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ABSTRACT 

This study describes a computational framework to quantify the influence of constraint loss 

and ductile tearing on the cleavage fracture process, as reflected by the pronounced effects 

on macroscopic toughness (Je, oe). Our approach adopts the Weibull stress, a w , as a suitable 

near-tip parameter to describe the coupling of remote loading with a micromechanics model 

incorporating the statistics of microcracks (weakest link philosophy). Unstable crack prop

agation (cleavage) occurs at a critical value of aw which may be attained prior to, or follow

ing, some amount of stable, ductile crack extension. 

A central feature of our framework focuses on the realistic numerical modeling of ductile 

crack growth using the computational cell methodology to define the evolution of near-tip 

stress fields during crack extension. Under increased remote loading (J), development of 

the Weibull stress reflects the potentially strong variations of near-tip stress fields due to 

the interacting effects of constraint loss and ductile crack extension. 

Computational results are discussed for well-contained plasticity, where the near-tip fields 

for a stationary and a growing crack are generated with a modified boundary layer (MBL) 

formulation (in the form of different levels of applied T-stress). These analyses demonstrate 

clearly the dependence of aw on crack-tip stress triaxiality and crack growth. The paper con

cludes with an application of the micromechanics model to predict the measured geometry 

and ductile tearing effects on the cleavage fracture toughness, J e, of an HSLA steel. Here, 

we em ploy the concept of the Dodds-Anderson scaling model, but replace their original local 

criterion based on the equivalence of near-tip stressed volumes by attainment of a critical 

value of the Weibull stress. For this application, the proposed approach successfully pre

dicts the combined effects of loss of constraint and crack growth on measured Je-values. 
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A Transferability Model for Brittle Fracture 
Including Constraint and Ductile Tearing Effects: 

A Probabilistic Approach 

1. Introduction 

Conventional assessments of elastic-plastic fracture behavior in large engineering structures 

using laboratory specimen data employ a one-parameter characterization of loading and 

toughness, most commonlytheJ-integral or the corresponding value of the Crack Tip Opening 

Displacement (CTOD, 0). The approach correlates unstable crack propagation in different 

cracked bodies based on the similarity of their respective near-tip stress and strain fields (see, 

e.g., the review by Hutchinson [1]). However, the deficiencies of such a one-parameter idealiza

tion become increasingly clear by examining the evolution of crack-tip fields for different 

ranges of near-tip constraint induced by shallow crack configurations and! or remote tensile 

loading. The early numerical analyses of McMeeking and Parks [2], and Shih and German [3] 

demonstrated the strong dependence of crack -ti p fields on specimen geometry and remote load

ing' particularly for moderate-to-Iow hardening materials under large scale yielding condi

tions. Subsequent experimental studies, see [4, 5, 6] for illustrative data, have also shown sig

nificant elevations (factors exceeding 3-5) in the elastic-plastic fracture toughness for shallow 

crack SEeB) specimens offerritic steels tested in the transition region, where trans granular 

cleavage triggers macroscopic fracture. The enormous practical implications of this apparent 

increased toughness of common ferritic steels in low-constraint conditions, particularly in de

fect assessment-repair decisions of in-service structures, have spurred a flurry of new analyt

ical, computational and experimental research over the past five years. 

In the spirit of extending "correlative" fracture mechanics, researchers have developed 

more realistic descriptions of crack-tip stress and deformation fields which explicitly address 

the varying near-tip constraint prior to any ductile crack extension. In particular, approaches 

based on a two-parameter characterization of crack-tip fields, such as the T-stress [7-11] and 

the nondimensional Q-stress [12, 13], construct families of Mode I, elastic-plastic crack-tip 

fields having different levels of near-tip stress triaxiality. In both approaches, J sets the magni

tude of near -tip deformation (CTOD), while the second parameter characterizes the associated 

level of stress triaxiality over distances comparable to a few CTODs. The J-T and J-Q ap

proaches remain essentially equivalent under small-scale yielding conditions, whereas the Q

parameter seems more appropriate for fully-yielded conditions (as the elastic conditions upon 

which the T-stress rests become increasingly violated). Nevertheless, both approaches maybe 

employed in laboratory testing programs to generate material toughness loci applicable in the 

lower-transition region where significant plasticity occurs without prior ductile tearing at frac

ture. 

1\vo-parameter approaches retain contact with traditional fracture mechanics and provide 

a concise framework to represent measured toughness values in terms of a J-T or J-Q locus. 

t Numbers in [] indicate references listed in Section 7. 
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However, they do not provide a means to predict the effects of constraint variations and prior 

ductile tearing on toughness. Such predictions necessarily require a more detailed description 

of the fracture process, and are most often accomplished through recourse to micromechanics 

models that employ local fracture criteria (collectively referred to as local approaches). Local 

approaches couple the (stress-strain) loading history in the near-tip region where fracture 

takes place with the (operative) microstructural fracture mechanism. A fracture parameter re

flecting local damage of material near the crack tip reaches a critical value at material failure. 

Overall fracture conditions in a specimen or structural component may then be described by 

evolution of the micromechanistically based parameter with the macroscopic loading, defined 

conveniently by J or CTOD. In particular, micromechanics models that employ the statistics 

of microcracks provide an approximate treatment of observed phenomena associated with 

cleavage fracture, specifically the large scatter in fracture toughness data in the transition 

range. 

Several approaches along these lines have been proposed to relate local failure conditions 

with macroscopic fracture parameters and to the subsequent prediction of toughness loci. For 

the transgranular cleavage mechanism of ferritic steels, a number of such models explicitly 

adopt weakest link arguments that yield statistical functions reflecting the inhomogeneous 

character of near-tip stresses [14-17]. Work of the Beremin group [17] attains particular rele

vance here as it introduced the so-called Weibull stress as a local fracture parameter. Similar 

statistical approaches falling within the scope of micromechanics methodologies have also 

been described by Wallin, et al. [18, 19, 20], Lin, et al. [21], Mudry [22], Bruckner, et al. [23, 

24], Minami, et al. [25], Bakker et al. [26, 27], Ruggieri, et al. [28], among others. Dodds and 

Anderson [29, 30] have proposed to quantify the relative effects of constraint variations on 

cleavage fracture toughness in the form of a toughness scaling model. They approached loss of 

crack -ti p constraint by postulating the material volume ahead of the crack front over which the 

principal stress exceeds a critical value as the local fracture criterion. The toughness scaling 

model provides the ratio of J-values across different specimens which generate equal stressed 

volumes. While their model makes no explicit recourse to a statistical function, it shares the 

essential underlying features of the previously noted micromechanics (statistical) approaches. 

In the mid-to-uppertransition region, a strong competition develops between cleavage and 

ductile tearing mechanisms of crack extension. For materials having sufficient resistance to 

cleavage fracture at the higher temperatures, intense plastic strains coupled with high 

stresses directly ahead of the blunting crack tip generally produce ductile tearing prior to un

stable crack propagation by cleavage (ductile tearing up to 5 mm has been observed). Ductile 

extension of the crack front alters the stress histories (relative to a stationary crack) in material 

ahead of the bl un ting region and increases the vol ume of the fracture process zone [31, 32]. The 

inclusion of ductile crack growth effects on the local stress-strain fields that drive microme

chanics models for cleavage fracture becomes central to quantify constraint effects in mid-to

upper transition. 

This study describes a methodology, based on a local failure model employing the statistics 

of microcracks, to predict the strongly interacting effects of ductile tearing and constraint vari

ations on (macroscopic) cleavage fracture toughness. We limit our focus to a stress-controlled, 

cleavage mechanism for material failure and adopt the Weibull stress (aw ) as the local parame-
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ter to describe crack-tip conditions. Unstable crack propagation occurs at a critical value of aw 

which may be attained prior to or following some amount of stable, ductile crack extension; the 

outcome being determined by the specimen geometry, mode of loading (tension or bending), ma

terial flow properties and micro-scale tearing resistance. Here, the critical Weibull stress rep

resents a property of the material, possibly dependent on temperature, but invariant of loading 

history. When implemented in a finite element code, the computational model predicts the 

evolution of Wei bull stress with appliedJ while the crack tip undergoes first blunting and then 

stable, ductile crack extension. 

To incorporate ductile crack growth, we utilize the computational cell model proposed by 

Xia and Shih [33-35]. A simplified form of the Gurson-Tvergaard (GT) constitutive model [37, 

38] for dilatant plasticity predicts microscopic void growth within a layer of elements (cells) of 

height = ole defined over the remaining ligament. The cell size defines a length-scale over 

which damage occurs and enters the model as an explicitly specified parameter. Outside of this 

layer, the material follows a conventional J2 flow theory, possibly undergoing finite strains. 

Crack extension over a cell occurs when the initial void (volume) fraction increases to a critical 

value; an extinction procedure then deletes the cell. We calibrate the initial/final void fraction 

of the GT model and the cell size from known experimental J - ~a curves for the material 

constructed from the measured critical J values and crack extensions of specimens that failed 

by cleavage after various amount of crack growth. Although the computations reported here 

are carried out in a (finite deformation) plane-strain framework, reference is made to on-going 

work which addresses the general case of 3-D crack configurations. 

