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Abstract

¿e amount of resources available on recon�gurable logic devices like FPGAs has
seen a tremendous growth over the last thirty years. During this period of time, the
amount of programmable resources (CLBs and RAMs) in these architectures has
increased by more than three orders of magnitude. Also, many specialized com-
ponents such as DSP modules to accelerate certain parts of applications have been
introduced. Recon�gurable architectures have thus evolved into heterogeneous
systems.

Programming these recon�gurable architectures has been dominated by the hard-
ware description languages VHDL and Verilog. However, it has become generally
accepted that these languages do not provide adequate abstraction mechanisms
to deliver the design productivity for designing more and more complex applica-
tions. To raise the abstraction level, techniques to translate high-level languages
to hardware have been developed. ¿ese techniques are now commonly known
as high-level synthesis where most high-level synthesis approaches are based on
mainstreamprogramming languages, in particular on the imperative programming
paradigm; many high-level synthesis languages are now based on the imperative
language C.

Parallelism is achieved by parallelization of for-loops. Whether parallelization of
these loops is possible or not is determined by the dependencies between loop
iterations. Dependency analysis is a hard problem and o en, due to the imper-
ative nature of the input language, loop iterations can not to be assumed to be
independent preventing possible parallelization. To mitigate this problem, other
abstractions are needed to express structure and to abstract away from the fact that
imperative programming is based on state transformations which is a major source
of di�culties in dependency analysis. Hence, a language that is not based on state
transformations is advantageous. In this thesis, hardware is therefore designed
using the functional programming language Haskell. Haskell is based on the ma-
nipulation of mathematical functions, which gives the designer more control over
structure and parallelism.

In general, a function can be implemented in space (perform operations in paral-
lel) or in time (perform operations sequential). In hardware design, the trade-o�
between space (chip resources) and time (execution time) is crucial. A candidate
abstraction to express structure and parallelism is by means of higher-order func-
tions which are commonly used in functional languages to express repetition and
operations on lists. Using transformations of speci�c higher-order functions, more
or less parallelism is achieved. ¿is is under full control of the designer since the
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transformation distributes computations over space and time. ¿e advantage of a
functional language is that no dependency analysis is needed since the dependen-
cies are intrinsic properties of the speci�c higher-order function.

¿e main contribution of this thesis is a design methodology for hardware based
on exploiting regularity of higher-order functions. A mathematical formula, e.g. a
DSP algorithm, is �rst formulated using higher-order functions. ¿en, transforma-
tion rules are applied to these higher-order functions to distribute computations
over space and time. Using the transformations, an optimal trade-o� can be made
between space and time. Finally, hardware is generated using the CλaSH compiler
by translating the result of the transformation to VHDL which can be mapped to
an FPGA using industry standard tooling.

In this thesis, we derive transformation rules for several higher-order functions
and prove that the transformations are meaning-preserving. A er transformation,
a mathematically equivalent description is derived in which the computations are
distributed over space and time. ¿e designer can control the amount of paral-
lelism (i.e. he/she can control resource consumption and execution time) using a
parameter that is introduced by the transformation. Transformation rules for both
linear higher-order functions and two-dimensional higher-order functions have
been derived.

In this thesis we perform several case studies using the aforementioned design
methodology:

» a dot product to show the relation between discrete mathematics, higher-
order functions and hardware;

» a particle �lter;

» stencil computations.

A particle �lter is chosen as it is a challenging application to implement in hardware
due to a large amount of parallelism, data dependent computations and a feedback
loop. Stencil computations are explored to extend the set of transformation rules
such that the design methodology can also be applied to two-dimensionally struc-
tured applications.

In conclusion: we explored and exploited higher-order order functions as an ab-
straction to express structure and parallelism of hardware. Higher-order functions,
combined with their transformation rules, can be an e�ective tool to facilitate in
optimizations and trade-o�s which are essential aspects of digital hardware design.



Samenvatting

Het aantal programmeerbare componenten dat gebruikt kan worden in hercon�-
gureerdbare logica zoals FPGAs hee een enorme groei doorgemaakt in de laatste
dertig jaar. Gedurende deze periode zijn het aantal programmeerbare componen-
ten (CLBs en RAMs) in deze architecturen met meer dan drie ordes van grootte
toegenomen. Ook zijn er vele applicatiespeci�eke componenten zoalsDSPmodules
toegevoegd om speci�eke computaties binnen delen van applicaties te versnellen.
Hercon�gureerdbare architecturen zijn dus geëvolueerd naar heterogene systemen.

Het programmeren van deze hercon�gureerdbare architecturen wordt gedomi-
neerd door de hardwarebeschrijvingstalen VHDL en Verilog. Tegenwoordig is
het echter algemeen geaccepteerd dat deze talen niet de nodige abstractiemechanis-
mes bevatten om genoeg ontwerpproductiviteit te verkrijgen voor steeds grotere
en complexere systemen. Om het abstractieniveau te verhogen zijn er technieken
ontwikkeld om hoog-niveau programmeertalen te vertalen naar hardware. Deze
technieken staan nu bekend als hoog-niveau synthese en zijn meestal gebaseerd
op veelgebruikte imperatieve programmeertalen. De meeste hoog-niveau synthese
programmatuur gebruikt dan ook C of een afgeleide daarvan als invoertaal.

Parallellisme wordt verkregen door het parallel uitvoeren iteraties van for-lussen.
De mogelijkheid tot parallelliseren van for-lussen hangt af van het bestaan van af-
hankelijkheden tussen lus-iteraties. Het analyseren van afhankelijkheden is echter
erg moeilijk waardoor er vaak een afhankelijkheid moet worden aangenomen. Dit
komt doordat imperatieve talen zijn gebaseerd op geheugen modi�caties wat het
analyse proces enorm bemoeilijkt. Om dit probleem te voorkomen zijn er nieuwe
abstracties nodig om structuur uit de drukken die niet is gebaseerd op geheugenmo-
di�caties. Door gebruik te maken van een programmeertaal die niet is gebaseerd
geheugenmodi�caties kunnen lastige analyse problemen worden voorkomen. In
dit proefschri wordt hardware daarom dan ook ontworpen door gebruik temaken
van de functionele programmeertaal Haskell. Haskell is gebaseerd op het manipu-
leren was wiskundige functies wat de gebruiker meer controle gee over structuur
en parallellisme.

Functies kunnen worden uitgevoerd in ruimte (computaties worden parallel uit-
gevoerd) of over de tijd (computaties worden sequentieel uitgevoerd). Tijdens
het ontwerpen van hardware is de afweging tussen ruimte (het aantal gebruikte
componenten) en tijd (executietijd) cruciaal. Een kandidaat abstractie voor het
uitdrukken van structuur en parallellisme is het gebruik van hogere-orde functies.
Hogere-orde functies zijn afkomstig uit functionele programmeertalen en worden
veel gebruikt voor het uitdrukken van repetitie en het toepassen van operaties op
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lijsten. Door transformaties toe te passen op speci�eke hogere-orde functies, kan
er meer of minder parallellisme worden behaald. De ontwerper hee hier volledige
controle over omdat de transformatie computaties distribueert over zowel ruimte
als tijd. Door gebruik te maken van een functionele taal is afhankelijkheidsanalyse
niet meer nodig omdat de afhankelijkheden een intrinsieke eigenschap zijn van de
speci�eke hogere-orde functie.

De hoofdbijdrage van dit proefschri is een ontwerpmethodiek voor digitale cir-
cuits gebaseerd op het benutten van reguliere structuren in hogere-orde functies.
Een wiskundige beschrijving van een DSP algoritme wordt eerst geformuleerd met
behulp van hogere-orde functies. Vervolgens worden transformatieregels toegepast
op deze functies om zo de computaties te distribueren over ruimte en tijd. Met be-
hulp van deze transformatieregels kan dus een optimale afweging worden gemaakt
tussen ruimte en tijd. Vervolgens wordt er hardware gegenereerd met behulp van
de CλaSH compiler waarbij de resultaten van de transformatieregels worden ver-
taald naar VHDL code. Gebruikmakend van programmatuur die als standaard
wordt beschouwd in de industrie, wordt de VHDL code vertaald naar een FPGA
con�guratie.

In dit proefschri worden transformatieregels afgeleid voor verschillende hogere-
orde functies en worden bewijzen geleverd dat de transformatieregels betekenis-
behoudend zijn. Het toepassen van een transformatie resulteert dus in een wiskun-
dig equivalente beschrijving waarin de computaties zijn gedistribueerd over ruimte
en tijd. De ontwerper hee volledige controle over de hoeveelheid parallellisme
(het aantal gebruikte componenten en executietijd) door het instellen van een pa-
rameter die is geïntroduceerd tijdens de transformatie. Er zijn transformatieregels
afgeleid voor zowel eendimensionale als tweedimensionale hogere-orde functies.

Tevens worden er in dit proefschri verschillende casestudies behandeld waarin
de hiervoor genoemde ontwerpmethodiek wordt toegepast:

» een inwendig product om de relatie tussen discrete wiskunde, hogere-orde
functies en hardware aan te geven;

» een particle �lter;

» stencilcomputaties.

Er is gekozen voor een particle �lter omdat dit een uitdagend algoritme is voor
implementatie op hardware door de aanwezigheid van veel parallellisme, data-
afhankelijke computaties en terugkoppellus. Om de verzameling transformatiere-
gels uit te breiden, zijn er ook transformatieregels afgeleid voor stencilcomputaties.

Concluderend: voor het adequaat uitdrukken van structuur en parallellisme op
hardware kan gebruik worden gemaakt van hogere-orde functies. Hogere-orde
functies, gecombineerd met de bijbehorende transformatieregels, zijn een e�ec-
tief middel voor het maken van essentiële afwegingen tijdens het ontwerpen van
digitale hardware.
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11
Introduction

T he modern age is o en characterized as the information-age due to the de-
velopments in electronics. Two important aspects of the information-age are

communication and computation. A technology that plays an important role in
both communication and computation are digital semiconductor components such
as processors, memories, application speci�c integrated circuits (ASICs) and �eld-
programmable gate arrays (FPGAs). FPGAs are used for two reasons: in �rst in-
stance, they were used in small series for fast prototyping of digital circuits and to
replace discrete components. Later, FPGAs were used to replace �xed-functionality
logic. FPGAs can be found in many places like large internet routers, base stations
for mobile communications and even radio telescopes. FPGAs are capable of pro-
cessing a tremendous amount of data at a very high speed. An example of such
a high performance FPGA-based platform is the Astron Uniboard [12], used for
processing radio astronomy signals (Figure 1.1).

In contrast to CPUs, FPGAs are better able to exploit parallelism due to the large
set of availale resources. Designing applications for FPGAs is therefore much closer
to digital hardware design than designing so ware for CPUs. Compared to ASICs,
using FPGAs has several advantages. ¿e �rst advantage is that the same FPGA can
be used in thousands of di�erent applications resulting in a large cost reduction.
Secondly, applications can even be changed when the FPGA is already installed
at the customer. ¿irdly, because FPGAs have a very regular structure, the latest
semiconductor technology can be used. However, the wide applicability of FPGAs
comes at a cost. FPGAs consume more power compared to ASICs and require
more area as well. Additionally, FPGAs are di�cult to program, especially for large
applications.

An FPGA consists of programmable blocks, o en called con�gurable logic blocks
(CLBs), and a programmable interconnect. ¿e gates and registers of the circuit
are placed on the CLBs while the interconnect is con�gured in such a way that the
gates in the CLBs are connected in the same way as the original circuit.

Developments in recon�gurable logic started in 1975 with the introduction of the
�eld-programmable logic array (FPLA) by the company Intersil [61]. FPLAs were
the �rst recon�gurable logic chips that could be programmed electronically in
contrast to read-only memories of which the contents can not be changed a er pro-
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Figure 1.1 ś Astron Uniboard

duction [92]. FPLAs consists of amatrix with fuses and a column of gates. A speci�c
circuit is implemented by vaporizing fuses such that only the required connections
between inputs and gates remain. ¿e use of fuses has one drawback, once a fuse is
removed it cannot be undone. FPLAs are therefore one-time programmable. ¿is
changed with the introduction of the FPGA. ¿e con�guration was no longer per-
formed by vaporizing fuses but stored in a memory that could be changed as o en
as necessary.

¿e �rst commercially available FPGA, introduced in 1985, was the Xilinx XC2064
which contained 64 CLBs [119]. ¿is FPGA had a capacity for a circuit up to 1200
gates. ¿e con�guration data (the settings of the I/O pins,CLBs and interconnect) is
stored in SRAMmemory cells. As SRAMmemory only retains data when powered,
the FPGAs has to be programmed again a er power up. ¿e con�guration data is
stored on a non-volatile external memory chip which is read by the FPGA during
the start-up phase.

¿irty years a er the introduction of the XC2064 a lot has changed, although the
basic principles have stayed the same. Most FPGAs still use SRAM memory cells
for con�guration and use an external memory from which the con�guration is
read during start-up. However, the capacity in terms of CLBs has increased tremen-
dously. Current high-end FPGAs like the Xilinx Virtex Ultrascale contain millions
of CLBs [118].
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1.1 Trends in reconfigurable computing

Recon�gurable computing has become a very large �eld of research with many
applications. In this thesis we limit ourselves to the �eld of FPGAs. ¿ere are two
important aspects of FPGAs that are important to view the trends in this �eld: the
developments in hardware and the programmingmodels and languages to program
these architectures.

1.1.1 Hardware developments in FPGA architectures

FPGAs have seen tremendous developments the last thirty years [108]. Although a
lot has changed in this period, two main trends can be observed in the hardware
development. ¿e �rst trend is the enormous growth in the amount of available
resources in terms of CLBs, memories and interconnect. ¿e second trend is the
integration of specialized hardware to accelerate certain parts of applications.

¿e enormous increase of available resources becomes strikingly clearwhen looking
at the number of logic blocks that have become available in FPGAs. During the
last thirty years, the amount of logic blocks has increased from several hundreds to
several millions, i.e., an increase of four orders of magnitude. In this period, also
the clock frequencies have increased from several megahertz up to several hundred
megahertz (depending on the design). Figure 1.2 shows the exponential increase
in LUTs for Xilinx Virtex FPGAs in the last thirteen years.

