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Abstract

We begin with an introduction to a calculus of fractional finite differences. We
extend the discrete Laplace transform to develop a discrete transform method. We
define a family of finite fractional difference equations and employ the transform
method to obtain solutions.
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1. Introduction

In this article we study discrete fractional calculus. We proceed to consider a family of
finite fractional linear difference equations and we shall develop a transform method of
solution. Our preliminary definitions follow in the spirit of Miller and Ross [6]. Our
goals follow in the spirit of Miller and Ross [6] and Podlubny [7] to develop the theory of
linear finite fractional difference equations analogously to the theory of finite difference
equations.
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The Riemann–Liouville fractional integral of a function f of order ν has the form

D−ν
0 f (t) = 1

�(ν)

∫ t

0
(t − s)ν−1f (s)ds.

Here it is assumed that Re ν > 0 and it is assumed that f is continuous on (0, ∞)

and integrable on bounded subintervals of [0, ∞). The kernel, (t − s)ν−1/�(ν), is a
clear generalization of a Cauchy function, (t − s)n−1/(n − 1)!, for nth order ordinary
differential equations. Miller and Ross [6] employ this observation and develop a theory
of linear fractional differential equations that is analogous to the classical theory of linear
ordinary differential equations.

In [5], Miller and Ross initiated the process to develop the analogous theory for
fractional finite differences. In this article, we continue to build on their work, de-
velop properties of fractional finite differences, define a family of linear finite fractional
difference equations, and develop a transform method of solution.

In Section 2 we shall provide the elementary definition of a fractional sum of a
function f of order ν, and we shall define the fractional difference. These definitions
are essentially due to Miller and Ross [5]. We shall also develop and present some of
the elementary properties of discrete fractional calculus.

In Section 3, we shall employ a discrete transform to solve the same family of
equations. We present examples to illustrate the method. The discrete transform, which
is not the z-transform, is the Laplace transform on the time scale of integers [2, 4]. We
find the discrete Laplace transform to be the transform of convenience.

2. An Introduction to the Calculus of Finite Fractional Differences

Recall the factorial polynomial,

t (n) =
n−1∏
j=0

(t − j) = �(t + 1)/�(t + 1 − n),

where � denotes the special gamma function and if t +1−j = 0 for some j , we assume
the product is zero. We shall employ the convention that division at a pole yields zero.
For arbitrary ν, define

t (ν) = �(t + 1)/�(t + 1 − ν).

We will list some of the properties of this factorial function with their proofs.

Theorem 2.1. Assume that the following factorial functions are well defined.

(i) �t(ν) = νt(ν−1), where � is the forward difference operator.

(ii) (t − µ)t(µ) = t (µ+1), where µ ∈ R.

(iii) µ(µ) = �(µ + 1).
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(iv) If t ≤ r , then t (ν) ≤ r(ν) for any ν > r .

(v) If 0 < ν < 1, then t (αν) ≥ (t(α))ν .

(vi) t (α+β) = (t − β)(α)t (β).

Proof. The proofs of (i), (ii), (iii), (vi) are straightforward. The proof of (iv) follows
from Euler’s infinite product

�(u) = 1

u

∞∏
n=1

(1 + 1
n
)u

1 + (u
n
)

.

The proof of (v) follows from the log-convexity property of the gamma function.

t (αν) = �(t + 1)

�(t + 1 − αν)

= �(t + 1)

�(ν(t + 1 − α) + (1 − ν)(t + 1))

≥ �(t + 1)

(�(t + 1 − α))ν(�(t + 1))1−ν

= (t(α))ν.

This completes the proof. �

Define iteratively the operator �j = �(�j−1), where j is a nonnegative integer, �0

denotes the identity operator and �1f (t) = �f (t) = f (t + 1)−f (t). It is the case that
the solution of an initial value problem of the form

�nu(t) = f (t), t = a, a + 1, . . . ,

u(a + j − 1) = 0, j = 1, . . . n,

is the function

�−nf (t) = u(t) =
t−1∑
s=a

(t − σ(s))(n−1)

(n − 1)! f (s).

Here, σ(s) = s + 1. We shall use this notation throughout the article. It is the intention
that some of this material will generalize to a study of fractional calculus on time scales.

Note that the Cauchy function,
(t − σ(s))(n−1)

(n − 1)! vanishes at s = t−(n−1), . . . , t−1.