Computational results are reported first for stationary and growing cracks in well-con

tained plasticity, where the near-tip fields of varying constraint are generated through a modi

fied boundary layer (MBL) formulation (in the form of different values of applied T-stress). Al

though these solutions lack a rigorous correspondence with fracture specimens under 

fully-yielded conditions, they represent of a wide class of cleavage failure modes exhibiting se

vere loss of constraint and small amounts of ductile tearing. The numerical results focus on an 

application of the micromechanics model to predict specimen geometry and stable crack growth 

effects on the macroscopic fracture toughness (Jc) of a high-strength, low alloy (HSLA) steel. 

We express the analysis results in terms of a modified Dodds-Anderson toughness scaling mod

el. Their original local criterion based on the equivalence of near-tip stressed volumes is re

placed by the attainment of a critical Weibull stress. The scaling model curves then express 

ratios of critical J-values for differing constraint levels and amounts of stable crack extension 

which generate the same Weibull stress. Measured deep-notch toughness values, without 

crack growth, enable calibration of the Weibull modulus for the material. The GT model param

eters and cell size are calibrated using an R-curve constructed from shallow-notch tests. De

tails of both calibration procedures are provided. For this material, the proposed methodology 

successfully predicts the measured statistical distribution of cleavage fracture toughness in 

shallow crack specimens, reflecting the combined effects of constraint loss and crack growth. 
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2. Statistical Treatment of Cleavage Fracture 

The initiation of transgranular cleavage fracture in ferritic steels occurs primarily by the 

formation of microcracks at carbides, most often dispersed along grain boundaries, in regions 

which undergo locally inhomogeneous plastic flow; these cracked carbides provide the cleavage 

nucleation sites [39]. A qualitative description of cleavage fracture, consistent with these early 

experimental observations, identifies the critical event for unstable propagation of a macro

scopic crack as the growth of microcracks upon reaching certain critical conditions. Here, we 

adopt the viewpoint that unstable crack propagation occurs when the local tensile stress within 

a fracture process zone ahead of a crack or a notch reaches a critical tensile stress, Oc [40]. 

The random nature of cleavage fracture due to inhomogeneity in the local characteristics 

of the material drives the development of a relationship to couple macroscopic fracture behav

ior with microscale events. Consequently, we consider a micromechanics model that employs 

the statistics of microcracks applicable for ferritic steels in the transition region. A connection 

between the microcracking process, a continuum view of the the material and a tractable math

ematical formulation follows by assuming a random distribution offlaws; their size and density 

constitute properties of the material. Further, there exists small, but finite, volumes ofmateri

al which fully embody a population of uniformly distributed flaws. Statistical considerations 

therefore reduce the brittle fracture problem to one of finding a critical flaw or, in general, of 

determining the extreme value distribution offlaw size. 

2. 1 The Weibull stress for cracked solids 

We begin by introducing a limiting distribution for the fracture stress of a cracked body sub

jected to a multiaxial stress state, where a stationary macroscopic crack lies in a material con

taining randomly oriented microcracks, uniformly distributed in location. The 3-D form is giv

en first and then simplified to plane strain conditions appropriate for the present investigation. 

We idealize the fracture process zone near the crack tip as formed by a large number of statist i

cally independent and uniformly stressed, small volume elements, denoted OV. Figure 1 illus

trates a stressed region near a crack or a notch where an arbitrary volume V is subjected to a 

stress state o. Based upon probability theory and invoking the Poisson postulates (see, e.g., 

Feller [41]), the elemental failure probability,o'P, is related to the distribution of the largest 

flaw in a reference volume of the material, which can be expressed as 

el'J' = elV frO g(a)da 

a c 

(1) 

whereg(a)da defines the average number of microcracks per unit volume having sizes between 

a and a + da. Here, a common assumption adopts an asymptotic distribution for the microcrack 

density in the form g(a) = (l/Vo)(ro/aY, where rand ro are parameters of the distribution 

and Vo denotes a reference volume [42, 43]. The implicit distribution offracture stress can be 

made explicit by introducing the dependence between the critical microcrack size, a c , and 

stress in the form a c = ([(2/Yo2
), where Y represents the specimen dependent geometry factor 

and a denotes a tensile (opening) stress acting on the microcrack plane. A simple manipulation 
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of this expression on the basis of weakest link statistics yields the limiting distribution for the 

fracture strength of a cracked solid in conventional spherical coordinates (r, 8, cp) as [45, 46] 

(2) 

where Q denotes the volume of the (near-tip) fracture process zone, and parameter m = 2r-2 

and au define the microcrack distribution. Since the reference volume, Va' only scalesg(a) but 

does not change the distribution shape, it has no effect on m and is conveniently assigned a unit 

value in computations. 

Equation (2) implicitly defines a zero threshold stress for fracture; consequently, stresses 

vanishingly small compared to the fracture stress yield a non-zero (albeit small) probability for 

fracture. Amore refined form of the limiting distribution for the fracture strength of a cracked 

solid is given by 

g>ea) = 1 - exp[ - 4.n\r
o 
L {2n r (0 ~uO'h ) m Sintpdtpd8dQ], 0 2: o'h (3) 

where a
tk 

denotes the threshold stress and has the physical interpretation of a lower-bound 

strength for fracture. The failure probability for the cracked solid becomes zero for any stress 

below a
tk

. However, as will be demonstrated in Section 5, such refinement does not appear to 

provide significant improvements in the fracture behavior predicted by the present methodolo

gy. Debate over a physically meaningful value for atk continues. Subsequent equations remain 

valid for any ath > 0 upon substitution of a-ath for a. 

Following this general development, the Beremin's Weibull stress [17] is given by integra

tion of the tensile stresses over the fracture process zone in the form 

(4) 

from which the limiting distribution (2) now takes the form 

(5) 

Equation (5) defines a two-parameter Weibull distribution [44] in terms of the Weibull 

modulus, m, and the scale parameter, au. Previous work [6,17, 25] has shown that m takes a 

value in the range 10 - 22 for typical structural steels. 

A similar formulation applies under plane strain conditions for which the fracture process 

zone ahead of the crack tip remains uniform along the crack front. A volume element dQ be

comes simply BdA, where B represents the thickness of the cracked body and dA lies within 

the process zone in the x
1
-x

2 
plane (see Fig. 1). The Weibull stress for plane-strain conditions 

then takes the form 
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(6) 

where B may be simply assigned a reference unit thickness as shown later. 

2.2 Generalization of the Weibull stress for a growing crack 

The Weibull stress describes local conditions leading to unstable (cleavage) failure and ap

pears, at least as a first approximation, to remain applicable during small amounts of ductile 

crack extension. However, the potential fracture process zone for an extending crack now com

prises three distinct zones depending upon the material's stress history. Figure 2 provides a 

schematic illustration of the three zones, denoted asA, B, and C. Material in the unloaded zone 

A behind the current physical location of the advancing crack tip, but previously located ahead 

of the tip, experienced severe stress and strain fields without triggering cleavage fracture. Due 

to blunting at the location of the physical crack tip, the peak val ue of opening mode stress devel

ops at a small distance (roughly the blunted opening) ahead of the tip. Material in the region 

between the crack tip and the peak stress location (zone B) experiences significant damage due 

to void growth with a corresponding stress reduction. Earlier in the loading history, this mate

rial (which still contains potential cleavage sites) was ahead of the peak stress location, and 

thus has experienced unloading in terms of the continuum stress field accompanied by a large 

increase in (tensile) plastic strain. Finally, material located outside this blunting region (zone 

C) experiences increased stresses with consequent generation of new microcracks and cracked 

carbides due to progressive plastic deformation. 

The evolution of Wei bull stress during crack growth obviously depends on the choice of the 

fracture process zone. Cleavage cracking in the unloaded region behind the crack tip (zone A) 

does not appear sufficient to trigger unstable propagation of the macroscopic crack. Further

more, it seems not at all certain that material in zone A, which has previously suffered some 

damage due to growth, effectively contributes to the current failure probability of the cracked 

body. 

In contrast, small amounts of ductile crack growth can modify the stress history of material 

ahead of crack tip, especially in zone C, which affects strongly the propensity for unstable prop

agation of the macroscopic crack. For material in zones Band C, previous studies of ductile 

crack growth [31,32] have revealed that: (1) for geometries with low constraint prior to growth, 

stress triaxiality ahead of the crack tip increases significantly during growth due to elastic un

loading behind and macroscopic re-sharpening of the advancing tip, (2) for geometries with 

high constraint prior to growth, only minor elevations in peak stress triaxiality occur, and (3) 

for all cases, the extent of the region of higher stress triaxiality increases leading to a larger 

process zone for cleavage fracture. Thus, we propose to define the active fracture process zone, 

which moves forward with the advancing tip and increases in size, as the loci a 1;::: Aa 0' encom

passing zones Band C, with A = 2. As illustrated in Fig. 2, the development of such a region is 

given by a snapshot of the stress field ahead of the growing crack; points on such a contour all 

lie within the forward sector I e I ::; J! /2. 
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The present definition of the active process zone is motivated by considering the essential 

features of the micromechanism for cleavage fracture ahead of a macroscopic crack. In ferritic 

steels, cracked carbides formed in the course of plastic deformation provide the potential sites 

for nucleation of cleavage microcracks. Highly localized, non-planar crack extension and void 

growth at the larger inclusions, both ofwhich occur over a scale roughly smaller than ole within 

zone B, should not alter the material properties m and au over the much larger process zone 

relevant for cleavage initiation, zone C. Moreover, m values for structural steels in the 10-22 

range severely reduce the contribution to a w made by the current opening mode stresses in zone 

B. Bruckner-Foit, et al. [23] have recently examined the distribution of locations for the origin 

of cleavage fracture in a pressure vessel steel; their fractographic results provide additional 

support for the active process zone proposed here. 

