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Even though mutually unbiased bases and entropic uncertainty relations play an
important role in quantum cryptographic protocols, they remain ill understood.
Here, we construct special sets of up to 2n+1 mutually unbiased bases �MUBs� in
dimension d=2n, which have particularly beautiful symmetry properties derived
from the Clifford algebra. More precisely, we show that there exists a unitary
transformation that cyclically permutes such bases. This unitary can be understood
as a generalization of the Fourier transform, which exchanges two MUBs, to mul-
tiple complementary aspects. We proceed to prove a lower bound for min-entropic
entropic uncertainty relations for any set of MUBs and show that symmetry plays a
central role in obtaining tight bounds. For example, we obtain for the first time a
tight bound for four MUBs in dimension d=4, which is attained by an eigenstate of
our complementarity transform. Finally, we discuss the relation to other symmetries
obtained by transformations in discrete phase space and note that the extrema of
discrete Wigner functions are directly related to min-entropic uncertainty relations
for MUBs. © 2010 American Institute of Physics. �doi:10.1063/1.3477319�

I. INTRODUCTION

One of the central ideas of quantum mechanics is the uncertainty principle, which was first
proposed by Heisenberg1 for two conjugate observables. Indeed, it forms one of the most signifi-
cant examples showing that quantum mechanics does differ fundamentally from the classical
world. Uncertainty relations today are probably best known in the form given by Robertson,2 who
extended Heisenberg’s result to two arbitrary observables A and B. Robertson’s relation states that
if we prepare many copies of the state ��� and measure each copy individually using either A or
B, we have

�A�B �
1

2
�����A,B����� , �1�

where �X=	���X2���− ���X���2 for X� 
A ,B� is the standard deviation resulting from measuring
��� with observable X. The essence of �1� is that quantum mechanics does not allow us to
simultaneously specify definite outcomes for two noncommuting observables when measuring the
same state. The largest possible lower bound in Robertson’s inequality �1� is 1, which happens if
and only if A and B are related by a Fourier transform, that is, they are conjugate observables.
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Of particular importance to quantum cryptography is the case where A and B correspond to
measurements in two different orthonormal bases A= 
�a��a and B= 
�b��b in dimension d. If A and
B are related by the Fourier transform, for all basis vectors �a� of basis A and all vectors �b� of
basis B,

��a�b��2 =
1

d
. �2�

Any two bases satisfying this property are called mutually unbiased bases, or complementary
aspects, and the unitary that exchanges two mutually unbiased bases can be understood as a
Fourier transform. In the light of Robertson’s uncertainty relation �1�, it seems that bases that are
related by the Fourier transform should play a special role in our understanding of quantum
mechanics in the sense that they are the measurements that are most “incompatible.”

However, nature typically allows us to perform more than two measurements on any given
system, leading to the natural question of how we can determine “incompatibility” between mul-
tiple measurements. Clearly, due to its use of the commutator relation, the lower bound of �1� most
directly relates to the case of two measurements. Is there a natural way of quantifying uncertainty
for multiple measurements? And if so, what measurements might be most incompatible?

A. Entropic uncertainty relations

A natural measure that captures the relations among the probability distributions over the
outcomes for each observable is the entropy of such distributions. This prompted Hirschman3 to
propose the first entropic uncertainty relation for position and momentum observables. This rela-
tion was later improved by Beckner4 and Białynicki-Birula and Mycielski,5 where Ref. 5 shows
that Heisenberg’s uncertainty relation �1� is, in fact, implied by this entropic uncertainty relation.
Hence, using entropic quantities provides us with a much more general way of quantifying un-
certainty. Indeed, it was realized by Deutsch6 that other means of quantifying “uncertainty” are
also desirable for another reason: note that the lower bound in �1� is trivial when ��� happens to
give zero expectation on �A ,B�. Hence, it would be useful to have a way of measuring incompat-
ibility, which depends only on the measurements A and B and not on the state. Deutsch6 himself
showed that

1

2
�H��A����� + H��B������ � − log�1 + c�A,B�

2
 , �3�

where c�A ,B�ªmax
��a �b�� � �a��A , �b��B� and

H��A����� = − log max
a

��a����2 �4�

is the min-entropy arising from measuring the pure state ��� using the basis A �see Sec. III A for
more information on the entropic quantities we use�. If A and B are related by a Fourier transform,
then the right hand side of �3� becomes −log�1 /2+1 / �2	d��, where the minimum is achieved by
a state that is invariant under the Fourier transform. Since the Shannon entropy obeys H� · �
�H�� · �, Deutsch’s bound also holds for the Shannon entropy. Better lower bounds have since
been obtained for the Shannon entropy by Maassen and Uffink7 following a conjecture of Kraus.8

Their uncertainty relations are again strongest �in the sense that the lower bound is largest� when
the bases A and B are conjugate, that is, the two bases are related by a Fourier transform. Apart
from their role in understanding the foundations of quantum mechanics, these uncertainty relations
play a central role in cryptography in the noisy-storage model,9–13 quantum key distribution,14,15

information locking,16 and the question of separability.17 In particular, such relations are of im-
mediate practical interest in noisy-storage cryptography,11 where they may enable us to prove
security for a larger class of quantum memories.
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Here, we are concerned with measurements in multiple bases B0 , . . . ,BL−1. Entropic uncer-
tainty relations provide a natural way of quantifying incompatibility between more than two
measurements, by lower bounding

1

L
�
j=0

L−1

H�B j����� � cL �5�

for all states ���. We call a state ��� that minimizes the average sum of entropies a maximally
certain state. When H is the Shannon entropy, the largest bound we can hope to obtain for any
choice of bases is

cL =
L − 1

L
log d , �6�

since choosing ��� to be an element of one of the bases yields zero entropy when we subsequently
measure in the same basis. If �6� is indeed a lower bound to �5�, we will call the measurements
maximally incompatible with respect to the Shannon entropy. Note that this can only happen if ���
gives us full entropy45 when measured in any other basis, that is, the bases are all mutually
unbiased.

Curiously, however, it was shown that whereas being mutually unbiased is necessary, it is not
a sufficient condition to obtain maximally strong uncertainty relations for the Shannon entropy.18

In particular, there do exist large sets of up to 	d mutually unbiased bases in square dimensions for
which we do obtain very weak uncertainty relations.18 Recently, Ambainis19 showed that for any
three bases from the “standard” mutually unbiased bases construction20,21 in prime dimension, the
lower bound cannot exceed � 1

2 +o�1��log d for large dimensions. For dimensions of the form 4k
+3 and 8k+5, no further assumption is needed, but the proof assumes the generalized Riemann
hypothesis for dimensions of the form 8k+1. Furthermore, for any 0���1 /2, there always exist
k=d� of these bases such that the lower bound cannot be larger than � 1

2 +�+o�1��log d. Only if we
use the maximal set of d+1 mutually unbiased bases that can be found for any given prime power
dimension, do we obtain quite strong uncertainty relations.22,23

At present, we merely know that there do exist arbitrarily large sets of two outcome measure-
ments that do give us maximally strong uncertainty relations,24 and that in larger dimensions,
selecting a large amount of bases at random does provide us with strong relations25 �for a survey,
see Ref. 26�. Indeed, it remains an intriguing open question as to whether there even exist three
measurements with three outcomes in dimension d�2 that are maximally incompatible with
respect to the Shannon entropy.