So
t−1∑
s=a

(t − σ(s))(n−1)

(n − 1)! f (s) =
t−n∑
s=a

(t − σ(s))(n−1)

(n − 1)! f (s)

= 1

(n − 1)!
t−n∑
s=a

�(t − s)

�(t − s − (n − 1))
f (s).
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With this observation define (as done in [5]) the νth fractional sum of f by

�−νf (t) = 1

�(ν)

t−ν∑
s=a

�(t − s)

�(t − s − (ν − 1))
f (s), (2.1)

where ν > 0. Note that f is defined for s = a, mod (1) and �−νf is defined
for t = a + ν, mod (1). For calculations, we shall assume that s = a, mod (1),
s −a ≥ 0. This observation is important to determine lower limits throughout the paper.

Next we shall state and prove the law of exponents for fractional sums.

Theorem 2.2. Let f be a real-valued function, and let µ, ν > 0. Then for all t such that
t = µ + ν, mod (1),

�−ν[�−µf (t)] = �−(µ+ν)f (t) = �−µ[�−νf (t)].

Proof. By definition of fractional sum, we have

�−µ(�−νf (t)) = 1

�(ν)
�−µ

t−ν∑
r=0

(t − σ(r))(ν−1)f (r)

= 1

�(ν)�(µ)

t−µ∑
s=ν

(t − σ(s))(µ−1)

s−ν∑
r=0

(s − σ(r))(ν−1)f (r)

= 1

�(ν)�(µ)

t−µ∑
s=ν

s−ν∑
r=0

(t − σ(s))(µ−1)(s − σ(r))(ν−1)f (r)

= 1

�(ν)�(µ)

t−(µ+ν)∑
r=0

t−µ∑
s=r+ν

(t − σ(s))(µ−1)(s − σ(r))(ν−1)f (r)

= 1

�(ν)�(µ)

t−(µ+ν)∑
r=0


t−σ(r)−µ∑

x=ν−1

(t − σ(r) − σ(x))(µ−1)x(ν−1)


 f (r)

= 1

�(ν)

t−(µ+ν)∑
r=0

(�−µ(t − σ(r))(ν−1))f (r)

= 1

�(ν)

t−(µ+ν)∑
r=0

�(ν)

�(ν + µ)
(t − σ(r))(ν+µ−1)f (r)

= �−(µ+ν)f (t).

This completes the proof. �
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Next, we obtain a power rule. Miller and Ross [5] obtained the following lemma
in the case that µ is a positive integer by induction and µ = 0 with a straightforward
calculation.

Lemma 2.3. Let µ ∈ R \ {. . . , −2, −1}.

�−νt (µ) = �(µ + 1)

�(µ + ν + 1)
t(µ+ν).

Proof. Set

g1(t) = �(µ + 1)t(µ+ν)

�(µ + ν + 1)
.

Set

g2(t) = �−νt (µ) = 1

�(ν)

t−ν∑
s=µ

�(t − s)

�(t − s − ν + 1)
s(µ)

= 1

�(ν)

t−ν∑
s=µ

�(t − s)�(s + 1)

�(t − s − ν + 1)�(s − µ + 1)
.

We show g1, g2 each satisfy

(t − (µ − ν) + 1)�g(t) = (µ + ν)g(t),

g(µ + ν) = �(µ + 1).

In the next steps of the proof, the formulas (ii) and (iii) in Theorem 2.1 are used repeatedly.
First, consider g1. Apply (iii) to see that

g1(µ + ν) = �(µ + 1)(µ + ν)(µ+ν)

�(µ + ν + 1)
= �(µ + 1)�(µ + ν + 1)

�(µ + ν + 1)
= �(µ + 1).

Apply (ii) to see that

(t − (µ + ν) + 1)�g1(t) = (µ + ν)�(µ + 1)(t − (µ + ν) + 1)t(µ+ν−1)

�(µ + ν + 1)

= (µ + ν)�(µ + 1)t(µ+ν)

�(µ + ν + 1)
= (µ + ν)g1(t).

