti Sst cells); Lamp5-Npy (puta-
tive neurogliaform cells); Lamp5-Tmem182 (putative canopy cells); 
Lamp5-Chrna7 (putative layer-1 α7 cells); Vip-Reln (putative layer-1 Vip 
cells); Vip-Cp (other Vip cells); Sncg-Pdzrn3 (putative large Cck cells); 
and Sncg-Vip (putative small Cck/Vip cells). UMAP analysis (Extended 
Data Fig. 3) suggested that although types were usually discrete, their 
constituent subtypes often merged continuously into each other, tiling 
dimensions of continuous variability of inhibitory neurons.

Cells that were functionally imaged in vivo were assigned to a subtype 
(and thus also a type and subclass) using pciSeq28, a Bayesian algorithm 
that computes for each cell a probability distribution over clusters defined 
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Fig. 2 | Example raster of spontaneous neuronal activity. Raster of 
spontaneous neuronal activity (grey screen) for an example session.  
a, Running speed, pupil size and mean activity of the 10% of excitatory cells 
(ECs) with most negative principal component weights (oscillation). b, Raster 
of EC activity, sorted by weight on the first principal component of their 
activity. c, Raster of the activity of inhibitory cells (ICs), grouped and coloured 

by subtype. The three columns on the right show an expanded view of the time 
windows marked in a, illustrating three behavioural states. These rasters show 
all recorded ECs (413 cells) and molecularly identified ICs (117 cells) in this 
session (94 ICs not matched to in situ transcriptomics are not shown; note the 
different scale bars for ECs and ICs). Neuronal activity was z-scored and then 
smoothed with a 1-s boxcar window.
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by previous scRNA-seq data. Expression levels were sufficient to assign 
cells with high probability to a single subtype (Fig. 1g,h and Extended 
Data Fig. 4), and we therefore assigned each cell to a single subtype of 
maximum a posteriori probability. The algorithm could assign cells to 
any of the 109 clusters defined by scRNA-seq (representing all neurons 
and non-neurons), but as expected from the restriction of two-photon 
imaging to the superficial layers, the imaged cells were assigned to just 35 
clusters corresponding to superficial inhibitory neurons. The number of 
cells recorded varied across transcriptomic groups (Fig. 1i), and subtypes 
to which fewer than three cells were assigned were excluded from further 
analysis (eight cells total). The gene expression for the 72 genes in our panel 
showed consistent differences across the 35 subtypes recorded (Fig. 1i).

To verify the accuracy of our cell-type assignments, we performed 
two analyses using independent data. First, we took advantage of 
the fact that different inhibitory subtypes reside at different cortical 
depths, as established by an independent Patch-seq study7. The median 
depth of subtypes by our method and by Patch-seq matched closely 
(Fig. 1j). Notably, this did not only reflect depth differences between 
the top-level subclasses (P < 0.001, ANCOVA controlling for subclass) 
or even types (P < 0.001, ANCOVA controlling for type). For example, 

whereas Sst-expressing neurons are most often found in deep layers, 
specific subtypes such as Sst-Calb2-Necab1 were localized in superficial 
layers by both our method and the independent Patch-seq data. Second, 
we compared the functional recordings to two-photon calcium imaging 
studies that identified cells with three transgenic lines (Sst, Pvalb and 
Vip)30. When we analysed our data after grouping together cells that 
were expected to be labelled in each of these lines, we found results 
that were consistent with previous studies (Extended Data Fig. 5). We 
thus conclude that our methods accurately identify subtypes.

State modulation of inhibitory subtypes
In vivo activity differed between transcriptomic groups, down to the 
subtype level. We generated raster plots showing the simultaneous 
spontaneous activity of V1 populations, with all inhibitory neurons 
identified to subtypes (Fig. 2). Examination of these rasters revealed 
complex patterns of correlated activity. We tested whether correlations 
between cells within a single subclass, type or subtype were stronger 
than correlations across these groupings (Fig. 3a). This analysis requires 
careful statistics owing to two potential confounds: first, the large 
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Fig. 3 | State modulation of inhibitory subtypes. a, Nested permutation 
analysis for spontaneous correlations. Top, significance of omnibus test for 
higher correlations within subclasses (P < 0.0001), nested types (P < 0.0001) 
and subtypes (P = 0.048). Right bolded brackets: significant post-hoc tests 
within each grouping (Benjamini–Hochberg-corrected; P values in Extended 
Data Fig. 6b). b, Left, pseudocolour representation of the mean activity of each 
subtype in each state. Middle, box plots showing the distributions of state 
modulation (running versus stationary synchronized) for cells of each subtype 
(n = 4 mice, 17 sessions; for box definitions, see Methods). Right, nested 
permutation analysis, plotted as in a. Omnibus test found significantly 
different state modulation between subclasses (P < 0.0001), nested types 
(P = 0.022), and subtypes (P = 0.014). Benjamini–Hochberg-corrected post-hoc 
tests found significant differences within Pvalb (P < 0.0001), Sst (P < 0.0001), 
Lamp5 (P = 0.0025), Vip (P < 0.0001) and Lamp5-Npy (P < 0.0001) cell groups. 
Coloured arrows at each level indicate significant state modulation for each 
cell group (two-sided t-tests, Benjamini–Hochberg-corrected; number of 
arrowheads indicates significance). c, Modulation for running versus 

stationary desynchronized states, against modulation for stationary 
synchronized versus desynchronized states. Each glyph shows mean values for 
a subtype; symbols as in b (F(1) = 375.4, P = 3.6 × 10−71, ANCOVA controlling for 
session). d, Modulation for running versus stationary desynchronized states 
against locking to the synchronized state oscillation. Each glyph shows mean 
values for a subtype (F(1) = 240.5, P = 2 × 10−47, ANCOVA controlling for session). 
e, State modulation for cells in the Lamp5-Plch2-Dock5 and Lamp-Lsp1 
subtypes, against subtype probability index (log(PSubtype1/PSubtype2); left), or Ndnf 
(middle) and Cck (right) gene expression. These three variables correlated 
significantly with state modulation (Pearson correlation: subtype probability: 
P = 2 × 10−7, r = −0.39; Ndnf expression: P = 2 × 10−5, r = 0.32; Cck expression: 
P = 2 × 10−4, r = −0.29), even controlling for a common effect of subtype 
(F(1) = 4.8, P = 0.03; F(1) = 6.2, P = 0.014; F(1) = 10.7, P = 0.0014, respectively, 
ANCOVA). Black lines: linear fits. *P < 0.05, **P < 0.01, ***P < 0.001; one-, two- or 
three-headed arrows in c indicate the same significance levels; direction 
indicates the sign of modulation.
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number of subtypes presents a multiple comparisons problem; second, 
different recordings will by chance sample different proportions of 
each cell group, so variability between recordings could be mistaken 
for variability between cell groups. To solve these confounds, we devel-
oped a nested permutation test, which tests the null hypothesis that 

activity amongst cells assigned to the same transcriptomic group is no 
more similar than that amongst cells assigned to different transcrip-
tomic groups (Methods and Extended Data Fig. 6a). The test operates 
hierarchically, testing for significant differences between subclasses, 
between the types that comprise a single subclass, and between the 
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subtypes that comprise a single type. The test showed that correlations 
between cells within a single subclass, type or subtype were stronger 
than correlations across these groupings (P < 0.001 for subclass and 
type; P < 0.05 for subtype; Fig. 3a and Extended Data Fig. 6a,b).

The activity of different cell groups correlated diversely with ongoing 
behaviour as measured by two assays of arousal: locomotion and pupil 
diameter (Fig. 2a,c). Because these assays of arousal in turn correlate 
with cortical state31–33, we asked how the activity of the identified cell 
groups depends on cortical state.

We characterized cortical state using the activity of the excitatory 
population. As previously described34, some excitatory cells (positively 
weighted on the first principal component of population activity) were 
more active when the mouse was aroused (fast running, large pupil), 
whereas other excitatory cells (with negative weights) fired during 
inactive periods (no running, small pupil). In addition, we found that 
behavioural inactivity was sometimes accompanied by low-frequency 
oscillations in population activity, which strongly synchronized the 
excitatory neurons as visible in the mean activity of the negatively 
weighted cells (Fig. 2a,b; the frequency of these fluctuations is unclear as 
our two-photon microscope aliases frequencies above 2.15 Hz). We thus 
used running and cortical synchronization to distinguish three states 
that correspond to decreasing levels of arousal: running; stationary 
desynchronized; and stationary synchronized. To quantify the modu-
lation of a cell by cortical state we compared the activity of each cell 
during the two extreme states: running versus stationary synchronized.

We found significant differences in the way that different subclasses, 
types and subtypes were modulated by cortical state (Fig. 3b). We modi-
fied the nested permutation test to compare activity between states, 

and found significant differences between subclasses (P < 0.001), with 
the Sncg, Vip and Lamp5 subclasses being on average more active dur-
ing running and the Pvalb subclass more active during oscillation. 
Significant differences were also seen between the types that consti-
tute individual subclasses (P = 0.02). For example, within the Pvalb 
subclass, Pvalb-Tac1 cells were strongly active during synchronized 
states and less active during running, whereas Pvalb-Vipr2 cells showed 
the opposite behaviour (consistent with previous results35). Within 
the Sst subclass, Sst-Tac1 cells were most active during synchronized 
states, whereas Sst-Reln cells were more active during running. Similar 
dichotomies were observed in the Lamp5 subclass, with Lamp5-Chrna7 
cells being more active in running and Lamp5-Npy cells mixed. Vip and 
Sncg cells were more active during running—except for Vip-Reln cells, 
which showed the opposite behaviour. Significant differences were 
also seen between the subtypes that comprise a single type (P = 0.014). 
The most prominent of these differences was between the subtypes 
that comprise the Lamp5-Npy (putative neurogliaform) type, with 
Lamp5-Plch2-Dock5 cells firing more in running but Lamp5-Lsp1 cells 
firing more in synchronized states. A trend toward differences in state 
modulation was also seen between Sst-Reln (putative Martinotti) sub-
types (P < 0.05; significant on its own but not after Benjamini–Hoch-
berg correction). Activity in the stationary desynchronized state was 
intermediate between the synchronized and the running states (Fig. 3c 
and Extended Data Fig. 6c,d). A subtype’s state modulation was cor-
related with its degree of phase-locking to the synchronized state oscil-
lation, with subtypes that were more active during running being less 
locked to the oscillation during the stationary synchronized periods  
(Fig. 3d).
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The modulation of individual subtypes by brain state varied smoothly 
along transcriptomic continua, rather than showing sharp differences 
between discrete groupings. For example, amongst subtypes of the 
Lamp5-Npy type, Lamp5-Lsp1 cells were most active in the synchronized 
state, whereas Lamp5-Plch2-Dock5 cells fired more during running. The 
division between these two subtypes, however, reflects a somewhat 
arbitrary dividing line along a continuous dimension of transcriptomic 
variability (Extended Data Fig. 3). To test whether such a continuous 
dimension of transcriptomic variability could explain differences in 
state modulation, we quantified the position of each imaged cell along 
the continuum by its ratio of posterior probabilities of assignment to 
the two subtypes. We observed a smooth dependence of state modula-
tion along this continuum, which ANCOVA analysis showed depended 
more on this continuous transcriptomic score than on discrete subtype 
assignment (Fig. 3e). Similar continuous dependence was visible at 

the single-gene level, with state modulation within Lamp5-Npy cells 
correlating with expression of Cck and Ndnf (Fig. 3e) even after con-
trolling for subtype. Similar results were seen for Sst-Reln subtypes 
(Extended Data Fig. 6e).

Sensory responses of inhibitory subtypes
We next probed responses to visual stimuli: drifting gratings of vari-
ous sizes and directions, and natural images. Unlike state modulation, 
visual responses showed significant differences only at the level of 
subclasses, not types or subtypes.

Most inhibitory subtypes contained neurons that responded to grat-
ing stimuli (Fig. 4a–d and Extended Data Fig. 7). Pvalb and Sst cells that 
responded to gratings were almost exclusively excited by them. Lamp5 
and Vip cells contained a mixture of excited and inhibited cells, with 
Vip cells more often being excited. Notably, Sncg cells—whose visual 
responses have not to our knowledge yet been studied—were almost 
exclusively inhibited. Orientation and direction selectivity were rela-
tively low for most subclasses17,22, except for a slight tendency for Sst 
and Vip cells to show stronger tuning. Most cells showed significant 
coding of natural image stimuli, which differed significantly between 
subclasses, and was weakest for Sncg cells. Differences in natural image 
responses were largely homogeneous between types and subtypes 
within a subclass, although a trend towards difference was seen among 
the Lamp5 subclass (Extended Data Fig. 7).

The most marked difference in the visual responses of different inhib-
itory cell groups was in their tuning for grating size and the modulation 
of this tuning by cortical state (Fig. 4a,d,e). Size tuning was significantly 
modulated at the subclass level: whereas Sst cells showed little or no 
surround suppression, with strong responses to large stimuli12,30, Sncg 
cells showed a clear opposite pattern, in which they were progressively 
more suppressed by larger stimuli (Fig. 4e). Modulation of grating 
response by locomotion was significantly different between subclasses, 
with locomotion increasing the responses of Sst, Pvalb and Vip cells to 
various degrees, and decreasing those of Sncg cells.

In summary, sensory responses showed significant differences 
between subclasses, but not between types and subtypes. The most 
marked differences between subclasses were in size tuning and its 
modulation by state. A lack of statistical significance of course does not 
exclude the possibility that the sensory tuning of subtypes may differ 
in ways too small for our methods to detect; but the fact that the same 
statistical tests found subtype differences in state modulation suggests 
that any such differences in sensory responses are likely to be subtle.