B. Mutually unbiased bases

In the light of these questions, it is therefore natural to study the structure of mutually
unbiased bases �MUBs� to see whether we can identify additional properties that are sufficient for
obtaining strong uncertainty relations. In Ref. 27, Wootters and Sussman made the interesting
observation that for the maximal set of d+1 mutually unbiased bases coming from such construc-
tions as in Refs. 20 and 21 in dimension d=2n, the lower bound of the entropic uncertainty relation
in terms of the collision entropy given in Ref. 18 is tight, and the minimum is attained by a state
that is invariant under a unitary that cyclically permutes the set of all d+1 MUBs. A similar
unitary was noted to exist by Chau.28 Wootters and Sussman derived their transformation from
phase space arguments. Their unitary can, in fact, be easily generalized to cyclically permute L
bases whenever L divides d+1 �see Sec. III B 2�. The results in Ref. 27 have recently been
generalized by Appleby,29 who showed that in prime power dimensions of the form d=1 or
3 mod 4, there exists a unitary operation that cyclically permutes the first and second halves of the
full set of MUBs. This raises the pressing question of whether smaller sets of MUBs also exhibit
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such symmetries. And can we exploit such symmetries to obtain tight uncertainty relations? In
particular, is the minimizing state always an invariant of such a transformation as observed for two
bases in �3�?

Main result: We first show by an explicit construction that there exist sets of 2�L�2n+1
mutually unbiased bases in dimension d=2n with the property that there exists a unitary that
cyclically permutes all bases in this set whenever �a� L is prime and �b� L divides n or L=2n
+1. More specifically, we provide an explicit construction of MUBs B0 , . . . ,BL−1 with B j

= 
�b�j���b and a unitary U such that

U�b�j���b�j��U† = �b�j+1 mod L���b�j+1 mod L�� for all �b�j�� � B j . �7�

Furthermore, in dimension d=4, we actually find such a unitary for any set of L MUBs, where
2�L�5. Our approach exploits properties of the Clifford algebra, which might yield new insights
into the structure of these MUBs. It is entirely distinct from the phase space approach that was
used to construct such a unitary for the full set of d+1 MUBs.20 Note that our construction gives
at most O�log d� bases but shows that there is indeed an additional symmetry, which has previ-
ously gone unnoticed. For L=2 bases, U is simply the Fourier transform, and it would be inter-
esting to investigate the general properties of our transformation and whether it has applications in
other areas.

C. Min-entropic uncertainty relations

We then apply our transformation to the study of uncertainty relations in terms of the min-
entropy �see �4��. Since H� · ��H�� · �, this also provides us with bounds on uncertainty relations in
terms of the Shannon entropy. Of course, many forms of entropy could be considered when it
comes to quantifying uncertainty, and each has its merits. The min-entropy is of particular interest
in cryptography and is also related to the well studied extrema of the discrete Wigner function, as
we will discuss in Sec. III B 2. In particular, it will be easy to see that the average min-entropy for
the full set of L=d+1 MUBs can be bounded as

1

d + 1�
j=0

d

H��B j����� � − log�d · �max
	

W	
max + 1�� , �8�

where W	
max is the maximum value of the discrete Wigner function at the point 	 in discrete phase

space. Symmetries thereby play an important role in determining W	
max.

Second result: We prove a simple min-entropic uncertainty relation for an arbitrary set of L
mutually unbiased bases. For MUBs B0 , . . . ,BL−1, we obtain

1

L
�
j=0

L−1

H��B j����� � − log� 1

L
�1 +

L − 1
	d

� . �9�

For the case of two MUBs in dimension d, this bound is indeed the same as the bound in �3�. For
any small set of 2
L
d MUBs, our bound is slightly stronger than the previously obtained
bounds.30 We also prove the following alternate lower bound:

1

L
�
j=0

L−1

H��B j����� � − log�1

d
�1 +

d − 1
	L

� , �10�

which is stronger than �9� for the complete set of L=d+1 MUBs in dimension d. Clearly, when
L=d, the two bounds are equivalent.

We further show that �9� is, in fact, tight for L=4 MUBs in dimension d=4 stemming from
our construction, where the minimum is attained for an invariant state of the transformation U that
cyclically permutes all four bases. Even though this is a somewhat restricted statement, it is the
first time that a tight entropic uncertainty relation has been obtained for this case. The minimizing
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state here has an appealing symmetry property, just as for the case of L=2 bases in �3� where the
minimum is attained by a state that is invariant under the Fourier transform.

For the collision entropy H2, Wootters27 previously showed that the lower bound from Ref. 18
is attained by an invariant state when considering the full set of d+1 MUBs. Here, however, we
exhibit a tight uncertainty relation for these L=3 bases in d=4 for the collision entropy H2, which
has an entirely different structure and the minimum is not attained by an invariant state of our
transformation. Nevertheless, we have for the first time a tight entropic uncertainty relation for all
possible MUBs in a dimension larger than the trivial case of d=2 where the Bloch sphere repre-
sentation makes the problem easily accessible. In d=4, we have a tight relation for H� for L
=2,4 and tight relations for H2 for L=3,5.

Our result indicates that due to the different properties of the minimizing state for different
numbers of bases, the problem may be even more daunting than previously imagined. Yet, our
work shows that in each case the minimizing state is by no means arbitrary. It has a well defined
�albeit different� structure in each of the cases.

Third result: For some sets of MUBs we do obtain, for the first time, significant insight into
the structure of the maximally certain states. In particular, we note in Sec. III B 1 that for L
mutually unbiased bases, the state that minimizes the min-entropic uncertainty relations is an
invariant of a certain unitary whenever L divides d+1 for d=2n.

II. SYMMETRIC MUBS

Before explaining our construction of mutually unbiased bases for which there exists a unitary
that cyclically permutes them, let us define the notions of MUBs more formally and recall some
known facts. Let B1= 
�0�1�� , . . . , �d−1�1��� and B2= 
�0�2�� , . . . , �d−1�2��� be two orthonormal bases
in Cd. They are said to be mutually unbiased if ��a�1� �b�2���=1 /	d for all a ,b� 
0, . . . ,d−1�. A set

B0 , . . . ,BL−1� of orthonormal bases in Cd is called a set of mutually unbiased bases if each pair of
bases is mutually unbiased. For example, the well-known computational and Hadamard basis are
mutually unbiased. We used N�d� to denote the maximal number of MUBs in dimension d. In any
dimension d, we have that N�d��d+1.21 If d= pk is a prime power, we have N�d�=d+1 and
explicit constructions are known.21,20 Other constructions are known that give less than d+1
MUBs in other dimensions.31–34 However, it is still an open problem whether there exists a set of
seven �or even four!� MUBs in dimension d=6.

A. Clifford algebra

Our construction of mutually unbiased bases makes essential use of the techniques developed
in Ref. 21, together with the properties of the Clifford algebra. The Clifford algebra is the asso-
ciative algebra generated by operators �0 , . . . ,�2n−1 satisfying 
�i ,� j�=0 for i� j and �i

2= I. It has
a unique representation by Hermitian matrices on n qubits �up to unitary equivalence� that can be
obtained via the famous Jordan–Wigner transformation,35

�2j+1 = Y ��j−1�
� Z � I��n−j�, �11�

�2j = Y ��j−1�
� X � I��n−j� �12�

for j=0, . . . ,n−1, where we use X, Y, and Z to denote the Pauli matrices. Furthermore, we let

�2n ª i�0 . . . �2n−1. �13�

Note that in dimension d=2, these are just the familiar Pauli matrices, �0=X, �1=Z, and �2=Y.
Of particular importance to us will be the fact that we can view the operators �0 , . . . ,�2n−1 as

2n orthogonal vectors forming a basis for R2n. In particular, for any orthonormal transformation
T�O�2n� that when applied to the vector v= �v�0� , . . . ,v�2n−1���R2n gives ṽ= �ṽ�1� , . . . , ṽ�2n−1��
=T�v�, there exists a unitary U�T� such that
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U�T���
j

v j� jU�T�† = �
j

ṽ j� j . �14�

The orthonormal transformation that is particularly interesting to us here is the one that cyclically
permutes the basis vectors. As described above, we can find a corresponding unitary U=U�T�,
which cyclically permutes the basis vectors �0 ,�2 , . . . ,�L−1. An explicit construction can be found
in Appendix A. This symmetry can be extended to SO�2n+1� �see, e.g., Ref. 24�. It will also be
useful that the set of d2 operators

S = 
I,� j,i�i� j,�i� j�k, . . . ,i�1 . . . �2n� �15�

forms an orthogonal basis46 for d�d Hermitian matrices in d=2n.36

B. Construction

To construct mutually unbiased bases, we follow the procedure outlined in Ref. 21, but now
applied to a subset of the operators in S \ 
I�. That is, we will group operators into classes of
commuting operators, i.e., sets 
C0 ,C1 , . . . ,CL−1 �C j �S \ 
I�� of size �C j�=d−1 such that

�i� the elements of C j commute for all 0� j�L−1 and
�ii� C j �Ck=� for all j�k.