2002 2004 2006 2008 2010 2012 2014

10
5

10
6

Virtex 2 Pro XC2VP100Virtex 2 Pro XC2VP100

Virtex 4 XC4LX200Virtex 4 XC4LX200

Virtex 5 XC5LX330TVirtex 5 XC5LX330T

Virtex 6 XC6VLX760Virtex 6 XC6VLX760

Virtex 7 XC7V2000TVirtex 7 XC7V2000T

Virtex Ultrascale XCVU440Virtex Ultrascale XCVU440

Year of introduction

L
U
T
s

Figure 1.2 ś Growth in resources of Xilinx Virtex FPGAs

Besides the increase of logic blocks, the trend has also emerged of adding more
specialized hardware to accelerate certain applications. One of the �rst of these spe-
cialized components that have been added are special memories called block RAMs
(BRAMs) and multipliers which allowed the designer to instantiate memories and
multipliers much more e�ciently. Special hardware for other applications soon
followed in the form of components specialized for DSP operations. ¿ese DSP
blocks can be con�gured to perform combinations of multiplication and addition
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with a con�gurable amount of bits. DSP blocks aremuchmore area e�cient and are
able to run at a much higher clock frequency than their counterparts implemented
using con�gurable logic blocks (CLBs). Currently, complete CPUs are integrated
in the FPGA logic. Examples of such integrations are the Xilinx Zync FPGA [116]
and the integration of an ARMCortex in Cyclone FPGAs from Altera [8]. All these
performance enhancements also requires additional bandwidth to be able keep
the hardware utilized. ¿erefore, high-speed serial I/O standards are integrated to
meet these high bandwidth demands.

In the future, both the increase in logic blocks and the addition of specialized hard-
ware are expected to continue [101]. ¿e amount of logic blocks is expected to
scale with the advances in semiconductor technology although reliability issues
are expected with smaller feature size [38]. ¿e addition of specialized hardware
is expected to continue as well. An example is the integration of multicore CPUs
into FPGAs [7]. Summarizing, the once simple and regular hardware structures of
FPGAs have evolved into highly heterogeneous architectures with a lot of special-
ized hardware.

1.1.2 Programming of FPGAs

An equally important aspect of FPGAs is the programming of these devices. ¿is
has been dominated by the hardware description languages VHDL and Verilog.
However, it has become generally accepted that these languages do not provide
enough productivity as demanded by current large designs. ¿e programming of
FPGAs is shaped by the targeted applications and the developments in HDLs [65].

During the last thirty years, the set of applications for which FPGAs are used has
grown tremendously. Initially, FPGAs were mainly used for implementing small
logic circuits. However, nowadays they are used in a wide range of applications.
Many digital signal processing (DSP) algorithms are mapped to FPGAs. Examples
of these applications are wireless communication, radar processing, image/video
processing and radio astronomy. Given these applications, there is a clear trend
towards applications that require more computational power and have higher band-
width requirements.

Hardware description languages like VHDL and Verilog target hardware design at
the RTL level. To increase productivity, languages with a higher level of abstraction
are developed commonly known as high-level synthesis (HLS). Currently, mostHLS
tools accept a language that is derived from C [77]. Parallelism in these languages
is achieved by the parallelization of for-loops. Whether or not two iterations of a
loop can be run in parallel, depends on the dependencies between them. However,
dependency analysis is a very hard problem and o en iterations cannot be assumed
independent preventing possible parallelization. ¿erefore, other abstractions are
needed to express structure and parallelism. Additionally, the input languages for
HLS are highly restricted since a lot of advanced C language features cannot be
used when designing hardware. Examples of these restrictions are lack of support
for pointers and, because of the reasoning above, limited support for for-loops [77].
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1.2 Problem statement and approach

¿e developments in recon�gurable logic can be summarized as a technological
arms race between developments in silicon technology on the one hand and the
increasing demand for computational power on the other. FPGAs o�er large per-
formance gains compared to CPUs for applications that contain a lot of parallelism
and pipelining. Applications can therefore only utilize this performance of FPGAs
when parallelism can be fully exploited.

In this thesis we address the issue of deriving parallelism from the de�nition of
an application. Achieving performance by means of parallelism is o en far more
complicated then just instantiating a lot of components, other factors like limited
resources and length of combinatorial paths have to be taken into account as well.
¿e languages used for hardware design should facilitate in this trade-o�. In this
thesis we therefore try to answer the following research question:

» How can a designer make a transparent trade-o� between resource usage (chip
area) and execution time?

We use the functional language Haskell to express circuits. Haskell is a pure func-
tional language in which only mathematical dependencies are expressed giving a
better chance of parallelization. Although a lot of work has been done on the paral-
lelization of Haskell code for multicore [28], for FPGAs very di�erent patterns for
parallelism are required since the parallelism on FPGAs is �ne grained in nature.

In this thesis, we utilize higher-order functions, an abstraction commonly used in
Haskell, to express structure and parallelism. Using transformation rules, compu-
tations are distributed over space and time giving the designer full control over
resource consumption and combinatorial paths. By using higher-order functions
to express structure, the introduction of additional dependencies caused by the
sequential nature of the input languages used in HLS tools is therefore avoided.
Compared to the approach used in HLS, the approach taken in this thesis starts
with a structural de�nition of parallelism instead of trying to deduce this structure
from a sequential speci�cation.

In order to make a transparent trade-o� between resource usage and execution
time, transformation rules for higher-order functions are proposed. Although such
a trade-o� is possible using mainstreamHDLs, using transformations has some ad-
vantages: due to the mathematical nature of the speci�cation, the transformations
are provable correct. Secondly, a trade-o� can be performed more rapidly when
new requirements arrive by selecting new values for the parameters introduced by
the transformation. Figure 1.3 shows a graphical representation of the e�ect of a
transformation rule.

A computation mapped completely over space consumes o en too many resources.
By applying a transformation rule, computations are distributed over both space
and time thereby limiting the resource consumption. ¿e consequence is, however,
that the execution time is increased. For some applications there is a maximum
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max.

exec.

time

available

resources

Space

Time

Figure 1.3 ś Transformation to distribute computation over space and time

de�ned on the execution time. ¿erefore, a trade-o� should be made between
distributing computations over time and space.

1.3 Contributions

¿emain contribution presented in this thesis is a hardware design methodology
targeting the implementation of digital signal processing algorithms on digital logic
such as FPGAs. In the domain of DSP, algorithms are o en initially de�ned using
mathematical formulas. Before these formulas are implemented on an FPGA, they
are o en simulated on a PC. Usually, languages like C or Matlab are used for this
purpose. ¿e implementation on FPGAs requires another translation step: the
translation of the simulation model to a model that can be translated to hardware.
¿is translation is usually performed by hand without any formal methods to guide
the process. In this thesis, design methodologies are proposed based on the use
of higher-order functions to facilitate the hardware design process. ¿ree main
contributions can be distilled:

» A design methodology for hardware based on exploiting regularity of
higher-order functions. In this thesis, a design methodology is presented
showing how hardware can be designed by using a commonly used abstrac-
tion in functional languages: higher-order functions. First, a mathematical
formulation of aDSP algorithm is expressed using higher-order functions to
capture the structure and dependencies among operations. ¿e second step
is the transformation of this expression using transformation rules such that
e�cient hardware can be derived using the CλaSH compiler (chapter 3).

» Transformation rules to distribute computations, expressed using higher-
order functions, over space and time. For several commonly used higher-
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order functions like zipWith and foldl, transformation rules have been de-
rived. Additionally, these transformation rules have been proven to be
meaning-preserving. ¿e transformation rule distributes the computations,
expressed using a higher-order function, over space and time. ¿e amount
of parallelism and resource usage can be fully transparently controlled by
the designer using a parameter that is introduced by the transformation
(chapter 4).

» Several case studies showing the applicability of the design methodology
to a large range of DSP applications. Among others, the design method-
ology has been applied to a FIR �lter, a particle �lter and several stencil
computation applications. ¿e connection between discrete mathematics,
higher-order functions and hardware is �rst explored in a dotproduct ex-
ample a er which the methodology is applied to a particle �lter. Stencil
computations are explored to extend the set of transformation rules such
that the designmethodology can also be applied to two-dimensionally struc-
tured applications (chapter 5 and chapter 6).

1.4 Outline

In chapter 2, the state of the art of hardware methodologies using transformations
is presented. ¿is chapter also gives background information on the CλaSH com-
piler including examples (aMAC operation and FIR �lter). In chapter 3, we start
with the implementation of a signal processing application with challenging char-
acteristics for hardware implementation; a particle �lter. ¿e performance of this
particle �lter is increased by parallelization using an abstraction from functional
programming: higher-order functions. To limit the amount of parallelism and
therewith resource consumption, transformation rules are proposed in chapter 4
to perform a trade-o� between execution time and area consumption by transform-
ing higher-order functions. In chapter 5, these transformation rules are applied to
the particle �lter case study resulting in a large reduction in resource consumption
while maintaining performance. To be able to implement more applications using
the transformation-based approach, the set of transformation rules is extended
such that two-dimensional data structures with overlapping data are supported as
well. ¿ese additional transformation rules are proposed in chapter 6 where they
are applied to a broad range of stencil applications. Finally, in chapter 7, conclusions
are drawn and possible directions for future work are discussed.

1.5 Notation

In the Haskell code or mathematical de�nitions shown in this thesis, xs means
plural of x and should be read as list of x elements. Similarly xss is the plural of xs
and it therefore represents a list of lists containing x elements.
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22
Background and

state of the art

Abstract ś In this chapter, related work on hardware design methodologies

is presented. ¿e trends in three relevant �elds are discussed, being high-level

synthesis, transformational-design and functional hardware description lan-

guages. In the �eld of high-level synthesis, most tools converge to using a di-

alect of C as an input language while more specialized formalisms are used in

transformational-design. Since CλaSH is the functional hardware description

language used for the implementation of circuits in this thesis, the trends in

functional hardware description languages are discussed and an introduction

to hardware design using CλaSH is given.

S ince the beginning of automatic generation of the layout of circuits, register-
transfer level (RTL) style hardware description languages (HDLs) like VHDL

[11] andVerilog [30] have been the basis for circuit design. However, current circuits
are becoming too complex to be written using RTL-style plain HDLs alone. ¿ere-
fore, designers started to use intellectual property (IP) blocks that could be reused
in several designs. Nowadays, there is support integrated in the development tools
for IP blocks (like Xilinx CORE generator [117] and Altera Megafunctions [32])
which also facilitates the reuse for di�erent designs. However, using these IP blocks
still requires low-level design e�ort on the wire level. To increase productivity,
several new approaches have arisen: transformational-design, high-level synthesis
(HLS) and functional hardware description languages.

In this chapter, developments of the aforementioned approaches are discussed.
Since transformations form the basis of the approach taken in this thesis, we focus
mainly on several related transformation-based methodologies and the formalisms
on which these methodologies are based. On the speci�cation side, two types of
input languages are discussed: imperative languages used for HLS and functional
hardware speci�cation languages. Since all implementations of hardware in this the-
sis are speci�ed in the functional language CλaSH, two small circuits are speci�ed
in the CλaSH language as an introduction to CλaSH-based hardware design.
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¿e remainder of this chapter is organized as follows. Since all hardware designs
proposed in this thesis are designed and implemented using CλaSH, �rst back-
ground information regarding hardware design using CλaSH is presented �rst in
section 2.1. Secondly, the state of the art in high-level synthesis (HLS) is covered
in section 2.2 followed by an elaboration of transformation-based design method-
ologies in section 2.3. Related work regarding hardware design using functional
languages is covered in section 2.4. Finally, conclusions are drawn in section 2.5.

2.1 CλaSH

All hardware designs presented in this thesis are implemented using CλaSH. ¿e
name CλaSH refers to both the language CλaSH (the CAES language for syn-
chronous hardware) and the compiler [14, 16]. CλaSH is especially proposed for
a more mathematically-based hardware design methodology [106]. ¿e CλaSH
language is a proper subset of the functional language Haskell [64, 109]. ¿erefore,
every CλaSH design is a valid Haskell program and simulation of CλaSH hardware
is essentially running a Haskell program. Using the CλaSH compiler, such a design
can be translated to VHDL. ¿erea er, bit �les for FPGAs or full ASIC designs can
be generated using industry standard tooling.

Since the initial presentation in 2009 [15], CλaSH has gone through many develop-
ments andmany applications have been implemented using it. CλaSH is still under
continuous development. Many abstractions have been tried and evaluated. An ex-
ample of this is called arrows [46, 47]. Using arrows the composition of components
is simpli�ed since the state of each Mealy machine is hidden using a process called
li ing. Currently, arrows have been removed in favor of signals. Using signals,
composition of components is similar to function composition while the initial
state can still be assigned to components. In [69], small examples of CλaSH de-
signs are presented to show the usage of abstraction mechanisms like higher-order
functions and type derivation. In [70], these abstractions are applied to a circuit.
Besides relatively small designs, CλaSH has been used to design large applications
as well. Among others, CλaSH has been used to implement a particle �lter [RW:5],
a model of the cochlea membrane [110], an FFT design for radio astronomy [RW:2],
a cooperative adaptive cruise control [26] and data �ow processors [84].

¿e fact that CλaSH is chosen as the language for implementing designs in this
thesis, has several reasons. ¿e �rst reason is that CλaSH uses plain Haskell as
input language in contrast to other functionalHDLs which are embedded languages.
¿is has two advantages. Firstly, the simulation is a lot faster because no embedded
language has to be simulated. It is also easier to handle for hardware designers since
complicated types that normally arise from using an embeddedDSL (EDSL) do not
occur. ¿e second advantage is extensive support for commonly used higher-order
functions (HOFs) like map, zipWith and foldl, which are an adequate abstraction
for expressing regular structures in hardware [14]. In this thesis, transformations
are applied to these higher-order functions resulting in mathematically equivalent
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descriptions with di�erent hardware characteristics. Using the CλaSH compiler,
theseHOFs can directly bemapped onto hardware without �rst translatingHOFs to
more primitive components. For furter information about the compilation process
and language characteristics, the user is referred to [14].