Second, consider g2. Apply (iii) to see that

g2(µ + ν) = (ν − 1)(ν−1)µ(µ)

�(ν)
= �(ν)�(µ + 1)

�(ν)
= �(µ + 1).
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We now present a tedious calculation to show g2 satisfies the difference equation. Use
(ii) and add and subtract µ to write

g2(t) = 1

�(ν)

t−ν∑
s=µ

(t − σ(s))(ν−1)s(µ)

= 1

�(ν)

t−ν∑
s=µ

(t − σ(s) − (ν − 2))(t − σ(s))(ν−2)s(µ)

= 1

�(ν)

t−ν∑
s=µ

(t − s − ν − µ + 1 + µ)(t − σ(s))(ν−2)s(µ)

= (t − (ν + µ) + 1)

�(ν)

t−ν∑
s=µ

(t − σ(s))(ν−2)s(µ)

− 1

�(ν)

t−ν∑
s=µ

(t − σ(s))(ν−2)(s − µ)s(µ).

Consider only the first term

(t − (ν + µ) + 1)

�(ν)

t−ν∑
s=µ

(t − σ(s))(ν−2)s(µ).

Note that

�g2(t) = ν − 1

�(ν)

t−ν∑
s=µ

(t − σ(s))(ν−2)s(µ) + (ν − 1)(ν−1)(t + 1 − ν)(µ)

�(ν)

= ν − 1

�(ν)

t−ν∑
s=µ

(t − σ(s))(ν−2)s(µ) + (t + 1 − ν)(µ).

So

(t − (ν + µ) + 1)

�(ν)

t−ν∑
s=µ

(t − σ(s))(ν−2)s(µ)

= (t − (ν + µ) + 1)

(
�g2 − (t + 1 − ν)(µ)

ν − 1

)

= (t − (ν + µ) + 1)�g2

ν − 1
− (t + 1 − ν)(µ+1)

ν − 1
.

Consider now the second term

1

�(ν)

t−ν∑
s=µ

(t − σ(s))(ν−2)(s − µ)s(µ).
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Sum by parts and note that

�((t − s)(ν−1)s(µ+1)) = (t − σ(s))(ν−1)(µ + 1)s(µ) − (ν − 1)(t − σ(s))(ν−2)s(µ+1).

Also recall s(µ+1) = (s − µ)s(µ). Thus,

t−ν∑
s=µ

(t − σ(s))(ν−2)s(µ+1) =
t−ν∑
s=µ

(t − σ(s))(ν−2)(s − µ)s(µ)

= 1

ν − 1

(
(µ + 1)

t−ν∑
s=µ

(t − σ(s))(ν−1)s(µ) − (ν − 1)(ν−1)(t + 1 − ν)(µ+1)

)
.

In particular,

− 1

�(ν)

t−ν∑
s=µ

(t − σ(s))(ν−2)(s − µ)s(µ) = −µ + 1

ν − 1
g2(t) + (t + 1 − ν)(µ+1)

ν − 1
.

In summary we have shown

g2(t) = (t − (ν + µ) + 1)�g2(t)

ν − 1
− (t + 1 − ν)(µ+1)

ν − 1
− (µ + 1)g2(t)

ν − 1

+ (t + 1 − ν)(µ+1)

ν − 1
.

Thus, (t − (µ − ν) + 1)�g2(t) = (µ + ν)g2(t). The proof is complete. �

The definition of a fractional difference is analogous to the definition of a fractional
derivative [5]. Let µ > 0 and assume that m − 1 < µ < m, where m denotes a positive
integer. Set −ν = µ − m. Define

�µu(t) = �m−νu(t) = �m(�−νu(t)).

Lemma 2.3 gives indication that fractional difference equations can make sense. We
argue that the difference equation

�4/3u = 0

makes sense in the fact that it generates two linearly independent solutions on the set{
−2

3
,

1

3
,

4

3
, . . .

}
. Consider u1(t) = t (1/3) and u2(t) = t (−2/3),

�4/3u1(t) = �2(�−2/3t (1/3)) = K�2t (2/3+1/3) = 0.

Moreover, �−2/3t (1/3) implies t = 2

3
+ 1

3
, mod (1). Similarly, u2 satisfies

�4/3u2(t) = 0

for t = 2

3
− 2

3
, mod (1).
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3. A Discrete Transform Method of Solution

We first introduce the reader to a discrete transform which is the Laplace transform on
the time scale of integers [2,4]. This is not the more common z-transform. We choose a
Laplace transform to employ the common analogous properties of the common Laplace
transform.

Define the discrete transform (R-transform) by

Rt0(f (t))(s) =
∞∑

t=t0

(
1

s + 1

)t+1

f (t). (3.1)

R0(f (t))(s) is the Laplace transform on the time scale of integers [2, 4].