It has been shown in Ref. 21 that the common eigenbases of such classes form a set of L MUBs.
First of all, note that no class can contain two generators � j and �k since they do not commute.

When forming the classes we hence ensure that each one contains exactly one generator � j, which
clearly limits us to constructing at most 2n+1 such classes. The difficulty in obtaining a parti-
tioning that is suitable for our purpose is to ensure that the unitary U that cyclically permutes the
generators �0 , . . . ,�L−1 also permutes the corresponding bases by permuting products of operators
appropriately. We show in Appendix B that our general construction achieves the following.

Theorem 2.1: Suppose that 2�L�2n+1 is prime, and either L divides n or L=2n+1 . Then
in dimension d=2n , there exist L mutually unbiased bases B0 , . . . ,BL−1 for which there exists a
unitary U that cyclically permutes them

UB j = B j+1 mod L. �16�

C. Examples

Let us consider two simple examples of such classes in dimension d=4. These are not ob-
tained from our general construction, but nevertheless provide us with the necessary intuition. For
L=3 MUBs, the classes are given by

C0 = 
�0,i�1�4,i�3�2� ,

C1 = 
�1,i�2�4,i�3�0� ,

C2 = 
�2,i�0�4,i�3�1� . �17�

It is easy to see that the unitary U that achieves the transformation �0→�1→�2→�0, but leaves
�3 and �4 invariant, cyclically permutes the bases given above. For the collision entropy H2, the
minimum is attained for an eigenstate of the commuting operators �0, i�2�4, and i�3�1. This
minimizing state also shows that the well known bound for H2 �see, e.g., Ref. 26� can be tight.

For L=4 MUBs, we obtain the classes

C0 = 
�0,i�1�4,i�2�3� ,
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C1 = 
�1,i�2�4,i�3�0� ,

C2 = 
�2,i�3�4,i�0�1� ,

C3 = 
�3,i�0�4,i�1�2� . �18�

It is easy to see that the unitary U that achieves the transformation �0→�1→�2→�3→�0, but
leaves �4 invariant, cyclically permutes the bases given above. For L=4 classes, the minimum in
the entropic uncertainty relation for H� is attained for a state that is invariant under the transfor-
mation U. However, we also know that for L=4 or L=8 classes in dimension d=8, no partitioning
of operators is possible that satisfies our requirements. Thus, for what values of L and d such a
unitary can be found remains an interesting open question.

III. UNCERTAINTY RELATIONS

We now investigate the relationship between the observed symmetries and the entropic un-
certainty relations.

A. Entropic quantities

Before comparing different uncertainty relations, we first provide a short introduction to all
the entropic quantities we will use. The expert reader may safely skip this section. In general, the
Rényi entropy37 of order 	 of the distribution obtained by measuring a state ��� in the basis B
= 
�b��b, is given by

H	�B����� =
1

1 − 	
log�� �

b�B
���b����2�	1/	−1� . �19�

Indeed, the Shannon entropy forms a special case of the Rényi entropy by taking the limit 	
→1, i.e., H1� · �=H� · �, where we omit the subscript. Of particular importance are the min-entropy,
for 	→�,

H��B����� = − log�max
b�B

��b����2� , �20�

and the collision entropy

H2�B����� = − log �
b�A

���b����2�2. �21�

We have

log d � H� · � � H2� · � � H�� · � � 0, �22�

and hence uncertainty relations for H	 also provide us with a bound on uncertainty relations for
H whenever 	�.

Note that intuitively, the min-entropy is determined by the highest peak in the distribution and
most closely captures the notion of “guessing.” To see why it is a more useful quantity in cryp-
tography than the Shannon entropy, consider the following example distribution PX. Let X
= 
0,1�n and let x0=0 , . . . ,0 be the all 0 string. Suppose that PX�x0�=1 /2+1 / �2n+1� and PX�x�
=1 / �2n+1� for x�x0, i.e., with probability 1/2 we choose x0 and with probability 1/2 we choose
one string uniformly at random. Then H�X��n /2, whereas H��X��1! If x would correspond to
an encryption key used to encrypt an n bit message, we would certainly not talk about security if
we can guess the key with probability at least 1/2! Yet, the Shannon entropy is quite high.
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B. Min-entropy and symmetry

Apart from its cryptographic applications, min-entropic uncertainty relations are appealing
since the problem of determining tight uncertainty relations can be simplified considerably in the
presence of symmetries. Furthermore, these relations bear an interesting relation to the extrema of
the discrete Wigner function. First of all, note that for the min-entropy we have by Jensen’s
inequality that

1

L
�
j=0

L−1

H��B j��� �23�

�− log
1

L
�
j=0

L−1

max
b�j�

tr���b�j���b�j��� , �24�

where the inequality becomes equality if all terms tr���b�j���b�j��� are the same. For b�

= �b�0� , . . . ,b�L−1��� 
0, . . . ,d−1��L, define

Pb� ª �
b�j�

�b�j���b�j�� . �25�

Note that determining a tight lower bound to �24� is thus equivalent to determining

max
b�

max
�

tr��Pb�� . �26�

Clearly, any � such that

Pb� � �I for all b� �27�

thus gives us a lower bound for �23�. For any set of bases, this makes the problem of finding a
bound more approachable as it reduces the problem to finding the largest eigenvalue for any
operator Pb�. In particular, it can be phrased as a semidefinite program to minimize � such that �27�
holds for all b� .

1. Symmetries

It is now easy to see why symmetries simplify our goal of determining tight uncertainty
relations.

Lemma 3.1: Suppose that for every b� � 
0, . . . ,d−1� there exists a unitary Ub� such that
Ub��b�j��= �b�j+1 mod L�� . Then there exists a b�� such that the minimum in (23) is attained for a state
� that is invariant under Ub�� .

Proof: First of all, note that

1

L
�
j=0

L−1

�Ub�
j �Pb��Ub�

j �† = Pb� , �28�

and hence, for �sym= �1 /L�� j�Ub�
j �†��Ub�

j �,

tr��symPb�� = tr��Pb�� . �29�

In particular, this holds for the state �= ������ corresponding to the eigenvector ��� with the largest
eigenvalue of Pb�� . When looking for the minimizing state on the right hand side of �23� we can
thus restrict ourselves to states that are invariant under U

b��
j

. Note that in this case, we furthermore

have that
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tr��sym�b�j���b�j��� =
1

L
tr��Pb�� , �30�

meaning that the inequality �23� is tight in case of such a symmetry, which is our claim. �

The question, of course, remains whether such unitaries do exist in general. Wootters and
Sussman20 showed that there exists a unitary U that cyclically permutes the set of all d+1 MUBs
for d=2n by constructing a unitary that corresponds to a rotation around the origin in phase space.
Clearly, by considering the unitary Uk, one can trivially adapt their construction to obtain a unitary
that cyclically permutes L MUBs whenever L ·k=d+1. By first translating any point in the phase
space to the origin, then applying the transformation Uk, and finally translating the origin back to
the original point, one can obtain the desired unitaries Ub� that enable us to find tight bounds for the
min-entropic uncertainty relations. This is the first time we gain significant insight into the struc-
ture of the states that minimize �23�.

Note that our construction only gives unitaries Ub� for b� = �c , . . . ,c� for any c� 
0, . . . ,d−1�.
This means that our complementarity transform U leads to tight bounds only if the largest eigen-
value of any Pb� happens to occur for a b� of this form. This is, for example, the case for L=4 in
d=4, where we do not obtain a unitary from the phase space approach in Ref. 20.