2.1.1 Hardware design using CλaSH

Currently, CλaSH supports two machine abstractions to de�ne hardware: a Mealy
machine and signals. In this thesis, all descriptions are de�ned using a Mealy
machine perspective as this corresponds concisely to combinatorial hardware. A
Mealy machine describes hardware in terms of a function where the output and
the new state is a function of the input and the current state. Mathematically, this
is formulated as (s′ , o) = f (s, i) as shown graphically in �gure 2.1, where s is the
current state, i is the input, o is the output and s′ is the new state.

i f o

s s′

Figure 2.1 ś Mealy machine

An application is implemented by de�ning a function f that is speci�c for that
application. As an example of such a function f , we de�ne a commonly used
function in DSP called multiply accumulate (MAC). ¿eMAC operator multiplies
two arguments and adds the results to the previously stored result. Mathematically,
this is de�ned as s′ = a × b + s where s is the previous result, a and b the operands
to be multiplied and s′ the result of the calculation. In the CλaSH language, aMAC

operation can be de�ned as shown in listing 2.1¹,².

1 type Value = Signed 16

2

3 mac :: Value > (Value, Value) > (Value, Value)

4 mac s (a, b) = (s’, o)

5 where

6 s’ = a * b + s

7 o = s’

8

9 macL = mac <^> 0

Listing 2.1 ś MAC implemented in CλaSH

As shown on the �rst line of listing 2.1, the type of all values is de�ned as a 16 bits
signed integer. ¿is is also re�ected in the type annotation ofmac (line 3). Note that

1All CλaSH code in this thesis can be compiled with CλaSH version 0.3.3
2CλaSH is also available on http://www.clash-lang.org/

http://www.clash-lang.org/
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the result, the output and the new state, are shown at the end of the line in contrast
to the mathematical de�nition of the Mealy machine. ¿is is because the result is
in Haskell is always de�ned last. Line 4 shows thatmac accepts two arguments, one
for the current state s and a tuple containing the inputs (a, b). ¿e resulting tuple
contains the new state s′ and the output o of which the values are determined in the
where-clause. In the where-clause, the actualMAC operation is performed and the
result is assigned to the output (line 6 and 7). Finally, the initial state (0) is assigned
to theMAC circuit using the <^> operator resulting in the componentmacL. A er a
reset of the circuit, the initial state of s is 0. Note that the reset circuitry is generated
by the CλaSH compiler but not used during simulation. ¿e circuit corresponding
to listing 2.1 is shown in �gure 2.2.

a

b
× + c

s s′

Figure 2.2 ś Multiply accumulate circuit

To verify the functionality, theMAC circuit can be simulated using the prede�ned
CλaSH function simulateP. Note that simulation can be performed in an interactive
CλaSH environment similar toGHCI. simulateP takes two arguments: a li ed func-
tion representing the circuit (in this casemacL) and a list of values acting as inputs.
Since CλaSH code is valid Haskell code, simulating the architecture is equivalent
to executing a Haskell program. ¿is is also advantageous for simulation speed
since no separate simulator is needed. Listing 2.2 shows the syntax to simulate the
MAC circuit and the result a er simulation. Note that take is added to stop the
simulation a er 3 clock-cycles since simulateP runs inde�nitely.

1 res :: [Value]

2 res = take 3 (simulateP macL [(1, 2), (1,3), (2,2)])

3

4 [2,5,9]

Listing 2.2 ś simulation ofMAC

To represent array-like data structures in CλaSH, prede�ned typeconstructors are
used to de�ne vectors. Vectors are lists with a constant length which is encoded in
the type. Commonly used higher-order functions for lists have been de�ned in the
CλaSH languages for vectors. Examples are vmap, vzipWith and vfoldl.

To show the use of vectors and accompanying higher-order functions, a �nite im-
pulse response (FIR) �lter is implemented. A FIR �lter is a commonly used op-
eration in the �eld of DSP. ¿e operation determines a weighted sum of current
and previous samples in a stream. ¿e mathematical formulation is given in equa-
tion 2.1.
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y i =
N

∑
n=0

cn × x i−n (2.1)

As shown in equation 2.1, every sample x i−n is multiplied with a �lter coe�cient cn
a er which the sum is determined. ¿e implementation in CλaSH requires three
parts: a shi register with the current and delayed samples, the multiplication with
the coe�cients and the summation. Listing 2.3 shows the implementation of the
FIR �lter in CλaSH.

1 type SRVec = Vector 3 Value

2

3 cs = 1 :> 2 :> 3 :> 4 :> Nil

4

5 fir :: SRVec > Value > (SRVec, Value)

6 fir us x = (us’, y)

7 where

8 us’ = x +>> us

9 ws = vzipWith (*) cs (x :> us)

10 y = vfoldl (+) 0 ws

11

12 firL = fir <^> (0 :> 0 :> 0 :> Nil)

Listing 2.3 ś FIR �lter in CλaSH

As shown in listing 2.3, a type synonym called SRVec (shi register vector) is de�ned
�rst. ¿is type is used for the shi register for storing previous values of the input x.
Line 5 shows the type of the FIR architecture in the form of a Mealy machine while
line 6 shows the arguments and results corresponding with these types. ¿e �rst
argument of �r named us represents the current state and x represents the input.
¿e output is represented by y while us′ represents new state of the shi register.
On line 3, the list of coe�cients cs is de�ned corresponding to the list ∥1, 2, 3, 4∥
in Haskell. ¿e vector of coe�cients is de�ned using the ∶> operator that puts one
element in front of a vector. On line 8, the new shi register state us′ is determined
by shi ing the current input x into us using the +>> operator and thereby removing
the last element of us. Since the coe�cients and us are combined in a pairwise
pattern, a vzipWith is used to compute ws. ¿e sum of ws and the output of the
�lter Y is determined using a vfoldl. Finally, on the last line, the initial state is
assigned to the �lter by setting all register values to zero. ¿e resulting circuit is
shown in �gure 2.3 while the simulation results are shown in listing 2.4.

1 res :: [Value]

2 res = take 4 (simulateP firL [1,0,0,0 :: Value])

3

4 [1,2,3,4]

Listing 2.4 ś simulation of FIR �lter
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x

× × × ×

c0 c1 c2 c3

w0 w1 w2 w3

+ + + +0 y

vzipWith

vfoldl

cs

ws

Figure 2.3 ś FIR circuit

As shown in listing 2.4, the FIR �lter is simulated using a stream starting with a one
followed by zeroes (called an impulse). Using this stream, the impulse response of
the �lter is determined. For a FIR �lter, the response should be equal to the set of
�lter coe�cients. ¿e simulation result shown on the last line of listing 2.4 shows
the correct impulse response for the FIR �lter.

¿e aforementioned FIR example shows how regular architectures can be de�ned.
However, also more irregular applications have been de�ned with CλaSH, e.g., a
VLIW architecture [24] and the MUSIC algorithm [62]. CλaSH is under constant
development and gaining many new features. Currently, a Verilog backend is being
added to better target ASIC tooling. For further information on CλaSH and the
internal workings of the compiler, the reader is referred to [14].

2.2 High-level synthesis

Due to the increasing amount of resources on current FPGAs and the increasing
complexity of designs, a higher level of abstraction is investigated in HDLs to keep
up with productivity. High-level synthesis (HLS) is the process where a high level
language is translated to gate-level hardware instead of using languages that de-
scribe hardware on the register-transfer level (RTL). ¿ese high-level input lan-
guages come in a variety of shapes, ranging from domain-speci�c languages for
signal processing ([76] for stencil computations for example) to more generally
applicable languages like C [66], SystemC [5] and Matlab [78]. Although func-
tional HDLs can also be considered HLS languages, these get special attention in
section 2.4.
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2.2.1 History

High-level synthesis is an active area of research for already 30 years with the be-
ginnings dating back to the 1970s [31]. ¿e history ofHLS can be divided into three
generations with di�erent levels of success [56, 77].

¿e �rst generation (up to early 1990) of HLS tools were mainly developed for aca-
demic research purposes and were generally ignored by industry. Several impor-
tant developments like special input languages (instruction set processor language
(ISPL) [89]) and force-directed scheduling [91] formed a basis for further advances
in the �eld. First generation HLS tools became not very successful in terms of in-
dustrial use for four reasons. In this period, industry was starting to use automatic
placement and routing tools resulting in a large increase of productivity and an
even higher level of abstraction was not deemed necessary since place and route
was the most labour intensive task. ¿e second reason was that the input languages
were considered obscure since most designers were just switching to RTL style lan-
guages and there was no need for higher abstractions. ¿e third reason was the
quality of the results, the resulting hardware was o en too large due to expensive
allocation and primitive scheduling of operations. ¿e fourth reason was the fact
that these tools targeted o en a speci�c domain likeDSP.¿ese tools were therefore
only used for a very small part of the whole design process.

¿e second generation (up to beginning of 2000s) of HLS tools focused on the
translation of behavioral descriptions to hardware and did gain a lot of attention
from industry [41]. One of the best known tools from that era was the Synopsys
Behavioral Compiler [67]. However, also the second generation tools were not
successful for reasons similar to the �rst generation. A main reason was that better
hardware results were expected compared to handwritten design at the RTL level.
¿e tools, however, o en introduced overhead that was variable in size and o en
unpredictable. ¿is made these tools cumbersome to use and the results were
o en of poor quality compared to hand-optimized RTL design. Similar to the �rst
generation, the input languages were still proposed as a direct alternative to RTL
design. ¿ese languages, however, were very di�cult to use and therefore mostly
not considered worth to learn.

For the current generation of HLS tools, the aforementioned problems have been
addressed. Due to the enormous amount of resources available on chips like FPGAs,
RTL style hardware description languages are becoming inadequate since they are
not productive enough for large scale designs. In terms of input languages, there is a
trend to switch to C-like languages to target a larger group of designers. Parallelism
in for-loops is o en indicated by the designer using pragmas such that the compiler
can safely assume that loop iterations are independent. Although the quality of the
results of these tools has increased signi�cantly, there still are issues concerning
e�ciency that need attention [31]. Based on the description in the input language,
it is still hard for the designer to make an estimate of the resource costs of the
resulting hardware structure which is parallel in nature. ¿is is caused by the fact
that most input languages are imperative and therefore sequential in naturemaking
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it hard to relate to the resulting hardware. Complete system design involves a lot of
di�erent components with di�erent styles and tools to de�ne them. Currently,HLS
can be cumbersome as well to use for full system design as this requires debugging
possibilities that cover all levels of a complete system. An overview of current HLS
tools and languages can be found in [80].

2.2.2 Example

To show how a modern high-level synthesis tool can be used to create hardware,
two examples are shown. ¿ese examples are implemented using the Riverside op-
timizing compiler for con�gurable circuits (ROCCC) compiler [55, 111]. ¿e input
language for the ROCCC compiler is based on the industry standard C language.
However, there are a number of limitations: only for-loops are supported, constant
o�sets are required when using loop-iterators and there is no support for point-
ers [3].

¿e �rst example shows how repetition in structure is dealt with. For-loops in
ROCCC are used to replicate inputs or components. ¿e code shown in listing 2.5
shows how to instantiate multipliers to implement a power function. ¿is is imple-
mented by using an input three times in a for-loop.

1 void power(int x, int& y) {

2 int i;

3 int total = 1;

4 const int N = 3;

5 for(i=o; i<N; ++i)

6 total *= x;

7 y = total;

8 }

Listing 2.5 ś ROCCC example of power (based on example in [3])

x

× × y

Figure 2.4 ś Structural loops in ROCCC

As shown in listing 2.5, the loop has a constant number of iterations (3) and the
compiler can therefore infer that all loops can be fully unrolled. Since the variable
total is initialized with 1, the compiler eliminates one instantiation of a multiplier
since 1 is the identity element of ∗. For comparison, the circuit of �gure 2.4 is also
implemented in CλaSH as shown in listing 2.6.

In the ROCCC example, x is used three times by referring to it in a for-loop. In
CλaSH, this is implemented by constructing a vector with three x values which is
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1 type Value = Signed 16

2

3 cubed :: Value > Value

4 cubed x = y

5 where

6 xs = vcopy 3 x

7 y = vfoldl (*) 1 xs

Listing 2.6 ś ROCCC example in CλaSH

constructed using the vcopy function. ¿is function creates a vector by repeating
the element x three times. While the number of loop iterations in the ROCCC
example is determined by the constant N , in the CλaSH program it is inferred
from the length of the vector xs. ¿e loop structure is implemented using a vfoldl
HOF and uses 1 as initial value. Using the vfoldlHOF, the initial value 1 is multiplied
with the �rst x from the vector xs before being multiplied with the second x and
third x value resulting in the �nal value for y.

An other important concept in the ROCCC input language are streams. Streams are
lists of data that are elements that can only be accessed sequentially over time. ¿ese
streams are stored in BRAMs and can be accessed using for-loops. Data is bu�ered
using so-called smart bu�ers [111] to increase the reuse of data and to provide a
function similar to shi registers. Figure 2.5 shows an example using smart bu�ers
where two streams (V1 and V2) are added in a pairwise fashion.

Figure 2.5 ś Sequential loops in ROCCC (reprint from [3])
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As shown in the code of �gure 2.5, the streams V1 and V2 are accessed sequentially
using a for-loop. In this for-loop, elements from both streams are added element by
element and stored in the output stream Sum. From this C code, the ROCCC com-
piler generates an adder for the addition of elements, BRAMs for storing streams,
address generators (AGs) for addressing elements in the stream and smart bu�ers
for data reuse.

Since CλaSH focuses mainly only the structural description of hardware, the ad-
dress generation has to be added by hand. Listing 2.7 shows the example of �gure 2.5
de�ned in CλaSH.

1 vectoradd cntr (v1, v2) = (cntr’, (sum, addr_v1, addr_v2, addr_sum))

2 where

3 cntr’ = cntr + 1

4 sum = v1 + v2

5 addr_v1 = cntr

6 addr_v2 = cntr

7 addr_sum = cntr

Listing 2.7 ś CλaSH code of vectoradd

A shown in the CλaSH description of listing 2.7, a counter cntr is used to generate
addresses to access a BRAM outside this component. In the where-clause, the new
state of the counter cntr’ is determined by adding 1 to it every clock cycle. ¿e actual
calculation is performed on the fourth line where the current values of stream V1
andV2 are added to �nd sum. Finally, the last three lines show that the addresses are
simply the value of the counter named addr_v1, addr_v2 and addr_sum respectively.