Lemma 3.1. For any ν ∈ R \ {. . . ,−2, −1, 0},

(i) Rν−1(t
(ν−1))(s) = �(ν)

sν

(ii) Rν−1(t
(ν−1)αt )(s) = αν−1�(ν)

(s + 1 − α)ν
.

Proof. (i) For ν = 1, one employs a straightforward calculation with the geometric
series. The cases ν = 2, 3, . . . follow by induction once we apply Theorem 2.1 (i) and
summation by parts. For 0 < ν < 1,

Rν−1(t
(ν−1))(s) =

∞∑
t=ν−1

(
1

s + 1

)t+1

t (ν−1)

=
∞∑

u=0

(
1

s + 1

)u+ν

(u + ν − 1)(ν−1)

=
(

1

s + 1

)ν ∞∑
u=0

(
1

s + 1

)u
�(u + ν)

�(u + 1)
.

Apply [1, Theorem 2.2.1] to the right-hand side and introduce the hypergeometric func-
tion 2F1 in the following way:

∞∑
t=ν−1

(
1

s + 1

)t+1

t (ν−1) = 1

(s + 1)ν
�(ν)2F1

(
1, ν; 1; 1

s + 1

)

= 1

(s + 1)ν

�(ν)�(1)

�(ν)�(1 − ν)

∫ 1

0
tν−1(1 − t)−ν

(
1 − t

s + 1

)−1

dt

= 1

(s + 1)ν−1

1

�(1 − ν)

∫ 1

0

(1 − u)ν−1u−ν

s + u
du
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= 1

(s + 1)ν−1

1

�(1 − ν)
B(ν, 1 − ν)(1 + s)ν−1s−ν

= �(ν)

sν
,

where B is the beta function. Here we used [3, Exercise 4.2.10]. This completes the
proof for 0 < ν < 1. The equality

Rν−1(t
(ν−1))(s) = ν

s
Rν(t

(ν)),

where ν ∈ R \ {. . . , −2, −1, 0}, follows from Theorem 2.1 (i) and summation by parts.
The proof of (i) is complete.

The proof of (ii) follows from the proof of (i). �

We shall also need to make use of a convolution theorem. Bohner and Peterson [2]
have developed the convolution on general time scales; it has been developed on the time
scale of integers in [4].

Let h(t) = t (ν−1) and g(t) = αt . Define the convolution

(h ∗ g)(t) =
t−ν∑
s=0

(t − σ(s))(ν−1)g(s),

where ν ∈ R \ {. . . , −2, −1, 0}.
We now obtain a standard property for Rν((h ∗ g)(t))(s).

Lemma 3.2. For any ν ∈ R \ {. . . ,−2, −1, 0}
Rν((h ∗ g)(t))(s) = Rν−1(h(t))(s)R0(g(t))(s).

Proof. We have

Rν((h ∗ g)(t))(s) =
∞∑
t=ν

(
1

s + 1

)t+1 t−ν∑
r=0

(t − σ(r))(ν−1)g(r)

=
∞∑

r=0

∞∑
t=r+ν

(
1

s + 1

)t+1

(t − σ(r))(ν−1)g(r)

=
∞∑

r=0

∞∑
τ=ν−1

(
1

s + 1

)τ+r+2

τ (ν−1)g(r)

=
( ∞∑

τ=ν−1

(
1

s + 1

)τ+1

τ (ν−1)

) ( ∞∑
r=0

(
1

s + 1

)r+1

g(r)

)

= Rν−1(h(t))(s)R0(g(t))(s).

This completes the proof. �
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We introduce a few more properties of the R-transform before we solve some frac-
tional difference equations.

Treat �−νf (t) as a convolution and apply Lemma 3.2 to obtain

Ra+ν(�
−νf (t))(s) = s−νRa(f (t))(s). (3.2)

Lemma 3.3. For 0 < ν < 1 and the function f defined for ν − 1, ν, ν + 1, . . .,

R0(�
νf (t))(s) = sνRν−1(f (t)) − f (ν − 1).

Proof. It is already shown [2, 4], that if m is a positive integer, then

R0(�
mf )(s) = smR0(f )(s) −

m−1∑
k=0

sm−k−1�kf |t=0.