2. Discrete Wigner function

To see how finding a lower bound for min-entropic uncertainty relations for d+1 MUBs
relates to finding the extrema of the discrete Wigner function, let us first recall the properties of the
discrete Wigner function. The discrete phase space is a two-dimensional vector space over a finite
field Fd, where here we focus on the case of d=2n. For every state �, we can associate a function
W	 with every point 	 in the discrete phase space, known as the discrete Wigner function. For
completeness, we provide a short summary on how to determine W	; a detailed account can be
found in Ref. 38. First of all, note that the d2 points of the discrete phase space can be partitioned
into d parallel lines, each of which contains d points. Any such partition is called a striation, and
it is known that d+1 such striations can be found.38 One may now define the discrete Wigner
function by relating each striation to one of the d+1 possible mutually unbiased bases.38 Let �b,j

denote the bth line in the striation j. With each such line, we associate a projector,

Q��b,j� = �b�j���b�j�� , �31�

onto the bth element of the basis B j in a specific order so as to satisfy certain symmetry
constraints.38 Defining the phase space point operator

A	 ª �
�b,j

	��b,j

Q��b,j� − I , �32�

one can now define the discrete Wigner function as

W	 ª
1

d
tr�A	�� . �33�

The extrema of the discrete Wigner function are defined as the minimum and maximum of �33�
over quantum states �.

Note that when considering L=d+1 mutually unbiased bases, each point 	 in the discrete
phase space can be contained in exactly one line from each basis, as all lines in a striation, i.e., one
basis, are parallel. Hence, there is a one-to-one correspondence between points 	 in discrete phase
space and vectors b� � 
0, . . . ,d−1��d+1. In terms of the phase space operator, this means that
A	+ I= Pb�. Note that the maximum of the discrete Wigner function
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W	
max = max

�

1

d
tr�A	�� �34�

is simply the largest eigenvalue of A	 �or Pb� − I� up to a factor of 1 /d. We thus have that

� ª d · �max
	

W	
max + 1� �35�

satisfies Pb� ��I and the maximum of the discrete Wigner function provides a lower bound to the
min-entropic uncertainty relations as given in �8�. The extrema W	

max were evaluated numerically
in Ref. 39 for small d. Note, however, that as noted in Sec. III B 1, one may use symmetries to
solve the problem of determining W	

max directly.

C. A simple bound

As mentioned in Sec. III B, the problem of finding a lower bound for the average min-entropy
reduces to the problem of finding the maximum eigenvalue of the operator Pb� defined in �25�. In
Appendix C, we use a result due to Schaffner30 obtained using the techniques of Kittaneh40 to
show that for any set of L mutually unbiased bases in dimension d, the maximum eigenvalue of Pb�

is bounded by

Pb� �
1

L
�1 +

L − 1
	d

I for all b� . �36�

Using this, we obtain the following simple bound for the average min-entropy in Appendix C.
Lemma 3.2: Let B0 , . . . ,BL−1 be a set of mutually unbiased bases in dimension d=2n . Then

1

L
�
j=0

L−1

H��B j����� � − log� 1

L
�1 +

L − 1
	d

� . �37�

For the case of L=2 MUBs in dimension d, our bound exactly matches the well-known result
of Deutsch �see �3��. For L�2, the only other known lower bound for the average min-entropy is
the one obtained in Ref. 30, where it is shown that for a set of L
	d MUBs in dimension d
=2n, the following holds:

1

L
�
j=0

L−1

H��B j����� � − log� 1

L
�1 +

L − 1
	d

max
0�i
j�L−1

	�Xi��Xj�� , �38�

where �Xi� denotes the Hamming weight of the n-bit string Xi� 
0,1�n. Since

max
0�i
j�L−1

	�Xi��Y j� � 1, �39�

our bound in �37� is clearly tighter than �38�. The reason we obtain this slight improvement over
Ref. 30 is that we reduce the problem directly to an eigenvalue problem without going through
other techniques as in Ref. 30.

Using an alternate approach involving a Bloch spherelike representation of the basis vectors
�b�j��, we show that the maximum eigenvalue of Pb� can be bound differently as follows:

Pb� �
1

d
�1 +

d − 1
	L

I for all b� . �40�

As we show in the Appendix C, this implies the following.
Lemma 3.3: Let B0 , . . . ,BL−1 be a set of mutually unbiased bases in dimension d=2n . Then
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1

L
�
j=0

L−1

H��B j����� � − log�1

d
�1 +

d − 1
	L

� . �41�

Notice that this alternate bound on the min-entropy is stronger than �37� when L�d. In
particular, for the complete set of d+1 MUBs in dimension d, this alternate bound in �41� is
stronger than any previously known bounds. When L=d, the two bounds that we derive are indeed
equivalent. See Figs. 1 and 2 for a comparison of our bounds in dimensions d=4 and d=8
respectively.
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FIG. 1. �Color online� Average min-entropy for different sets of MUBs in dimension d=4. The crosses denote numerically
computed minima of the average min-entropy for MUBs obtained using our construction. The bound in �37� is clearly tight
for both L=3 and L=4 MUBs. The second analytical bound in �41� is stronger than �37� for L=d+1=5 bases. The circle
denotes the average min-entropy for the invariant states given in �43�. For four MUBs in d=4, the minimum of the average
min-entropy is indeed attained by states invariant under U.
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FIG. 2. �Color online� Average min-entropy for different sets of MUBs in dimension d=8. The bound in �37� is close to
tight for L=3 MUBs in dimension d=8. The second analytical bound in �41� is stronger than �37� for L=d+1=9 bases.
The circle denotes the average min-entropy for invariant states constructed in dimension d=8, similar to the states
described in �43�. For six MUBS in d=8, the minimum of the average min-entropy is nearly attained by states invariant
under U.
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Finally, we provide an example of a set of MUBs where Lemma 3.2 is tight. For the set of
L=4 MUBs in dimension d=4 constructed from the classes given in �18�, our bound

1

4�
j=0

3

H��B j����� � − log�1

4
�1 +

3

2
� � 0.678 �42�

is tight, and the minimum is indeed achieved by a state that is invariant under the unitary trans-
form that cycles through the bases, as defined in �16�. As noted in Sec. III B 1, in this case, the
largest eigenvalue of Pb� occurs for a b� of the form b� = �c , . . . ,c� for any c� 
0, . . . ,3�. The states
that achieve the lower bound are, in fact, eigenvectors of U, which can be expressed in terms of
the MUB basis vectors as follows:

��b� =
1

2�
j=0

3

exp�i�j/4��b�j��, b � 
0, . . . ,3� . �43�

IV. CONCLUSIONS AND OPEN QUESTIONS

We have shown that there exist up to 2�L�2n+1 mutually unbiased bases in dimension
d=2n for which we can find a unitary that cyclically permutes these bases whenever L is prime and
L divides n or L=2n+1. This unitary is found by exploiting symmetry properties of the Clifford
algebra. Our approach is quite distinct from the phase space approaches that were previously used
to show that there exists such a unitary for the set of all d+1 MUBs,20 or for two halves of the full
sets of MUBs when d=1 or 3 mod 4.29 Our unitary can be understood as a generalization of the
Fourier transform, and it would be interesting to see whether it has other applications in quantum
information.

It is an interesting open question to generalize our result to other dimensions or to a different
number of bases. In prime dimension, one could consider the generalized Clifford algebra.41 Even
though it does not have the full SO�2n+1� symmetry, it nevertheless exhibits enough symmetry to
allow an exchange of generators. This stems from the way the �generalized� Clifford algebra is
obtained,41,42 which permits any transformation that preserves the p-norm for p�2 in dimension
p. Yet, this is only the first step of our construction. As for generalizing our result to any L bases
in dimension d=2n, we note that it is indeed possible to find such classes even when L is not
prime, as our example for L=4 in dimension d=4 shows. However, we also know that for L=8
classes in dimension d=16, no partitioning of operators can be found satisfying our requirements.
It is an interesting open question as to when such a partitioning can be found, in general.