On a more abstract level, the aforementioned example shows how two large lists
of data are added in a pairwise fashion. Performing all computations in parallel
requires far more hardware then reasonable which is why all elements are added
sequentially. To make better use of the hardware, a level in between these extremes
is needed. In section 4.1, a transformation rule is presented that allows the designer
to design hardware that performs the computations partially parallel and partially
sequential.

Although many architectures can be described using the C-based input language
of ROCCC, there are a few limitations. ¿e �rst limitation is that many features of
the C language can not be used with ROCCC. Examples of these are while-loops
and pointers. Furthermore, functions representing a component are required to
be formatted in a special way (far more restricted than plain C code). Like with
many other HLS tools, the e�ciency of the resulting hardware depends highly on
the dependency-analysis of for-loops. Due to the sequential nature of the input
language, dependencies might be inferred between loop iterations that are not
present in themathematical speci�cation of the algorithm. ¿erefore, opportunities
for performance gains by parallelization are missed. In CλaSH, all loop strucutres
are expressed using higher-order functions.
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2.3 Transformation-based design methodologies

Transformations are used in many hardware design methodologies and tools. In
this section, the state of the art on transformation-based design methods is re-
viewed. Since all transformation-based design is a research area too large to review
in this thesis, the focus here is on designmethods based on rewriting of designs. ¿e
transformations considered in this section transform (parts of) a formal description
of a design into a mathematically equivalent description resulting in di�erent hard-
ware characteristics. Depending on the chosen transformation and constraints set
by the designer, di�erent transformations lead to di�erent hardware characteristics.
From these di�erent designs, the most suitable design is then chosen.

Examples of rewriting using transformations are utility directed transformationss
(UDTs) [75] and the algebraic approach in [93]. UDTs are transformations that
are controlled using utility functions [75]. A er applying a transformation, utility
functions are evaluated giving the performance metrics of the transformed design.
¿is process is embedded in an optimization algorithm to maximize utility, e.g.,
minimizing area and maximizing throughput. ¿e transformations used in UDTs
result in functionally-equivalent circuits.

Sometimes, approximations are acceptable and can be exploited to derive more
e�cient hardware. In audio and video applications such approximations are of-
ten not observable from an audio or video quality perspective but do result in a
signi�cant saving in hardware costs. In [93], complex arithmetic operations are
approximated using Taylor series and expressed as polynomials. ¿e polynomials
are then symbolically modi�ed such that they can be mapped to more e�cient
hardware components likeMACs.

On a fundamental level, transformational-design has a fundamental limitation
regarding completeness. A transformation system is considered complete if the
optimal solution is in principle always reachable given the set of available transfor-
mations. In general, this is not the case for any general-purpose design language
as shown in [112]. However, in practice this property is commonly not considered
a problem.

2.3.1 The SPIRAL framework

A particularly relevant approach of transformational-design is the approach to
hardware design taken in the SPIRAL project [96, 97]. SPIRAL is a so ware code
generator for linear transforms like discrete Fourier transforms (DFTs) with au-
tomatic optimization for di�erent hardware platforms. ¿e optimization process
iteratively applies transformations to a mathematical de�nition of the DFT until
a su�ciently fast implementation for a particular hardware platforms is found
(�gure 2.6). ¿ese transformations always result in a mathematically equivalent for-
mulation of DFT algorithms. During transformations, a DFT formula is replaced
by a new, mathematically equivalent, formula with di�erent characteristics when
mapped to hardware. Examples of supported DFT algorithms are both complex
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and real fast Fourier transforms (FFTs), the discrete cosine transform (DCT) and
the Walsh-Hadamard transform (WHT) [95, 113].

Figure 2.6 ś Compilation process of SPIRAL (reprint from [96])

Figure 2.6 shows the compilation and optimization process of the SPIRAL com-
piler. At the algorithm-level, a user selects aDSP transform and a size. ¿e selected
DSP transform is translated into a formula to which transformations can be ap-
plied. ¿ese formulas are represented using signal processing language (SPL) [120],
a language to express only DFT-like formulas. ¿e actual imperative code of the
transform is generated from the optimized SPL formulation. ¿is implementa-
tion is compiled using standard o�-the-shelf compilers a er which performance
metrics are derived. Simulation is performed by executing the compiled program.
Performance metrics derived during simulation are used to guide the optimization
process, closing the loop shown in �gure 2.6.

In addition to fast so ware implementation of DFTs for general purpose CPUs,
other hardware is targeted as well. In [35], FPGAs are targeted by generating Verilog
code. Modern CPUs are o en multicore architectures, SPIRAL also supports the
parallelization of transforms for these architectures [43]. Similarly, the formalism
used in SPIRAL has also been used to implement e�cientDSP algorithms on single
instruction multiple data (SIMD) architectures [98].
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2.3.2 SIL

¿e intermediate representation of a program should facilitate the use of transfor-
mations. In the SPIRAL project the signal processing language (SPL) (which looks
like an algebra language for expressing matrix operations) is used to represent for-
mulas of DFTs. O en, a graph-based representation is used where the edges are
data dependencies and the nodes operations. ¿e SPRITE input language (SIL)
[68, 82] is such a language and has been used as an intermediate representation
for HLS. From a high-level language, a SIL representation is generated to which
transformations are applied. Using hardware compilers, this representation can be
translated to actual hardware. SIL uses control data �ow graphs (CDFGs) as under-
lying model and can therefore model both data �ow and control �ow in a single
graph [60]. Transformations of the SIL model are meaning-preserving but have to
be done by hand [81]. InmodernHLS tools, such transformations are automatically
applied.

In order to map the operations onto hardware, the nodes within a SIL model have
to be grouped before they are scheduled. ¿e SIL representation of regular struc-
tures (structures from for-loops for example) is a collection of nodes with edges in
between. ¿erefore, a er obtaining a CDFG from the input language, information
that the input language once contained a repeating structure is gone. ¿e possibil-
ity to exploit this regularity, using array processing for example, is therefore much
harder. ¿e approach taken in this thesis expresses structure using higher-order
functions (HOFs) to which transformations are applied thereby exploiting the regu-
larity found in theseHOFs. On the lowest level, the de�nition of an application can
still be considered a graph but nodes may contain HOFs. ¿erefore more structure
remains to be exploited.

2.3.3 Squigol

In chapter 4, an algebraic notation for rewriting higher-order functions will be
introduced. A similar approach has been used during the development of the Bird-
Meertens formalism (BMF) [18, 79] culminating in a language called Squigol. ¿e
BMF or Squigol can be described as a calculus for the construction of programs
based on equational reasoning [48]. ¿is calculus is a transformational approach
to programming, in the sense that programs are �rst de�ned to be clear and un-
derstandable without focusing on e�ciency. E�ciency is achieved by rewriting the
original de�nition into a mathematically equivalent de�nition (equational reason-
ing) but with better performance characteristics. During every step in the rewrite
process only mathematically proven transformations are applied which guarantee
that the end result is functionally equivalent to the original de�nition. Many of
the notational conventions in BMF can be found in Haskell as well. For example,
consider the Haskell higher-order function foldl:

z = foldl (⊕) x ∥y1 , y2 , y3 , y4∥
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which is in Squigol de�ned as:

z = ⊕↛x ∥y1 , y2 , y3 , y4∥
¿e reduction operator↛ (the foldl in Haskell) is de�ned as an in�x operator ac-
cepting a binary operator ⊕ and a list ∥y1 , y2 , y3 , y4∥ as arguments. ¿e parameter
x is the starting value for the reduction. Using equational reasoning, the example
can be rewritten to:

z = ⊕↛x ∥y1 , y2 , y3 , y4∥ ⇒ (((x ⊕ y1)⊕ y2)⊕ y3)⊕ y4

When the operator ⊕ is speci�ed as the addition operator + and x as 0, the def-
inition can be used to determine the sum of a list of numbers. ¿is results in
+ ↛0 ∥2, 4, 8, 16∥ ⇒ (((0 + 2) + 4) + 8) + 16 = 30 and similarly in Haskell
foldl (+) 0 ∥2, 4, 8, 16∥ = 30.
¿e approach of achieving performance by equational reasoning is used a lot in
more recent implementations of the Glasgow Haskell compiler (GHC). Especially
in data parallel Haskell [28], a lot of transformations are applied in order to gain
performance on multicore-machines [33]. ¿e transformations in the BMF are
developed in the era of single-core PCs. ¿erefore, di�erent trade-o�s are needed
for parallel architectures like multicore machines and FPGAs.

2.3.4 Challenges

As elaborated in this section, transformation-based design methodologies have
been applied to many applications in hardware and so ware development. Espe-
cially in the �eld of DSP, as seen in the SPIRAL project, transformations have been
shown to be e�ective. However, some challenges remain. For SPIRAL, the current
challenge is to widen the set of supported applications which requires changes to
the formalism on which it is built. Although the compilation process used for gen-
erating DFT algorithms in SPIRAL can be used for many applications, the DFT
matrices language SPL has to be extended signi�cantly to be able to support di�er-
ent applications. In general, the challenge for transformation-based design is to
�nd a formalism which allows the designer to use abstractions that �t the applica-
tion domain while still delivering an e�cient result. We will take up this challenge
in chapter 4 of this thesis.

2.4 Functional hardware description languages

Similar to the developments in high-level synthesis, the functional programming
world has also been working on increasing the productivity of hardware design.
¿is productivity issue is targeted using the large amount of abstractions that are
available in functional languages. Examples of such abstractions are polymorphism,
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higher-order functions and λ-abstractions. Using a functional language as the ba-
sis for hardware design has a few advantages over standard HDLs like Verilog and
VHDL. ¿e description of hardware in a functional language o en describes what
happens in a single clock cycle [105]. ¿is makes the timing model much simpler
for simulation resulting in quicker simulations compared to the use of delta-delay
simulations in VHDL and Verilog. Simulation in a functional HDL is o en just the
execution of a function representing the hardware. Additionally, several abstrac-
tions that are commonly used in functional programming like type-derivation and
higher-order functions are also available in the functional hardware description
languages [44]. When using a pure and lazy functional programming language, the
description of the hardware is side-e�ect free and inherently parallel. ¿e order-
ing of expressions in the code is therefore irrelevant and far closer to a structural
description of the hardware compared to imperative languages. Functional pro-
gramming languages are also known for their advanced type systems. ¿is allows
for the use of formal methods which are hard to integrate in the industry-standard
languages Verilog and VHDL.

2.4.1 A historical perspective

One of the �rst uses of functional languages for hardware design came with the
introduction of µFP [103]. In µFP, hardware is designed by creating expressions in
which primitive functions are combined using combining forms to form complete
circuits. Using these combining forms, µFP also supports the production of lay-
out. Every circuit in µFP is a function which simpli�ed simulation tremendously.
Circuits could be simulated by giving the inputs as arguments to this function re-
turning the simulation data as result. In retrospect, this became the standard way
of simulation in functional HDLs.

A similar approach to functionality and layout has been applied to the Ruby lan-
guage [53]. Although not a functional language, Ruby is a language of functions and
relations, circuits are constructed using primitives and composition in the same
way. Layout can be expressed using these relations as well. Compared to CλaSH,
the set of abstractions is rather limited since CλaSH can exploit a lot abstractions
available in the modern Haskell language, like type derivation and data dependent
types, while Ruby only supports primitive functions and relations.

¿e functional HDL that set the standard in exploiting the features of a functional
language was Lava [19]. Lava is a functional HDL embedded in Haskell (an em-
bedded domain speci�c language (EDSL)) that can be used to design, verify and
implement circuits. Since the circuit is represented using an embedded language,
it can be interpreted in many ways. Interpreters are used for simulation, veri�ca-
tion, layout and implementation. Hardware is generated using the implementation
interpreter which generates structural VHDL. Listing 2.8 shows the de�nition of a
halfadder in Lava.

As shown in the code of the half adder, Lava relies heavily on the use of monads
(an abstraction for handling non-pure operations). ¿is is an approach to be able
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1

2 halfAdd :: Circuit m => (Bit, Bit) > m (Bit, Bit)

3 halfAdd (a, b) =

4 do

5 carry < and2 (a, b)

6 sum < xor2 (a, b)

7 return (carry, sum)

Listing 2.8 ś Half adder in Lava from [19]

to support loops in the circuits description which is o en the case when memory
is included. It also shows the main data type in Lava, the Bit. Every data type of
signals in Lava is formed by a composition of bits. Due to the fact that Lava is
an embedded language in Haskell, a custom simulator is required to be able to
test circuits. ¿is embedding also restricts the use of pattern matching, a concise
method to express choice.

In order to increase the productivity of the designer, a lot of abstractions mecha-
nisms that are available in Haskell have also beenmade available in Lava. Examples
of these abstractions are type derivation and higher-order functions. Higher-order
functions, in particular, are an abstraction that are very intuitive for describing
structure in hardware.

Following the compositional approach explored in Lava, formal methods to design
hardware correct by construction were developed. An example of such a system
is formal system design (ForSyDe) [99]. ForSyDe is based on Haskell and allows
the designer to de�ne Mealy machines using two functions: one function that
determines the next state and one for the output. VHDL can be generated as well
using ForSyDe but there are some restrictions on the Haskell constructs that can be
used like pattern matching. A comparison of the capabilities of ForSyDe in relation
to CλaSH can be found in [14].

Similar to Lava, the Hydra language [86] is also based on Haskell. Hydra is an
embedded language especially developed for simulation of control-oriented digital
circuits like CPUs. To represent connections between components, Hydra makes
use of a data-type called stream. Streams are in�nite lists of values but can be used
since Haskell uses lazy evaluation. Registers and memory are implemented by
delaying the data in streams.