The active process zone places a strong emphasis on the contribution of material points lo

cated in zone C, which are expected to trigger macroscopic crack propagation. When the macro

scopic crack advances by ductile tearing at a loading level still insufficient to cause brittle frac

ture in the specimen or structural component, material elements within the partially unloaded 

region near the crack tip (zone B) did not trigger cleavage fracture, but nonetheless sustain 

residual stresses and large plastic strains. The survival of these material elements implies that 

a critical condition has not been achieved, i.e., unstable propagation of the most severe micro

crack did not take place. The contribution of these material elements in the total failure proba

bility grows smaller as loading progresses. However, the total failure probability for the 

cracked solid monotonically increases with increased loading since crack growth elevates the 

near-tip stress triaxiality and enlarges the volume of material containing potential cleavage 

sites. Consequently, the 3-D form of the Weibull stress for a growing crack becomes simply 

(7) 

where Q* denotes the volume of the active fracture process zone, a1 ;::: Aao ,which moves for

ward with the advancing tip. The plane-strain form ofEq. (7) is similar to Eq. (6) with the ten

sile stresses being integrated over the area A * of the active process zone. The proposed general

ization of a w to include ductile tearing maintains the relative simplicity of computations while, 

at the same time, fully incorporating the effects of alterations in the stress field ahead of the 

crack tip. 

In related work to characterize cleavage fracture in the DBT transition region for ferritic 

steels, Bakker and co-workers [26,27] also extend the Weibull stress con~ept to include damage 

of material located within the region where partial unloading occurs (zone B). However, they 

replace the current stress in Eq. (7) with the maximum stress that the material point has expe

rienced during the entire loading history (generally the peak stress). Compared to the present 

proposal, their procedure may emphasize the contribution of material in zoneB toward the to

tal failure probability. Currently, we consider the correct treatment of local failure probability 

for material elements in zone B as unresolved. Section 5.2 addresses this issue and compares 

the evolution of aw with macroscopic loading (as characterized by J) using the present defini-
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tion of the active process zone and the maximum stress approach; the results here reveal that 

both procedures are essentially equivalent for the material and specimens analyzed. 

2.3 A modified toughness scaling model 

Dodds and Anderson (D-A) [29,30] proposed a simplified micromechanics treatment to predict 

constraint effects on cleavage fracture toughness prior to ductile tearing. The procedure, usual

ly referred to as the toughness scaling model, requires attainment of equivalent stressed vol

umes ahead of a crack front for cleavage fracture in different specimens, even though the J val

ues may differ markedly. Without explicit reference to microstructural parameters that 

describe the distribution of cleavage microcracks, the D-A model predicts the variation offrac

ture toughness with constraint changes for a given material/temperature by scaling specimen 

toughness levels to a convenient reference constraint condition, most often SSY with T == o. 
The model enables robust predictions of constraint effects on cleavage fracture toughness pro

vided the crack-tip stress fields of the various specimens differ only in the level oftriaxiality 

[60], i.e., contours of principal stress change only in "size" and not in "shape" under increased 

specimen loading. In contrast, consider two specimens which have the same material volume 

within a specified principal stress contour al/aO = ac but which have strongly different radial 

and circumferential stress fields ahead of the crack tip. The D-A model does not reflect such 

variations, with equal weight attributed to all material volumes having al/aO 2:: ac. Ductile 

crack extension generates near-tip stress fields sufficiently different in character from station

ary near-ti p fields to question the validity ofD-A model predictions between the two conditions. 

To overcome these limitations, the present work proposes a modified toughness scaling 

model to assess the combined effects of constraint variations and ductile tearing on cleavage 

fracture toughness data. Based upon micromechanics considerations outlined previously, the 

modified scaling model requires the attainment of a specified value for the Weibull stress to 

trigger cleavage fracture in different specimens even though J-values may differ widely. The 

procedure illustrated in Fig. 3 aims to predict the fracture toughness distribution for configura

tions exhibiting low levels of crack-tip stress triaxiality, such as shallow notch SE(B) speci

mens, from the measured toughness values obtained using high constraint, deep notch speci

mens, SE(B) or C(T) specimens. The specimens mayor may not experience stable ductile 

tearing; however, low constraint specimens typically exhibit larger amounts of stable tearing. 

Figure 3(a) shows the distribution of Wei bull stress values for deep notch specimens (configura

tion A); solid symbols correspond to the Weibull stress at measured values of fracture tough

ness while the solid line represents the maximum likelihood fitting of these values. This dis

tribution obeys the two-parameter Weibull model given by Eq. (5) where the parameters 

(m, au) are calibrated using the procedure outlined in Section 5.2. Figure 3(b) presents curves 

of aw versus J (or equivalently CTOD) for the deep notch specimen and for the shallow notch 

SE(B) specimen. Finite element analyses provide the stress fields to evaluate a w for the speci

mens at a fixed, specified value of the Weibull modulus m. Section 3.6 describes the numerical 

procedures to compute aw . The Weibull modulus, m, represents a material property in the cur

rent model. It must be employed to generate the Weibull stress versus J curves for all speci

mens of the material at the temperature under consideration. Figure 3(c) shows the predicted 
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probability distribution for the shallow notch SE(B) specimen (configuration B) indicated by 

the solid line. 

The fitted distribution of ow-values for the deep notch specimens (configuration A) shown 

in Fig. 3(a) provides the corresponding distribution of Jc-values for these specimens. These Jc

values are not the actual values measured in the experiments; they are generated from g> A (Ow) 

using the calibrated values (m, au). This procedure enables construction of confidence bounds 

for the predicted distribution of the shallow notch specimens when the distribution of Jc-values 

is generated using the confidence bounds for the shape parameter, m. By employing the scaling 

model form of the Weibull stress curves illustrated in Fig. 3(b), the generated, continuous func

tion of Jc-values for the deep notch specimens (configuration A) is "corrected" as shown for the 

effects of constraint loss and crack extension to predict the corresponding values for the shallow 

notch SE(B) specimens (configuration B). Note that each point on curve g> A(ow) corresponds to 

another point on curve g>B(J~) with the same probability of fracture, i.e., g>A(ow) = g>B(J~). 

Therefore, the probability distribution of cleavage fracture toughness for configuration B can 

be expressed in closed form as 

(8) 

where F B (J, m) denotes the computed functional relationship between J (or equivalently 

CTOD) in configuration B (finite element model) and the Weibull stress for the calibrated value 

ofm. 

While this predictive methodology is similar to the original D-A procedure, a key enhance

ment arises when using the present failure criterion. The Weibull stress incorporates both the 

effects of stressed volume (as in the D-A model) and the potentially strong changes in the char

acter of the near-tip stress fields due to constraint loss and ductile crack extension. The modi

fied model clearly reflects a closer correspondence with the micromechanical features of the 

cleavage fracture process. 

3. Computational Procedures and Geometric Models 

3. 1 Ductile Crack Growth Using Computational Cells 

The computational cell methodology proposed by Xia and Shih [33-35] (X&S) provides a model 

for ductile crack extension that includes a realistic void growth mechanism, and a microstruc

turallength-scale physically coupled to the size of the fracture process zone. This section pro

vides a brief synopsis of the methodology relevant to the current study of mixed tearing and 

cleavage mechanisms. Figure 4(a) depicts a crack tip growing under Mode I conditions into ma

terial which contains two, uniformly distributed populations of large and small inclusions. The 

larger inclusions (e.g., MnS) provide sites for the formation of microstructural voids which 

grow then coalesce with the current crack tip to create new crack surfaces. The smaller inclu

sions (e.g. carbides) provide initiation sites for sharp microcracks which drive the statistical 
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treatment of cleavage fracture described previously, and which may accelerate the final stages 

of coalescence. Although the highly localized path followed by the crack front becomes general

lynon-planar and tortuous (i.e., alternate sliding-off), macroscopic growth reveals a simple pla

nar character dictated by the symmetric, Mode I loading. Moreover, negligible void growth oc

curs in material at distances from the crack plane of more than 1-2 x the spacing of larger 

inclusions. The distance ahead of the crack tip over which the microstructural voids experience 

active growth under increased loading of a specimen defines the fracture process zone for duc

tile tearing. A small process zone consisting of only a few voids leads to higher toughness, in 

terms of a J-b..a curve, than does a larger process zone which exhausts much of the void growth 

capacity before the advancing tip reaches a void. Numerical results ofX&S indicate that such 

process zones increase in size for rising R-curves, with steady-state growth (dJ Ida ~ 0) being 

reached when the process zone approaches a limiting size. 

These observations led X&S to propose the computational model illustrated in Fig. 4(b). 

Void growth remains confined to a layer of material symmetrically located about the crack 

plane and having thickness D, where D is associated with the mean spacing of the larger, void 

initiating inclusions. This layer consists of cubical cell elements with dimensionD on each side; 

each cell contains a centered spherical cavity of initial volume fractionfo (the initial void vol

ume divided by cell volume). As a further simplification, the void nucleates from an inclusion 

of relative size fo immediately upon loading. Progressive void growth and subsequent macro

scopic material softening in each cell are described with the Gurson-Tvergaard (GT) constitu

tive model for dilatant plasticity [37, 38]. When fin the cell incident on the current crack tip 

reaches a critical value, fE' the computational procedures remove the cell thereby advancing 

the crack tip in discrete increments of the cell size. Figure 4(c) shows the typical, plane strain 

finite element representation of the computational cell model where symmetry about the crack 

plane requires elements of size D /2. Material outside the computational cells, the "back

ground" material, follows a conventional J 2 flow theory of plasticity and remains undamaged 

by void growth in the cells. 