Finally, we use our complementarity transform to obtain a tight uncertainty relation for the
min-entropy for L=4 bases in dimension d=4. No tight relations are known for this case before.
We also use a slight generalization of the unitary from Ref. 20 to show that when d=2n and L
divides d+1, the minimizing state is an invariant of a certain unitary. This is the first time that
significant insight has been obtained on the structure of the minimizing states for min-entropic
uncertainty relations for mutually unbiased bases. It is an exciting open question to obtain tight
relations, in general, and understand the structure of the minimizing states.
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APPENDIX A: CONSTRUCTING THE UNITARY U

It is well known that for any orthonormal transformation T�O�2n� there exists a correspond-
ing unitary transformation U�T�,43 where we refer to Ref. 44 for instructions on how to obtain
explicit constructions. The transformation we wish to construct here, of the form U�T�� jU�T�†
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→�k, is thereby particularly simple to obtain. It can be built up from successive rotations in the
plane spanned by only two “vectors,” � j and �k. More specifically, we first construct a unitary that
corresponds to a rotation around an angle � /2 in the plane spanned by � j and �k, bringing � j to
�k. This is simply a reflection around the plane orthogonal to the midvector between � j and �k,
followed by a reflection around the plane orthogonal to �k. Using the geometric properties of the
Clifford algebra, this corresponds to the unitary

Rj→k = �k�� j + �k�/	2. �A1�

To obtain the desired unitary, we now compose a number of such rotations. Let R̂j,k=Rj→k if k is

odd, and R̂j,k=Rk→j if k is even. Furthermore, let F= I if L is odd, and F=�2n�L−1 if L is even.
Note that �2n�L−1 is the unitary that flips the sign of �L−1 but leaves all � j for j�2n and j� �L
−1� invariant. We may then write

U�T� = FR̂0,1R̂0,2 . . . R̂0,L−1. �A2�

This unitary hence transforms �0→�1→ . . . →�L−1→�0 but leaves all other generators � j for
j�L invariant. A similar unitary can be found for any transformation T�SO�2n+1�,24 but it is
more difficult to construct explicitly.

APPENDIX B: CONSTRUCTING MAXIMALLY COMMUTING CLASSES OF CLIFFORD
GENERATORS

In �17� and �18� we gave examples of constructing L=3 and L=4 MUBs in dimension d=4
such that they are cyclically permuted under the action of a unitary U that permutes the Clifford
generators in d=4. Here, we show by a general construction that it is always possible to construct
L such classes in dimension d=2n whenever L �n and L is prime. We also outline a construction for
L=2n+1 classes, given a unitary U that cycles through all 2n+1 Clifford generators, when 2n
+1 is prime.

Given the 2n generators of the Clifford algebra in dimension d=2n, we consider the set

S = 
I,� j,i� j�k,� j�k�l, . . . ,i�0�1 . . �2n−1 � �2n� . �B1�

To generate a set of L�2n+1 MUBs, we seek to group the elements of S into L classes of
commuting operators, i.e., sets 
C0 ,C1 , . . . ,CL−1 �C j �S \ 
I�� of size �C j�=d−1 such that

�P1� the elements of C j commute for all 0� j�L−1,
�P2� the classes are all mutually disjoint, that is,

C j � Ck = � for all j � k , �B2�

�P3� the unitary U that cyclically permutes the generators �0 , . . . ,�L−1 also permutes the cor-
responding classes by permuting products of operators appropriately.

Our approach in obtaining such a set of classes is to first pick d−1 elements for the class C0 and
then generate the rest of the classes by repeated application of U to the elements of C0. This
automatically ensures property �P3�. To ensure �P1� and �P2�, the d−1 operators C0
�
O1 ,O2 , . . .Od−1� must satisfy the following:

�i� for any pair Oi ,O j �C0, �Oi ,O j�=0, and
�ii� the operators in C0 cycle through mutually disjoint sets of operators under the action of U.

To understand condition �ii� better, consider an operator Oi in C0. Then, by construction, Uk�Oi�
�Ck for 0�k�L−1, assuming we construct a total of L classes. In addition, property �ii� implies
that Uk�Oi��C j for any j�k. In other words, given any two operators Oi ,O j �C0 that cycle
through the sets
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Si = 
Uk�Oi��0 � k � L − 1� �B3�

and

Sj = 
Uk�O j��0 � k � L − 1� , �B4�

respectively, under the action of U, property �ii� demands that Si�Sj =� for all i� j and i , j
=1,2 , . . . ,d−1.

Finally, we note that no class can contain two generators � j and �k since they do not com-
mute. When forming the classes we hence ensure that each one contains exactly one generator � j,
which we refer to as the singleton �-operator of the class, as opposed to the rest of the elements,
which will be products of �-operators. The fact that each class can contain at most one singleton
operator limits us to constructing a maximum of 2n+1 such classes.

1. Mathematical tools

Before proceeding to outline our construction, we establish some useful mathematical facts
which will help motivate our algorithm for the construction of mutually disjoint classes. For the
rest of the section, we will work with a set of p �-operators 
�0 ,�2 , . . . ,�p−1� that are cycled under
the action of U, as follows:

U:�0 → �1 → . . . �p−1 → �0. �B5�

In other words, we are given a set of �-operators whose cycle-length is p.

2. Length-2 operators

First, we consider sets of products of two �-operators of the form �i� j, which we call length-2
operators. It is convenient to characterize such pairs in terms of the spacing—�S�—between the
operators that constitute them. The spacing function S, for a given set of p operators, is simply
defined as S��i� j�= �j− i�mod p. Then, the following holds.

Lemma B.1: (Unique spacings imply nonintersecting cycles) The action of U on any length-2
operator �i� j leaves its spacing function S� . � invariant. Thus, length-2 operators that have unique
spacings cycle through mutually disjoint sets of operators under the action of U .

Proof: Recall, U :�i→��i+1�mod p. It clearly follows that

U:S��i� j� → S���i+1�mod p��j+1�mod p�

= �j − i�mod p

= S��i� j� . �B6�

�

3. Higher length operators

Similar to defining length-2 operators, we refer to any product of � �-operators as a length-�
operator. For operators of length higher than 2, it becomes convenient to refer to them using their
corresponding index sets. For example, the operator �i1

�i2
. . .�i�

will be simply denoted by the
index set �i1 , i2 , . . . i��. In the following lemma, we obtain a condition for any set of length-�
operators to cycle through mutually disjoint sets under the action of U.

Lemma B.2: (Mutually disjoint cycles for length � ) Suppose the length-� operators (for 3
��� p−1 ) that belong to the class C0 are such that they correspond to index sets �i1 , i2 , . . . , i��
which all sum to the same value

i1 + i2 + . . . + i� = c� mod p, ∀ �i1,i2, . . . ,i�� � C0. �B7�

Then, no given index set of length � can belong to more than one class, for prime values of p .
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Proof: Given the operators 
�i1
�i2

. . .�i�
��C0 such that the corresponding index sets

�i1 , i2 , . . . , i�� sum to

i1 + i2 + . . . + i� = c� mod p, ∀ �i1,i2, . . . ,i�� � C0. �B8�

Under the action of U, these index sets change to

�i1,i2, . . . ,i�� → �i1
�1�,i2

�1�, . . . ,i�
�1��

= �i1 + 1,i2 + 1, . . . ,i� + 1�mod p . �B9�

For any index set �i1
�1� , i2

�1� , . . . , i�
�1���C1, the sum of the indices corresponding to the new operators


�i
1
�1��i

2
�1� . . .�i

�
�1���C1 becomes

i1
�1� + i2

�1� + . . . + i�
�1� = �c� + ��mod p . �B10�

Proceeding similarly, the corresponding operators in the class Ck have index sets �i1
�k� , i2

�k� , . . . , i�
�k��

that sum to

i1
�k� + i2

�k� + . . . + i�
�k� = �c� + k��mod p �B11�

for all �i1
�k� , i2

�k� , . . . , i�
�k���Ck. Thus, starting with a constraint on the length-� operators in C0, we

have obtained a constraint on the corresponding operators in a generic class Ck.
Now, to arrive at a contradiction, suppose an index set �j1 , j2 , . . . , j��, whose indices 
jm�m take

values from the set 
0,1 , . . . , p−1�, belongs to two different classes, Ck and Ck� �with k�k��. The
constraint imposed by �B11� implies that

�c� + k��mod p = �c� + k���mod p

⇒�k − k��� mod p = 0. �B12�

Without loss of generality, let k�k�. Since we can form at most p classes, the difference �k
−k�� can be at most �p−1�. Finally, since �� p−1, condition �B12� cannot be satisfied for prime
values of p. �

Recall that our approach to constructing any p classes is to first construct the class C0 and then
obtain the rest by successive application of U. Therefore, the fact that any index set of a certain
length � cannot belong to more than one class implies that each length-� operator in C0 cycles
through a unique set of length-� operators under U. In other words, the length-� operators cycle
through mutually disjoint sets, as desired.