¿e same techniques used in Lava have also been transferred to other languages
than Haskell. HWML [115] is a functionalHDL developed using the functional lan-
guageML. HWML also has support for streams, type derivation,VHDL generation
and higher-order functions. However, the same disadvantages arise as are found in
EDSLs like Lava, e.g., complicated use of types for the user due to data types.
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2.4.2 State of the art

Many of the aforementioned techniques are exploited in current functional HDLs.
In particular, the modern implementation of Lava, Kansas Lava [51], makes exten-
sive use of modern features in Haskell. Kansas Lava makes use of two types of
embedding, shallow and deep embedding. Using shallow embedding, a lot of func-
tions are made available for the designer for composing circuits in a transparent
way. For hardware generation deep embedding is used where the whole circuit is
represented using a tree-like data structure. ¿is data structure is then traversed
to generate VHDL. For more details regarding the implementation of embedded
HDLs in Haskell, the reader is referred to [49] and [9].

In contrast to compiling functional languages to hardware, hardware speci�cally
for the execution of functional languages has been developed as well. Examples
of this are the processors Reduceron [83] and the currently under development
PilGRIM [20]. ¿ese processors have been developed to accelerate the execution
of a basic functional language by focusing particularly on the memory access.

Although not based on a functional programming language anymore (it was based
on Haskell as well), Bluespec [85] is a state of the art language focused on high-level
speci�cation of hardware. ¿e input language of Bluespec is similar to SystemVer-
ilog with which the designer describes circuits using guarded atomic actions. In
Bluespec, guards are used to trigger actions based on certain conditions where an
action is a change of the global state. Every action is atomicmeaning that the state
remains consistent. Using these properties, Bluespec can be used to compose larger
systems based on actions. Bluespec has become an industrial-strength tool and has
been used for large scale applications like H264 video decoding [74] and wireless
communication [36].

¿e newest Haskell based HDL currently available is CλaSH [14]. What makes
CλaSH distinct from other approaches is that the CλaSH language is not embed-
ded in a host language. Instead, plain Haskell code is transformed to VHDL from
an internal representation of the Glasgow Haskell compiler (GHC). ¿erefore, no
embedded language is required making it more intuitive for the users.

2.4.3 Challenges

Although functional hardware description languages have been shown to be an
adequate tool for hardware design, some challenges remain. Several abstractions
from functional languages have been added to functional HDLs but there is still a
need for more [105], to improve the expression of algorithms on hardware without
too many RTL style details. In particular, recursion is an abstraction that would be
very useful for many algorithms [14]. Also the integration of more formal methods
like theorem provers in hardware design is desired. ¿rough the use of formal
methods it is expected that the costs of testing can be reduced [44].
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2.5 Conclusions

Several di�erent hardware design methodologies have been covered in this chapter
that are particularly relevant to the hardware design methodologies presented in
this thesis. First, CλaSH is introduced and two examples are given to show how
circuits are de�ned using Mealy machines and how regular structures are speci�ed
with higher-order functions. Following the CλaSH section, the developments in
high-level synthesis, transformation-based design methodologies and functional
hardware description languages have been presented.

¿e main trend to be observed in the �eld of HLS is the support for mainstream
imperative programming languages likeC.Although these tools have becomemuch
more accepted by industry and the quality of the results has increased, there are
fundamental limitationswith usingC as input language. Many features like pointers
and data-dependent loops can not be used or only under very strict conditions. Also
many assumptions about the execution model of C (imperative) do not apply when
used for hardware design.

More formal approaches can be found in the area of transformation-based design
where an underlying formalism is used to which transformations can be applied.
¿e SPIRAL project is an example of this where a formal system is developed for
e�cient code generation of DFT-like transforms. ¿e main trend that can be ob-
served is the widening of supported applications. ¿is is achieved by extending the
formalism on which it is built.

Functional HDLs combine the high level of abstraction from HLS and the formal
methods that can be found in transformational design. Most functional HDLs are
embedded in a functional host language and can therefore exploit a lot abstractions
from the host language. However, using an embedded language imposes some
restrictions. For example, features like pattern matching can not be used. CλaSH,
on the other hand, does not have these restrictions since CλaSH translates plain
Haskell to hardware.

In this thesis, CλaSH is used for all hardware designs. ¿e motivation for this is
that CλaSH has a lot of abstractions that are speci�cally useful for hardware design.
Since CλaSH is based on a pure functional language, there are no side e�ects which
simpli�es the use of transformations. Another advantage is the support for higher-
order order functions which can be used directly to structurally describe hardware.
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A Fully Parallel Particle Filter

Abstract ś In this chapter, a two-step design method is introduced to maxi-

mize parallelism by exploiting themathematical structure of a signal processing

application. A particle �lter is used as an example application. During the �rst

step, themathematical formulation of a particle �lter is reformulated inHaskell

using higher-order functions, producing a model that can be transformed and

trivially simulated. To derive hardware, small parts of the description have to

be altered such that hardware can be generated automatically using the CλaSH

compiler. By implementing a particle �lter tracking algorithm, the feasibility

of this method is shown. In particular, higher-order functions are a useful

abstraction to express mathematical dependencies and parallelism.

R esearch on particle �lters, a state estimation methodology, has become pop-
ular since the publication of [52]. ¿is popularity has also spawned research

on designing hardware to accelerate these applications. FPGAs in particular, are a
popular target due to the increasing amount of parallelism available on these chips.
Several challenges arise when implementing particle �lters on FPGAs. Particle �l-
ters contain a lot of parallelism, data dependent processing and a feedback loop.
All these properties require di�erent trade-o�s to derive e�cient hardware.

In this chapter, we propose a two-step design method using CλaSH applied to a
particle �ltering application. Performance is achieved by maximizing the amount
of parallelism. ¿e �rst step is formulating the mathematical de�nition of the
signal processing application in Haskell. ¿is Haskell description is then modi�ed
slightly such that it is accepted by CλaSH and hardware can be generated. ¿e
design method is shown graphically in �gure 3.1.

¿e reason for splitting the design into two steps is that fundamental changes in
the mathematical de�nition are easier to perform in the Haskell speci�cation than
in the CλaSH speci�cation. ¿e Haskell speci�cation uses double-precision �oat-
ing point operations while the implementation in CλaSH uses �xed-point opera-
tions. For e�ciency reasons, only �xed-point calculations are currently supported

Large parts of this chapter have been published in [RW:1].
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Figure 3.1 ś Hardware design method

by CλaSH. Fundamental changes to the application like the architecture of the
application are therefore performed in the Haskell de�nition while the hardware
implementation details are covered by the CλaSH implementation. ¿e bene�t
of two distinct steps is a clear division between architectural design and low-level
hardware details like �xed-point representation.

¿e application chosen for evaluation of the design method towards a fully parallel
implementation is a particle �lter as it is challenging due to excessive parallelism,
data dependencies and feedback. In order to achieve high performance, the focus of
this chapter is on the parallelization of all steps of the particle �lter. Data-dependent
operations in the resampling step, in particular, are challenging to parallelize.

Before diving into the details of the hardware design methodology, an introduction
to particle �ltering is given in section 3.1 followed by related work presented in
section 3.2. In section 3.3, the hardware designmethod is presented while hardware
results are presented in section 3.4. Finally in section 3.5, conclusions are drawn
regarding the e�ectiveness of the design methodology.

3.1 Particle Filtering

Particle �ltering is a Bayesian �ltering technique to determine the state variables of a
system based on noisy measurements [10]. For each measurement, the belief of the
state is recursively updated using ameasurement and the previous state. ¿is results
in a posterior probability about the state of the system, e.g., the position and speed
of an object. ¿e more measurements are used, the more accurate the prediction
becomes. Since thesemeasurements contain noise, the resulting belief will be in the
form of a probability density function (PDF). Examples of these measurements are
frames from video streams and range-Doppler images from radar. ¿ese usually
arrive at regular time intervals. Analytically �nding the posterior probability is
o en mathematically intractable (the integrals used in the formulation cannot be
solved) which is why approximation methods are used. Particle �ltering is a Monte
Carlo approach that repeatedly generates random samples and eliminates these
partially according to a selection function. ¿e number of particles is kept constant.
Mathematically, the �ltering problem is to �nd the PDF of the state vector x⃗k given
the measurement zk (k is the iteration number of the �lter):
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p(x⃗k ∣ zk) (3.1)

In a particle �lter, this PDF is approximated by a collection of particles x
(i)
k

where
i = 1 . . .N is the index of a particle. A higher density of particles represents a
higher probability in the continuous state space. In fact, for N approaching∞ the
particle �lter approximation is equal to the exact solution in terms of mean square
error [34]. Figure 3.2 shows the continuous PDF and �gure 3.3 the particle �lter
approximation.
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Figure 3.2 ś Continuous PDF
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Figure 3.3 ś Particle �lter approximation of PDF

A commonly used type of particle �lter is the sequential importance resampling
�lter (SIRF) which consists of four steps: prediction, update, normalization and
resampling [27]. Each time a measurement arrives (the sequential part), these four
steps are performed and alter the particles for the next measurement forming the
feedback loop shown in �gure 3.4.
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Predict Update Normalize Resample

Measurement

Figure 3.4 ś Structure of a particle �lter

Prediction

During prediction, the next state is derived from the current state using the known
dynamics of the system. ¿e dynamics of the system describe how the state space
changes during a single iteration. Examples are anything from continuing on a
straight path to complex nonlinear paths. O en, this path also includes some
uncertainty. ¿e behavior of the system during a single iteration is expressed math-
ematically by drawing samples from a PDF. Equation 3.2 shows this abstract de�ni-
tion.

x
(i)
k
∼ p(x⃗k ∣ x⃗k−1) (3.2)

In practice, drawing particles from this distribution is performed by evaluating the

System Dynamics function f for all particles, x
(i)
k
= f (x(i)

k−1
, u
(i)
k
). u(i)

k
is noise

sampled from some probability distribution, not necessarily a Gaussian distribu-

tion. ¿e dependence between x
(i)
k

and x
(i)
k+1

now comes from f combined with

the distribution of u
(i)
k
.

Update

When a new prediction has been made, a measurement is used to update this

prediction during the update step. In this step, weights ω
(i)
k

are assigned to all
particles representing the importance of a particular particle. Equation 3.3 shows

the generic mathematical formulation of this. Note that the weight ω
(i)
k

is directly
determined by the PDF, the weights are not drawn from it.

ω
(i)
k
= p(zk ∣ x(i)k

) (3.3)

Similarly to the prediction step, equation 3.3 shows the generic mathematical for-
mulation of the update step. To �nd the actual weights, an application-dependent

update function g is needed. ¿is function returns, given a particle x
(i)
k
, a single

measurement zk and noise sample vk , a weight ω
(i)
k

for each particle x
(i)
k
. Given

an application dependent update function g, equation 3.4 shows the speci�c imple-
mentation of equation 3.3.
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ω
(i)
k
= g(x(i)

k
, zk , vk), for i = 1 . . .N (3.4)

Normalization

¿e integral of any real PDF should be 1 hence this should also hold for the sum of
all the weights. ¿is is realized in the normalization step where every normalized
weight ω̃(i) is found by:

ω̃(i) =
ω(i)

ωtot

for i = 1 . . .N

where ωtot =

N

∑
n=1

ω(n) (3.5)

Resampling

¿e last step performed in a particle �lter iteration is the resampling step, which
is needed to prevent degeneracy of weights [27]. Degeneracy occurs when par-
ticles with a high weight are given an even higher weight over several iterations.
¿is makes the particles with a low weight insigni�cant. Resampling prevents this
from happening by mixing particles. Particles are replicated 0, 1 or more times
proportional to their normalized weight ω̃(i), while keeping the total number of
particles constant. Mathematically, the resampling process is selecting particles as
formulated in equation 3.6:

p (x̃(i)
k
= x
(i)
k
)∝ ω̃

(i)
k

for i = 1 . . .N (3.6)

¿e probability that a particle x
(i)
k

is replicated (the particle a er resampling is

denoted as x̃
(i)
k
) proportionally to its weight ω̃

(i)
k

is expressed in equation 3.6. Fig-
ure 3.5 shows the process of resampling, as expressed in equation 3.6, graphically.

As shown in �gure 3.5, particles with a low weight are discarded (×) while particles
with a high weight are copied (●) or replicated (●●). ¿is process includes some
randomness to ensure some variation in how many times a particle is replicated.
¿e total number of particles is kept constant.

Resampling is highly data-dependent which is challenging for a parallel hardware
implementation [22]. ¿ere exist several techniques to implement resampling [58],
of which residual systematic resampling is most commonly used. In short, residual
systematic resampling replicates particles according to the amount of �xed intervals
1

N
are within the range of a single weight given a random o�set 0 < u0 <

1

N
. ¿e

resampling technique used in this chapter is called residual systematic resampling
(RSR), a modi�ed version of Systematic Resampling but mathematically equiva-
lent [22].
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Figure 3.5 ś Graphical representation of resampling

RSR consists of two steps: �rst the replication factor is determined based on the
weight of a particle, followed by the actual replication of particles. Equation 3.7
gives an expression to determine the replication factor r i for a single weight ω

(i).

r i = ⌊(ω(i) − u i−1) ∗ N⌋ + 1
u i = u i−1 +

r i

N
− ω(i)

for i = 1 . . .N and u0 ∼ U (0, 1

N
) (3.7)

Figure 3.6 shows a graphical representation of RSR expressed in equation 3.7. Ba-
sically, the replication factor is determined by the amount of arrows pointing into
the range expressed by the normalized weight. ¿e randomization in resampling is
implemented by the random o�set u0 sampled from the uniform distribution (U).
Figure 3.6 shows how the weights ω⃗ = {0.09, 0.21, 0.2, 0.4, 0.1} are translated into
replication factors r⃗ = {0, 1, 1, 2, 1}.

0 1

ω(1) ω(2) ω(3) ω(4) ω(5)

u0 1

N
1

N
1

N
1

N

Figure 3.6 ś Graphical representation of Residual Systematic Resampling

When all replication factors r i have been found, the actual replication of particles

can be performed. During replication, every particle x
(i)
k

is replicated r i times and

the resulting sets are merged into a single set of new particles x̃
(i)
k
. ¿e mathe-
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matical formulation of replication using the concatenation operator ∥ is shown in
equation 3.8.

{x̃(1)
k

, x̃
(2)
k
⋯x̃
(N)
k
} = N

∥
n=1

replicate(x(i)
k

, r i) (3.8)

Since the number of times a particle is replicated is directly determined by the
replication factor r i , a fully parallel hardware implementation of resampling is
expected to be the most expensive component.