Transcriptomic PC1 and state modulation
The above analyses showed that state modulation, but not visual 
responses, differ significantly between transcriptomic subtypes. We 
next returned to the dependence of state modulation on subtype, and 
found that a portion of this diversity can be explained by a single tran-
scriptomic axis (Fig. 5). This axis was defined independently of the 
physiological data: we simply computed the first principal component 
of the gene expression vectors measured in situ (transcriptomic prin-
cipal component 1, or tPC1). Applying principal component analysis 
(PCA) to the in situ transcriptome of our cells revealed a continuum 
(Fig. 5a,b). This continuum did not simply reflect an ordering of the 
five main subclasses, but a more complex organization of types and 
subtypes. For example, although Pvalb-Tac1 (putative basket) cells 
occupied the negative end of the continuum, Pvalb-Vipr2 (putative 
chandelier) cells were positioned amongst a different type—the Sst 
cells. The different Lamp5 subtypes were widely distributed across 
the continuum, with Lamp5-Npy (putative neurogliaform) cells hav-
ing more negative values than Lamp5-Tmem182 and Lamp5-Chrna7 
(putative canopy and α7) cells, which were positioned amongst cells of 
a different subclass—the Vip cells. Sncg cells occupied the most positive 
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end of the continuum. The loading of cell-type marker genes (such 
as Pvalb or Vip) on tPC1 reflected the position of the corresponding 
cell types, but genes that are expressed in all interneurons could also 
show strong loadings; for example, Gad1 and Slc6a1 (Fig. 5a), which 
are involved in the synthesis and transport of GABA (γ-aminobutyric 
acid), were strongly negatively loaded. The ordering and gene load-
ing observed here are similar to those seen in a previous analysis of 
CA1 single-cell transcriptomic data10, which suggested that cell types 
at the negative end of this continuum express genes consistent with 
faster metabolic rates and strong inhibition on the somas or proximal 
neurites of their targets.

The state modulation of a subtype correlated with its position along 
the transcriptomic continuum tPC1 (Fig. 5c). Cells with negative tPC1 
scores, such as Pvalb-Tpbg (putative basket) cells, were most strongly 
active in synchronized states, whereas cells with a positive tPC1 value, 
such as Sncg cells, were most active during desynchronized and running 
states. State modulation was significantly correlated with tPC1, even 
after taking into account differences between subclasses (P < 0.001, 
ANCOVA controlling for session and subclass; Fig. 5c). These effects 
could be seen at a single-gene level, with a subtype’s state modulation 
negatively correlated with expression of the GABA-processing genes 
Gad1 and Slc6a1 (Extended Data Fig. 8a; P < 0.001, ANCOVA control-
ling for session). This single principal component could predict 70% 
of the variance of state modulation that is explainable transcriptomi-
cally (Extended Data Fig. 8b). Thus, different inhibitory subtypes have 
diverse relationships to cortical state, but these relationships can be 
predicted in large part by a single transcriptomic axis, with the side of 
this axis that is associated with stronger GABA synthesis showing more 
activity in oscillatory states.

The tPC1 axis also largely predicted correlations between the spon-
taneous activity of inhibitory types, with positive correlations between 
types of similar tPC1 values, and negative correlations between types 
of opposite tPC1 values (P < 0.05, permutation test; Fig. 5d). This also 
held true when considering correlations computed within any of the 
three states independently (Extended Data Fig. 8c–e).

A cell type’s state modulation and position on the tPC1 axis also cor-
related with many aspects of its intrinsic physiology and morphology 
(Fig. 6a and Extended Data Fig. 9). To demonstrate this, we compared 
our measurement of each subtype’s state dependence with measure-
ments on the same V1 subtypes that were made by an independent 
study using Patch-seq7. This comparison showed that subtypes that 
were active during synchronized states (low arousal levels) had faster 
membrane time constants and spike repolarization speeds, a more 
hyperpolarized resting potential, lower membrane resistance, a larger 
rheobase (the minimum current required to drive spiking) and weaker 
spike frequency adaptation (Fig. 6a and Extended Data Fig. 9a). Sub-
types active during running had the opposite properties. For exam-
ple, Sst-Tac1 cells, which are faster spiking than Sst-Reln cells7, had the 
lowest tPC1 values and the greatest preference for oscillatory states 
amongst the Sst subclass (Fig. 5b). This Patch-seq data also revealed 
a noteworthy correlation of tPC1 and axonal morphology. Within the 
Sst and Lamp5 subclasses, cells with larger values of tPC1 (which would 
thus show more activity in alert states in vivo) had a greater fraction 
of their axonal projections in layer 1, and a smaller fraction in layer 2/3 
(P < 0.001 and P < 0.05 for Lamp5 and Sst respectively; Pearson corre-
lation with Benjamini–Hochberg correction; Extended Data Fig. 9b). 
This correlation was not seen for the other subclasses, for which axonal 
projections to layer 1 were rare.

Finally, we asked whether state modulation also correlated with 
the expression of cholinergic receptors between subtypes. Levels of 
acetylcholine are higher in active states and contribute to cortical 
desynchronization36–38. Moreover, acetylcholine differentially affects 
inhibitory neuronal types by acting through different receptors, with 
nicotinic and Gq-coupled muscarinic receptors exciting some inhibitory 
types, and Gi-coupled muscarinic receptors inhibiting others39–44. We 

compared our measurements of each subtype’s state dependence with 
cholinergic receptor expression measured in an independent single-cell 
transcriptomic study3, and found positive correlations between state 
modulation and the expression levels of all nicotinic or Gq-coupled 
muscarinic receptors, and negative correlations between state modu-
lation and the expression levels of Gi-coupled muscarinic receptors 
(Fig. 6b; excitatory receptors significantly more positively correlated 
than inhibitory receptors; P < 0.01, ANOVA). We thus hypothesize that 
differential expression of cholinergic receptor subtypes might con-
tribute to the continuum of state modulation along the main axis of 
transcriptomic variation tPC1.

Discussion
By identifying the transcriptomic types of simultaneously recorded 
V1 neurons, we discovered functional differences across fine cellular 
subtypes, ordered along a main axis of transcriptomic variation. These 
subtype differences were seen not in the sensory responses of the neu-
rons—which differed primarily across high-level subclasses—but rather, 
in the relation of their activity to cortical and behavioural state. State 
modulation can vary significantly between fine subtypes within a type, 
but this appears to reflect continuous transcriptomic variation rather 
than discrete subtypes. Furthermore, a single axis of transcriptomic 
variation across inhibitory cells—the first transcriptomic principal 
component (tPC1)—largely explains the differences in state modulation 
between subtypes, and predicts their spontaneous correlations. This 
transcriptomic axis also correlates with a subtype’s membrane physiol-
ogy, layer-1 axon content and expression of excitatory and inhibitory 
cholinergic receptors (Fig. 6c).

It is notable that a single transcriptomic dimension—derived from pat-
terns of gene expression without regard to functional or physiological 
properties—correlates with state modulation that we measured in vivo, 
with intrinsic physiology measured in vitro7 and with the expression of 
cholinergic receptors with opposite signs for excitatory and inhibitory 
receptors3. This dimension defined in V1 a continuum that is similar to 
one previously described in CA1 inhibitory neurons10, but with one excep-
tion: in CA1, Sncg subtypes were spread along the continuum, rather than 
being clustered at the positive end as in V1. This might be related to the 
existence of fast-spiking CCK basket cell subtypes in CA1 (ref. 45), and to 
the fact that CA1 Sncg cells can be inhibited by locomotion46.

The correlation between tPC1, state modulation and cellular phys-
iology is not perfect, and this one axis certainly cannot explain all 
properties of cortical interneurons. Nevertheless, tPC1 may define 
an approximate but general organizing principle, that can explain 
many observations that have previously been made on individual 
inhibitory groups (Supplementary Discussion). For example, acetyl-
choline has been shown to have diverse effects on different inhibi-
tory groups39–43, such as the classical 'cholinergic switch'44, in which 
fast-spiking (putative Pvalb basket) cortical neurons are inhibited 
by muscarinic receptors but low-threshold spiking (putative Sst 
Martinotti) neurons are excited by nicotinic receptors. This result is 
consistent with the receptor expression profile of these types, and 
with our finding that desynchronized and running states suppress 
Pvalb-Tac1 cells and drive Sst-Reln cells. In fact, our data suggest that 
the behaviour of these two types reflects a more general principle: at 
least in superficial V1, inhibitory cells with lower tPC1 values exhibit 
physiological properties that are closer to Pvalb basket cells, lower 
levels of nicotinic and excitatory muscarinic receptors, more inhibi-
tory muscarinic receptors and negative state modulation. The reverse 
is true for cells with larger tPC1 values.

The computational role of this state-dependent switch in the activ-
ity of different inhibitory cell types remains an open question. How-
ever, our data are consistent with a long-standing hypothesis that alert 
states and cholinergic modulation biases cortex towards feedforward 
inputs from primary thalamus, and away from top-down inputs from 
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elsewhere in cortex47,48 (Fig. 6c). Indeed, the types that are most sup-
pressed by alert states (putative Pvalb basket and Sst non-Martinotti) 
preferentially target thalamorecipient layers 4 and 5b, whereas the 
Sncg, Lamp5, Sst Martinotti and Vip cells, which are more excited in 
alert states, preferentially target either interneurons, or pyramidal 
cells in other layers49,50. Our data furthermore suggest that the degree 
of state modulation for Sst and Lamp5 neurons correlates with their 
axonal innervation of layer 1, which receives top-down input. Opposing 
cholinergic modulation of these inhibitory types might thus alter the 
balance between bottom-up and top-down inputs.

In summary, we introduced a functional neuromics approach that 
revealed that the sensory tuning of V1 inhibitory neurons is determined 
largely by their top-level transcriptomic subclass, and that their state 
modulation can be predicted to good approximation from a single 
transcriptomic axis that also correlates with their intrinsic physiol-
ogy, morphology and cholinergic receptor expression. As emerging 
experimental techniques allow for ever-greater amounts of information 
to be collected on the physiology, connectivity and firing correlates of 
cortical interneuron types, these simple principles may help to organ-
ize this knowledge.
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Methods

All experimental procedures were conducted in accordance with the UK 
Animals (Scientific Procedures Act) 1986. Experiments were performed 
at University College London under personal and project licences 
released by the Home Office following appropriate ethics review.

Mice
Experiments were performed on mice aged between 12 and 15 weeks 
maintained on a 12-h light–dark cycle, at 20–24 °C and 45–65% 
humidity, in individually ventilated cages. For post-hoc identifica-
tion of transcriptomic subtypes, four (two males and two females) 
Gad2-T2a-NLS-mCherry transgenic mice (stock no: 023140, The Jackson 
Laboratory), expressing the red fluorescent protein mCherry in the 
nuclei of Gad2-expressing cells, were used. For comparison to trans-
genic mouse lines (Extended Data Fig. 5), additional experiments were 
performed as in ref. 30 using one male Pvalbtm1(cre)Arbr and two males and 
one female Ssttm2.1(cre)Zjh crossed with Gt(ROSA)26Sortm14(CAG-tdTomato)Hze.

Surgical procedures
On the day of surgery, mice were anaesthetized with isoflurane (1–2% in 
oxygen), their body temperature was monitored and kept at 37–38 °C 
using a closed-loop heating pad, and the eyes were protected with 
ophthalmic gel (Viscotears Liquid Gel, Alcon). An analgesic (Rimadyl, 
5 mg kg−1) was administered subcutaneously before the procedure, and 
orally on subsequent days. Dexamethasone (0.5 mg kg−1) was admin-
istered intramuscularly 30 min before the procedure to prevent brain 
oedema. The exposed brain was constantly perfused with artificial 
cerebrospinal fluid (150 mM NaCl, 2.5 mM KCl, 10 mM HEPES, 2 mM 
CaCl2, 1 mM MgCl2; pH 7.3 adjusted with NaOH, 300 mOsm). During the 
surgery, we first implanted a head plate over the right hemisphere of 
the cranium for later head-fixation: a stainless-steel head plate with a 
10-mm circular opening was secured over the skull using dental cement 
(Super-Bond C&B, 10 Sun Medical). We then made a circular craniotomy 
over V1 (3 mm diameter) using a biopsy punch. At this point, six to seven 
virus injections were made at different positions inside the craniotomy. 
Finally, the craniotomy was sealed with a glass cranial window, using 
cyanoacrylate adhesive (Vetbond, 3M) and dental cement.

All mice were injected with an unconditional GCaMP6m virus, AAV1.
Syn.GCaMP6m.WPRE.SV40 obtained from the University of Pennsyl-
vania Viral Vector Core. The virus was injected with a bevelled micro-
pipette using a Nanoject II injector (Drummond Scientific Company, 
Broomall, PA 1) attached to a stereotaxic micromanipulator. Six to 
seven boli of 100–200 nl virus (2.23 × 1012 GC ml−1) were slowly (around 
20 nl min−1) injected unilaterally into monocular V1 (ref. 51) 2.1–3.3 mm 
laterally and 3.5–4.0 mm posteriorly from bregma and at a depth of 
L2/3 (200–300 mm).

After virus injection, a small bolus (10 μl) of red fluorescent beads 
(FluoSpheres Carboxylate-Modified Microspheres, 2.0 μm, red fluo-
rescent (580/605), 2% solids, Thermo Fisher Scientific) was injected at 
the most rostral part of the craniotomy, to allow orientation of the ex 
vivo slices but not interfere with V1 imaging in the caudal part. After 
recovery, mice were habituated for handling and head‐fixation for 
three days before carrying out recordings.