Lemma B.2 thus provides us with a sufficient condition for the set of length-� operators in C0

to cycle through mutually disjoint sets under U, given a set of �-operators whose cycle-length is
prime-valued. We only need to ensure that the length-� operators in the first class that we con-
struct, C0, correspond to index sets that all sum to the same value. This condition is, of course,
subject to the constraint that the maximum allowed length for the operators in C0 �and by exten-
sion, in any class� is p−1.

4. Constructing 2n+1 prime classes

As a warm-up, we construct L=2n+1 classes in dimension d=2n when 2n+1 is prime. This
case is particularly easy and illustrates how the results of the previous sections will be used in
general.

Theorem B.3: (2n+1 prime classes) Let G�full�= 
�0 , . . . ,�2n� denote the complete set of
�2n+1� � -operators, and let U be the unitary that cycles through all of them, that is,

U:�0 → �1 . . . �2n−1 → �2n → �0. �B13�

If 2n+1 is prime, then there exist 2n+1 classes C0 ,C1 , . . .C2n satisfying properties (P1)–(P3).

082201-15 Symmetric MUBs and entropic uncertainty relations J. Math. Phys. 51, 082201 �2010�

Downloaded 04 Oct 2010 to 131.215.220.185. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/about/rights_and_permissions



Proof: We prove the existence of 2n+1 classes by construction. We first outline an algorithm
to pick d−1 operators that constitute the class C0. The remaining classes are easily obtained by the
application of U to the elements of C0. Then, we make use of Lemmas B.1 and B.2 to prove that
the classes obtained through our construction do satisfy the desired properties.

Algorithm:

�1� Pick one of the elements of G�full�, �0, as the singleton operator.
�2� Pair up the remaining operators in G�full� to form �n−1� length-2 operators which commute

with �0, as follows:

L2 = 
�1�2n,�2�2n−1, . . . , . . . ,�n−2�n+3,�n−1�n+2� , �B14�

where L2 denotes the set of length-2 operators in C1. Since we have left out the pair �n�n+1
in the middle, we get, �L2�=n−1.

�3� Form higher length operators that commute with L2� 
�0� by combining �0 with appropriate
combinations of the length-2 operators. Any operator of even length �=2j is created by
combining i pairs in L2. And any operator of odd length �=2j+1 is created by appending �0
to a length-2j operator.

Denoting the sets of length-3 operators as L3, length-4 operators as L4, and in general, the set
of length-i operators as Li, we have

�L3� = �L2� = n − 1,

�L4� = �n − 1

2
, �L5� = �L4� ,

�L6� = �n − 1

3
, �L7� = �L6� ,

] ]

�L2n−2� = �n − 1

n − 1
 = 1, �L2n−1� = �L2n−2� .

Putting together the operators from �1�, �2�, and �3�, we get the desired cardinality for the class
C0 as follows:

�C0� = 1 + �n − 1� + �
i=3

2n

�Li�

= 1 + 2�n − 1� + 2�n − 1

2
 + 2�n − 1

3
 + . . . + 2�n − 1

n − 1


= 2�
i=0

n−1 �n − 1

i
 − 1

= 2�2n−1� − 1 = 2n − 1 = d − 1. �B15�

The rest of the classes are generated by successive applications of the unitary U to the
elements of C0 so that U :Ci→C�i+1�mod 2n+1.
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It is easy to see that the elements of each class satisfy property �P1� above—the different
length operators have been picked in such a way as to ensure that they all commute with each
other. Similarly, by construction, they satisfy property �P3�. It only remains to prove property �P2�
that the classes are all mutually disjoint.

The elements of L2 correspond to the following set of spacings:

S�L2� � 
2n − 1,2n − 3, . . . ,5,3� , �B16�

which are all distinct. So by Lemma B.1, the elements of L2 cycle through mutually disjoint sets
of length-2 operators.

For higher length operators, we first show that our construction meets the conditions of
Lemma B.2. For the class C0, the elements of L2 correspond to index sets that satisfy

L2�C0� = 
�i1,i2��i1 + i2 = 0 mod�2n + 1�� . �B17�

The length-2 operators of a generic class Ck similarly satisfy

L2�Ck� = 
�i1,i2��i1 + i2 = 2k mod�2n + 1�� . �B18�

Since higher length operators are essentially combinations of length-2 operators and the
singleton operator, conditions similar to �B18� hold for higher length index sets as well. Since
operators of even length �=2j contain j pairs from L2, the corresponding index sets in C0 satisfy

i1 + i2 + . . . + i2j = 0 mod�2n + 1�, ∀ �i1,i2, . . . ,i2j� � C0. �B19�

Similarly, since the odd length operators have �0 appended to the even length operators, the
index sets of length �=2j+1 in C0 satisfy

i1 + i2 + . . . + i2j+1 = 0 mod�2n + 1�, ∀ �i1,i2, . . . ,i2j+1� � C0. �B20�

To sum up, for any 3���2n, our construction ensures that index sets of length-� belonging
to C0 sum to the same value. The conditions of Lemma B.2 are therefore satisfied, with the
quantity c� in �B7� taking the value c�=0 for all �=3, . . . ,2n. Now, we can simply evoke Lemma
B.2 to prove that when 2n+1 is prime, the higher length operators in C0 cycle through mutually
disjoint sets of operators. �

5. Constructing L �n classes for prime values of L

Next, we show that it is possible to obtain an arrangement of operators into L classes in
dimension 2n when L is prime and L �n, such that the unitary U that cyclically permutes L
�-operators also permutes the corresponding classes.

Theorem B.4: (L �n classes for prime L ) Suppose U is a unitary that cycles through sets of
L � -operators from the set G�full� \ 
�2n� in dimension 2n , where L is prime and L �n . Then there
exist L classes C0 ,C1 , . . .CL−1 that satisfy properties (P1)–(P3).

Proof: Note that since L �n, we have n=rL for some positive integer r. The set of 2n Clifford
generators �0 ,�1 , . . . ,�2n−1 can then be partitioned into 2r sets as follows:

G�0� = 
�0,�1, . . . ,�L−1� ,

G�1� = 
�L,�L+1, . . . ,�2L−1� ,

] ]
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G�2r−1� = 
��2r−1�L,��2r−1�L+1, . . . ,�2n−1� . �B21�

Without loss of generality, we can assume that the unitary U is constructed such that it cyclically
permutes the L operators within each set as follows:

U:�0 → �1 → . . . → �L−1 → �0,

�L → . . . → �2L−1 → �L,

]

��2r−1�L → . . . → �2n−1 → ��2r−1�L.

Once again, we begin with an algorithm for picking d−1 elements for the class C0. The
algorithm closely follows the one outlined in the previous section, barring some minor modifica-
tions.