3.1.1 Example filter

All implementations in this chapter are based on the simple particle �lter from [2].
¿is �lter implements the tracking of a white object (in this case a square) on a dark
background in the presence of noise (see �gure 3.7). In the SIRF, both the prediction
step and the update step are parameterized by application-speci�c functions: the
prediction step describes the system dynamics for the square while the update step
determines new weights based on a new measurement.

Figure 3.7 ś Example of measurement

In the prediction step, the movement of the square is assumed to be uniformly
distributed in an area of 32×32pixels. It follows that the new state can be determined
by adding a uniformly sampled deviation to the current position of the square.
¿e state vector now represent an estimate of the position of the square (x , y).
Equation 3.9 shows the mathematical formulation of the system dynamics function
f .
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f (x(i)
k

, uk) = x(i)k
+ uk

uk = ⟨δx , δy⟩ where δx , δy ∼ U(−16, 16) (3.9)

As shown in equation 3.9 the next position x
(i)
k+1

of the square represented by the

particle x
(i)
k

is found by adding uk to it where uk is the deviation from the cur-
rent position. ¿is deviation has a δx and a δy component, both sampled from
U(−16, 16). ¿erefore the square can at most move 16 pixels in a single �lter itera-
tion.

Similar to the prediction step, the update step is also parameterized with a function
that determines the importance of a particle given ameasurement. For tracking the
square, the measurement function g assigns weights to particles given a measure-
ment. As shown before in �gure 3.7, this measurement is a single frame containing
the white object on a dark background with some noise.

¿e goal of this simple �lter is to track the white object. ¿erefore, particles within
the boundaries of the white object should be assigned a large weight while others
should be assigned a lower weight. ¿e function g that implements this behavior
is shown in equation 3.10.

g (x(i)
k

, z
(i)
k
) = 1

1 + (255 − z(i)
k
∥x , y∥)2

where x , y ∈ x
(i)
k

(3.10)

As shown in equation 3.10, the weight ω(i) of a particle is determined by the color
(a grayscale value between black being 0 and white being 255) of a pixel from

measurement z
(i)
k
. From the measurement z

(i)
k
, a pixel is selected positioned at

x , y. As shown in equation 3.10, a lighter color will result in a higher weight and
vice versa.

3.2 Related work on particle filters

A lot of work on parallelization of particle �lter for FPGAs has been performed
at Stony Brook University. ¿eir work covers the design of generic hardware ar-
chitectures [13, 21] and alterations of the resampling step for e�cient hardware
implementation [23]. Other people have been focusing on the real-time aspects of
particle �lter implementations [6, 29]. Also FPGA-related implementation details
of particle �lters have been covered [73, 87]. ¿e following text elaborates on the
aforementioned literature and how it compares to the parallelization approach in
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this chapter. Although this section is not an exhaustive survey on parallel parti-
cle �lters, the most important approaches to designing parallel particle �lters are
covered.

At Stony Brook University, generic hardware architectures have been developed
[13, 21]. ¿ese architectures can be parameterized with application speci�cmodules
to implement an actual application. Also parallel processing of particles is included
for the prediction and update step to boost performance. ¿e resampling step
is performed by a single central module where particles are sent to before being
resampled. Also a resampling step optimized for hardware implementation has
been proposed called residual systematic resampling (RSR) which can be described
by a single for-loop [23]. On hardware, this forms a regular linear structure which
will be further exploited in the rest of this thesis.

Particle �lters are also used a lot in real-time tracking video applications requiring
low latency and high frame rates. Since particle �lters are o en computationally
intensive, optimizations are required before they can be implemented on FPGA. A
reduction of the number of particles gives a big performance gain as shown in [29]
and [6].

To increase the speed of development, industry-standard system on chip (SoC) de-
sign tools have been used to handle communication and synchronization between
the particle �lter steps. An example is the use of the Altera Avalon bus, a network on
chip technology that can be designed using a graphical layout tool [73]. To support
dynamic recon�guration of the particle �lter, a Recon�gurable system on chip has
been proposed using partial recon�guration of an FPGA [87]. Parts of the particle
�lter can be recon�gured at run time which gives both a dynamic advantage and
an area advantage. ¿e area advantage comes from the fact that the parts that are
changed during recon�guration can be optimized for the speci�c application.

Although many design methods, frameworks and optimizations are presented, the
step from the mathematical de�nition to hardware involves a lot of manual transla-
tions. However, in this chapter a method is proposed where the amount of manual
translations is signi�cantly reduced by �rst translating the mathematical formula-
tion to Haskell. ¿ese translations require only small changes and are therefore less
error prone.

3.3 Design method

In order to derive hardware from the equations presented in section 3.1, a two-step
design method is proposed. To achieve as much performance as possible, we try
to maximize the amount of parallelism. To do so, it is important to preserve the
mathematical structure of the �lter throughout the whole process. ¿e �rst step is
to derive a Haskell description from the mathematics as given in section 3.1. ¿is
Haskell description can now be simulated and acts as a reference for the eventual
hardware. ¿e second and �nal step is reformulating the Haskell description such
that it is accepted by the CλaSH compiler. During this �nal step, parts that involve
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data-dependent execution and usage of lists are transformed such that they can be
translated to hardware.

3.3.1 From mathematics to Haskell

¿e �rst step of the design method is the translation of the equations of the par-
ticle �lter to Haskell. As explained in section 3.1, a particle �ltering algorithm
consists of four stages: 1. prediction, 2. update, 3. normalization and 4. resampling.
Combined with equation 3.9 and equation 3.10, the mathematical de�nition of the
object-tracking �lter is complete.

During the prediction step, the position of the object is predicted based on the
current estimate and system dynamics. ¿is position is predicted by applying the
system dynamics function f to all particles combined with deviation u. ¿e pre-
diction step in Haskell is generic, i.e., the actual system dynamics function f is
given as a parameter. Since all particles are combined with deviations in a pair-wise
fashion, the higher-order function zipWith is used. Listing 3.1 shows how to express
the prediction step in Haskell.

1 predict f ps us = zipWith f ps us

Listing 3.1 ś Prediction step in Haskell

As can be seen in listing 3.1, the prediction step accepts a function f expressing
the system dynamics, a list of particles ps and a list of random deviations us which
are produced using a linear feedback shi register (LFSR) [30]. Every particle and
every o�set is pairwise combined by f using zipWith resulting in an list of estimates
of the new position.

Translating the system dynamics function f of equation 3.9 into CλaSH is trivial
as shown in listing 3.2.

1 f (x,y) (nx, ny) = (x + nx, y + ny)

Listing 3.2 ś System dynamics function f in Haskell

¿e results of the prediction step are combined with a measurement in the update
step. Again, the update step formulated in equation 3.3 is also generic by leaving
the actual update function g as argument. As formulated in equation 3.3, every
particle is combined with a single measurement to �nd the weight for each particle.
In Haskell, this structure can be expressed using the higher-order function map.
Listing 3.3 shows the Haskell de�nition of the update step.

1 update g z ps = map (g z) ps

Listing 3.3 ś Update step in Haskell
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As can be seen in listing 3.3, the update step accepts three arguments: the update
function g, a measurement z and a list of particles ps. ¿e update function g com-
bined with a measurement z is applied to all particles ps using the higher-order
functionmap. Since g is a binary function, i.e., it accepts two arguments, the �rst
argument z is already given to g, resulting in a single parameter function (better
known as partial application). ¿is function now only accepts a particle and can
therefore be applied to all particles ps using the higher-order functionmap.

To complete the translation of the mathematics of the update step, the update func-
tion g also has to be translated to Haskell. ¿e Haskell code shown in listing 3.4 is
a direct translation of equation 3.10.

1 g z (x,y) = 1 / (1 + (255 p)^2)

2 where

3 p = z !! y !! x

Listing 3.4 ś Update function g in Haskell

As shown in listing 3.4, a pixel containing a grayscale value p is selected from the im-
age z using the index operator !!. Although this is not very e�cient in Haskell (this
operator has computational complexityO(n)), it will be replaced by a similar oper-
ator as soon as hardware is generated. Indexing on hardware is then implemented
using a multiplexer which is much more e�cient.

Translating the normalization step from equation 3.5 is performed in a similar way
as can be seen in listing 3.5.

1 normalize ps = ps’

2 where

3 omegatot = sum (map weight ps)

4 ps’ = map (\ (x,y,omega) > (x,y,omega/omegatot)) ps

Listing 3.5 ś Normalization step in Haskell

As shown in listing 3.5, the total weight ωtot is determined by �rst selecting only
the weights of all particles ps using the weight function. ¿e weight function is
implemented as weight(x , y,ω) = ω. All weights are then accumulated in ωtot . In
the last line, a lambda expression is applied to all particles ps usingmap. ¿e lambda
expression accepts a particle and replaces only the weight by the normalized weight.

Remaining to formulate is the resampling step which consists of two parts. First,
the replication factor is determined based on the weight of a particle. ¿erea er,
the actual replication of particles is performed. Equation 3.7 gives an expression to
determine the replication factor r(i) for weight ω(i).

¿e depth of the recursion in equation 3.7 depends only on the length of the weight
list. We use a functional language feature called pattern matching (ω ∶ ωs) to
terminate the recursion. Listing 3.6 shows the two phases in the recursion. Either,
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not all weights have been processed yet (line 1), or the last weight has been processed
and an empty list ∥∥ is le (line 2). During processing, the list of weights (ω ∶ ωs)
shrinks every time by taking the �rst element ω and calculating a replication factor
based on that element. Calculation continues recursively with the remainder of the
weights ωs until no weights are le ∥∥.
1 ws2rfs u [] = []

2 ws2rfs u (omega:omegas) = r : (ws2rfs u’ omegas)

3 where

4 r = floor ((omegau)*N) + 1

5 u’ = u + r / N  omega

Listing 3.6 ś Haskell code to determine replication factors

Reformulating the replication of particles in Equation 3.7 to Haskell, comes down
to translating replication and the concatenation operator ∥ to Haskell. Each particle
p is replicated r(i) times and all those sets of particles are concatenated into a single
set of particles. Listing 3.7 shows the Haskell de�nition of the replication process.

1 replps ps rs = concat pss

2 where

3 pss = zipWith replicate rs ps

Listing 3.7 ś Replication of particles

As shown in listing 3.7, every particle in ps is replicated r ∈ rs times using replicate,
i.e., replicate r p yields a list of r copies of the particle p. Since the particles in
list ps and the replication factors in list rs are combined in a pairwise fashion, the
higher-order function zipWith is used. Note that replicate is a binary function. ¿is
results in a list of list of particles ps which is concatenated into a single list.

¿e complete resampling step is formed by composing the function ws2rfs and
replps. All replication factors only depend on the weights ωs; these are extracted
from the particles ps (�rst line in the where clause of listing 3.8). ¿e resulting list
of replication factors rs is then used for replication by replps (third line in thewhere
clause). Finally, the last line replaces the weight by 1

N
since all particles are of equal

importance a er resampling.

1 resample ps ws = ps’

2 where

3 rs = ws2rfs ws

4 ps_r = replps ps rs

5 ps’ = map (\ (x,y,_) > (x,y,1 / N)) ps_r

Listing 3.8 ś Complete resampling step in Haskell
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1 ws2rfs a omegas = vscanl rf (0,u0) omegas

2

3 rf (u,r) omega = (u’,r’)

4 where

5 r’ = floor ((omegau)*N)+1

6 u’ = u + frac r N  omega

Listing 3.9 ś Determining replication factors in CλaSH

3.3.2 From Haskell to Hardware

Now that all components of the particle �lter are de�ned in Haskell, the �nal step
is to adapt the code such that hardware can be generated. For hardware genera-
tion, the CλaSH compiler is used which translates Haskell code toVHDL. However,
CλaSH does not support all language features available in Haskell. ¿erefore, lan-
guage features like lists and recursion have to be removed since they do not result
in e�cient hardware. In this section, recursion is removed by replacing all list op-
erations by vector operations, i.e., operations acting on lists with a �xed length.
Floating point operations are removed as well in order to derive more e�cient
hardware.

¿e �rst step is the replacement of lists by vectors. For most of the steps in the �lter
this does not change much as most higher-order functions are simply replaced by
their vector equivalent functions (for examplemap becomes vmap, foldl becomes
vfoldl, etc. ). ¿e conversion of the prediction and update step is simply the re-
placement of zipWith andmap by vzipWith and vmap respectively. ¿e resampling
step, on the other hand, is more complicated to translate since it is expressed using
data-dependent list operations.

Similar to the Haskell reference, resampling starts by determining the replication
factors, followed by the actual replication of particles. As shown in the Haskell
formulation of listing 3.6, determining the replication factors is done using a tail
recursive function. Currently, CλaSH does not support recursion. ¿erefore, this
recursion has to be reformulated using functions that are supported by CλaSH.
Since the length of the recursion only depends on the amount of particles and
the amount of particles is �xed, it can be replaced by a higher-order vector-based
function called vscanl. Although scanl is directly supported in CλaSH using vscanl,
it is interesting to show the structural correspondence between the mathematical
formulation and the resulting hardware. vscanl accepts a function rf, a starting value
u0, and a vector with weights ωs. ¿e function argument of vscanl is applied to each
element in the vector while accumulating intermediate values and sending this to
the output thus being equivalent with the recursive de�nition of listing 3.6. ¿e
CλaSH implementation of equation 3.7 is shown in listing 3.9. ¿e corresponding
hardware structure is shown in �gure 3.8.

¿e actual replication of particles is performed by N parallel multiplexers imple-
mented in CλaSH using the index operator ! (Listing 3.10). Eachmultiplexer selects
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Figure 3.8 ś Structural view of vscanl

1 replicate ps is = ps’

2 where

3 ps’ = map (ps !) is

Listing 3.10 ś Replication in CλaSH

a single particle and puts this on the output depending on a list of multiplexer in-
dices calculated from the set of replication factors.