Recording neuronal activity in V1
Two-photon calcium imaging. Each mouse was recorded for at least 
three sessions. In vivo recordings were performed 15–45 days after the 
virus injection. We used a commercial two-photon microscope with a 
resonant-galvo scanhead (B-scope, ThorLabs) controlled by ScanIm-
age 4.2 (ref. 52), with an acquisition frame rate of about 30 Hz (at 512 
by 512 pixels, corresponding to a sampling rate of about 4.3 Hz). The 
field of view was 550–600 μm. We imaged seven planes at 15–45-μm 
steps, starting at various positions below the brain surface (from 0 to 
−150 μm) to sample different cortical depths and therefore subtypes 

recorded simultaneously during different sessions. Imaging calcium 
activity was performed at a wavelength of 920 nm or 980 nm. Three 
computer screens spanning −135 to +135 visual degrees (v°) along the 
azimuth axis and −35 to +35 v° along the elevation axis were used to 
display visual stimuli. During the presentation of visual stimuli, we 
switched off the red gun of the monitors to prevent light from the moni-
tors contaminating the red fluorescent channel.

At the end of each recording session, reference z-stacks were 
acquired. Starting at the same position as the imaging planes, we 
acquired two z-stacks of about 400 μm depth, with a 1-μm step between 
planes. The first one, called the GCaMP z-stack, was acquired at the 
same wavelength as the calcium imaging (920 or 980 nm). The second 
one, called the reference z-stack, was acquired at 1,040 nm to image 
mCherry fluorescence.

Before euthanizing each mouse, we acquired structural z-stacks (rang-
ing from the brain surface to 400 μm deep) at 1,040 nm to get an image 
of the mCherry cells across the whole craniotomy (including the position 
where the red fluorescent beads were injected). This structural z-stack 
was used to select slices on which to perform transcriptomic analysis, 
and to provide an initialization point for the registration algorithm.

Initial retinotopic mapping. All recordings were targeted to the V1 
monocular region (>60° azimuth). To find this region, during the first 
imaging session, we initially mapped the retinotopy of different can-
didate fields of view, using single-plane imaging. Sparse noise stimuli 
were presented to the mouse, consisting of black or white squares of 
width 4.5° visual angle on a grey background at a frame rate of 5 Hz for 
10 min. Squares appeared randomly at fixed positions in a 16 by 60 
grid, spanning the retinotopic range of the computer screens. 1.5% of 
the squares were shown at any one time.

Visual stimulation. Drifting gratings were centred on the mean recep-
tive field of the microscope’s field of view. Gratings had a duration of 
0.5 s, temporal frequency of 2 Hz and spatial frequency of 0.15 cycles per 
degree. The gratings drifted in 12 different directions (from 0 to 330°, 
separated by 30°) and were of 3 different sizes (5°, 15° and 60° diameter).

Natural scenes from the ImageNet database were contrast-normalized 
and presented as described previously34. Each image was presented for 
0.5 s with an interstimulus interval uniformly distributed from 0.3 to 
1.1 s. Five per cent of the total presentations was grey stimuli. During 
each session we presented a given set of 1,000 different natural images 
twice (corresponding to a subset of the 2,800 images that were origi-
nally used34).

On each recording session we presented the same random sparse 
noise stimuli that were used to map retinotopy (see above), for 30 min.

Spontaneous activity was recorded in front of a uniform grey screen, 
set to a steady cyan level equal to the background of all the stimuli 
presented for visual responses protocols. The duration of these grey 
screen presentations was typically between 15 and 20 min.

Eye-tracking
We used a collimated infrared LED (SLS-0208-B, lpeak = 850 nm; con-
troller: SLC-AA02-US; Mightex Systems) to illuminate the eye con-
tralateral to the recording site. Videos of eye position were captured 
at 30 Hz with a monochromatic camera (DMK 21BU04.H, The Imaging 
Source) equipped with a zoom lens (MVL7000; Navitar), and positioned 
at approximately 50° azimuth and 50° elevation relative to the centre 
of the mouse’s field of view. Contamination light from the monitors 
and the imaging laser was rejected using an optical band-pass filter 
(700–900 nm) positioned in front of the camera objective (long-pass 
092/52 × 0.75, The Imaging Source; short-pass FES0900, Thorlabs).

Processing of calcium imaging
Two-photon calcium data were processed using Suite2P (ref. 53). Neu-
ropil contamination was corrected by subtracting from each region 
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of interest (ROI) signal its surrounding neuropil signal multiplied 
by a constant factor of 0.7. Calcium traces were deconvolved using 
non-negative spike deconvolution54 with a calcium indicator decay 
timescale of 1.5 s. ROIs were manually curated to make sure that only 
cell bodies were considered for further analysis.

coppaFISH
Many approaches to highly multiplexed mRNA detection have been 
described55–73. The coppaFISH method is a development of an in situ 
sequencing method28 (Extended Data Fig. 1). The method uses reverse 
transcription, padlock probes and rolling-circle amplification to amplify 
mRNAs to DNA rolling-circle products (RCPs) that contain multiple 
copies of a 20-nucleotide (nt) barcode sequence, and then detects their 
location combinatorially in 7 rounds of 7-colour fluorescence imaging.

Gene selection and DNA probe design. A panel of 73 genes was select-
ed to allow the identification of cortical cell types. This panel is a subset 
of a panel of 99 genes described in a previous study28, which was picked 
based on scRNA-seq data using an algorithm that predicts which gene 
combinations are required to identify fine transcriptomic subtypes. 
Retrospective analysis analysing the contribution that each gene made 
to classification accuracy revealed that 26 genes in this panel served 
no purpose in accurately classifying cells (figure S16 of ref. 28), leading 
to their removal from the panel. One gene (Yjefn3) was detected in our 
experiments, but could not be used to assign cells to transcriptomic 
subtypes as it was not present in the reference scRNA-seq dataset3. In 
the main text we therefore refer to a 72-gene panel.

Multiple padlock probes were designed for each gene, spanning the 
length of the cDNA (Supplementary Data 2). The number of different 
padlock probes per gene was chosen on the basis of the expression for 
each specific gene as determined by scRNA-seq. This means that fewer 
padlock probes were used for genes with high expression and vice 
versa (for example, four padlock probes were designed for Sst but 10 
were designed for Chodl). All padlock probes consisted of two 15–20-nt 
recognition sites, a 20-nt gene barcode (unique to each gene) and a 
20-nt anchor sequence (identical for all genes and padlock probes).

Padlock probes were designed using previously described software28. 
In brief, this software finds suitable RNA target sequences by restrict-
ing the melting temperature of the binding sequence, and by aligning 
the candidate sequences to the mouse whole transcriptome (RefSeq 
database) using BLAST+ to check for specificity. Any candidate targets 
for which another transcript or non-coding RNA sequence matched 
the target with more than 50% coverage, 80% homology and coverage 
spanning the central 10 nt of the target sequence were excluded. For 
each padlock probe, we also designed a specific primer for reverse 
transcription: a 15-nt-long DNA oligonucleotide that binds the region 
upstream of the mRNA sequences targeted by the padlock probes (Sup-
plementary Data 3). The use of specific primers greatly improved the 
number of RCPs obtained per section compared to random primers 
(Bugeon, S. et al., unpublished observations).

To determine the gene-specific DNA barcode sequences (and the 
anchor sequence), 240,000 orthogonal 25-mer oligonucleotide 
sequences74 were trimmed to 20 nt from the 5′ end and screened for 
melting temperature (between 55 °C and 56 °C using the SantaLucia 
method). They were further screened for orthogonality with mouse 
sequences using BLAST+ with the NCBI mouse genomic plus transcript 
(Mouse G +T) database. We used the following BLAST parameters: 
“-reward”, 1, “-penalty”, -2, “-gapopen”, 2, “-gapextend”, 1, “-evalue”, 10. 
Any matches in this blast search were removed from the pool. Next, 
we checked for potential cross-reactivity of the remaining sequences 
to themselves using the same BLAST parameters, and any hits were 
removed, resulting in 6,397 possible sequences. The barcode sequences 
were chosen from this pool.

The combinatorial imaging strategy used two types of DNA probes. 
Seven 'dye probes' were designed, each consisting of a 20-nt-long DNA 

oligo conjugated to one of the seven following fluorophores: DY405, 
AF488, DY485xL, AF532, AF594, AF647 and AF750; the same dye probes 
were used on each imaging round (Supplementary Data 4). In addi-
tion, a set of 40-nt 'bridge probes' were designed for each imaging 
round, linking each gene’s RCP barcode to one of the seven dye probes 
(Extended Data Fig. 1 and Supplementary Data 5). The bridge probes 
thus caused each gene to show up in a specific colour channel on each 
round. This two-part strategy of linking the seven dye probes to the 
RCPs with bridge probes provides a substantial cost saving over mak-
ing Ngenes × Nrounds dye probes, as dye-coupled probes are much more 
expensive than simple DNA.

Each gene was assigned a sequence of dyes for the seven imaging 
rounds using a Reed–Solomon coding scheme75 (Supplementary Data 6),  
which constructs sequences of minimum possible overlap. Specifi-
cally, the genes were numbered by integers g, and converted to a base 
7 representation g2 g1 g0 . The dye assigned to gene g on round r was

D g r g r g= + + ,gr 2
2

1 0

where addition and multiplication are understood to happen modulo 7.  
Codes 0 to 6, which correspond to the same colour in each round,  
were not used as these codes could not be distinguished from fixed 
background fluorescence.

All custom DNA oligos (padlock probes, primers, bridge probes and 
dye probes) were obtained from Integrated DNA Technologies. Padlock 
probes were ordered as 5′ phosphorylated 4 nmol Ultramer DNA oligos; 
all other oligos were ordered as classical 25 nmol DNA oligos. The DNA 
sequences for all 556 primers and padlock probes, 511 bridge probes 
and 7 dye probes are provided in Supplementary Data 2–5.

Tissue preparation. After the in vivo recordings were finished, mice 
were anaesthetized with isoflurane and then injected with a lethal dose 
of sodium pentobarbital (0.01 ml g−1). The fresh brains were then dis-
sected out from the skull, taking great care to preserve the integrity 
of the tissue and avoid warping. The brains were then placed in OCT 
(Sakura Finetek) and left to freeze on dry ice for 30 min. The sam-
ples were then stored at −80 °C until slicing. Sagittal sections (15-μm 
thick) were then obtained using a Leica Cryostat for each brain and 
mounted on gelatine-coated borosilicate glass coverslips (22 x 55 mm). 
Gelatine-coated coverslips allowed tissue section adhesion to the cov-
erslip and RNA preservation throughout the protocol. To make them, 
coverslips mounted on a rack were dipped for 30 s in a solution of 2% 
w/v gelatine and 0.2 % w/v chromium potassium sulfate dodecahydrate 
in distilled water (https://www.rndsystems.com/resources/protocols/
protocol-preparation-gelatin-coated-slides-histological-tissue-sections).  
Two to three brain sections were thaw-mounted on each coverslip and 
then frozen and stored at −80°C.

It was not necessary to bleach the native fluorescence of mCherry 
and GCaMP (which might in principle interfere with later fluorescence 
imaging), as these faded completely during standard tissue processing.

In situ RCP production. The RCPs were prepared as described previ-
ously28, with some modifications. First, coverslips were taken out of the 
freezer and then directly pre-fixed using 4% paraformaldehyde (PFA) for 
5 min at room temperature. This pre-fixation was followed by a quick 
wash with nuclease-free phosphate-buffered saline (PBS), and incuba-
tion in 0.1 M HCl for 5 min at room temperature. After one more PBS 
wash, the sections were incubated in 70% ethanol for 1 min and then in 
100% ethanol for 1 min at room temperature. The coverslips were then 
left to dry in air. To keep the reagents on the tissue sections, a barrier 
was drawn around each section using a hydrophobic barrier PAP pen 
(ImmEdge Hydrophobic Barrier PAP Pen H-4000, Vector Laboratories).

The sections were then directly incubated in reverse transcription 
mix overnight at 37 °C in a humidified chamber (Slide staining system, 
StainTray M918, VWR). The mix contained 0.5 mM dNTP mix (Thermo 

https://www.rndsystems.com/resources/protocols/protocol-preparation-gelatin-coated-slides-histological-tissue-sections
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Fisher Scientific), gene-specific primers (10 μM each), 0.2 μg μl−1 BSA 
(NEB), 1 U μl−1 RIBOPROTECT RNase Inhibitor (Blirt) and 20 U μl−1 Tran-
scriptMe reverse transcriptase (Blirt) in 1× reverse transcription buffer 
(Blirt). The mix was removed and fresh 4% (w/v) PFA in PBS was added 
to the sections without any wash in between. This post-fixation step 
aimed to cross-link newly synthesized cDNA to the cellular matrix and 
was carried out at room temperature for 30 min, followed by two washes 
in PBS. RNaseH digestion, padlock hybridization and ligation were 
then performed using a single reaction mix. The mix contained 0.05 M 
KCl (Sigma), 20% ethylene carbonate (Sigma), 10 nM of each padlock 
probe (557 probes), 0.2 μg μl−1 BSA, 0.3 U μl−1 Tth DNA Ligase (Blirt) 
and 0.4 U μl−1 RNase H (Blirt) in 1× Ampligase buffer (Epicentre). The 
sections were first incubated at 37 °C for 30 min for RNaseH digestion 
and moved to 45 °C for 60 min for stringent hybridization and optimal 
DNA ligase activity. The sections were then washed twice in PBS. Finally, 
for rolling-circle amplification, the sections were incubated in a mix 
containing 5% glycerol (Sigma), 0.25 nM dNTP mix, 0.2 μg μl−1 BSA, 
0.2 U μl−1 EquiPhi29 DNA Polymerase (Thermo Fisher Scientific) and 
1× EquiPhi29 buffer (Thermo Fisher Scientific) overnight at 30 °C.