Algorithm:

�1� The “middle” element from G�1�, ��L−1�/2, is picked as the singleton element of C0.
�2� The �n−1� length-2 operators that commute with ��L−1�/2 are picked as follows:

�a� L−3
2 pairs are picked from G�0� \ 
��L−1�/2�,

L2
�0� = 
�1�L−1,�2�L−2, . . . ,��L−3�/2��L+3�/2� ,

leaving �0 and ��L+1�/2 unused.
�b� L−1

2 pairs are picked from each of the sets G�1� through G�2r−1�,

L2
�1� = 
�L+1�2L−1,�L+2�2L−2, . . . , . . . ,�L+�L−1�/2�L+�L+1�/2� ,

]]

L2
�2r−1� = 
��2r−1�L+1�2n−1,��2r−1�L+2�2n−2, . . . ,��2r−1�L+�L−1�/2��2r−1�L+�L+1�/2� ,

leaving the first operator in each set unused.
�c� Finally, the unused �-operators from different sets are put together as specified below to

get the remaining r length-2 operators,

L2
�2r� = 
�0�L,�2L�3L, . . . ,��2r−2�L��2r−1�L� .

The set of length-2 operators is then given by

L2 = L2
�0� � L2

�1� . . . � L2
�2r−1� � L2

�2r�,

which gives �L2�= L−3
2 + �2r−1�� L−1

2
�+r=rL− 2r−2

2 +r=n−1.

�3� Pick higher length operators from S that commute with ��L−1�/2 and L2 by combining ��L−1�/2
with appropriate combinations of the length-2 operators. As before, any even-length operator
of length �=2i is obtained by combining i length-2 operators from L2. Any operator of
odd-length �=2i+1 is created by appending ��L−1�/2 to a length-2i operator.

Putting together all the operators created in steps �1�–�3�, we get the desired cardinality for the
class �see �B15��, that is, �C0�=2n−1.

Proof of properties (P1)–(P3): The different length operators have again been picked in such
a way as to ensure that they all commute with each other. Since the remaining L−1 classes are
generated by successive applications of the unitary U to the elements of C0, we have U :Ci
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→C�i+1�mod L. Thus �P1� and �P3� are satisfied. It remains to prove that the classes constructed here
also satisfy property �P2�.

As in the earlier case of 2n+1 classes, the operators in each of the sets 
L2
�0� ,L2

�1� , . . . ,L2
�2r−1��

correspond to unique values of the spacing function,

S�L2
�i�� � 
L − 2,L − 4, . . . ,1�, ∀ i � �0,2r − 1� ,

which guarantees, by Lemma B.1, that these operators cycle through mutually disjoint sets under
U. Since the operators in L2

�2r� are formed by combining �-operators from different sets G�i�, each
of them cycles through a different set of operators under U. Thus, we see that all the length-2
operators in C0 cycle through mutually disjoint sets.

Before we proceed to discuss the higher length operators, we make one further observation
about the length-2 operators. The operators in L2 correspond to index sets that satisfy

L2�C1� = 
�i1
�i2

�i1 + i2 = 0 mod L� . �B22�

In particular, the length-2 operators in the set L�2r� have been picked carefully so as to ensure that
the above constraint is satisfied. In fact, this was the rationale behind leaving out the first operator
in each of the sets G�i�, while choosing the corresponding length-2 elements in L2

�i�.
The higher length operators in C0 can be of two types:

�a� those that are comprised of �-operators from a single set G�i� alone, and
�b� operators that comprise of �-operators from more than one set.

Since a type-�a� operator cannot cycle into a type-�b� operator under the action of U, these two
cases can be examined separately.

Type-(a). The maximum length that an operator of type-�a� can have, as per our construction,
is L−1. We have ensured this by leaving at least one operator of each of the sets G�i� unused in
constructing the length-2 operators. Furthermore, the constraint in �B22� implies that the index
sets corresponding to such higher length operators in C0 sum to the same value modulo L. More
precisely, any even-length index set of length �=2j, where the indices are all drawn from a given
set G�i�, satisfies

i1 + i2 + . . . + il = 0 mod L, ∀ �i1,i2, . . . ,il� � C0. �B23�

Also any index set of odd length �=2j+1 satisfies

i1 + i2 + . . . + il = �L − 1

2
mod L, ∀ �i1,i2, . . . ,il� � C0. �B24�

Then, invoking Lemma B.2 with c�=0 for even values of � and c�= �L−1� /2 for odd values of �,
we see that no operator of type-�a� can belong to more than one class for prime values of L.

Type-(b). An operator of type-�b� is a product of operators from smaller sets K j �G�j�. Con-
sider a length-� operator O which comprises �0 �-operators from G�0�, �1 operators from G�1�, and
in general, �i from the set G�i�,

O = �i1
. . . �i�0

K0�G�0�

� j1
. . . � j�1

K1�G�1�

. . . �k1
. . . �k�2r−1

K2r−1�G�2r−1�

.

Note that by our construction, the operator O exists in more than one class if and only if for all K j,
the product of all operators in K j also belongs to more than one class. In what follows, we argue
that our construction ensures that this is not possible. In particular, given a set of length-� opera-
tors in C0 which can be broken down into smaller sets as described above, we will argue that there
exists at least one set K j in every such length-� operator O such that the products of operators in
K j corresponding to different length-� operators cycle through mutually disjoint sets, as defined
earlier.
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Note the following two facts about the subsets K j. First, our construction ensures that any
subset K j �G�j� of a given size � j satisfies either �B23� or �B24�, depending on � j being even or
odd. Second, note that the maximum size of these subsets is � j �L. However, in order to invoke
Lemma B.2, we still require � j to be strictly less than L. Our goal is hence to show that every
length-� operator must have at least one subset K j of size � j 
L.

Suppose there exists a length-� operator such that every subset is of size L. Then, the operator
itself has to be of length

� = �0 + �1 + . . . + �2r−1 = 2rL = 2n . �B25�

However, the maximum value of � in our construction is 2n−1, implying that at least one of the
2r subsets must be of a size strictly smaller than L. Also, for such a subset of size less than L,
constraints �B23� and �B24� ensure that the same subset cannot be found in more than one class,
provided L is prime. �

APPENDIX C: A SIMPLE LOWER BOUND ON MIN-ENTROPY

The min-entropy of the distribution that an orthonormal basis B j = 
�b�j���b induces on a state
��H is given by

H��B j��� = − log max
b

Tr��b�j���b�j���� . �C1�

We are looking to evaluate a lower bound on the average min-entropy of any L mutually unbiased
bases �not necessarily coming from our construction� in a d-dimensional Hilbert space. The aver-
age min-entropy is given by

1

L
�
j=0

L−1

H��B j��� = −
1

L
�

j

log max
b�j��
0,. . .,d−1�

�b�j����b�j�� � − log
1

L
�
j=0

L−1

max
b�j�

�b�j����b�j�� �C2�

using Jensen’s inequality. The problem of finding an optimal uncertainty relation for the min-
entropy thus reduces to the problem of maximizing over all ��H, the quantity
� j=0

L−1maxb�j��
0,. . .,d−1��b�j����b�j��. It is easy to see that this maximum is always attained at a pure
state, so we can restrict the problem to an optimization over pure states. We can simplify the
problem of finding the lower bound of �C2� by recasting it as follows.

Consider states of the form Pb� = 1
L� j=0

L−1�b�j���b�j��, where b� = �b�0� ,b�1� , . . . ,b�L−1�� denotes a
string of basis elements, that is, b�j�� 
0,1 , . . . ,d−1�. Suppose we can show for all possible
strings b� ,

max
���

Tr�Pb�������� � � . �C3�

Then, since 1
L� j��b�j� ����2=Tr�Pb��������, the bound is simply

1

L
�
j=0

L−1

H��B j�������� � − log � . �C4�

We have thus reduced the problem to one of finding the maximum eigenvalue of operators of the
form Pb�, over all possible strings b� .