As shown in listing 3.10, the replicate functions accepts two arguments, the list of
particles ps and a list of indices is. Given the whole list of particles ps and a single
index from is, a particle is selected using the index operator !. As shown in the
CλaSH code,map is used to perform the multiplexing using each index in is using
partial application. ¿is is applied in listing 3.10 at the index operator !, the list of
particles is already given since it is used for every index. ¿e ! operator has only a
single argument le which is supplied using themap function since it is applied to
every index in is. Figure 3.9 shows the resulting hardware:

x
(1)

k
x
(2)

k

. . .

x
(N)

k

. . .

x̃
(1)

k
x̃
(2)

k

. . .

x̃
(N)

k

i1 i2 iN

Figure 3.9 ś Particle selection

To complete the translation, the conversion from replication factors to indices still
has to be implemented. Since CλaSH does not support general recursion, only
higher-order functions like viterate and foldl can be used. Listing 3.11 gives the
CλaSH formulation of the function rs2is that determines the set of indices.
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1  convert list of replication factors to indices

2 rs2is rs = vmap fst (viterate rs2i (rs2i (0,rs)))

3

4  find next index and decrease a replication factor

5 rs2i (ind, rs) = (ind’, rs’)

6 where

7 ind’ = nextreplin ind rs

8 rs’ = vreplace rs ind’ (rs ! ind’  1)

9

10  find index of first replication factor>0 at index >= io

11 nextreplin io rs = snd res

12 where

13 res = vfoldl (frepl io) (False, 0) rs

14 frepl io (found, cind) r = if found

15 then (True, cind)

16 else if cind >= io && r>0

17 then (True, cind)

18 else (False, cind+1)

Listing 3.11 ś Conversion from replication factors to indices.

To determine the set of indices to select particles, the function rs2is is used. Using
viterate, a set of tuples containing an index and an altered list of replication factors
is produced. From these tuples, only the indices are selected using the function fst
(select the �rst element of a tuple). viterate repeatedly applies rs2iwhich determines
a single index given the current index and list of replication factors. For every
application of rs2i, a new index is found and a replication factor in rs is decreased
by one. In total rs2i is instantiated N times, equal to the sum of all replication
factors.

rs2i accepts and returns a tuple with and index and a list of replication factors. ¿is
function consists of two steps; determining an index using the function nextreplin
and decreasing the replication factor with index ind. ¿e replication factor with
index ind is replaced by a new replication factor that is one less than the old value.

Finally, nextreplind determines the next index where the replication factor is bigger
bigger than zero with o�set io. ¿is is implemented using a foldl parameterized
using the function frepl. For every instantiation of frepl in foldl, the next replication
factor bigger than zero is either found or not. When it is found, the current index
cind is simply forwarded to the end of foldl. When this is not the case, the current
index is increased for the next step and found remains false.

3.4 Results

In the previous sections, the mathematical de�nition of a tracking particle �lter has
been reformulated in Haskell. Using this Haskell program, the minimum number
of particles for this particular application has been determined to be 32 particles
using simulation. ¿e number of particles have been reduced until the particle �lter



42

C
h
a
p
t
e
r
3
ś
A
F
u
l
ly

P
a
r
a
l
l
e
l
P
a
r
t
ic
l
e
F
ilt

e
r

Table 3.1 ś Area of components

Component Slice LUTs

Prediction 704

Update 954

Normalization 1402

Resampling 35978

Total 39038

was not able to track the object anymore. Additionally, all recursive functions have
been rewritten using higher-order functions, e.g., vzipWith and vscanl, such that
the code can be compiled by the CλaSH compiler. ¿e resulting CλaSH description
was tested to have the same external behavior as the reference description, using a
testbench that was used to verify the functional correctness of the Haskell program.
¿is testbench contains a set of images where a white square follows a Lissajous
curve. ¿e feasibility of the parallel CλaSH implementation has been determined
by synthesizing the design for a XilinxVirtex 6 FPGA (XC6VLX240T). An overview
of the resource usage for the di�erent parts of the particle �lter is shown in table 3.1.

In addition to the LUT results of table 3.1, 1116 slice registers have been used. In
terms of performance, the synthesized particle �lter achieves a throughput of 24
million particles per second. However, fully parallel resampling uses a lot of FPGA
area and is therefore the biggest bottleneck in this design: due to all data dependen-
cies in the resampling step, all possible replications have to be considered, resulting
in the large area and low clock frequency (around 1MHz). ¿e reason for this very
low operating frequency is the long combinatorial path in the resampling step of
the particle �lter. ¿e resampling step has a long combinatorial path because there
are many data dependencies within the mathematical speci�cation, and hence also
within the parallel implementation. Although the particle �lter has not been im-
plemented in VHDL directly, similar resource consumption is expected based on
results in [84].

3.5 Conclusions

In this chapter, a two-step step design methodology is proposed to derive hardware
fromamathematical speci�cation of a particle �lter. Using this designmethodology
the available parallelism in the mathematical de�nition is preserved as much as
possible. We started with a formulation frommathematics to Haskell, resulting in a
design that closely matches the mathematical description of a particle �lter and can
be simulated by executing a single function. To be able to generate hardware using
the CλaSH compiler, some adaptations to the Haskell code had to be performed to
remove the use of lists and recursion. All lists have to be replaced by vectors and
recursion has to be implemented using statemachine or using HOFs.
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¿e results show that deriving a large amount of parallelism is relatively straight-
forward using the methodology described in this chapter. In particular, the use
of higher-order functions gives the designer an intuitive way of describing struc-
ture available in the mathematical de�nition of the application and the resulting
hardware generated later on in process. First formulating the mathematics of the
particle �lter in plain Haskell results in a model that can easily be simulated. ¿is
can then be used as a reference for the CλaSH implementation. Since only relatively
small adaptations have to be made to the Haskell reference, the veri�cation of the
implementation is straightforward.

Hardware is generated for a �lter with 32 particles. All particles are processed in
parallel such that a complete iteration of the �lter lasts only one clock cycle. ¿e
VHDL code generated by CλaSH has been successfully synthesized for an FPGA
showing the feasibility of the approach. However, synthesis results show that the re-
sampling step requires a lot of area and has a very long combinatorial path resulting
in a very low clock frequency.

Although the proposed design method shows a clear path from mathematics to
hardware, a fully parallel approach requires a lot of hardware and therefore severely
limits the amount of applications covered by the design methodology. In order to
support more complex applications, a trade-o� is needed to control the amount of
parallelism. In the following chapters, the design methodology is altered such that
a trade-o� between execution time and area can be made.
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Trade-off rules

Abstract ś In this chapter, several trade-o� rules are presented to distribute

computations of higher-order functions over time and space. During transfor-

mation a mathematically equivalent higher-order function is derived to enable

an e�cient mapping to FPGA hardware. For modeling of applications, an em-

bedded language with types for space and time is introduced which should

prevent the erroneous composition of functions. To be able to design hard-

ware using the transformation rules, a CλaSH library has been developed with

components in which the transformation rules have already been applied to

commonly used higher-order functions. ¿is library is used to implement a

small case study, a dotproduct operation.

A s expressed in chapter 3, higher-order functions are a powerful abstraction
to express structure of hardware. Since list-based higher-order functions are

very regular in structure, they are a good candidate for transformations. Using
these transformations, a complex calculation can be split into smaller parts and
then combined. However, (FPGA) area usage has to be taken into account as well
since a fully parallel approach requires a lot of hardware (FPGA) resources.

Splitting up these computations can be implemented using transformation rules
where higher-order functions of the original speci�cation are replaced by a descrip-
tion that performs computations over space and time. In this chapter, several trans-
formation rules are proposed based on commonly used higher-order functions in
Haskell and CλaSH. ¿ese transformations take area into account in contrast to
the fully parallel approach of chapter 3. A similar approach is taken in Squigol
[18] where transformations for speed optimizations are presented. More general,
the transformation-based approach presented in this thesis is related to [17] where
parts of the program are rewritten into equivalent descriptions as well.

¿e transformation rules proposed in this chapter transform higher-order func-
tions into a new description containing three parts. ¿e �rst part in the description

Large parts of this chapter have been published in [RW:4, 5].
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resulting from the transformation is a list split into smaller sublists for the distribu-
tion of data. ¿e second part performs the actual computations where each sublist
is processed one-by-one while a complete sublist is processed at once (fully par-
allel). In the third and �nal part, depending on the higher-order function under
transformation, the data from the computations of the sublists is concatenated into
a single list again. Although higher-order functions cover far more applications
than processing lists, the transformations presented in this chapter are limited to
lists as these are the underlying datastructure for the applications covered in this
thesis.

In section 4.1, the transformation rules for the higher-order functions zipWith and
foldl are introduced while section 4.2 presents proofs that the transformed func-
tions remain mathematically equivalent. In section 4.3 a shallow embedded lan-
guage is introduced to give some type safety when modeling applications using the
transformation rules. A CλaSH library with hardware components is presented in
section 4.3 as well. To show how this library can be used in practice, an example is
presented in section 4.4 in the form of a dotproduct operation. Finally in section 4.5,
conclusions are drawn about our transformation-based design methodology.

4.1 Rewriting Higher-Order Functions

By rewriting higher-order functions, computations can be distributed over space
and time. In this section two commonly used higher-order functions, zipWith and
foldl, will bemapped over space and time. Table 4.1 shows an overview of commonly
used higher-order functions and their structure on hardware.

Rewriting zipWith

A commonly used higher-order function in Haskell is zipWith. Using zipWith, two
lists are pairwise combined using a function resulting in a single new list. Mapping
zipWith completely to space results in a lot of resource consumption as there are
as many instantiations of f as there are elements in the list. Figure 4.1 shows the
structure of the higher-order function zipWith.

f

x0 y0

z0

f

x1 y1

z1

. . . f

xN−1 yN−1

zN−1

Figure 4.1 ś Structure of zs = zipWith f xs ys

As shown in �gure 4.1, both list xs and list ys contain N elements. When N is
divisible by P, the following holds: N = P × Q where Q = N

P
. It follows that both
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Table 4.1 ś Commonly used higher-order functions

Name Structure Haskell

map f

x0

y0

f

x1

y1

f

x2

y2

f

x3

y3

ys = map f xs

zipWith g

x0 y0

z0

g

x1 y1

z1

g

x2 y2

z2

g

x3 y3

z3

zs = zipWith g xs ys

foldl
g

y0

x g

y1

g

y2

g

y3

z
z = foldl g x ys

scanl g

y0

x

z0

g

y1

z1

g

y2

z2

g

y3

z3 z4

zs = scanl g x ys

iterate

fx

y0

f

y1

f

y2

f

y3 y4

ys = iterate f x

xs and ys can be divided into Q sublists, each containing P elements. Note that
lists which are not divisible by P can be split as well but this introduces a small
overhead since the last sublist to process is not complete. ¿e division is depicted
in �gure 4.2.

f

x0 y0

z0

. . . f

xP−1 yP−1

zP−1

f

xP yP

zP

. . . f

x2P−1 y2P−1

z2P−1

. . . f

xQP−1 yQP−1

zQP−1

Figure 4.2 ś Splitting of zs = zipWith f xs ys

As shown in �gure 4.2, each sublist contains P elements, numbered from 0 to P − 1.
A er this division and renumbering, a new Haskell de�nition of �gure 4.2 can
be formulated. ¿e initial list xs is divided into smaller lists with length P using
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the function split such that split 2 ∥1, 2, 3, 4∥ = ∥∥1, 2∥, ∥3, 4∥∥. For each sublist, the
structure can still be formulated using the higher-order function zipWith. ¿e
combination of these sublists is also performed using zipWith. zipWith is now
expressed in terms of itself. Listing 4.1 shows the new de�nition of zipWith.

1 zipWith’ p f xs ys = zs

2 where

3 xss = split p xs

4 yss = split p ys

5 zss = zipWith (zipWith f) xss yss

6 zs = concat zss

Listing 4.1 ś New formulation of zipWith

As shown in listing 4.1, the input lists xs and ys are divided into smaller lists of
P elements using the split function resulting in a list of lists of x elements and y
elements named xss and yss respectively. ¿e third line in the where-clause shows
how the list of lists is processed by two zipWith instantiations. Finally, the last line
in the where-clause concatenates all sublists from the zipWith instantiations. ¿e
result type of both zipWith’ and zipWith are now the same.

Even though this rewrite rule is a way to divide the problem into smaller problems,
it does not yet incorporate parallelism. ¿erefore, parts of the computations have
to be performed in space (S), i.e., in parallel and parts over time (T), i.e., sequential.
By selecting speci�c mappings of zipWith, listing 4.1 can be formulated as follows:

zss = zipWith
T
(zipWith

S
f ) xss yss (4.1)

In the expression zs = zipWith
T
f xs ys, every pairwise computation is executed

sequentially. ¿is has minimal hardware requirements since only one instantiation
of f is needed but consequently also the largest execution time. ¿e expression zs =
zipWith

S
f xs ys de�nes the exact opposite since all computations are performed

in parallel resulting in maximum area usage. Consequently, assuming that f can
be executed in single clock cycle, only one clock-cycle is required for the whole
computation. ¿e ordering can also be reversed by processing the elements in the
sublists sequentially but performing this on several sublists at the same time:

zss = zipWith
S
(zipWith

T
f ) xss yss (4.2)

In the �rst example, all elements in a sublist are processed in parallel while all sub-
lists are processed one by one, i.e., sequential. ¿e number of elements processed
in parallel is determined by the width of the sublists generated by split. ¿is width
is controlled by the parameter P and therefore also determines the resource us-
age. Increasing P increases the amount of parallelism but also the resource usage
(P×R( f )where R( f ) represents the amount of resources for an instantiation of f ).
Decreasing P, on the other hand, reduces parallelism and resource usage at the cost
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of a higher execution time to process the whole input list. ¿e number of cycles Q
to exec the whole expression can be found by Q = N

P
. Figure 4.3 shows a general

depiction of the aforementioned distribution of computations over space and time
while Figure 4.4 shows it speci�cally for zipWith as expressed in equation 4.1.