Material properties required for this methodology include: for the background material 

Young's modulus (E), Poisson's ratio (v), yield stress (ao) and hardening exponent (n) or the ac

tual measured stress-strain curve; and for the c~omputational cells: D and fo (and of much less 

significance fE ). The background material and the matrix material of the cells generally have 

identical flow properties. Using an experimental J-b..a curve obtained from a conventional 

SE(B) or C(T) specimen, a series of finite element analyses of the specimen are conducted to 

calibrate values for the cell parameters D and fo which bring the predicted J-b..a curve into 

agreement with experiment. The CTOD at initiation of ductile tearing provides a good starting 

value for D, with fo then varied to obtain agreement with the experiment. Alternatively, metal

lurgical surveys of inclusion volume fractions and sizes may be used with various packing ar

rangements (e.g. nearest neighbor distance) to estimate D and/or f o. Experience with plane 

strain finite element analyses of SE(B) and C(T) specimens to estimate D and fo for common 

structural and pressure vessel steels suggests values of 50-200 f..lm for D, 0.001-0.005 for fo , 

with fE typically 0.15-0.20. Once determined in this manner using a specific experimentalR

curve, D and fo become "material" parameters and remain fixed in analyses of all other speci

men geometries for the same material. 
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In their initial work, X&S [33] describe systematic parametric studies of material flow 

properties and the cell parameters, D and fo, on crack-tip stress fields and R-curves for SSY 

conditions and for a wide array of fracture specimens modeled in plane strain. They show that 

R-curves have increased toughness with increasing D at fixed fo whereas for a fixed D and in

creased f 0' the R-curves show decreased toughness. These model predictions are in accord with 

experimental observations of material microstructure effects onR-curves. In Part II [35], they 

demonstrate the negligible effect on R-curves of stress-controlled nucleation of the initial void, 

the ability of the cell model to capture the averaged effects of highly localized, zig-zag fracture, 

and the small influence on R-curves of strain-controlled, new void nucleation during the final 

stage of growth. 

3.2 Constitutive Models 

To describe the evolution of void growth and associated macroscopic material softening in the 

computational cells, we adopt the Gurson [37] and Tvergaard [38] potential function (g) for 

plastic flow in porous media 

(9) 

where ae denotes the effective Mises (macroscopic) stress, am is the mean (macroscopic) stress, 

a is the current flow stress of the cell matrix material and f defines the current void fraction. 

Under multiaxial stress states, ae = (3SijSij/2)1/2 where Sij denotes the deviatoric compo

nents of Cauchy stress expressed on a rotation neutralized material element (see Section 3.3). 

Factors q l' q 2 and q 3 introduced by Tvergaard improve the model predictions for periodic ar

rays of cylindrical and spherical voids; here we use q1 = 1.25, q2 = 1.0 and q3= qi 
The internal state variables for the constitutive model are thus f and a. The instantaneous 

growth rate of cell voids is given by 

(10) 

where in the present analyses .A, = 91 == 0 to suppress the formation of new voids in the final 

stages of growth by plastic strain (.A,) and early in the loading when stress triaxiality on cells 

remains high (91). By enforcing equality between the rates of macroscopic and matrix plastic 

work, the matrix stress, a, becomes coupled to the plastic strain rate in the matrix material 

through 

..:.. a:~ E=---::;""';;"":;;'-

(1 - f)a 
(11) 

where a(E") also follows a prescribed hardening function for the matrix material. 

The GT constitutive model does not predict a realistic loss of macroscopic stress in a cell at 

large void fractions, e.g. f > 0.15. Tvergaard and Needleman [61] introduced an accelerated 

value off, {, when f = 0.15 to overcome this difficulty. An element extinction procedure (pro

posed by Tvergaard) also offers a simple alternative. When the averaged value off at the Gauss 

points in a cell element reaches fE' the cell stiffness is made zero and the remaining stresses 

11 



are relaxed to zero following a linear traction-separation model (here we reduce the stresses 

linearly to zero over an additional 10% elongation of the cell normal to the crack plane). Effects 

of the specific extinction process diminish quickly when the number of load increments used 

in an analysis limits the number of cells undergoing extinction to just one or two. Based upon 

previous analyses [33, 47], fE is here assigned the value of 0.20. 

The background material outside of the computational cells follows a J 2 flow theory with 

the Mises plastic potential obtained by settingf=: 0 in Eq. (9). The uniaxial true stress-logarith

mic strain response for the both the background and cell matrix materials follows a simple pow

er-hardening model, 

E _ (j 

EO - (ao )

n 

(12) 

where a o and EO are the reference (yield) stress and strain, and n is the strain hardening expo

nent. Section 4 describes numerical solutions for the SSY boundary-layer model with non-zero 

T-stress using materials with n = 5 (high hardening), n = 10 (moderate hardening) and n = 20 

(low hardening). The initial linear stress-strain response included in Eq. (12) becomes neces

sary at high I T / a 0 I ratios to maintain a linear-elastic response in the remote field. Section 5 

describes numerical analyses for SE(B) specimens that were tested in the experimental pro

gram. The true stress-logarithmic strain behavior for the high-strength, low hardening materi

al of these specimens is modeled with a piecewise linear approximation to the measured re

sponse as shown in Fig. 10(a). 

3.3 Finite Element Procedures 

Finite element solutions are generated using the WARP3D code [48] which: (1) implements the 

GT and Mises constitutive models in a finite-strain framework, (2) provides automatic cell ex

tinction coupled to the GT model, and (3) evaluates the J-integral using a convenient domain 

integral procedure. Although the present analyses involve plane-strain conditions, these fea

tures are all available for solution of large-scale 3-D models. The nonlinear implementation of 

the finite element method in WARP3D employs a continuously updated formulation naturally 

suited for solid elements having only translational displacements at the nodes. The principle 

of virtual work expressed on the current configuration, denoted n + 1, has the form 

f 0,,: 0n+ldV - ouTPn+l = 0 

vn+l 

(13) 

where an + 1 denotes the Cauchy stress, P contains the external nodal forces acting on the model 

at n + 1, ou defines virtual displacements at the nodes and OE represents the symmetric, rate 

of the virtual deformation tensor relative to the current configuration, i.e., OE = 

sym(aou/ Bxn + 1)· 

Starting from Eq. (13) linearized about the current configuration, the global solution pro

ceeds in an incremental-iterative (implicit) manner with nodal equilibrium stringently en

forced at n + 1. Each Newton iteration to advance the solution from n--::.n + 1 employs the (con-
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sistent) tangent stiffness computed for the current estimate of the solution at n + 1. Final 

increments of logarithmic strain over n~n + 1 are then evaluated using the linear strain-dis

placement matrix evaluated on the converged mid-increment configuration, x
n

+ 1/2' 

WARP3D analyzes fracture models constructed with three-dimensional, 8-node tri-lin

ear hexahedral elements. Use of the so-called B formulation [49] precludes mesh lock-ups that 

arise as the deformation progresses into fully plastic, incompressible modes. Dilatational 

terms of the original strain-displacement matrix are replaced by a volume averaged set of di

latational terms which yield uniform mean stress over the element and minimal locking. To 

achieve plane-strain models for the current study, a single thickness layer of the 3-D elements 

is defined with out-of-plane displacements constrained to vanish. 

To accommodate finite strains and rotations, the GT and Mises constitutive equations are 

formulated using strains-stresses and their respective rates defined on an unrotated frame of 

reference, computed from polar decompositions of the deformation gradients (F=RU). The 

stress-update proceeds as follows (see [59] for full details): (1) using Rn + 1/2 rotate the spatial 

increment of the deformation tensor (D), evaluated from Bn+l/2 . fl.ue, to the unrotated config

uration, d n +1/ 2 = R~+1/2Dn+l/2Rn+1/2; (2) compute the unrotated Cauchy stress at n+ 1 

(tn + 1) using a conventional small-strain, backward Euler procedure; and (3) compute the spa-

tial Cauchy stress at n + 1 as (In+l = R n +1t n +1R;+1' The polar decompositions insure accura

cy in the rotational operations independent of the displacement gradient magnitudes over 

n~n + 1. Our implementation of the backward Euler integration scheme for the GT model 

builds upon Aravas's work [57]. The linearized form of Eq. (13) requires a tangent operator 

which couples the spatial rates of Cauchy stress O-n+ 1 and deformation tensor, En +1. The proce

dure adopted here follows that described by Nagtegaal and Veldpaus [58], which uses the exact 

consistent tangent operator on the unrotated configuration, E = (at / ad)n + l' the instanta

neous rotation rate at the material point (D = RR'r), and the Green-Naghdi rate of the spatial 

Cauchy stress (o-CN = 0- - D(J + (JD). 

The local value of the mechanical energy release rate at a stationary crack tip in plane 

strain is given by 

(14) 

where To denotes a contour defined on the undeformed configuration (t = 0) beginning at the 

bottom crack face and ending on the top face, nj is the outward normal to To, CUi denotes the 

stress-work density per unit of undeformed volume, Pij and ui are Cartesian components of 

(unsymmetric) Piola-Kirchoff stress and displacement in the crack front coordinate system. 