1. A new bound for smaller sets of L<d MUBs

We now prove Lemma 3.2, restated here for convenience.
Lemma C.1: Let B0 , . . . ,BL−1 be a set of mutually unbiased bases in dimension d=2n . Then
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1

L
�
j=0

L−1

H��B j����� � − log� 1

L
�1 +

L − 1
	d

� . �C5�

Proof: Note that by �C4�, it is sufficient to determine � in �C3�. To solve this eigenvalue
problem, we recall a result of Schaffner30 proved using the methods of Kittaneh40 that for a set of
L orthogonal projectors A0 ,A1 , . . . ,AL−1 the following bound holds:

��
j=0

L−1

Aj� � 1 + �L − 1� max
0�j
k�L−1

�AjAk� , �C6�

where �� . �� denotes the operator norm, which here is simply the maximum eigenvalue for Her-
mitian operators. Applying this result to sums of basis vectors �b�j��, we have

��
j=0

L−1

�b�j���b�j��� � 1 + �L − 1� max
0�j
k�L−1

���b�j���b�j�����b�k���b�k���� , �C7�

which implies that

�Pb�� �
1

L
+ �L − 1

L
 max

0�j
k�L−1
��b�j����b�j���b�k����b�k��� . �C8�

Recall that for all b�j� ,b�k�� 
0, . . . ,d−1�,

�b�j��b�k�� = ei� 1
	d

for any j � k , �C9�

where � denotes some phase factor. Further, since the vectors �b�j�� are normalized, the Cauchy–
Schwarz inequality gives

��b�j���b�k��� � 1 for any b�j�,b�k� � 
0, . . . ,d − 1� . �C10�

Combining these with �C8� gives the following bound on the maximum eigenvalue of the operator
Pb�:

� =
1

L
�1 +

L − 1
	d

 . �C11�

By �C4�, this immediately proves our claim. �

2. A stronger bound for the complete set of d+1 MUBs

Here, we present an alternate approach to bound the maximum eigenvalue of Pb� using a Bloch
vectorlike representation of the MUB basis states. The bound that we obtain here, stated in Lemma
3.3, is stronger than the last one when L�d. In particular, when we consider the complete set
�L=d+1� of MUBs in any dimension d, this approach yields the best known bound.

Lemma C.2: Let B0 , . . . ,BL−1 be a set of mutually unbiased bases in dimension d=2n . Then

1

L
�
j=0

L−1

H��B j����� � − log�1

d
�1 +

d − 1
	L

� . �C12�

Proof: First, we switch to working in a basis of Hermitian operators so that every state in H
has a parametrization in terms of vectors in a real vector space. Any state ��H can be written as
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� =
1

d
I +

1

2 �
i=1

d2−1

	�i�Âi, �C13�

where 
Âi� are Hermitian, traceless operators that are orthogonal with respect to the Hilbert–

Schmidt norm: Tr�Âi
†Âj�=2�ij and the scalars 
	�i��i�R. Thus, we can parametrize any state in our

d-dimensional Hilbert space with a vector 	� = �	�1� , . . . ,	�d2−1���Rd2−1. When � is a pure state
�Tr��2�=1�, the vector 	� corresponding to this pure state satisfies the following normalization
condition:

Tr��1

d
I +

1

2 �
i=1

d2−1

	�i�Âi2� = 1

⇒
1

d
+

1

2 �
i=1

d2−1

�	�i��2 = 1

⇒ �	� � =	�
i=1

d2−1

�	�i��2 =	2�d − 1�
d

. �C14�

Furthermore, in this representation, the vectors 
	� �b,j�� corresponding to the MUB states

�b�j��� satisfy the following special properties.

�M1� Normalization: Tr��b�j���b�j���b�j���b�j���=1 implies that �	� �b,j��=	2�d−1�

d , ∀b� 
0, . . . ,d
−1� , j� 
0, . . . ,L−1�. �By an argument similar to the one that leads to �C14�.�
�M2� Constant inner product: ��b�j� � b̂�k���2= 1

d implies that 	� �b,j� .	� �b̂,k�=0, ∀ j�k , ∀b , b̂
� 
0, . . . ,d−1�. This is easily seen, as follows:

Tr��b�j���b�j���b�k���b�k��� =
1

d
+

1

2�
i

	�b,j�
�i� 	�b̂,k�

�i�
=

1

d
⇒ 	� �b,j� . 	� �b̂,k� = 0. �C15�

Now, using this representation of MUB states and density operators, we can rewrite the
maximization problem of �C3� as

max
���

Tr�Pb�������� = max
���

Tr� 1

L
�

j

�b�j���b�j���������
� max

	�

1

L�
j

Tr�� I

d
+

� j	�b�j�,j�
j Âj

2
� I

d
+

�i	
�i�Âi

2
�

= max
	�

1

L�
j
�1

d
+

1

2
	� �b�j�,j� . 	�

=
1

d
+ max

	�

1

2L�
j

	� �b�j�,j� . 	� . �C16�

Now we only need to find the real �d2−1�-dimensional vector 	� that maximizes the sum
� j	� �b�j�,j� .	� . If we now define an “average” vector corresponding to each string b� as follows:
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1

L
�

j

	� �b�j�,j� = 	� �avg�, �C17�

then it becomes obvious that the maximum is attained when 	� is parallel to 	� �avg�. Since it is a
vector corresponding to a pure state, its norm is given by �C14� so that

	� �max� =	2�d − 1�
d

	� �avg�

�	� �avg��
. �C18�

Note that this maximizing vector has a constant overlap with all vectors 	� �b�j�,j� for a given string
b� . In other words, for each string b� , the maximum is attained by the vector that makes equal angles
with all the vectors that constitute the average vector �	� �avg�� corresponding to that string. Note,
however, that this vector may not always correspond to a valid state.

Now that we know the maximizing vector, we can go ahead and compute the value of � in
�C3�,

max
���

Tr�Pb�������� �
1

d
+ max

	�

1

2L�
j

	� �b�j�,j� . 	�

=
1

d
+

1

2
max

	�
	� �avg� . 	�

=
1

d
+

1

2

	� �avg� . 	� �avg�

�	� �avg��
	2�d − 1�

d

=
1

d
+

1

2
�	� �avg��	2�d − 1�

d

=
1

d
+

1

2	L

2�d − 1�
d

=
1

d
�1 +

d − 1
	L

 , �C19�

where we have used the fact that the vector 	� �avg� have a constant norm which can be computed as
follows:

	� �avg� . 	� �avg� =
1

L2�
j,k

	� �b�k�,k� . 	� �b�j�,j�

=
1

L2�
j

	� �b�j�,j� . 	� �b�j�,j�

=
1

L2 �L��2�d − 1�
d

�
⇒ �	� �avg�� =

1
	L
	2�d − 1�

d
, �C20�

thus proving our claim. The second step follows from the fact that vectors corresponding to
different MUB states have zero inner product �see property �M2� above�� �

Note that the fact that the bases are mutually unbiased was crucial in giving rise to properties
�M1� and �M2�, which, in turn, enabled us to identify the maximizing vector 	max. Indeed, the
maximizing vector corresponding to a given string b� might not always correspond to a valid state,
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in which case the bound we derive cannot be achieved. However, there exist strings of basis
elements b� , for which we can explicitly construct a state that has equal trace overlap with the
states that constitute the corresponding operator Pb�. These are, in fact, states of the form

Pb� =
1

L
�

j

�b�j���b�j��, where b� = 
c, . . . ,c� �C21�

for any c� 
0, . . . ,d−1�. Clearly, for the symmetric MUBs that we construct, an eigenstate of the
unitary U that cycles between the different MUBs has the same trace overlap with each of the
states 
�b�j�� , j=0, . . . ,L−1� for a fixed value of b. To see this, suppose ��� is an eigenvector of U
with eigenvalue �, then for all 0� j�L−1 and a given value of b,

Tr��b�j���b�j��������� = ��b�j�����2 = ��b�1���U†� j−1����2

= ����2���b�1�����2

= ��b�1�����2. �C22�

This is indeed the case for L=4 MUBs in d=4, where the lower bound we derive is achieved by
eigenstates of U.
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