For m = 1, we have

R0(�
νf (t)) = R0(��−(1−ν)f (t)) =

∞∑
t=0

(
1

s + 1

)t+1

��−(1−ν)f (t)

= s

∞∑
t=0

(
1

s + 1

)t+1

�−(1−ν)f (t) − �−(1−ν)f (t)|t=0

= s

∞∑
t=0

(
1

s + 1

)t+1

�−(1−ν)f (t) − f (ν − 1)

= s

�(1 − ν)

∞∑
τ=−ν

(
1

s + 1

)τ+1

t (−ν)

∞∑
r=ν−1

(
1

s + 1

)r+1

f (r) − f (ν − 1)

= s

�(1 − ν)

�(1 − ν)

s1−ν
Rν−1(f (t)) − f (ν − 1)

= sνRν−1(f (t))(s) − f (ν − 1).

This completes the proof. �

One can easily generalize this result to higher order. So if µ > 0 and m−1 < µ < m,
where m denotes a positive integer and f is defined for µ − m, µ − m + 1, . . ., then

R0(�
µf )(s) = sµRµ−m(f )(s) −

m−1∑
k=0

sm−k−1�k−m+µf |t=0. (3.3)

Example 3.4. Consider the problem �4/3y(t) = 0 for t = 0, 1, 2, . . .. We shall look

for a solution y(t) defined on

{
−2

3
,

1

3
,

4

3
, . . .

}
. Assume that �1/3y(t) is defined and

finite.
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First we take the R-transform of each side of the equation to obtain

R0(�
4/3y(t)) = s2R0(�

−2/3y(t)) − s�−2/3y(t)|t=0 − �1/3y(t)|t=0 = 0.

Since R0(�
−2/3y(t)) = s−2/3R−2/3(y(t)) by (3.2), it follows by Lemma 3.1(i) that

R−2/3(y(t)) = �1/3y(t)|t=0 + sy
(−2

3

)
s4/3

= �1/3(y(t))|t=0

�
(4

3

) R1/3(t
(1/3)) + y

(−2
3

)
�

(1
3

) R−2/3(t
(−2/3)).

Note that R1/3(t
(1/3)) = R−2/3(t

(1/3)), and so we conclude that

y(t) = �1/3(y(t))|t=0

�
(4

3

) t (1/3) + y
(−2

3

)
�

(1
3

) t (−2/3)

for t ∈
{
−2

3
,

1

3
,

4

3
, . . .

}
.

Example 3.5. Consider the problem �1/2y(t) = 5 for t = 0, 1, 2, . . .. We shall look

for a solution y(t) defined on

{
−1

2
,

1

2
,

3

2
, . . .

}
.

Applying the R-transform for each side of the given equation, we have

R0(�
1/2y(t)) = R0(5),

s1/2R−1/2(y(t)) − y

(
−1

2

)
= 5

s
,

R−1/2(y(t)) = y
(−1

2

)
�

(1
2

) R−1/2(t
(−1/2)) + 5

�
(−3

2

)R1/2(t
(1/2)).

Since R1/2(t
(1/2)) = R−1/2(t

(1/2)), we have the solution

y(t) = y(−1/2)

�(1/2)
t(−1/2) + 5

�(−3/2)
t(1/2)

for t ∈
{
−1

2
,

1

2
,

3

2
, . . .

}
.

Example 3.6. Consider the problem �5/3y(t)+(1−α)�2/3y(t) = 0 for t = 0, 1, 2, . . ..

We shall look for a solution y(t) defined on

{
−1

3
,

2

3
,

5

3
, . . .

}
.
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Applying the R-transform to each side of the equation, we have

R−1/3(y(t)) = y(−1
3)

�(−1
3)

R−1/3(t
(−4/3) ∗ αt)

+ (1 − α)y(−1/3) + �2/3(y(t))|t=0

�(2
3)

R2/3(t
(−1/3) ∗ αt).

Using the step function ua(t) defined in [2, Example 3.93, page 125], we see the relation

Ra(f (t)ua(t)) = Ra+1(f (t)).

Then the solution of the fractional difference equation is

y(t) = y(−1/3)

�(−1
3)

(t(−4/3) ∗ αt) + (1 − α)y(−1
3) + �2/3(y(t))|t=0

�(2
3)

(�−2/3αt)u−1/3(t)

for t ∈
{
−1

3
,

2

3
,

5

3
, . . .

}
.
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