RCP production was quickly verified before full barcode read-out 
by hybridizing a AF750-conjugated oligonucleotide probe (IDT) to the 
anchor sequence present in all the RCPs. Sections were incubated for 
15 min at room temperature in a hybridization mix containing 10 nM 
of the dye probe, 2× SSC, 20% ethylene carbonate and H2O. They were 
then washed twice with 2× SSC. The SSC was then removed from the 
sections and the coverslips were mounted onto SuperFrost plus (VWR) 
glass slides using 10 μl SuperFrost gold antifade mountant (Life Tech-
nologies). Images of the ROI (visual cortex) were then acquired to 
visualize the RCPs.

Imaging of the in situ barcodes (read-out). All seven rounds of imag-
ing occurred in a custom flow cell, using automated fluidics to wash 
appropriate bridge and dye probes before each round. The flow cell 
frame was designed using Blender and printed, using an Ultimaker S5 
3D printer, in polylactic acid filament (PLA) with polyvinyl alcohol (PVA) 
support structures. The PVA support was removed after printing by 
placing the flow cells in water on a rocker overnight. To make the flow 
cell air-tight, two 22 ×55-mm glass coverslips (one with RCP-containing 
sections and one bare) and two approximately 40-cm-long EFTE tubes 
(Tubing Tefzel Nat 0.0625 inch outer diameter x 0.020 inch inner di-
ameter) were securely mounted using UV curing cement (Norland 
Optical Adhesive 81) and a UV curing LED system with driver unit and 
a handheld 365-nm light source (ThorLabs, CS20K2). The coverslip 
with the sections was mounted so that the side with the sections faces 
the inside of the flow cell.

The Imaging set-up consisted of a Nikon Eclipse Ti2 microscope 
with a NIR-LDI laser panel and a Zyla sCMOS 4.2 camera (Andor). The 
fluidics set-up consisted of a Minipuls 3 pump (Gilson) and two linked 
MVP multivalves (Hamilton), each with 8 ports. Nikon NIS elements 
software (v.5.20.02, build 1453) was used to acquire the images and 
communicate with a second computer controlling the fluidic pump 
and multivalves. The opening of the valves and the speed and the dura-
tion of the pump’s activity was managed by an edited version of Kilroy 
software (https://github.com/ZhuangLab/storm-control; edits avail-
able at https://github.com/acycliq/storm-control). The imaging and 
sequencing chemistry were coordinated by NIS elements software 
(ND sequence acquisition module), which communicates with the 
computer running Kilroy by sending TTL pulses through a National 
Instruments NI-USB 6008 board.

Before sequencing, 15-ml falcon tubes containing bridge probe 
mixtures for each of the seven imaging rounds, as well as one each for 
dye probe mixture, anchor probe mixture, imaging buffer, distilled 
water, 2× SSC and 100% formamide, were attached to the multivalves 
via EFTE tubing and flangeless fittings (1/16 inch Red Delrin, IDEx Health 
and Science LLC). The mixtures for bridge, dye and anchor probes 

contained the appropriate oligonucleotides diluted to 10 nM each in 
2× SSC, 20% ethylene carbonate and H2O. The bridge probe mix for 
the final anchor round contained the Cy7-conjugated anchor probe 
as well as the Gad1 bridge probe that binds to the AF532 dye probe 
(Gad1_r6 – 10 nM) and DAPI to stain the cell nuclei. A fresh formamide 
(S4117 Millipore) aliquot was used for every experiment (stored at 
4 °C). The flow cell was then mounted onto the multi-slide stage and 
connected to the pump and multivalves via EFTE tubing. The speed of 
the pump was adjusted to approximately 0.4 ml s−1. To fill the flow cell, 
each solution was flushed through the fluidics system for 4 min (the 
flow cell volume is approximately 1 ml).

In total, eight rounds of imaging were done for each imaging experi-
ment: seven rounds to decode the barcodes and one final anchor round 
to detect the position of every RCP that was used for later image align-
ment. In each round, sections were first incubated in 100% formamide 
for 15 min to strip the RCPs from any previous labelling. The formamide 
was then flushed from the flow cell with water for 4 min and then with 
2× SSC for 4 min. The sections were next incubated in that round’s 
bridge probe mix for 15 min and washed with 2× SSC. After this, the 
sections were incubated in the dye probe mix for 15 min, and again 
washed with 2× SSC. The flow cell was filled with an imaging buffer 
consisting of glucose oxidase and catalase containing oxygen scaveng-
ing system76 to protect the fluorophores from photobleaching during  
imaging.

After each round of sequencing chemistry, 16-bit images were 
acquired using wide-field epifluorescence excitation, and a 40× mag-
nification air-objective (CFI Plan Apochromat Lambda 40XC, NA 0.95). 
Images consisted of z-stacks (z-step: 0.5 μm) in seven different colour 
channels corresponding to the seven fluorophores (Fluorophore – exci-
tation wavelength, emission filters: Dy405 – ex405, 460/50 m; AF488 – 
ex470, 525/36 m; Dy485xl – ex470, 632/60 m; AF532 – ex520, 560/40 m; 
AF594 – ex555, 632/60 m; AF647 – ex640, 700/75 m; AF750 – ex730, 
811/80 m). Each tile was 2,048 × 2,048 pixels (pixel size: 0.1625 μm). 
The imaging parameters were adjusted to cover only the ROI (V1) and 
usually consisted of 10–15 tiles with 10% overlap. The Nikon perfect 
focus system was used to make sure that the focus stayed relatively 
constant across imaging rounds. Image files were saved in Nikon’s 
native ND2 format.

In situ data analysis
The in situ data were analysed with a suite of custom software for image 
processing, gene calling and cell calling. All code was written in MAT-
LAB, and is freely available at https://github.com/jduffield65/iss. This 
software was developed from that described previously28, but has been 
greatly modified, so is described in full here.

The in situ data consist of eight rounds of multispectral imaging 
(seven combinatorial rounds, and one reference round in which all RCPs 
are labelled via the anchor sequence, together with an additional stain 
for Gad1 RCPs and a DAPI stain). Because the tissue sample is too large 
for a single camera image, imaging occurs in overlapping tiles. In each 
tile, a focus stack of wide-field images was taken for each colour, and 
flattened into two dimensions (2D) using an extended depth of focus 
algorithm77. The data therefore consist of a set of images:

I ( ) .R C T, , x

Here, I gives the pixel intensity for sequencing round R, colour channel 
C, tile T, and pixel coordinates x within this tile. The processing pipeline 
to identify detected genes comprises several steps: initial registration; 
RCP spot detection and fine registration; cross-talk compensation; 
and gene calling. These analyses proceed without ever 'stitching' all 
the tiles into a single large image; this approach allows processing of 
very large datasets on computers with limited memory, and also easily 
allows non-rigid alignments. Before the pipeline, all RCP images are 
linearly filtered by convolving with a difference of Hannings: a Hanning 
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of radius 0.5 μm minus a Hanning of radius of 1 μm, both normalized to 
have sum 1. The DAPI background images are filtered with a disk-shaped 
top-hat filter with radius of 8 μm.

Initial registration. The initial registration step finds offsets between 
all image tiles using the anchor images taken on round 8 (which we 
refer to as 'reference images'). We use this to define a global coordinate 
system for the entire tissue sample.

Because we use a square tiling strategy, each tile may have up to 
four 'neighbours': other tiles with which it has a region of substantial 
overlap. We denote the set of neighbouring tile pairs as 𝔑.

Spots first are detected in each tile’s reference images, as local max-
ima of the filtered image exceeding a fixed detection threshold. To 
align the reference images, we loop over all pairs of neighbouring tiles, 
and compute an offset to register the overlapping regions of the filtered 
reference images of these two tiles. The offset between two tiles T1 and 
T2 is found by exhaustive search over all 2D shifts in a range around to 
the shift expected from the microscope’s position sensor. For each 
shift, we find for each spot s on T1 the pixel distance Ds to the nearest 
spot on T2 after the shift has been applied. A score is computed as 
∑ es

D− /8s
2

, and the final shift vector ΔT T,1 2
 is taken as the one that maxi-

mizes this score; that is, the one with the most near neighbours.
We define a single global coordinate system by finding the coordi-

nate origin XT for each tile T. Note that this problem is overdetermined 
as there are more neighbour pairs than there are tiles. We therefore 
compute the offsets by minimizing the loss function
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Differentiating this loss function with respect to XT yields a set of 
simultaneous linear equations, the solution of which yields the origins 
of each tile on the reference round. The results of this step suffice to 
define a global coordinate system, but do not provide pixel-level align-
ment of images from multiple colour channels on multiple rounds, 
owing to the occurrence of chromatic aberration and small rotational 
or non-rigid shifts. The latter will be dealt with in the next step, through 
point cloud registration.

Spot detection and fine registration. The second processing step 
detects spots in all images of the seven sequencing rounds, performs 
fine alignment of colour channels and sequencing rounds, and com-
putes for each spot a position in global coordinates and an intensity 
vector summarizing that spot’s detected fluorescence in each round 
and channel.

The most intricate part of this step is fine image registration. Even 
though the same tile layout is used for all sequencing rounds, the pre-
cise positions of the tiles may differ owing to slight shifts in the place-
ment and rotation of the sample. Thus, a single spot might be found 
on different tiles in different sequencing rounds. Furthermore, owing 
to chromatic aberration, a spot may be in slightly different positions 
(although not different tiles) in different colour channels. Because 
most spots are only a few pixels in size, even a one-pixel registration 
error can compromise accurate RNA reads.

A global coordinate is defined for each of the spots detected in the 
reference images using the initial registration described above. In 
regions where tiles overlap, duplicate spots are rejected by keeping 
only spots which are closer in global coordinates to the centre of their 
original tile than to any other.

Next, spot positions are detected in images from all sequencing 
rounds and colour channels. These are used to align each round and 
colour channel to the corresponding tile’s reference image, using point 
cloud registration. Specifically, we fit an affine transformation from 
each reference image to the images of the corresponding tile for all 
rounds and colour channels, using the iterative-closest point (ICP) 

algorithm with matches further than 3 pixels away excluded. These 
affine transformations can include shifts, scalings, rotations and shears, 
but we did not find it necessary to introduce nonlinear warping trans-
formations within tiles (nonlinear transformations can still occur glob-
ally by variation of the affine transformation across tiles). As the ICP 
algorithm is highly sensitive to local maxima, it is initialized from a 
shift transformation computed by the same method used to find the 
overlap between reference images; that is, the shift that maximizes the 
number of near neighbours as measured by ∑ es

D− /8s
2

. When spots are 
located on neighbouring tiles on different rounds, the corresponding 
images are again registered with ICP.

Finally, a seven-dimensional intensity vector Vs,r is computed for 
each spot s in each round r, by reading the intensity from the aligned 
coordinate of each filtered image.

Cross-talk compensation. The last step associating spots to genes 
consists of transforming the intensity vectors to gene identities.

An important consideration in this stage is that cross-talk can occur 
between colour channels. Some cross-talk may occur owing to opti-
cal bleedthrough; additional cross-talk can occur owing to chemical 
cross-reactivity of probes. With the current hybridization chemistry 
(unlike previous sequencing-by-ligation chemistry), the degree of 
cross-talk tends to be constant within a round, so we learn a single 7 × 7 
cross-talk matrix and apply it to all rounds.

To estimate the cross-talk present, we first collect a set of seven 
7-dimensional vectors Vs,r containing the intensity in each colour chan-
nel of all well-isolated spots s in all rounds r. Only well-isolated spots 
are used to ensure that cross-talk estimation is not affected by spatial 
overlap of spots corresponding to different genes; a spot is defined as 
well-isolated if the reference image intensity averaged over an annular 
region (4–14 pixel radius) around the spot is less than a threshold value. 
Cross-talk is then estimated by running a scaled k-means algorithm78 
on these vectors, which finds a set of seven vectors cd (d refers to one 
of the seven dyes), such that the error function:

c∑ λmin |V − |
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is minimized; in other words, it finds the seven intensity vectors cd such 
that each well-isolated spot on round r is close to a scaled version of 
one of them.

The cross-talk matrix is used to predict the colour profile expected 
for an RCP of each gene g, for each colour channel and round. If gene g  
is assigned the dye dg,r in round r, the predicted 49-dimensional intensity 
vector is obtained by concatenating the corresponding cross-talk vectors.

Gene calling. Improvements in tissue processing and in situ chemistry 
mean that our current methods produce substantially more RCPs than 
the previous in situ sequencing method28. Consequently, the fluores-
cence of neighbouring RCPs often overlaps, which would render the 
previous detection method unable to find them. To allow resolution of 
overlapping spots, we therefore developed a gene-calling algorithm, 
based on orthogonal matching pursuit (OMP)78. This algorithm also 
allows for subtraction of background autofluorescence. Essentially, 
OMP repeatedly tests whether the 49-dimensional fluorescence vector 
of a pixel overlaps with the predicted fluorescence vector of each gene; 
if so, a gene is detected at that location, its code is projected out from 
the fluorescence vector, and the process repeats.

The OMP algorithm fits a 49-dimensional image (one dimension for 
each combination of round and colour channel) as a sum of 
49-dimensional code vectors. There is one code vector ag for each gene, 
and one 'background' code c

Ba  for each colour channel, which has equal 
intensity for all rounds in one colour channel only. These background 
codes account for tissue autofluorescence, which will affect all imaging 
rounds equally.



The gene codes ag are derived from using knowledge of the Reed–Sol-
omon assigned dyes dg,r for each gene in each round and the cross-talk 
matrix columns cd. These codes take into account the fact that different 
genes can have consistently different intensities in different rounds, 
which may arise from non-uniformity in the synthesized concentrations 
of the bridge probes. To account for this non-uniformity, we learn a 
scale factor εg,r, and predict the 49-dimensional gene code for gene g 
as a concatenation:

a c c c c c c cε ε ε ε ε ε ε= [ ; ; ; ; ; ; ]g g d g d g d g d g d g d g d,1 ,2 ,3 ,4 ,5 ,6 ,7g g g g g g g,1 ,2 ,3 ,4 ,5 ,6 ,7

We will describe the general algorithm before specifying how εg,r 
is chosen.