Our finite element computations employ a domain integral procedure [50] for numerical evalu

ation ofEq. (14). For crack tips experiencing stable ductile growth, J is evaluated over domains 

outside the highly non-proportional histories of the near-tip fields and thus retains a strong 

domain (path) independence. Such J-values are in accord with experimental estimation 

schemes, and they provide a convenient parameter to characterize intensity offar field loading 

on the crack tip. 
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3.4 SmaJl Scale Yielding Model 

The modified boundary layer model [62, 63] simplifies the generation of numerical solutions 

for stationary and growing cracks under well-defined SSY conditions with varying levels of 

constraint. Figure 5 shows the plane-strain finite element model for an infinite domain, single

ended crack problem; Mode I loading of the far field permits analysis using one-half of the do

main as shown. With the plastic region limited to a small fraction of the domain radius, 

Rp <R/20, the general form of the asymptotic crack-tip stress fields well outside the plastic re

gion is given by [51] 

KI 
a·· = -- + .. (()) + To1·0 1· 

u j 2nr I LJ L J 
(15) 

where K is the stress intensity factor, fij(()) define the angular variations of in-plane stress com

ponents, and the non-singular term T represents a tension (or compression) stress parallel to 

the crack. Numerical solutions for different levels of T/ao are generated by imposing displace

ments of the elastic, Mode I singular field on the outer circular boundary (r = R) which en

closes the crack 

u(R,O) = Krl E v aCOS(~)(3 - 4v - cosO) + T11/ 2
RCOSO 

v(R,O) = Kr 1 E v Ilirsin(~)(3 - 4v - cos 0) - T
V(1; v) R sin 0 

(16) 

(17) 

For crack growth analyses, the model has a single layer of 120 computational cells along 

the crack plane, with the plastic behavior of each cell as described in Section 3.2. These com

putational cells have a fixed size of D /2 x D /2, withD = 200,.um andR/D = 112500. Figure 4(c) 

shows the initial crack-tip geometry for the growth analyses. The parametric effects of cell size 

on near-tip fields and resistance curves are not addressed in the present study (see X&S 

[33-35] for comparative solutions). In general, for a given amount of crack growth under steady 

state conditions, the J scales directly with Dao and inversely with f o. 

Stationary crack analyses employ the same element mesh but with no damage in the cells. 

In both stationary and growth analyses, the initial crack-tip radius of D /2 provided by the cell 

incident on the tip provides two numerical benefits: (1) it accelerates convergence of the finite

strain plasticity algorithms during the initial stage of blunting, and (2) it minimizes numerical 

problems during computation of the Weibull stress over material incident on the crack tip. 

The SSY model has one thickness layer of 1300 8-node, 3-D elements; with plane-strain 

constraints imposed, the model has 4000 nodal displacements. A typical solution to grow the 

crack for 20 cells using 1000 load increments requires 3-4 hours of CPU time on a desktop (HP) 

workstation. 

3.5 Plane-Strain SE(B) Specimens 

Finite element analyses are conducted on conventional plane-sided SE(B) specimens W /8 = 4 

with a/W=O.l and a/W=0.5 (Wis the width and 8 is the span for the bend specimens). The 

geometry, size and material flow properties match those for specimens tested in the experi-
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ments described in Section 5. Figure 6 shows the finite element models for both a/Wratios. 

Symmetry conditions permit modeling of only one-half of the specimen with appropriate 

constraints imposed on the remaining ligament. Stationary and growing crack analyses for 

these specimens generate detailed descriptions of the near-tip stress fields used to construct 

the proposed toughness scaling model. 

Testing of the deeply notched bend specimens yielded fracture toughness values exhibiting 

a well-defined cleavage mode with no stable crack growth. For these specimens, a conventional 

mesh configuration having a focused ring of elements surrounding the crack front is used with 

a small key-hole at the crack tip (radius ofl00flm to maintain similar near-tip refinement with 

the computational cell mesh). The mesh has 480 elements with sufficient refinement near the 

tip to provide adequate resolution of the stress fields. For the shallow notched specimens, duc

tile tearing prior to cleavage fracture is observed in the experiments and requires a mesh with 

computational cells ahead of crack front (see Section 3.2). The finite element model has 30 com

putational cells withD /2 = IOOflm in an arrangement similar to the SSY model previously dis

cussed. This mesh contains 600 elements. For comparison, a finite element analysis of a sta

tionary crack is also conducted for the shallow notched specimen. The mesh details are similar 

those for the deep notch specimen. 

The models are loaded by displacements imposed on the top 2-3 nodes on the symmetry 

plane. To insure load step independence of the results, the analyses use 650 load increments 

to grow the crack by 25 cells (~a = 2.5 mm). 

3.6 Numerical Computation of the Weibull Stress 

This section briefly summarizes the finite element form of the Weibull stress expression for a 

stationary and a growing crack, Eq. (4), employed in these analyses. In parametric space, the 

current (deformed) Cartesian coordinates Xi of any point inside a 8-node tri-linear element are 

related to the parametric coordinates 'fJi through the relationship [52] 

8 

Xi = I. Nkxik 

k=l 

i = 1,2,3 (18) 

where Nk are the shape functions corresponding to node k and x ik are the current (deformed) 

nodal coordinates, Xi = Xi + u i . The shape functions have standard form 

3 

Nk = ~ TI (1 + 'fJi'fJik) 

i=l 

k = 1, ... ,8 

where 'fJik denotes the parametric coordinates of node k. 

(19) 

Let I J I denote the determinant of the standard coordinate Jacobian between deformed 

Cartesian and parametric coordinates. Then using standard procedures for integration over 

element volumes, the Weibull stress has the form 

(20) 
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1 1 1 2Jr n ] 11m 

= 4,n1v
o 
Iff f f J am I J I sin cpdcpd8d'fj 1d'fj 2d'fj 3 

ne -1 -1 -1 0 0 

(21) 

where ne is the number of elements inside the fracture process zone near the crack tip and Q e 

is the volume of the element. The process zone used here includes all material inside the loci 

0 1 ;:::: Aao , with A = 2. For computational simplicity, an element is included in the fracture pro

cess zone if the a 1 computed at 'fj 1 = 'fj 2 = 'fj 3 = ° exceeds 2a o· 

Application ofEq. (21) requires a specific definition for the tensile stress, a, acting on the 

microcrack. This tensile stress can be determined for each pair of coordinates (8, cp) by using 

one of several proposed fracture criteria coupled with a geometric shape for the microcrack [15, 

24, 28]. However, little agreement exists about which criterion most effectively describes cleav

age fracture. Consequently, we adopt the simple, maximum principal tensile stress criterion 

to describe unstable crack propagation. Upon replacing the tensile stress, a, in Eq. (21) with 

the maximum principal stress, 0 1, which acts on the material volume element, the Weibull 

stress takes the form 

(22) 

which reflects the independence of the principal stress on the curvilinear coordinates (8,cp). 

This expression for the Weibull stress represents the integral form in parametric space ofBere

min's formulation [1 7]. 

4. Fracture Resistance Behavior Under SSY Conditions 

Small-scale yielding analyses under varying levels of T-stress provide valuable insight about 

the effects of crack-tip constraint and ductile tearing on fracture resistance. Here we focus on 

the evolution of Wei bull stress with crack-tip stress triaxiality and crack growth. A central fea

ture of the present investigation involves the interpretation of aw as a macroscopic crack driv

ing force and the implications of its use in assessments of brittle fracture behavior. These SSY 

results exhibit the essential features of our micromechanics approach in correlating macro

scopic fracture toughness with constraint variations and ductile tearing. 

4.1 The Weibull Stress for Stationary Cracks 

Small-scale yielding solutions with varying levels of applied T-stress are generated for power

law hardening materials having three levels of strain hardening (n = 5, 10, 20) each with 

E/oo =500, v= 0.3. These properties characterize a relatively wide range of plastic behavior for 

structural and pressure vessel steels with moderate-to-high strength. In each analysis, the full 

value of T-stress is imposed first (which causes no yielding), followed by the Kr field imposed 

in an incremental manner. For convenience, a reference unit thickness, B = 1, is used through

out. 
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In evaluating the Weibull stress, Eq. (22), under increasing Kr levels, three values of the 

shape parameter are considered: m = 10, 20 and 30. In particular, m = 20 characterizes the dis

tribution of Wei bull stress at cleavage fracture for a nuclear pressure vessel steel (ASTMA508) 

[17]. These values of m reflect different micro crack densities and thereby provide further in

sight into the fracture behavior for these materials. 

Figure 7(a-c) shows the variation of Wei bull stress under increasing deformation for the 

three levels of hardening n = 5, 10,20 each with m = 20, and for values ofT-stress ranging from 

-0.75 ::; Tlao ::; 0.5. For Tlao=O and fixed strain hardening (n=10), Figure 7(d) shows the 

variation of Wei bull stress with increasing deformation for m = 10,20 and 30. In these plots, 

Kf l(a~R) describes the far-field loading with the Weibull stress normalized by the yield stress, 

ao. The evolution of aw as deformation progresses depends markedly on the degree of strain 

hardening and T I a o· Positive values of T I a 0 have a small effect at all hardening levels. For all 

T I a 0 levels, the Weibull stress for n = 5 increases steadily with deformation and remains well 

above the values for n = 10 and 20. 