The OMP algorithm expresses the 49-dimensional fluorescence vec-
tors vp for each pixel p as a weighted sum of code vectors: 

α β^ = ∑ + ∑p i
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v a a . Each step of the algorithm can add a code 
to the set of code vectors g i n{ : = 1… }i p p,  used to approximate pixel vp; 
the 7 background codes are always included. The gene set is initialized 
to be empty, and to choose which gene code, if any, should be added 
on each step, the algorithm computes how much the residual v v 2| − ˆ |p p

 
would decrease for each possible addition to the set, and picks the gene 
giving maximum decrease, provided that this decrease is above a 
threshold of 0.0612 multiplied by the second largest absolute value of 
vp (clamped by a minimum threshold of 0.01 and a maximum threshold 
of 3.0), up to a total of 6 genes per pixel. After this iterative process has 
terminated for all pixels, an image is made for each gene, containing 
the gene’s weight for each pixel or zero if that gene is not in the pixel’s 
gene set. RNA detections are found as local maxima of this image, sub-
ject to a thresholding criterion; the criterion takes into account several 
factors and is best understood by examining the source code (https://
github.com/jduffield65/iss).

To choose the scale factors εg,r, a single iteration of the OMP algorithm 
is run with all εg,r = 1. Local maxima are detected as just described, but 
with a more stringent threshold (see source code for details) to ensure 
only unambiguous gene detections are used. We then compute a 
7-dimensional mean intensity vector vg r,  of all detected spots for each 
gene in each round. We then find the scale factors εg,r for each round 
and gene as the least-squares solutions of

ε≈g r g r d, , g r,
v c

Cell calling. The DAPI image was used to segment the cells. This was 
performed by detection of the local maxima in each cell followed by 
watershed segmentation. The segmentation of matched cells and their 
close neighbours was manually curated.

To assign cells to transcriptomic subtypes, we used the previously 
described pciSeq algorithm28, a Bayesian method that assigns each 
in situ cell a posterior probability of belonging to each of a set of cell 
classes defined by prior scRNA-seq. As we recorded from V1, we used 
the transcriptomic clusters defined in a previous study3, using only 
cells from V1 to compute the mean expression of each cluster. These 
clusters are similar to those produced from other cortical and hip-
pocampal regions, but may differ, particularly for fine subtypes (see Fig. 
S1 of ref. 6 and Extended Data Fig. 3 of ref. 1 for the probable relation-
ships between these clusters and other classification schemes). The 
read counts of the scRNA-seq data were divided by 100 to predict the 
expected in situ RNA count; a further gene-dependent efficiency fac-
tor was estimated by the algorithm. The pciSeq algorithm produces a 
probability for each cell to belong to each class, which we converted to 
a 'hard' classification by assigning each cell to the subtype of maximum 
a posteriori probability; cells for which this maximal probability was 
less than 0.5 were not analysed further (around 2% of matched cells; 
Extended Data Fig. 4c). We assigned cells using all 109 transcriptomic 
clusters defined previously3, including inhibitory neurons of all layers 

and non-GABAergic cells. Nevertheless, the algorithm assigned the 
imaged inhibitory cells to just 35 of these clusters, corresponding to 
superficial-layer inhibitory subtypes. To evaluate the accuracy of this 
algorithm, we subsampled the read counts from the scRNA-seq dataset 
using a Poisson distribution and then estimated the a posteriori prob-
ability of belonging to each subtype similarly to in situ cells (Extended 
Data Fig. 10). This showed that our 72-gene panel yielded an estimated 
assignment accuracy of 98.1%, 96.6% and 76.4% at the subclass, type 
and subtype levels, respectively.

Registration of the in vivo and ex vivo cells
We used inhibitory cells, labelled in vivo by mCherry (Gad2-mCherry 
mice), as landmarks to perform the registration between the in vivo 
Gad-mCherry volume and the ex vivo brain sections (Extended Data 
Fig. 2). This alignment made use of two high-resolution reference z-stacks 
taken for each subject following each imaging session. The 'GCaMP 
z-stack' was taken using the same wavelength as functional imaging 
(920 or 980 nm), covering the same volume but at higher resolution. The 
'mCherry z-stack' was acquired in the same volume with a 1,040 nm exci-
tation wavelength to detect inhibitory neurons in Gad2-mCherry mice, 
but also provided some GCaMP signal in the green channel (although 
this signal was much lower than for the GCaMP z-stack taken at 920 nm). 
The different excitation wavelength of these two z-stacks led to a small 
chromatic aberration, which was only significant in depth. To correct this 
aberration, we used the green channel found in both imaged volumes, 
registering planes of the GCaMP z-stack to the mCherry z-stack using fast 
Fourier transform (FFT) convolution. This was achieved by finding the 
best matching plane from the later z-stack for each GCaMP z-stack plane 
as the z position that gave the highest FFT cross-correlation. In addition, 
a 'global z-stack' was made following the final functional imaging session, 
which covered the entire region under the craniotomy; this was used for 
coarse initial registration of the in situ slices.

Aligning calcium ROIs to the mCherry z-stack. To align the imaging 
planes of one functional two-photon session to the GCaMP z-stack, we 
first obtained their theoretical position using the measured position 
of the objective for each line scanned (for both the functional imaging 
planes and the GCaMP z-stack). We then estimated the z-drift during 
the recording session: the position of the calcium imaging planes over 
time in comparison to this GCaMP z-stack. To do so, a mean image of  
each functional imaging plane was obtained for 1 min every 7 min  
of the recording. These mean images were then aligned to the z-stack 
using FFT convolution. We then took the median of this z-drift over time 
and used it to correct the theoretical imaging plane position. We then 
performed FFT-based registration to correct for a small shift in X and Y 
between the actual mean image and the reconstructed image. We thus 
found the position of the imaging planes (and therefore of each func-
tional ROI) in the GCaMP z-stack. These were then aligned to the mCherry 
z-stack using the transformation described above (chromatic aberration  
in depth).

Aligning brain slices to the mCherry z-stack. To register the positions 
of the in-situ-detected inhibitory neurons to the 3D mCherry z-stack, we 
used a custom point cloud registration method, using inhibitory neu-
rons as landmark points. MATLAB code and an example pipeline script 
can be found at https://github.com/ha-ha-ha-han/NeuromicsCellDetec-
tion/, and at https://github.com/sbugeon/NeuromicsCellDetection.

During slicing, the latero-medial order of the sagittal brain sections 
was carefully recorded. To find the sections corresponding to the 
imaged region, we first screened them by generating RCPs for every 
20th section, and staining with the Gad1 bridge probe and its corre-
sponding dye probe to label inhibitory neurons. The position of the 
fluorescent bead injection was usually visible on one of the sections, 
allowing us to infer the approximate position of every slice (based on 
the known order and thickness of slicing).

https://github.com/jduffield65/iss
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Fine registration of screened sections to the in vivo reference z-stack 

started with cell detection in vivo and ex vivo. To detect cells in the 
in vivo mCherry z-stack, each plane was contrast-normalized to correct 
for the loss of brightness with depth using the following MATLAB GUI 
https://github.com/nadavyayon/Intensify3D/blob/master/User_GUI_
Intensify3D.m (which performs background and signal estimation 
based on user defined thresholds), and the z-stack was then filtered 
using a 3D median filter of radius 2 μm to reduce background noise. The 
mCherry-positive cells were automatically detected on these images 
using a 3D difference-of-Gaussians filter followed by watershed seg-
mentation. Manual curation was performed to correct for missed or 
false positive detections. To detect inhibitory cells in the ex vivo slices, 
we used the in situ expression of Gad1 in the reference round, as native 
mCherry fluorescence was not preserved in the fresh-frozen sections. 
Gad1 detections formed clusters on GABAergic cells (Extended Data 
Fig. 2), which were detected by Gaussian smoothing of the Gad1 RCP 
images and applying a difference-of-Gaussian filter and watershed 
segmentation to detect individual clusters. Finally, we manually curated 
these detections using the full in situ expression of the 72 genes to 
determine putative interneurons on the basis of the main inhibitory 
cell markers such as Vip, Sst, Pvalb and so on.

The slices were first coarsely registered using brain structures (hip-
pocampus, brain surface and so on) visualized using the anchor and 
nuclear staining. Next, they were finely registered using an algorithm 
to register a 2D point cloud, corresponding to inhibitory neurons in 
the ex vivo slice, into a 3D point cloud, corresponding to inhibitory 
neurons in the in vivo volume. To align these point clouds, we used rigid 
registration with 6 degrees of freedom (α, β, γ, x, y, z), where α, β, γ are 
the rotation angles, and x, y, z are translational shifts (non-rigid point 
cloud registration is possible, but we found it to be unnecessary). The 
registration algorithm searched for the parameters (αmax, βmax, γmax, xmax, 
ymax, zmax) that maximize the match of the 2D slice to the corresponding 
section of the 3D volume.

Because this registration problem has a large number of local max-
ima, we performed an exhaustive grid-search over these six param-
eters. Because Fourier convolution of 3D arrays is fast, but rotation 
of them is not, we used a hybrid point and Fourier method. An outer 
loop searches over all combinations of rotation angles (α, β, γ), with an 
initial step size of 1°, refined to 0.5° for finer alignment, and rotates the 
3D point cloud accordingly. A 3D volumetric image is then synthesized 
from these rotated points by adding a Gaussian peak at the location of 
each point. Each plane z of this image is Fourier convolved with a fixed 
2D array synthesized similarly for the 2D cloud, and the resulting 3D 
correlation map is stored, to accumulate a correlation score function 
c(α, β, γ, x, y, z). The top local maxima of this 6D array are found and 
ranked using both the intensity of the cross-correlogram peaks and the 
percentage of cells matched within a tolerance of 15 μm (to account 
for small non-rigid deformations). Finally, the match validity for each 
section was assessed manually by looking at the overlay between the 
interpolated cut from the reference z-stack and the Gad1 RCP image. 
The rotation and translation parameters were manually adjusted to 
provide the best overlay between the two datasets. Typical rotation 
angles were found between −10° and 10° of the coarse manual registra-
tion, enabling us to save computation time by searching only this range.

Aligning individual neurons. Finally, a custom MATLAB GUI was used to 
curate the match between inhibitory cells in the in vivo recordings and 
the ex vivo sections. The GUI allowed us to visualize the in vivo mCherry 
image of each cell (obtained from the reference z-stack), the position of 
the ROIs on the reference z-stack and the overlap between the reference 
z-stack cross-sections and the in situ gene expression for the differ-
ent genes. For each slice, we displayed all mCherry-positive ROIs that 
were less than 10 μm away from the found position of the slice in the 
reference z-stack. Each assignment of in vivo and ex vivo Gad-positive 
cells was curated manually on the basis of these data. At this stage, the 

boundaries that were initially found using automatic segmentation of 
the DAPI image were also manually adjusted for the matched cells and 
their neighbours, to correct for errors in DAPI segmentation that could 
affect the gene and cell-type assignment. This correction was based both 
on the DAPI image and on the in situ gene expression, which provided 
information that could indicate under-splitting in the DAPI segmenta-
tion of adjacent cells. We took a conservative approach to this manual 
curation process, discarding all imaged cells for which the match to ex 
vivo slices was not absolutely clear (around 50% of cells).

Cell selection
We recorded a total of 3,469 (204 ± 42 per session) inhibitory cells and 
6,684 (393 ± 173 per session) excitatory cells. Of these inhibitory cells, 
1,515 (89 ± 31 per session) cells could be aligned to the ex vivo slices with 
good confidence, and were thus assigned a transcriptomic identity (see 
Supplementary Data 1). Some ex-vivo-identified cells were recorded in 
multiple imaging sessions. In all figures, a unique session was picked 
for each matched cell (except for Fig. 2, in which we show all cells in a 
single session, and for pairwise correlations that used all cells in all ses-
sions: Figs. 3a and 5d and Extended Data Figs. 6b and 8c–e). The session 
assigned was chosen according to the percentage of time that the mouse 
spent running during this session, to maximize variability of behaviour 
while the cell was recorded. After removing these duplicates, we obtained 
1,090 unique cells. Of these cells, 17 cells were removed because their 
maximal posterior probability was less than 0.5. Finally, 8 cells that were 
assigned to subtypes with fewer than 3 cells in total were discarded. The 
final population of 1,065 cells belonged to 35 transcriptomic subtypes.

For hierarchical analysis, the 35 subtypes were grouped into 11 types 
corresponding to putative anatomical or physiological cell types based 
on the previous literature. For Pvalb neurons, the grouping was unam-
biguous: the Pvalb-Vipr2 subtype is genetically very different to all 
other Pvalb subtypes, and several studies have identified molecular 
markers of this subtype with chandelier cells3,4,7,79. For Sst cells, UMAP 
analysis (Extended Data Fig. 3) suggests that the two Sst-Tac1 subtypes 
bridge a continuum between the two Sst-Calb2 subtypes (identified 
as superficial-layer Martinotti cells7,80,81) and the Pvalb-Tpbg subtype 
(identified as superficial-layer Pvalb basket cells7). Patch-seq analy-
sis confirms that Sst-Tac1 cells have less axon in L1 and faster-spiking 
phenotypes than classical Martinotti cells7. We therefore identify the 
two Sst-Tac1 subtypes as non-Martinotti Sst cells, acknowledging that 
these two Sst types are likely to tile a continuum, rather than truly being 
discrete cell groups. For Lamp5 cells, we grouped subtypes on the basis 
of the results of previous studies82,83. The three subtypes that comprised 
the Lamp5-Npy group were identified as neurogliaform cells on the 
basis of their strong expression of Npy. The Lamp5-Fam19a1-Tmem182 
subtype was identified as canopy cells owing to expression of Ndnf but 
not Npy; the two remaining subtypes were identified as α7 cells owing 
to their strong expression of Chrna7 and weak expression of Ndnf and 
Npy. For Vip cells, we divided subtypes by transcriptomic methods: 
UMAP analysis suggested a clear discrete distinction between two 
Vip subtypes characterized by expression of Reln as well as weaker 
expression of Vip itself. We are not aware of any specific study on these 
Vip-Reln cells; however, on the basis of their weak Vip expression and 
the fact that Reln is usually a L1 marker, we provisionally identify this 
type with the L1 VIP cells described previously82. Serpinf1 subtypes 
were included with the Vip category as we do not see strong evidence 
for this as a discrete subclass. Finally, Sncg subtypes were divided into 
two types according to Vip expression, with Sncg-Vip and Sncg-Pdzrn3 
identified as small and large Cck cells, respectively84,85.

Data analysis
Modulation index. When comparing activity in two conditions (for 
example, visual stimulus versus grey screen; large versus small grat-
ing; running versus stationary synchronized), we used a modulation 
index computed as

https://github.com/nadavyayon/Intensify3D/blob/master/User_GUI_Intensify3D.m
https://github.com/nadavyayon/Intensify3D/blob/master/User_GUI_Intensify3D.m
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in which R is the mean activity in the first condition (for example, dur-
ing the response time window) and B is the mean activity in the second 
condition (for example, during the baseline time window).

Cell depth comparison to a previous Patch-seq study. For the analy-
sis validating coppaFISH subtype calling using cell depth (Fig. 1j), we 
used cells of all layers, not just the in-vivo-imaged cells of L1–L3. We 
used 14 sections for which gene expression was obtained from L1–L6 
(all taken from the same mouse). DAPI segmentation was manually 
curated (see above) in all layers, and cell calling was performed on 
these sections using the standard method. This provided the cortical 
depth for about 47,000 cells, among which 2,130 were assigned to a 
GABAergic subtype. We normalized the measured cortical depth by 
the maximum cortical depth in these sections (750 μm) and computed 
the median cortical depth for each subtype with at least 4 cells (46 such 
subtypes were found). We then did the same thing for the Patch-seq data 
of a previous study7, which gave 42 subtypes with more than 4 cells. We 
then compared the cortical depth of the subtypes with at least 4 cells 
in both datasets (33 subtypes in total; Fig. 1j).

Determining behavioural states. To distinguish the three main behav-
ioural states during spontaneous behaviour, we used the running speed 
of the mouse as well as the strength of cortical oscillations. Running 
speed was measured by optical sensors facing the air-suspended ball86, 
and was smoothed with a 2-s moving average filter. We considered 
the mouse stationary if this smoothed speed was less than 0.3 cm s−1, 
and running otherwise. To distinguish between the synchronized and 
desynchronized stationary states, we first computed the first principal 
component (PC) of excitatory cells’ activity using PCA, which revealed 
cells more active in passive or alert states, as previously described34. 
The activity of the 10% of cells with most negative weight on this PC 
was averaged, which provided a clear summary of the oscillation that 
appeared in some stationary periods (Fig. 2). Periods of synchronized 
activity were segmented manually based on the periods in which this 
average was clearly oscillating. To measure the oscillatory coupling 
of each inhibitory neuron, we then computed the Pearson correlation 
between each cell’s z-scored activity and the average of this excitatory 
subpopulation during the synchronized periods.

Comparison to transgenic mouse line data. To validate our cell-type 
assignment, we compared the results obtained with post-hoc transcrip-
tomic data with recordings performed using transgenic mouse lines 
(Extended Data Fig. 5). We analysed recordings from 18 transgenic 
mice (5 for Pvalb, 8 for Sst and 5 for Vip; 14 mice were re-analysed from 
ref. 30 and 4 new mice were added) and 23 sessions (6 for Pvalb, 9 for 
Sst and 8 for Vip) for a total of 2,589 identified cells (1,023 Pvalb, 572 
Sst and 994 Vip cells).

For this analysis (Extended Data Fig. 5), we first deconvolved the 
calcium traces to inferred firing rates fi(t) for each neuron i at time t 
(ref. 53). We considered two measures of neural activity for each cell i 
and trial n: the average neural activity r n f t( ) = ⟨ ( )⟩i i t t t T∈[ , + ]n n △  during 
stimulus presentation from the trial onset time tn to time tn + ∆T, and 
the average neural response di(n) = ri(n) − bi(n), obtained after subtract-
ing the pre-stimulus baseline activity △b n f t( ) = ⟨ ( )⟩i i t t T t∈[ − , ]n n

. The time 
window parameter ∆T took the value 1 s for the data from ref. 30 and 
0.5 s for the new transgenic data and the post-hoc transcriptomic data, 
corresponding to the whole duration of the stimulus. We then com-
puted the average activity and response for a given stimulus s and 
locomotion condition v (v = 0: stationary, v = 1: running): 
r s v r n(̄ , ) = ( )i i n s vϵ{ , } and d s v d n¯( , ) = ( )i i n s vϵ{ , }. We estimated the respon-
siveness of each neuron i to visual stimuli by computing the P value pi of 

a paired t-test comparing ri(n) with bi(n) for all trials n (pooling all  
different stimulus types to obtain one P value per cell). For all subse-
quent analysis, we selected only cells with P values < 0.05. Modulation 
of visual response by running was computed as follows: first, we com-
puted the average responses d v d n¯( ) = ( )i i n v∈

 and standard deviation 
σ v σ d t( ) = ( ( ))i i t v i, ∈ across all stimuli for running and stationary trials 

(v = 0 and v = 1, respectively). We then computed a modulation index 
as follows: M =i

d d

σ σ
(3) (1) − (0)

(1) + (0)
i i

i i
. This index was then normalized for 

each recording session k as follows M M σ M→ / ( )i i i k i
(3) (3)

∈
(3) . We plotted 

the average modulation of visual responses by running versus the Pear-
son correlation coefficient of spontaneous activity and running speed ρi 
(Extended Data Fig. 5a). Before computing the Pearson correlation 
coefficient, we smoothed the activity fi(t) and running speed v(t) with 
a time average of 5 s. For this analysis, we selected only cells that had a 
cortical depth more superficial than −300 μm.

For estimating size tuning curves (Extended Data Fig. 5b), we z-scored 
the activity of each neuron as follows z s v r s v r s v( , ) = [ ( , ) − ⟨ ( , )⟩ ]/i i i s v,

 
σ r s v( ( , ))s v i,  before averaging over cells of a given type.

To evaluate consistency between the physiological features identi-
fied with transgenic and transcriptomic cell-type identification, we 
trained a classifier to predict cell type from physiological features of 
each cell in the transgenic lines, and asked whether it generalized to 
the transcriptomic data (Extended Data Fig. 5c). We trained the classi-
fier using 1,230 training cells (410 examples per cell type for the three 
cell types). The prediction was based on 14 features, which included 
normalized values of neural activity during different stimulus size  
and running condition z s v( , )i  (features 1–8); skewness of the calcium 
trace computed across the whole recording session (feature 9); the 
correlation of spontaneous activity with running speed ρi (feature 10); 
the ROI diameter (feature 11); the cortical depth (feature 12); and  
two different measures of the difference in modulation by running:  
M M−° °i s i s, =60

(1)
, =60

(1)  between large and small stimuli, in which M =i s,
(1)  

r s v r s v σ r s v[ ( , = 1)− ( , = 0)]/ ( ( , ) )i i s v i, ; and M M−° °i s i s, =60
(2)

, =5
(2) , in which M =i s,

(2)  
d s v d s v r s v[ ( , = 1)− ( , = 0)]/⟨ ( , )⟩i i i s v,  (features 13 and 14). We normalized 

features 9–14 by z-scoring them using the mean and standard deviation 
for each neuron of the transgenic mice, whereas features 1–8 were 
already normalized as in Extended Data Fig. 5b. We used cell types: 
y = {Pvalb, Sst, Vip} as training labels. Using the 10 different randomized 
splits of training and test transgenic data, we applied three different 
linear classifiers: linear discriminant analysis; logistic regression (reg-
ularization parameter C = 10); and linear support vector classification 
(regularization parameters C = 0.1). The regularization parameters 
were chosen after a fourfold cross-validation over the different rand-
omized training sets scanning over C = {10−3,10−2,...102}. Applying the 
classifier to transcriptomic data gave equivalent performance to test-set 
transgenic data, indicating that the two methods are consistent.

Response to drifting gratings. Responsive cells (either activated or 
suppressed) were defined using a repeated measures ANOVA model 
(fitrm in MATLAB) with the stimulus direction (12 levels) and size (3 
levels) as between-subject factors, and the presence of stimulus as a 
within-subject factor. A cell was defined as responsive if there was a 
significant effect of stimulus presence after performing a repeated 
measures analysis of variance (ranova in MATLAB). Significant cells 
were classified as activated if the mean activity in the response window 
was above baseline, or suppressed otherwise.

Orientation selectivity Index (OSI) was computed using a cross- 
validation method. Each cell’s preferred orientation was computed 
from even trials; selectivity was computed as:

R R

R R
OSI =

( − )

( + )
,

pref ortho

pref ortho

in which Rpref is the mean response on the odd trials to the pre-
ferred orientation and Rortho is the mean response on the odd 
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trials to the orthogonal orientation (preferred orientation + 90°). This 
cross-validation was used because non-cross-validated selectivity indi-
ces can show large values for sparse neural activity, even if the cells are 
untuned. The cross-validated measure can take negative values, which 
indicate inconsistent responses, and will have an expected value of 0 
for untuned cells.

Direction selectivity Index (DSI) was obtained similarly. Each cell’s 
preferred direction was computed from even trials, selectivity was 
computed as:

R R

R R
DSI =

( – )

( + )
,

pref anti

pref anti

in which Rpref is the mean response on the odd trials to the preferred 
direction and Ranti is the mean response on the odd trials to the direc-
tion opposite to the preferred (Rpref + 180°).

Size tuning curves and the state modulation of visual response 
(Fig. 4d,e and Extended Data Fig. 7c) were computed using the methods 
of a previous study30. Analysis was restricted to cells that had receptive 
field locations close to the centre of the grating stimuli (<20°). Size tun-
ing curves were obtained for running and stationary states by averag-
ing the z-scored activity of all centred cells of that type (z-scoring was 
computed relative to the entire drifting grating presentation). Baseline 
activity (shown as response to size 0 stimuli) was estimated as the aver-
age of the z-scored activity during the interstimulus intervals. For both 
the stimulus response and the baseline, we determined whether the 
mouse was running or stationary by taking the average running speed 
during the stimulus presentation. If this speed exceeded 1 cm s−1, we 
considered the mouse as running, and stationary otherwise.

Cross-validated direction tuning curves (Fig. 4b) were computed 
for all cells using the average across all sizes. A cell’s preferred direc-
tion was estimated as the direction providing the largest response on 
even trials. Direction tuning curves were computed by averaging the 
z-scored activity of each cell on odd trials, for each direction relative to 
this preferred direction. The curve was normalized by dividing by the 
mean response to the preferred direction (on the even trials). These nor-
malized curves were then averaged over all cells in a subtype (Fig. 4b). 
The use of cross-validation means that tuning curves do not automati-
cally have a peak at zero; for a cell with no sensory tuning the preferred 
direction measured on even trials would have no relationship to odd 
trial responses, and so the tuning curve would appear flat or random.

Pairwise correlations between types. To compute spontaneous cor-
relations between the mean activity of cell groups (Figs. 3a and 5d and 
Extended Data Figs. 6b and  8c–e), we first normalized each cell’s decon-
volved activity by dividing it by its maximum. For each experiment, we 
then averaged the normalized activity of each cell within a group during 
grey-screen periods, smoothed with a 1-s boxcar window, and decimated 
the sampling rate to 1 Hz. When the number of cells in a type was less than 2,  
the correlation was not computed for that experiment. We computed the 
Pearson correlation between each group’s mean activity and averaged 
over experiments. For the intra-type correlations, we randomly split 
the cells of each group in two halves and applied the same method, to  
avoid trivially obtaining a correlation of 1. When the number of cells 
in a type was less than 4, the correlation was not computed for that 
experiment.

Response to natural images. We summarized a cell’s response to 
natural image stimuli with two numbers (Fig. 4d and Extended Data 
Fig. 7f,g). Responsiveness was defined as a modulation index between 
activity during the stimulus presentation period and the activity just 
before stimulus onset. Signal correlation was defined by correlating 
the responses to the first repeat of the 1,000 images with the responses 
to the second repeat of these same images. This metric characterizes 
a cell’s selectivity to these image stimuli87.

Transcriptomic PCA. To compute tPC1, we used the in situ gene expres-
sion of the 72 genes for each of the 1,065 unique cells that were imaged 
in vivo and transcriptomically identified. We performed PCA on this 72 
by 1,065 matrix, and took the score of the first component to get tPC1 
for each cell. To obtain tPC1 values for cells in Patch-seq (Extended 
Data Fig. 9b), the same weight vector was used and read counts were 
transformed by log(1 + x).

Multiple linear regression using transcriptomic PCs. To assess the 
fraction of variance explained by transcriptomic PCs (Extended Data 
Fig. 8b), we performed multiple linear regression, using leave-one-out 
cross-validation to quantify how well each cell’s state modulation could 
be predicted from increasing numbers of PCs. The fraction of variance 
explained by this multiple linear regression was then compared to the 
fraction of variance explainable by a cell’s subtype, type or subclass as-
signment, assessed again by leave-one-out cross-validation, predicting 
a cell’s state modulation value as the average modulation of its subclass, 
type or subtype on the training set.