The most striking feature of these results, however, is the development of aw with increas

ing deformation for negative values ofT in the materials with n = 10 and 20 (see Figs. 7(b,c)). 

The Weibull stress in these materials increases at a much lower rate with increasing deforma

tion, especially for the low hardening material in the range -0.75 ::; T lao::; -0.5. Under these 

conditions of severe constraint loss, there develops early in the loading a maximum value of 

aw indicated by a marker (x) on these curves. At higher remote loading but with continuing 

constraint loss, the Weibull stress based on the instantaneous process zone (see Section 2.2) 

decreases due to the lower near-tip stresses. In the post-peak regime, aw as defined here cannot 

describe a realistic failure probability for the cracked body, which must continue to increase 

possibly by the intervention of ductile tearing as demonstrated in the following section. Similar 

observations and comments are made by Mudry [22] based on numerical plane-strain analyses 

offracture spe~imens with low strain hardening rates under large scale yielding. In contrast, 

aw for n = 5 increases monotonically over the full range of deformation analyzed for all values 

of Tloo, i.e., the increased stresses provided by hardening more than offset the loss in stress 

triaxiality. These results demonstrate clearly the strong effect of constraint loss (T lao < 0) on 

the levels of Ow for moderate-to-low hardening materials. The effects of Tlao on aw observed 

here are entirely consistent with the J-Q characterization ofSSY stress fields described by O'D

owd and Shih [12, 13]. The lower aw-values with T lao < 0 follow from the reduced stress tri

axiality levels ahead of the crack tip, as described by negative Q-values. These trends remain 

relatively independent of the m-value adopted, as can be seen in Fig. 7(d). Here, m simply scales 

the magnitude of Weibull stress after the early stages of loading in accordance with 

aw = /3mKi/m [22], where the proportionality constant,/3m, depends on m. 

In summary, the micromechanics approach adopted here postulates that cleavage fracture 

occurs when the Weibull stress reaches a critical value, awe, which is a material dependent 

property. The analysis results shown in Fig. 7 demonstrate that attainment of awe for low 

constraint crack configurations occurs, if at all, only at much greater deformation levels (Kr) 

relative to high constraint configurations. Moreover, the combination of a low strain hardening 

material and a low constraint crack configuration may never generate aw = awe, in which case 
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cleavage fracture cannot occur unless some other event (e.g., ductile tearing) elevates the near

tip stresses. 

4.2 Effects of Ductile Tearing on the Weibull Stress 

The previous results demonstrate a significant reduction of the Weibull stress under low 

constraint conditions (negative T-stress) for low and moderately hardening materials. This sec

tion examines the potential for ductile tearing to counteract the effects of constraint loss and 

thus restore the Weibull stress to high constraint levels-such an outcome would aid in ex

plaining the transition from a stable ductile tearing mode to a cleavage mode of fracture. To 

conserve space, we describe only key results computed for m = 20 (shape parameter) and 

fo = 0.001, 0.005 (initial void fraction for the material). Similar trends and conclusions are 

drawn for other m and fo values. For the strongly negative T-stress levels, these analyses typify 

cleavage fracture accompanied by small amounts of stable cra,ck growth structural steels in 

low-constraint configurations. In the context of our computational cell model, values of fo 

(0.001-0.003) and cell sizes of D = 200J-lm characterize materials with moderate crack growth 

resistance [33, 47]. 

Figures 8(a,c) show the computed crack growth resistance curves for materials having 

n = 10, 20 and fo = 0.001. J is normalized by the cell size and flow stress (Doo) while l1a is 

normalized by D. The cell with current porosity f=O.l defines the current crack tip location, 

and thus l1a. This "operational" definition locates the crack tip in the region behind the peak 

stress where stresses decrease rapidly, but ahead of the very highly damaged region, where the 

GT model does not accurately predict material response. Figures 8(b,d) present the dependency 

of ow, Eq. (22), on crack growth. For all levels of crack-tip constraint represented by T /00 , the 

Weibull stress increases monotonically with ductile extension (compare Figs. 8 b,d with the no

growth results in Figs. 7 b,c). The levels of Ow for the material with n = 20 remain consistently 

lower than the levels for the material with n = 10 at the same value of T /00 and crack extension. 

These results clearly reflect the less severe near-tip stresses that develop for the n = 20 materi

al and for low-constraint conditions. The computed R-curves at large growth reveal a different 

trend of lower toughness with higher strain hardening for all constraint levels. The computa

tional results here for fo = 0.005 are fully consistent with those ofX&S [33] (they did not consid

er fo = 0.001 for these cases). 

For a fixed cell size, Fig. 9 illustrates the interaction between strain hardening and initial 

porosity for large amounts of crack extension. In these analyses, T /00 = O. Figures 9(a,b) pres

entcomputedR-curvesformaterialswithn =5,10,20 and initial volume fractions of fo = 0.001, 

0.005. Figures 9(c,d) provide the corresponding distribution of opening-mode tensile stress, 

0
22

, at distances measured from the original crack tip, Xl' for different amounts of crack 

growth. For all of the fo=0.005 analyses, essentially steady-growth conditions (dJ/da ~ 0) 

develop after only a few cells of crack extension. The steady-growthJ-values (Jss ) increase with 

increased strain hardening levels. Similarly, computed values of J Ic show a consistently in

creasing trend with increased strain hardening, where J Ic here is taken as the J-value at 

l1a/D= 1. The computedR-curves for the fo=O.OOl analyses reveal a different character-Jss 

levels are reversed with respect to strain hardening (n = 20 now has the largest J ss ), and much 
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greater amounts of crack growth are needed for the n = 10, 20 solutions to reach steady condi

tions. However, J Ic values vary with strain hardening as for the fo = 0.005 analyses. 

The stress distributions shown in Figs. 9(c,d) aid in understanding these trends. A rising 

R-curve is identified with an opening mode stress that exhibits an increasing peak value with 

growth and an increasingly larger distance between the crack tip and the location of peak 

stress. Steady-growth conditions exhibit a constant peak stress value during further growth 

and an essentially fixed distance between the peak stress location and the crack tip. For all 

cases but fo =0.001 withn = 10, 20, steady-conditions develop after only 1-2 cells of growth. Un

der these conditions, the low degree of hardening coupled with the much smaller initial poros

ity requires significant growth before the peak stress attains a level that accelerates void 

growth. Consider the development of opening-mode stresses for the n = 20 material; the peak 

stress increases from 3.2ao to 4.2ao following 16 cells of growth, afterwhich steady conditions 

appear to exist. In contrast, J Ic depends entirely on the response of the cell adjacent to the 

blunting crack tip. Here, the development of plastic strains plays a key role in void growth since 

the traction free, blunted tip lowers the opening mode stress. For the same imposed J-value 

before growth, the n = 5 material has the smallest plastic strains while the n = 20 material has 

the largest plastic strains; consequently the largest J Ic occurs for n = 5 with both small and 

large values of fo. 

Xia and Shih[33] and Xia, Shih and Hutchinson [34] discuss these constraint, strain hard

ening and initial porosity effects on R-curves in terms of the process zone for ductile fracture, 

defined as the material between the current physical crack tip and the cell carrying the largest 

opening stress. Material within this region undergoes severe damage due to void growth; the 

cells carry a reduced stress thereby exerting lower tractions on the surrounding material. The 

length of this (ductile) fracture process zone, l, strongly influences the tearing resistance. A 

small l/D implies a localized mechanism providing high toughness in which only one or two 

voids interact with the crack ti p-the crack tip must advance to a cell before significant damage 

occurs. Larger val ues of l / D describe a lower-toughness mechanism in which many cells ahead 

of the advancing (physical) tip undergo damage well before the tip reaches them. From this 

viewpoint, the various steady-growth behaviors displayed in Figs. 9 (a,b) for different harden

ing and initial porosities correlate directly with the length of the fracture process zone. The 

opening-mode stresses at large amounts of growth, provided in Figs. 9 (c,d), clearly show the 

ordering of process zone sizes reflects the ordering of toughness levels at steady-growth condi

tions. The smallest process zone (and highest toughness) exists for the n = 20, fo = 0.001 materi

al. 

In summary, these representative analyses demonstrate important features associated 

with the evolution of Wei bull stress for a growing crack. The physical significance is this: duc

tile tearing increases the crack-tip driving force (aw ) as deformation progresses particularly so 

for low-constraint configurations, which increases the likelihood of unstable crack propagation 

by cleavage. The trends shown here are consistent with those obtained in previous numerical 

analyses [28, 29] in that stable crack growth elevates the near-tip stresses and increases the 

volume of the cleavage fracture process zone. Since aw explicitly incorporates the crack-tip 

stress field and the volume of the near-tip stressed material, it fully captures the governing 

features for cleavage fracture in growing cracks. 
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5. Application to Fracture Toughness Testing 

5. 1 Experimental Toughness Data 

Toyoda et al. [53] conducted CTOD fracture mechanics tests on SE(B) specimens (plane-sided) 

with a fixed overall geometry and varying crack length to width ratios, a/W The specimens 

have a loading span, S = 120 mm, a width, W = 30 mm, and thickness B = 15 mm (refer to Fig. 