UMAP analysis of previous scRNA-seq data. We performed a UMAP 
analysis on a previous scRNA-seq dataset3, separately for caudal gan-
glionic eminence (CGE) (Vip, Sncg and Lamp5)- and medial ganglionic 
eminence (MGE) (Pvalb and Sst)-derived inhibitory subclasses from V1 
only (Extended Data Fig. 3).

To do so, we used methods that have previously been described for 
CA110. First, a set of 150 genes was found using the ProMMT clustering 
algorithm. Then 150-dimensional expression vectors were made for 
each cell, applying a log(2 + x) transform to the scRNA-seq expression 
levels of these genes. UMAP analysis was performed using a MATLAB 
toolbox88, initialized by placing the classes around a unit circle in order 
of similarity.

The genes automatically selected to perform the UMAP analysis were: 
Vip, Tac2, Sst, Pdyn, Lamp5, Tac1, Crh, Calb1, Penk, Calb2, Th, Cxcl14, 
Ndnf, Spp1, Htr3a, Cplx3, Pvalb, Crhbp, Npy, Npy2r, Chodl, Crispld2, 
Prss23, Nov, Cbln2, Cartpt, Akr1c18, Atp6ap1l, Cadps2, Ppapdc1a (also 
known as Plpp4), Sncg, Tnfaip8l3, Unc13c, Pdlim3, Scgn, Pcp4, Tcap, 
Lgals1, Serpine2, Moxd1, Pthlh, Cd34, Cck, Sostdc1, Spon1, Gm39351, 
Mia, Slc5a7, Pde1a, Adarb2, Mybpc1, Car4, Cbln4, Gabrg1, Fmo1, Slc18a3, 
Grpr, Lypd6, Pde11a, Rxfp1, Tnnt1, Nxph2, Lpl, Cryab, Cp, Npy1r, Id3, Myl1, 
Id2, Kit, Serpinf1, Bcar3, Aqp5, Scrg1, Gpd1, Rxfp3, Prox1, Col25a1, Chat, 
Vwc2l, Amigo2, Myh8, Synpr, Grm8, Igfbp5, Gpx3, Rgs12, Lypd1, Cd24a, 
Reln, Hapln1, Sln, Chrm2, Ostn, Igfbp7, Prox1os, Atf3, Lect1, Gpc3, Ptprk, 
Teddm3, Il1rapl2, Col6a1, Nek7, Crispld1, Wif1, Wnt5a, Bmp3, Thrsp, Syt2, 
Pcdh20, Sfrp2, Myh13, Efemp1, Rprm, Cacna2d1, Lypd6b, Meis2, Lhx6, 
Angpt1, Rspo1, Sema3c, Itih5, Nfix, Sema3a, Stk32a, Ecel1, Jam2, Igfbp6, 
Sox6, Nfib, Sall1, Sema5b, Shisa8, Tacr3, Chst7, Frmd7, Gm31465, Rspo4, 
Chrna2, Lmo1, C1qtnf7, Ndst4, Ccdc109b (also known as Mcub), Npas1, 
Egfr, S100a10, Gpr6, Slit2, Lsp1.

Correlation with electrophysiological and morphological proper-
ties. We examined electrophysiological and morphological correlates 
of our results by relating them to a previously published Patch-seq 
dataset7, which provided electrophysiological, morphological and gene 
expression data from a set of V1 inhibitory cells analysed in vitro. These 
cells had been genetically assigned to the same transcriptomic clusters 
that we used3, which allowed us to correlate electrophysiological and 
morphological properties to the state modulation measured in our own 
dataset. Valid electrophysiological recordings were available for 4,391 
cells and included long and short pulses of current injection as well as 
current ramps. We used the electrophysiological parameters calculated 
by the original authors using the ipfx software, renaming 'up/down 
ratio' (the absolute ratio of the slopes of the upward and downward 
components of the action potential) as 'spike shape index'. Adaptation 
index was the rate at which spiking changed during a long depolarizing 



square stimulus. During a hyperpolarizing square current, the mem-
brane time constant tau is the rate of approach of steady state, and sag 
is the downward deflection before steady state is reached. Capacitance 
was calculated as the ratio between measured tau and resistance.

We quantified the ratio of axon in each layer using morphological 
reconstructions obtained following Patch-seq. To enable comparison to 
our two-photon data, we only examined reconstructed cells with somas 
in L1–3 that belonged to one of the 35 subtypes we recorded from, for a 
total of 163 cells. Morphology was represented as an acyclic undirected 
graph with a position and radius associated with each node. A pair of 
adjacent nodes (a segment) fell within a layer if both nodes had cortical 
depths within the layer boundary. Segments that fell on a layer bound-
ary (less than 4% of segments for each cell) were not classified into a 
layer, and segments that entered the white matter or pia were excluded. 
The surface area of all within-layer segments was computed using the 
distance between nodes and their radii. The within-layer surface area 
ratio is the sum of the surface area of segments within a layer divided 
by the total surface area of all segments.

tPC1 was computed for each Patch-seq cell using the same 72 genes 
and weightings found from our coppaFISH data, with gene expression 
transformed as log(1 + x).

Processing of eye video (pupil detection). Eye videos were processed 
using facemap (https://github.com/MouseLand/facemap). An ROI was 
drawn manually around the pupil of the mouse. The pupil area was 
defined as the area of a Gaussian fit on thresholded pupil frames, in 
which pixels outside the pupil were set to zero.

Statistical analyses
Statistical analysis of differences between cell types faces two potential 
confounds. First, different experiments will by chance record differ-
ent proportions of each cell type, and may also by chance show other 
experiment-to-experiment differences such as overall alertness levels. 
Second, the large number of subtypes presents a potential multiple 
comparisons problem.

To solve these problems, we devised a nested permutation test. First, 
an omnibus test asks whether subclass, type and subtype have a sig-
nificant main effect on our quantity of interest y; there is no multiple 
comparisons problem for this omnibus test, and all shuffling occurs 
within an experiment to avoid conflating experiment-to-experiment 
variability with differences between cell types. The omnibus test is 
conducted at each of the three levels in a nested manner (Extended 
Data Fig. 6a): the first asks whether there is a main effect of subclass; 
the second whether there is a main effect of type beyond that pre-
dicted by subclass; and the third whether there is a main effect subtype 
beyond that predicted by type. After the omnibus test, post-hoc tests 
are used to ask whether significant differences between types exist 
within each individual subclass, and whether significant differences 
between subtypes exist within each individual type (Extended Data 
Fig. 6a). Additional post-hoc tests are used to ask whether the quantity 
is significantly different to zero for each subclass, type and subtype. 
All post-hoc tests are corrected for multiple comparisons using the 
Benjamini–Hochberg procedure.

To test for a main effect of subclass on a quantity y, the omnibus test 
computes its mean value of yf

 for each subclass f, and uses as test statis-
tic the variance of yf

 across subclasses. To obtain a P value, this test sta-
tistic is compared to a null ensemble obtained after 10,000 random 
shufflings of the subclass label of each cell, separately within each 
experiment. To test for a main effect of type, we compute the mean yc of 
y for each type c, and use as test statistic the variance of this mean across 
types. A null distribution is obtained by 10,000 shufflings of type labels 
separately within each experiment and subclass. To test for a main effect 
of subtype, we use as test statistic the variance of ys over subtypes s A 
null distribution is obtained by recomputing this statistic after shuffling 
subtype labels 10,000 times, separately within each type and experiment.

To perform the post-hoc test for significant differences between the 
types within a specific subclass (indicated by P values on the far right 
of Fig. 3b and similar), or for significant differences between subtypes 
within a specific type (indicated by stars second to right in Fig. 3b and 
similar), we performed the same shuffle test inside individual subclasses 
and types. For example, to obtain the P value for significant differences 
of subtypes within the Pvalb-Tac1 type, we used as test statistic the 
variance of ys across the 5 subtypes inside this type, and compared it 
to 10,000 shufflings of the subtype labels inside this same type. These 
post-hoc P values were then corrected using the Benjamini–Hochberg 
procedure. For post-hoc tests of whether a subclass, type or subtype 
is significantly different to zero, we used Benjamini–Hochberg-corrected 
t-tests.

For the nested permutation test on pairwise correlations (Fig. 3a 
and Extended Data Fig. 6b), we used the same shuffling procedure, 
using as test statistic the difference between the mean of intra-group 
correlations and the mean of inter-group correlations across all experi-
ments and cell groups.

All P values for the nested permutation test are one-tailed.
For linear correlations (Figs. 1j, 3e and 6a,b and Extended Data Figs. 6e 

and 9a,b), we show the P value for the Pearson correlation coefficient. 
To exclude the possibility of conflating experiment-to-experiment 
variability with differences between cell types, we used ANCOVA con-
trolling for a discrete effect of recording session (Figs. 3c,d and 5c and 
Extended Data Fig. 8a) quoting the significance of a main effect of the 
continuous variable. ANCOVA was also used to test whether a continu-
ous transcriptomic variable assigned to each cell correlated signifi-
cantly with state modulation even after controlling for subtype and 
recording session (Fig. 3e and Extended Data Fig. 6e) and for subclass 
and recording session (Fig. 5c), and whether cortical depths of each 
subtype measured by coppaFISH and Patch-seq were correlated even 
within a subclass or type (Fig. 1j).

To test for the effect of tPC1 on pairwise correlations (Fig. 5d and 
Extended Data Fig. 8c–e), we sorted types by tPC1 and computed their 
pairwise correlation matrix as described above. We used a permuta-
tion test to ask whether values close to the diagonal were larger than 
values far from the diagonal. As test statistic we used the difference 
between the mean correlation values one or two steps away from the 
diagonal, and the mean of all other type pairs (Extended Data Fig. 8f). 
We constructed a null distribution by recomputing this statistic after 
permuting the order of the types 10,000 times. Again, the P values are 
one-tailed for this shuffling test.

Box plots
To show the distributions of physiological properties within a cell 
population, we used box plots (Figs. 3b and 4c,d and Extended Data 
Figs. 6c,d and 7a–g). In these plots, the central black circles represent 
the median; the left and right edges of boxes represent the 25th and 
75th percentiles; and the whiskers extend to the most extreme data 
points (excluding outliers more than 1.5 times the interquartile range 
from the box, which are plotted as small black dots).

Statistics and reproducibility
The cell shown in Extended Data Fig. 1c is a representative example of 
the 1,090 cells that were recorded and processed with coppaFISH. The 
registration example shown in Fig. 1b–e is a representative example of 
the 99 slices (over n = 4 mice) that we have successfully aligned to the 
in vivo z-stacks. The nine cells shown in Extended Data Fig. 4a,b are rep-
resentative examples of the 117 molecularly identified cells recorded in 
the same session as shown in Fig. 2. All experiments were performed on 
four independent mice, and the results were reliably replicated across 
all mice. We did not use statistical methods to pre-determine sample 
sizes. However, our sample sizes are similar to those reported in previ-
ous publications using a similar approach25,26. Our study did not contain 
experimental groups, so randomization and blinding do not apply.

https://github.com/MouseLand/facemap
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Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
Processed data (calcium activity traces, gene detections and so on) are 
available at https://doi.org/10.6084/m9.figshare.19448531. The raw 
data (two-photon movies, transcriptomic images and so on) will be 
made available upon reasonable request. Natural scenes were obtained 
from the ImageNet database (https://www.image-net.org/). Source 
data are provided with this paper.

Code availability
Code for analysis of in situ transcriptomic data analysis is available at 
https://github.com/jduffield65/iss; and for registration of in vivo and 
ex vivo slices at https://github.com/ha-ha-ha-han/NeuromicsCellDe-
tection and https://github.com/sbugeon/NeuromicsCellDetection. 
Custom code written in MATLAB (R2019b) to analyse and plot the pro-
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Extended Data Fig. 1 | Detection of 72 genes using coppaFISH. a, Sagittal 15 μm 
brain sections are cut using a cryostat. Local mRNAs are reverse transcribed to 
cDNA, and the mRNAs digested to free the cDNAs for hybridization with padlock 
probes. Padlock probes have two 15-20-nt arms complementary to the target 
site, a 20-nt anchor sequence (identical for all probes) and a 20-nt barcode 
sequence (unique for each gene). After hybridization to the target site, a DNA 
ligase enzyme circularizes the padlock probe, but only when it matches the 
target perfectly. Next, a DNA polymerase enzyme amplifies the circularized 
padlock probes, producing rolling-circle products (RCPs), which contain many 
repeats of the padlock sequence including the barcode. b, The barcodes are read 
out by 7 rounds of 7-colour fluorescence imaging. On each round, RCPs are 
hybridized with custom designed bridge probes, which in turn hybridize to 

specific dye probes (conjugated to one of 7 fluorophores). The sections are then 
imaged in 7 colour channels, then all DNA is removed with formamide treatment, 
and the next round begins. Different sets of bridge probes on each round result 
in each barcode showing up in a different colour channel using a Reed–Solomon 
code for minimum overlap. After the 7 combinatorial rounds, a final round 
images the anchor probe (used for image alignment) and DAPI to visualize cell 
nuclei. c, Example raw data for one cell imaged with the 7 fluorophores and  
7 rounds. Each fluorescent spot is an RCP, and the sequence of colours across  
7 rounds allows gene identity to be determined. Bottom: magnification of 2 RCPs 
(top right corner of main images) which corresponded to Cplx2 barcode 
(6135024). Scale bars: 5 μm.