6). The material is quenched and tempered (QT), HSLA steel (663 MPa yield stress) with rela

tively low strain hardening (au/ays = 1.08). Table 1 lists the chemical composition of this mate

rial, which may be termed "clean" (low S content) relative to common pressure vessel and struc

tural steels. Exceptionally high tearing resistance and low transition temperature may thus 

be anticipated. Mechanical tensile tests, conducted on a standard longitudinal tensile speci

men (JIS number 4), provide the room temperature (20°C) stress-strain data. Table 1 also sum

marizes the mechanical properties obtained from these tests. Figure 10(a) shows the true 

stress-logarithmic strain curve at test temperature (-120°C) for the material used in our finite 

element analyses of the SE(B) specimens. Figure 10(b) shows the measured toughness-temper

ature properties for the material in terms of conventional Charpy-V impact energy (L-T 

orientation). 

In the present work, we limit attention to experimental data obtained for a deep crack 

(a/W = 0.5) and a shallow crack (a/W = 0.1) configuration. Testing of these configurations was 

carried out at -120°C which corresponds to near lower-shelf behavior for the material with 

a/W = 0.5 (see CVN data in Fig. lOb). Records of load us. crack mouth opening displacements 

(CMOD) were obtained for each specimen using a clip gauge mounted on knife edges attached 

to the specimen surface. Post-test examinations established the amount of stable crack growth 

prior to final fracture by cleavage. Points along the crack front near the specimen surfaces were 

omitted in the averaging process, consistent with the plane-strain idealization employed in our 

analyses. 

Using the measured plastic work defined by the plastic component of the area under the 

load versus CMOD curve, A;"MOD, experimental fracture toughness values (Jc) are obtained 

using the estimation procedure described by Kirk and Dodds [54]. Experimental Jc-values are 

given by 

J = ](2(1 - v2
) + 1] J-C A CMOD 

E Bb pi 
(23) 

where the non-dimensional eta factor for CMOD, rather than LLD, is given by 

2 

1] J-C = 3.75 - 3.101 ~ + 2.018 (~) ,0.05:s; ~ :s; 0.70 (24) 

and b is the remaining ligament (W-a). 

Figure 11(a) reveals the pronounced effect of a/W ratio and ductile growth on Jc-values. 

Most of the specimens with a /W = 0.1 experienced ductile crack extensions (.1.a) of 0.5-0.75 mm 

prior to cleavage fracture. In contrast, specimens with a/W = 0.5 exhibited completely brittle 

behavior with no measurable crack extension prior to cleavage fracture. These results convinc-
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ingly demonstrate the effect of severe constraint loss coupled with ductile tearing on the macro

scopic fracture toughness, which leads to the increase in the Jc-values for the shallow crack 

specimens. In the shallow-crack configuration, the near-tip opening mode stress levels fall pre

cipitously when the global bending field impinges on crack-tip fields; attainment of a stress lev

els sufficient to trigger cleavage become possible only at a greater deformation level. For speci

mens that fracture with very small amounts of crack extension (L1a < 0.25 mm,which is = ole)' 

the shallow-crack toughness exceeds the deep-crack toughness by a factor of3-4. In other shal

low-crack specimens, ductile tearing proceeds without triggering cleavage, pushing the frac

ture resistance much higher. Eventually, the re-elevated stress fields caused by the growth, 

coupled with the increased volume of crack-front material exposed to high stress levels, trig

gers cleavage. These specimens exhibit a 15-20 fold increase in toughness relative to the deep

crack specimens. 

5.2 Prediction of a/ Wand Aa Effects on Toughness 

The procedure used here to predict the combined effects of a jW ratio and ductile tearing for the 

experimental cleavage fracture toughness data follows the proposed scaling model outlined in 

Section 2.3 and illustrated in Fig. 3. The notion of the Weibull stress as a crack-tip driving force 

establishes a function of the applied load and geometry which describes the local, crack-tip re

sponse for cleavage fracture. By postulating a critical value of the Weibull stress at fracture, 

the distribution of measured toughness values for one configuration may then be rationally 

employed to predict toughness distributions for other configurations. Here, we predict the dis

tribution of cleavage fracture values for the shallow-crack specimens (ajW = 0.1) using the 

measured deep-crack toughness distribution to calibrate the scaling model. 

The process begins by finding the material dependent value for the shape parameter, m, 

appearing the Weibull stress as expressed by Eq. (21), or Eq. (4) for the general 3-D case. The 

numerical procedure for estimating the shape parameter m followed here is described fully in 

[25,45]. This section includes a brief summary of the method which seeks to determine the pa

rameters {m, ou} of the probability distribution given by Eq. (5). Now, let g> fem(ow) and g>exp(ow) 

denote the distributions of Ow corresponding to the stress state obtained through a finite ele

ment analysis and the one obtained through fracture toughness testing, respectively. By postu

lating that g> fem (ow) and g> exp(ow) have identical distributions, the calibration process becomes 

one of determining a set of parameters {m,ou} which satisfies this condition. The algorithm 

starts by determining (ow)fem = F(J, m) for an initial estimate ofm, denoted m o, where F(J, m) 

denotes the computed functional relationship between J in the finite element model and the 

Weibull stress for the specified value of m [the curves in Fig. 3(b) are given by F(J, m)]. The 

experimental Weibull stress, (ow)exp, corresponding to each experimental toughness value, J c, 

is found by substituting J c into F(J, m). By applying a statistical analysis based upon the 

maximum likelihood method [55] to these (ow)exp values, the estimates {ml,(OU)l} are found for 

the distribution g>exp(ow). If m o"¢ m l , the process starts anew with the distribution g>fem(ow) 

computed for m = ml' 

After convergence is attained, a small sample correction is applied to the maximum likeli

hood estimate ofm using appropriate unbiasing factors given by Thoman, et al. [56] (which are 

function of the number of cleavage fracture toughness data). As noted previously, the limiting 
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distribution for the fracture stress is related explicitly to the distribution of the largest flaw in 

the material and is, therefore, also connected to the value of m. A general method through 

which this parameter can be directly determined without making recourse to microscale mea

surements relies upon an adequate analysis of a set of available experimental data. Here, the 

fracture toughness data for the SE(B) specimens with ajW = 0.5 are used. For the high

strength steel tested in these experiments, m has the calibrated value of 15.6. For comparison, 

we also conducted a similar analysis in which the threshold stress, a
th

, appearing in Eq. (3) 

is assigned a value of 2ao. For this threshold stress, m has the calibrated value of 3.4. Table 

3 summarizes the Weibull parameters corresponding to these two cases and also provides the 

90% confidence bounds for the parameters based upon standard distributions of the maximum 

likelihood estimates given by Thoman, et al. [56]. 

With the Weibull modulus m known, only the parameters to model ductile growth in the 

finite element analyses for this material remain unspecified. The computational cell approach 

requires calibration of the the initial porosity, to' and cell size, D, from a measured set of R

curves. Ideally, R-curves obtained using a jW = 0.5 specimens would be used for this procedure. 

However, deep-crack specimen R-curves are not available from the experimental investiga

tion-at the test temperature, no ductile tearing occurs. R-curves at a higher temperature, if 

available, might be satisfactory for the calibration process by including the temperature depen

dence of the stress-strain curve. Alternatively, experimentalR-curves for other, low constraint 

geometries would be suitable to perform the calibration. Here, only the shallow-crack data is 

available and we use it to perform calibration of the computational cell parameters (D2 fo)' 

Figure II(b) shows the measured cleavage fracture data for the shallow-crack specimens 

plotted in an R-curve format. The computed resistance curve shown on this figure is obtained 

using the values D = 200jlm and to = 0.00025 in the finite element analysis for ductile crack 

growth as described in Section 3.2 with tE = 0.15. This very low value for fo reflects the excep

tionally fine microstructure of this material which produces the very high tearing resistance 

under sustained growth. Despite the relative scatter observed in the experimental (cleavage) 

values, the predictedR-curve captures the average evolution of crack growth. Since the prima

ry interest lies in generating the accompanying near-tip stress fields for the growing crack, this 

calibrated model appears satisfactory. 

Figures 12(a-b) show the computed evolution of Wei bull stress under increasing values of 

J for the deep and shallow crack configurations using the previous values for the threshold 

stress, i. e., a th = 0 and a th = 2ao. These curves provide the quantitative basis to predict the dis

tribution of shallow-crack fracture toughness data from the measured distribution of deep

crack data. To illustrate the pronounced effect of ductile growth, Figs. 12(a-b) also include the 

Weibull stress computed for the shallow-crack configuration neglecting growth. A marked de

crease in the Weibull stress for the no growth analysis at Jj(bao) = 0.05 signals a sharp drop 

in near-tip constraint. While both growth and no-growth curves for the shallow crack configu

ration agree well at lower values of J, the behavior displayed by the stationary crack analysis 

clearly fails to predict the larger Jc-values measured in the experiments. 

The Weibull stress values in these analyses derive from the current near-tip stress field (as 

provided by our definition of the instantaneous fracture process zone for the growing crack). 

We also compute the Weibull stress using the maximum stress that material elements in the 
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process zone have experienced during tl~e entire loading history (see Section 2.2). Figures 

13(a-b) compare the evolution of Ow with J for the shallow notch specimen (growth analysis) . 

using both approaches and for two values ofthethresholdstress,i. e., 0th =0 and 0th = 200, The 

results confirm our expectation that the Weibull stress values using this alternate treatment 

for material elements in the partially unloaded region ahead of the advancing tip should be 

negligibly different. Clearly, it is the elevation of near-tip stress triaxiality and enlargement 

of the process zone ahead of the crack tip due to stable growth that plays the key role in increas

ing the total failure probability for the specimen. 

The Weibull probability plots in Figs. 14(a-b) show the predicted distributions of cleavage 

fracture toughness for the SE(B) specimen witha/W= 0.1 using 0th =0 and 0th = 200, The solid 

symbols in the plots indicate the experimental fracture toughness data for those specimens. 

Values of cumulative probability, F, are obtained by ordering the Je-values and using 

F= (i-0.5) /N, where i denotes the rank number andN defines the total number of experimental 

toughness values. The solid line on each figure represents the predicted Weibull distribution 

generated from the distribution (not individual values from tested specimens) of the Weibull 

stress for the SE(B) specimen with a/W = 0.5 using the procedure outlined in Section 3. The 

dashed lines represent the 90% confidence bounds generated from the 90% confidence limits 

for the distribution of the Weibull stress for the SE(B) specimen with a/W = 0.5. The predicted 

distribution for 0th = 0 displayed in Fig. 13(a) agrees very well with the experimental data; fur

ther, all the measured Je-values lie within the 90% confidence bounds. The predicted distribu

tion for 0th = 200 shown in Fig. 13(b) also agrees reasonably well with the experimental, al

though providing lower values for the failure probability when compared with Fig. 13(a) at the 

same J; here, only some of the Je-values lie within the 90% confidence bounds. 

6. Discussion and Concluding Remarks 

We have presented a probabilistic-based framework to predict the effects of constraint loss and 

ductile tearing on macroscopic measures of cleavage fracture toughness (Je, oe) applicable for 

ferritic materials in the ductile-to-brittle transition region. To model the statistics of 

microcracks and the pronounced effects on scatter of measured J e -values in the transition re

gion, we employ the Weibull stress, Ow, as a near-tip, or local, fracture parameter-unstable 

crack propagation occurs when Ow attains a critical value. Both constraint loss and ductile tear

ing affect the evolution of Ow under increasing applied J in common fracture test specimens. 

Prior to ductile crack growth in shallow-crack configurations, the Weibull stress strongly re

flects the reduced rate at which near-tip stresses increase with applied J due to constraint loss 

and the corresponding reduction in the size of the process zone for cleavage fracture. Ductile 

tearing partially restores the near-tip constraint thereby increasing the cleavage process zone 

size; the Weibull stress captures these effects of ductile tearing on the near-tip fields. 

Applications of this methodology in fracture assessments require mechanical testing, frac

ture testing and nonlinear finite element analyses for stationary and growing cracks. At the 

temperature of interest, fracture tests provide: (1) a population of cleavage toughness values, 

J e or equally oe, without ductile tearing prior to fracture, and (2) a reference tearing resistance 
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curve for the material. Mechanical tests provide the true stress-logarithmic strain response for 

the material. Conventional deep-crack SE(B) specimens usually suffice to generate the J c 

data. Shallow-crack SE(B) specimens or other low-constraint configurations, e.g., M(T), SE(T), 

can sometimes provide an R-curve, although at very low temperatures construction of an R

curve may require the use of Jc-values and measured crack extensions (the procedure followed 

here in Section 5.2). The non-growth Jc-values enable calibration of the Weibull parameters 

{m, au} through stationary crack, finite element analyses of the tested (deep-crack) fracture 

specimen. Similarly, the R-curve enables calibration of the computational cell parameters 

{D,fo} using crack-growth, finite element analyses of the specimen configuration tested to gen

erate the R-curve. These micromechanics parameters, {m, au} for cleavage and {D,fo} for duc

tile growth, remain fixed for application of the methodology to predict the fracture toughness 

distributions of other specimen geometries for the material. 

The parametric study of small-scale yielding conditions for varying levels of constraint (T

stress) and for a wide range of hardening properties demonstrates the general effects of stress 

triaxiality and ductile tearing on cleavage fracture through the Weibull stress. Under increas

ing levels of deformation, cracks imbedded in high constraint fields (positive values ofT-stress) 

maintain high stress levels, whereas low constraint configurations (negative values ofT-stress) 

produce stress fields of much less intensity. The Weibull stress reflects clearly these trends. 

Crack growth under already high-constraint conditions produces little change in the Weibull 

stress; crack growth initiated under low constraint conditions elevates the Weibull stress to 

high-constraint levels-even for low hardening materials. For example, our results show that 

aw continues to increase as the crack advances for a very low hardening material (n = 20), 

which implies a continuing increase in the probability of cleavage fracture. 

Our predictions of the probability distribution for cleavage fracture in a high-strength steel 

based upon the present methodology agree remarkably well with experimental data. Fracture 

toughness values measured experimentally for a high-constraint geometry that exhibit no 

prior ductile tearing are effectively "transferred" to a different geometry having much lower 

constraint and in which tearing precedes cleavage. The inherent difficulty in predicting the 

scatter of experimental fracture toughness, as well as constraint and ductile tearing effects, 

within the scope of conventional procedures appears greatly reduced in the methodology pres

ented here. 

While we have not explored an extensive range of crack configurations and loading modes, 

the relative operational simplicity of the Weibull stress approach, cast in the form of a tough

ness scaling model, encourages further investigations in direct correlations between laborato

ry specimens and structural components. We believe a key feature in the success of the present 

methodology, and of the Dodds-Anderson toughness scaling model as well, lies in the overall 

similarity of the crack-tip stress fields across the various geometries considered in this and pre

vious studies [11, 60]. The crack-tip stresses in through-crack and surface-crack specimens 

subjected to uniaxial tension or uniaxial bending all appear remarkably similar except for the 

amplitude. Moreover, in these configurations ample plastic strains required to nucleate trig

gering sites for cleavage develop in the crack-tip region. However, under strong biaxial loading 

(such as would occur during a pressurized thermal shock (PTS) event in a nuclear reactor) this 

similarity of stress fields with uniaxially loaded fracture specimens may not hold and, when 
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coupled with the suppressed development of plastic strains, the robustness of our approach re

mains un tested. 

Applications of the proposed methodology in the simplified framework of plane-strain mod

els require only modest computational resources-the 1000-1500 element models with exten

sive ductile crack growth consume at most 4-5 hours of time on a desktop workstation. We see 

no conceptual barrier in applying this approach to fully 3-D computations, including large

scale ductile crack growth. Extensions to address 3-D models of through-crack fracture speci

mens and surface-crack components require much greater computational resources and very 

efficient solution procedures. Preliminary efforts along these lines, for example, reveal that de

tailed models of side-grooved SE(B) specimens containing 8000-10000 elements can be ana

lyzed for 2-3 mm of ductile growth using 800-1000 load steps in 3-4 hours on a Cray C-90 using 

the WARP3D code. The initial predictions of crack-front profiles and R-curves generated in 

these computations appear very promising. 
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Table 1 Chemical composition of tested QT steel (mass %) 

Si Mn P S Cu Ni Cr Mo V AI Ti 

0.27 1.11 0.007 0.002 0.02 0.31 0.12 0.16 0.04 0.067 0.009 

Table 2 Mechanical properties of tested QT steel at room temperature. 

Oys (MPa) Ou (MPa) Ct (%) 

663 716 9.0 

ays : 0.2% proof stress; au: ultimate tensile strength 

Ct : uniform elongation (gage length = 32mm) 

Ou /OyS 

1.08 

B 

0.0008 

Table 3 Weibull parameters for the QT steel calibrated from the SE(B) specimens with 

a/W = 0.5 and corresponding 90% confidence bounds. 

m Ou (MPa)* 

0th =0 15.6 1757 
(9.0,20.9) (1625, 1822) 

Oth = 200 
3.4 234 

(2.0, 4.6) (155, 280) 

* Estimated using Vo = 1. 
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Figure 2 Evolution of the fracture process zone for a growing crack. 
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growth resistance curve for the SE(B} specimen with ajW = 0.1. 

1.0 



.p:... 
I-' 

aw/ao 
3.0 ...--, --------------, 

2.5 

2.0 

1.5 

1.0 

a/W == 0.5 
a/W == 0.1 

(Crack Growth) 

I 

I 
I 

/ 

/ 

I 

.... .() 

i/ ... 
I /' ,. , 

.••.•••.. -:::.::r-•.•.•••. 

"'6, 

a/W == 0.1 
(Stationary Crack) 

1m 15.61 
o h == 0 . t 

aw/ao 
1.0 ' 

0.8 

0.6 

0.4 

I 

0.2 
I 

/ 

/ 

I 

m == 3.4 

0th == 200 

......8 
I 

a/W == 0.5 

a/W == 0.1 
(Crack Growth) 

a/W == 0.1 

(Stationary Crack) 
o '" , J , , I I I I I I I I I I , I I , , I I I I , 

o 0.02 0.04 0.06 0.08 0.10 0.12 0 0.02 0.04 0.06 0.08 0.10 0.12 

J /(bao) J /(bao) 

(a) (b) 

Figure 12 Variation of the Weibull stress) OW) with increasing load for the SE(B) specimens with two different values of threshold 
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Figure 14 Prediction of the probability distribution for the cleavage fracture toughness data of SE(B) specimens with a /W = 0.1. 

(a) Conventional definition of Ow with Oth = D. (b) Ow is calculated upon setting 0th =200. 
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