Article

Extended Data Fig. 2 | Experimental pipeline. Neural activity was recorded 
in vivo over multiple sessions from each subject (Gad2-mCherry mice with viral 
GCaMP6m expression in all neurons). At the end of each session, a high-resolution 
reference Z-Stack was acquired and used to detect interneurons in the Z-stack 
volume using mCherry fluorescence, and cells recorded during calcium imaging 
were registered to this Z-Stack. After all imaging sessions, the brain was extracted 
from the skull without fixation and frozen in OCT. A block from under the imaging 
window was sliced into 15 μm sagittal sections, which were thaw-mounted on 
gelatine-coated coverslips. Each section was then processed using coppaFISH: 

RCPs were produced in situ for the selected genes, and their barcodes were read 
using 7 rounds of imaging (+ 1 round of anchor and DAPI staining). The resulting 
images were then registered across rounds, colour channels, and image tiles and 
individual spots detected. Gene identity for each RCP was decoded from the 
49-dimensional images, and pciSeq28 was used to determine the subtype 
probabilities for each cell. To align the images, interneurons detected in vivo and 
ex vivo were used as fiducial markers for point cloud registration, which finds the 
best alignment of the 2D ex vivo slice in the 3D volume. Finally, individual cell 
matches were manually curated, and a subtype assigned to the recorded cells.



Extended Data Fig. 3 | UMAP analysis of scRNA-seq data. Each dot represents 
a V1 inhibitory cell, from the Tasic et al.3 data, with glyph representing its 
assigned subtype. UMAP analysis was performed separately for MGE and CGE 
derived interneuron subtypes, using 150 log-transformed genes selected by 
the ProMMT algorithm10. This analysis reveals both highly discrete subtypes 
such as Pvalb-Vipr2 (putative chandelier cells) and smoothly varying continua 

where boundaries between subtypes appear arbitrary, such as Lamp5-Ntn- 
Npy2r, Lamp5-Plch2-Dock5, and Lamp5-Lsp1 (putative neurogliaform 
subtypes). Also note the smooth transition between Sst-Calb2 (putative 
Martinotti subtypes), Sst-Tac1 (putative Sst non-Martinotti), and Pvalb-Tpbg 
(putative superficial basket cell subtypes). Text on main plots indicates 
location of in vivo imaged subtypes.
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Extended Data Fig. 4 | Example cells. a, Nine example cells which were 
recorded during the same session as in Fig. 2. Pie plots indicate the posterior 
probabilities of each cell’s subtype assignment. Grey background images show 
DAPI-stained nuclei. Each gene detection is represented by coloured letters  
(key to the left). Scale bars: 2 μm. b, Activity of these 9 cells during spontaneous 

behaviour, together with the running speed of the mouse. The traces are colour 
coded according to the assigned subtype for each cell (pie plots in a). c, Analysis 
of Bayesian classification confidence. Histogram shows posterior probability 
for a cell to belong to its assigned subtype, for in vivo imaged cells. About 2% of 
cells for which confidence was below 50% were not analysed further.



Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Comparison with results in transgenic mice. a, Top 
row: modulation of visual responses by running vs. correlation to running speed 
during spontaneous behaviour, for Pvalb, Sst, and Vip interneurons identified in 
transgenic mouse lines. Data re-analysed from Ref. 30 and including 4 new mice. 
Bottom row: same analysis using interneurons identified by post-hoc 
transcriptomic analysis (data from this study; the Vip group included 
Vip-positive Sncg cells which are likely to be labelled in the Vip-Cre transgenic 
line). b, Size tuning curves of Vip, Pvalb and Sst cells for both datasets. Top row: 
responses measured in transgenic mice for centred stimuli (0-10° offset from 
receptive field centre); second row: response to off-centre stimuli (10-20° offset 
from receptive field) in transgenic mice; bottom two rows, same from post-hoc 
transcriptomics. Orange curves: responses during running; blue curves, 
responses during stationary epochs. Numbers at the top right corner of each 

plot indicate number of cells. Data are given as mean ± s.e.m. c, Classification of 
cell type from physiological features was identical for the two cell typing 
methods. Each cell was assigned to either Sst, Pvalb or Vip based on 14 
physiological features (such as correlation to running speed, size tuning curves, 
skewness), using one of 3 different linear classifiers trained on a training set 
randomly selected from the transgenic recording sessions. Left: training-set 
classifier accuracy averaged over multiple random selections of the training set. 
Centre: accuracy of the classifiers averaged over the held-out transgenic 
sessions (test sets). Right: out-of-sample accuracy of the linear models on data 
with interneurons identified by post-hoc transcriptomics. Note the similar 
performance on transgenic and transcriptomic test sets. Error bars: s.d. over 
divisions into training and test set.



Extended Data Fig. 6 | See next page for caption.
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Extended Data Fig. 6 | Further analyses of state modulation during 
spontaneous behaviour. a, Illustration of nested permutation test method. 
The test asks whether a quantity of interest differs significantly between cell 
groups, at each level of the classification hierarchy: whether it differs between 
subclasses, between types belonging to a single subclass, and between 
subtypes belonging to a single type. To use the test, one first computes a test 
statistic (such as the mean correlation coefficient of cells assigned to the same 
group). To obtain a p-value, this test statistic is compared to a null distribution 
obtained by shuffling the cells’ transcriptomic labels within the appropriate 
hierarchical level, in a one-sided manner. To test for a difference between the 
top-level subclasses, cells are shuffled without restriction (1). To test for a 
difference between types within subclasses, cells are shuffled separately 
within each subclass (2). To test for a difference between subtypes within types, 
cells are shuffled separately within each type (3). In all three cases, cells are only 
shuffled within experiments, to avoid conflating variability between 
experiments with variability between cell types. b, Nested permutation test 
results for pairwise spontaneous correlations. Left: blue histograms represent 
the probability of observation obtained by shuffling transcriptomic labels 
10,000 times at three hierarchical levels (see a). Red lines: observed value of the 

test statistic. Middle: post-hoc tests for each subclass. Right: post-hoc tests for 
each type containing at least 2 subtypes. All post-hoc p-values were adjusted 
with Benjamini–Hochberg correction for multiple comparisons. c, Nested 
permutation analysis of modulation between running and stationary 
desynchronized states, plotted as in Fig. 3b. Top: significance of omnibus test 
for differences between subclasses (p < 0.0001) and nested types (p = 0.21) and 
subtypes (p = 0.038). Post-hoc p-values were adjusted with Benjamini–Hochberg 
correction (Pvalb: p < 0.0001, Sst: p < 0.0001, Vip: p < 0.0001, Lamp5-Npy: 
p < 0.0001) d, Nested permutation analysis of modulation between stationary 
desynchronized and stationary synchronized states, plotted as in Fig. 3b. Top: 
significance of omnibus test for differences between subclasses (p < 0.0001) 
and nested types (p = 0.007) and subtypes (p = 0.088).Post-hoc p-values were 
adjusted with Benjamini–Hochberg correction (Pvalb: p = 0.0075, Sst: 
p < 0.0001, Vip: p < 0.0001, Lamp5: p < 0.0001 Lamp5-Npy: p = 0.04) e, State 
modulation vs. subtype probability index for Sst-Calb2-Necab1 and Sst-Calb2-
Pdlim5 cells, plotted as in Fig. 3e (Pearson correlation: r = 0.43, p = 0.005; 
ANCOVA accounting for effects of subtype: F(1) = 7.3, p = 0.011). *, p < 0.05,  
**, p < 0.01, ***, p < 0.001; 1, 2, or 3-headed arrows in c and d indicate same 
significance levels, direction indicates the sign of modulation.



Extended Data Fig. 7 | Further analyses of visual responses. Each panel shows 
a nested permutation analysis for the visual variables analysed in Fig. 4d,  
but extended to the subtype level. All panels plotted as in Fig. 3b. Post-hoc 
comparisons of multiple cell groupings are Benjamini–Hochberg corrected 
within each of these plots. Omnibus and post-hoc tests hierarchical permutation 
tests are one-sided, one-sample post-hoc t-tests are two-sided. a, Response 
differences between large and small gratings in stationary periods (subclass: 
p < 0.0001; Post-hoc tests: Vip-Cp: p = 0.036). b, Response differences between 
large and small gratings during running (subclass: p < 0.0001; Post-hoc tests: 

Lamp5: p = 0.04). c, State modulation of visual response by running, averaged 
over all sizes (subclass: p < 0.0001). d, Orientation selectivity (subclass: p = 0.02). 
e, Direction selectivity (subclass: p = 0.001). f, Mean response for natural image 
stimuli (subclass: p < 0.0001; subtype: p = 0.037; Post-hoc tests: Lamp5: 
p= < 0.0001, Sst: p = 0.01). g, Reliability (signal correlation) for natural image 
stimuli (subclass: p < 0.0001; Post-hoc tests: Lamp5: p = 0.015). *, p < 0.05,  
**, p < 0.01, ***, p < 0.001; 1, 2, or 3-headed arrows indicate same significance 
levels, direction indicates the sign of modulation.
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Extended Data Fig. 8 | Additional analyses of the relationship between tPC1 
and state modulation or pairwise correlations. a, Correlation of state 
modulation with natural log expression of two individual genes, Slc6a1 and 
Gad1, plotted as in Fig. 5c. (ANCOVA controlling for session, F(1) = 138.2, 
p = 6×10−30; F(1) = 50.7, p = 2×10−12, respectively) b, Variance fraction of a cell’s 
state modulation explainable by successive transcriptomic dimensions. Blue 
points: fraction of cross-validated variance explainable by multiple linear 
regression from successive transcriptomic PCs. Dashed lines: fraction of 
variance explainable by discrete classification according to a cell’s subtype, 
type or subclass assignment. The first transcriptomic PC explains respectively 
70%, 79% and 108% of the variance explainable by subtype, type and subclass 

assignment. c, d, e, Pairwise correlations between simultaneously recorded 
types, plotted as in Fig. 5d, but separately for periods within each of the three 
states (running, stationary desynchronized, and stationary synchronized).  
The types are sorted by tPC1; types with similar tPC1 values have significantly 
higher correlations (one-sided permutation test, p = 0.025, p = 0.038, p = 0.005 
respectively). f, The permutation test showing higher correlations amongst 
cells of similar tPC1 used as test statistic the difference between the average of 
correlation coefficients close to the diagonal (left), and the average of all other 
off-diagonal coefficients; intra-type correlations were not used. This test 
statistic was compared to a null ensemble obtained after shuffling tPC1 values 
10,000 times. *, p < 0.05, **, p < 0.01, ***, p < 0.001.



Extended Data Fig. 9 | Additional analyses of Patch-seq data. a, Additional 
electrophysiological properties vs. State modulation plotted as in Fig. 6a.  
Vrest: r = 0.49 p = 0.003, Sag: r = 0.19 p = 0.27, τ: r = 0.5 p = 0.002, F-I curve slope: 
r = 0.53 p = 0.001, Vm for Sag: r = -0.56 p = 5×10−4, Latency: r = -0.31 p = 0.07,  
Avg. isi (inter-spike interval): r = 0.46 p = 0.005, Resistance: r = 0.59 p = 2×10−4, 
Capacitance: r = 0.05 p = 0.78, log(Capacitance) : r = 0.1 p = 0.64, log(Sag) : 
r = 0.19 p = 0.3 and log(Latency): r = -0.04 p = 0.8. Stars show significance 
assessed by Pearson correlation (two-sided tests). Black lines are linear fits.  

b, Fraction of axonal arborization (measured by surface area) in layer 1 (left) 
and layer 2-3 (right) vs. tPC1 computed for each Patch-seq neuron. Each symbol 
represents a cell. Pearson correlation (two-sided tests) was computed 
individually within each subclass, and p-values were adjusted with Benjamini–
Hochberg correction (Layer 1 Lamp5: r = 0.63 p = 4×10−5; Layer 1 Sst: r = 0.41 
p = 0.046; Layer 2-3 Lamp5: r = -0.59 p = 3×10−4; Layer 2-3 Sst: r = -0.44 p = 0.03). 
Coloured lines show linear fit for each subclass with significant Pearson 
correlation. *, p < 0.05, **, p < 0.01, ***, p < 0.001.
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Extended Data Fig. 10 | See next page for caption.



Extended Data Fig. 10 | Confusion matrices for cell-type classification on 
subsampled scRNA-seq data. To evaluate the accuracy of our cell classification 
algorithms, we generated simulated ground-truth by random subsampling from 
scRNA-seq data. A simulated coppaFISH gene count was obtained for each cell 
in the V1 scRNA-seq data of Ref. 3 (5680 cells from 60 GABAergic clusters) by 
drawing each gene's expression from a Poisson distribution with mean equal to 
the scRNA-seq read count, divided by a factor of 100 to account for the relative 
inefficiency of in situ detection. 10-fold cross-validation was used, sequentially 
using 90% of the cells to compute the mean gene expression per subtype used 
for classification, and the remaining 10% for evaluation. Cells were classified 
using the approach taken for coppaFISH data. This procedure was repeated 10 
times to estimate the classification accuracy for all 5680 simulated cells.  
a, b, c, Confusion matrices for classification accuracy at the level of subtypes, 

types and subclasses using our standard 72-gene panel. Each row shows the 
results for cells initially classified by Ref. 3 to one subtype, type or subclass, with 
the size of the circles on that row showing the number of subsampled cells 
assigned to each subtype, type or subclass using our approach. Subtypes, types 
and subclasses are assigned correctly with 76.4%, 96.6% and 98.1% accuracy 
respectively. d,e,f, Using a 150-gene panel (selected by the ProMMT algorithm10, 
same panel used to generate the UMAP of Extended Data Fig. 3) increases 
performance by only 3.5% over the 72-gene panel for subtype assignment and 
gave very similar performance for type and subclass. Using a yet larger panel of 
6000 genes leads to worse performance than the 72-gene panel, owing to 
overfitting (not shown; 76.8%, 93.6% and 95.4% accuracy for subtype, type and 
subclass assignment respectively).
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