1 NP

resour
cesexec. time

Figure 4.3 ś Trade-o� between resource consumption and execution time

f

x0 y0

z0

. . . f

xP−1 yP−1

zP−1

f

xP yP

zP

. . . f

x2P−1 y2P−1

z2P−1

⋮

f

x(Q−1)P y(Q−1)P

z(Q−1)P

. . . f

xN−1 yN−1

zN−1

space

tim
e

Figure 4.4 ś zs = zipWith f xs ys distributed over space and time

During each time step, a pair of sublists each containing P elements is processed
completely. ¿is process is repeated until all Q sublists are processed. In terms of
communication, P elements are required to be available each iteration. Although
a larger value for P results in more parallelism, it also requires more bandwidth.
Figure 4.5 shows the resulting architecture which will be put on an FPGA.
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f

x q
∗
P

y q
∗
P

zq∗P

. . . f

x (
q+
1)
∗
P−
1

y (q
+
1)
∗
P−
1

z(q+1)∗P−1

Figure 4.5 ś FPGA architecture of zs = zipWith f xs ys

As shown in �gure 4.5, all sublists are sequentially fed into the architecture. At the
same time, the results are sent to the output. For a complete list, this process is
executed for Q time steps, when each sublist is executed in one time step. Note
that the reuse of f over time is only allowed when f contains no state. Since f is
de�ned as a pure function in Haskell, this is always the case.

Rewriting foldl

Another commonly used higher-order function is foldl. Using foldl a list is incre-
mentally processed given some starting value. Other than zipWith, foldl forms a
chain where all subsequent nodes depend on previous nodes. A fully parallel map-
ping to FPGA therefore not only requires potentially a lot of area but also introduces
a long combinatorial path which reduces the maximum achievable clock frequency.
Distributing foldl over space and time therefore not only reduces the amount of
resource usage but also the length of the longest combinatorial path. Figure 4.6
shows the structure of foldl.

f

y0

x f

y1

. . . f

yN−1

z

Figure 4.6 ś Structure of foldl

As shown in �gure 4.1, the list ys contains N elements. Similar to zipWith, when N
is decomposed as: N = P × Q. ys can be divided into Q sublists, each containing P
elements. Such a division is depicted in �gure 4.7.

Figure 4.7 shows that ys is split into sublists each containing P elements. A er
division and renumbering, the structure of �gure 4.7 can be formulated in Haskell.
Similar to zipWith, each sublists is still processed using the higher-order function
foldl. Also on a larger scale, the lists are processed using foldl. A foldl can therefore
be expressed in terms of itself. Listing 4.2 shows this new formulation of foldl.
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f

y0

x . . . f

yP−1

f

yP

. . . f

y2P−1

. . . f

yQP−1

z

Figure 4.7 ś Splitting of foldl

1 foldl’ p f x ys = z

2 where

3 yss = split p ys

4 z = foldl (foldl f) x yss

Listing 4.2 ś New formulation of foldl

As shown in listing 4.2, the list ys is �rst split into smaller lists with P elements
using the split function. ¿e last line shows how this list of lists is processed using
two instantiations of foldl. Note that no concatenation of elements is needed since
foldl reduces a list to a single value.

By choosing speci�c implementations of foldl, the computations can be mapped
partially over space and partially over time. Using these speci�c implementations,
a trade-o� is made between area and execution time. Note that foldl is in principle
a fully sequential operation and the transformation rules do not alter any depen-
dencies among operations. An example a trade-o� between execution time and
area can be formulated as:

z = foldl
T
(foldl

S
f ) x yss

Similar to the transformation rules for zipWith, the ordering can be reversed by
processing the elements in the sublists sequentially but performing this on several
sublist at the same time:

z = foldl
S
(foldl

T
f ) x yss

In the �rst example, all elements in a sublist are now processed in parallel while
all sublists are processed one by one, i.e., sequential. ¿e amount of parallelism
is determined by the size of the sublist, which is parameter P of the split function.
¿is parameter therefore also determines the amount of resource usage and the
length of the longest combinatorial path. Figure 4.8 shows the aforementioned
distribution of computations over space and time graphically.

During each time step, a sublist containing P elements is processed completely.
¿is process is repeated until allQ sublists are processed. Every time a partial result
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f

y0

x . . . f

yP−1

f

yP

. . . f

y2P−1

⋮

f

y(Q−1)P

. . . f

yQP−1

z

space

tim
e

Figure 4.8 ś foldl distributed over space and time

is stored for the next cycle until eventually the results z is produced. Figure 4.9
shows the resulting architecture which will be put on an FPGA.

f

yq∗P

x
. . . f

y(q+1)∗P−1

z

Figure 4.9 ś FPGA architecture of foldl

As shown in �gure 4.9, all sublists are sequentially fed to the architecture. During
the �rst cycle, x is used as starting value while the value from the register is used
during all subsequent cycles. To process a whole list, at least Q cycles are required.
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Rewriting other HOFs

Besides zipWith and foldl, a plethora of higher-order function exist that are useful
for hardware design. In particular map, iterate and scanl are used in the designs
presented in this thesis. ¿e transformation rules for these higher-order functions
follow the same procedure as zipWith and foldl. Each higher-order function can also
be transformed into di�erent, mathematically equivalent structures. Depending
on the requirements of the target hardware, a di�erent transformation rule can
be chosen. In this section, two new transformation rules for foldl are presented
resulting in di�erent hardware structures.

¿e foldl transformation rule presented in this section leaves the chain structure
unchanged. When the function parameter g is commutative (g a b = g b a for
example a + b = b + a) and the initial value x is the identity element of g (g x b = b
for example 0 + b = b), the chain structure can be altered such that hierarchies can
be introduced. Using the aforementioned properties, the sequential chains in foldl
can be broken and zs = foldl g x ys can be transformed into the following:

y = foldl g x (map (foldl g x) yss)
Every sublist in yss is reduced to a single value using the rightmap and foldl. ¿ese
intermediate results are reduced to a single value z using the le foldl again. Fig-
ure 4.10 shows the corresponding structure.

g

y0

x

g

y1

g

y2

g

y3

x

g

y4

g

y5

g

y6

x

g

y7

g

y8

g

x

g g z

Figure 4.10 ś Alternative transformation of foldl

Figure 4.10 shows a partitioning into three subproblems before the �nal result is
determined. Similar structures are used inmap-reduce applications where subprob-
lems are parallelized (mapped) over several machines and then reduced to a single
result [37].

Similarly, the previous example can be rewritten such thatmap is removed and an
additional foldl is introduced. Note that g is still assumed to be commutative and
x is still the identity element. A second alternative for foldl now becomes:

y = foldl g x (foldl (zipWith g)) ∥x , x , x∥ yss
Similar to the previous example, the �nal result is determined by a foldl. ¿e inter-
mediate values however, are determined by incrementally processing sublist from
yss. Figure 4.11 shows the corresponding structure.
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g

y0x

g

y1x

g

y2x

g

y3

g

y4

g

y5

g

y6

g

y7

g

y8

gx g g z

Figure 4.11 ś VLIW transformation of foldl

Figure 4.11 shows how the sublist from yss are incrementally processed using a foldl
in a downwards direction. ¿e elements in each sublist are combined with the
binary function g using the the higher-order function zipWith (horizontal). By
executing the grouped parts sequentially from top to bottom and the horizontal
parts in space then a schedule arises that can be e�ciently executed on a very large
instruction word (VLIW) machine [57].

So, by rewriting the initial speci�cation foldl f x yswe can derive variousmathemat-
ically equivalent versions of the same speci�cation (�gure 4.6, �gure 4.8, �gure 4.10
and �gure 4.11). ¿e designer can select the most optimal speci�cation for his or
her hardware architecture.

4.1.1 Composition using dataflow

Although parallelism and therefore resource consumption and execution time can
now be controlled using a parameter for each higher-order function, two new prob-
lems appear when composing these functions: synchronization of data and schedul-
ing of computations. Synchronization of data ensures that the correct data is avail-
able when required while ordering entails the execution of operations over time.
To solve these two problems, data�ow principles are used [71]. Due to the data-
dependent production of tokens in the resampling step, no static scheduling can
be performed.

Using data�ow, computations are triggered by the availability of data. Applications
are modeled as a graph. ¿e nodes contain the computations while data is sent over
edges in the form of tokens. When su�cient data is available on all incoming edges
of a node, all required data is available and a computation in that node can start.
¿is state of a node is called enabled and the condition for execution is called �ring
rule. During execution, data at the inputs are consumed and used as argument.
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A er computation, the nodes produce a token with the result which is put onto the
output edge. Figure 4.12 shows the execution phases of a simple data�ow graph.

f g

Inp
0

Inp
1

Outp

t0

Phase 0

f g

Inp
0

Inp
1

Outp

t0

t1 Phase 1

f g

Inp
0

Inp
1

Outp

t2

Phase 2

f g

Inp
0

Inp
1

Outp

t3

Phase 3

Figure 4.12 ś Data�ow �ring rule

As shown in �gure 4.12, in phase 0 at the inputs of node f one token has arrived.
Since Inp

1
has not yet received a token, the �ring rule is not satis�ed. In phase

1, a token has arrived and execution of f can start. Once completed, a token t2
is produced and sent to the next node (Phase 2). Node g has only one input and
is therefore enabled as soon as a token is available on the input. In phase 3, the
execution of g has produced another token at the output.

Formally, an edge of a data�ow graph can contain an in�nite number of tokens.
In practice, tokens are usually stored using �rst-in-�rst-out bu�ers (FIFOs) with
a �xed length. ¿erefore, the �ring rule should not only take into account the
availability of data on the input, but also whether there is space available in the
FIFOs on the output. Formally, FIFOs are o en modelled as a double-edge [114]
where tokens on the back-edge represent available positions in the FIFO. Figure 4.13
shows a data�ow graph where the edges are implemented using FIFOs. A black dot
in the FIFO indicates the presence of a token.

f g

Inp
0

Inp
1

Outp

Figure 4.13 ś Data�ow graph with FIFOs

By wrapping the transformed higher-order functions in data�ow nodes and extend-
ing the �ring rule, synchronization and scheduling is handled by data�ow.

However, the input list(s) for a node has to be distributed over space and time as
well. A list distributed over space and time is represented by a sequence of tokens
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where each token contains a whole sublist. First, a whole list is split into smaller
sublists. Each sublist is packed in a single token which are sent sequentially to the
node for processing. Tokens are therefore processed sequentially while the sublist
in the token can be processed in parallel. Figure 4.14 shows the process of dividing
a list into a sequence of tokens.

[x0 , x1 , x2 , x3 , x4 , x5 , x6 , x7 , x8]

[x0 , x1 , x2] [x3 , x4 , x5] [x6 , x7 , x8]

Figure 4.14 ś From list to tokens

4.2 Proofs of Equivalence

According to referential transparency, an expression in Haskell can be replaced by
a mathematically equivalent expression without changing its functionality. To be
able to do this with the transformation rules as well, we must �rst prove that these
expressions are indeed equivalent. In this section, proofs for zipWith and foldl are
presented showing the equality between the higher-order function before and a er
the transformation.

4.2.1 Equivalence proof of zipWith

As formulated in listing 4.1, the transformation rule for zipWith states that zipWith
f xs ys = concat (zipWith(zipWith f ) (split p xs) (split p ys)). ¿e remainder of
this section shows the proof using a mathematical reformulating of zipWith.

De�nition 1. Mathematically, zs = zipWith ⋆ xs ys can be de�ned as zs = xs ⋆̂ ys
where ⋆ is a binary function.

De�nition 2. Assuming that lists xs and ys have the same length, ⋆̂ is recursively
de�ned as:

∥∥ ⋆̂ ∥∥ = ∥∥
(x ∶ xs) ⋆̂ (y ∶ ys) = (x ⋆ y) ∶ (xs ⋆̂ ys)

where ∥∥ is the empty list and ∶ is the operator that puts an element in front of a list.
De�nition 3. Using the same recursive structure, the concatenation function concat
used to merge a list of lists into a single list is de�ned as:

concat ∥∥ = ∥∥
concat xs ∶ xss = xs ++ concat xss

where ++merges two list into a single list.
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Lemma 4.
(as ⋆̂ bs) ++ (cs ⋆̂ ds) = (as ++ cs) ⋆̂ (bs ++ ds)

Proof. Assuming that length as = length bs and length cs = length ds this lemma
can be proven using induction on lists as and bs:

First, let as = ∥∥ and bs = ∥∥:
(∥∥ ⋆̂ ∥∥) ++ (cs ⋆̂ ds) = ∥∥ ++ (cs ⋆̂ ds) = (cs ⋆̂ ds)

(∥∥ ++ cs) ⋆̂ (∥∥ ++ ds) = (cs ⋆̂ ds)
then, by using the induction hypothesis:

((a ∶ as) ⋆̂ (b ∶ bs)) ++ (cs ⋆̂ ds) = (a ⋆ b) ∶ ((as ⋆̂ bs) ++ (cs ⋆̂ ds))
IH
= (a ⋆ b) ∶ ((as ++ cs) ⋆̂ (bs ++ ds))
def ⋆̂
= (a ∶ (as ++ cs)) ⋆̂ (b ∶ (bs ++ ds))
= ((a ∶ as) ++ cs) ⋆̂ ((b ∶ bs) ++ ds)

¿eorem 5. concat(xss ̂̂⋆ yss) = (concat xss) ⋆̂ (concat yss)
Proof. By induction on both xss and yss assuming the xss and yss have the same
length:

First, let xss = ∥∥ and yss = ∥∥:
concat(∥∥ ̂̂⋆ ∥∥) = concat ∥∥ = ∥∥

(concat ∥∥) ⋆̂ (concat ∥∥) = ∥∥ ⋆̂ ∥∥ = ∥∥
then, by using the induction hypothesis:

concat ((xs ∶ xss) ̂̂⋆ (ys ∶ yss)) def ⋆̂
= concat ((xs ⋆̂ ys) ∶ (xss ̂̂⋆ yss))

def concat
= (xs ⋆̂ ys) ++ concat(xss ̂̂⋆ yss)

IH
= (xs ⋆̂ ys) ++ ((concat xss) ⋆̂ (concat yss))
L4
= (xs ++ concat xss) ⋆̂ (ys ++ concat yss)
def concat
= (concat xs ∶ xss) ⋆̂ (concat ys ∶ yss)

4.2.2 Equivalence proof of foldl

As formulated in section 4.1, the transformation rule for foldl states that foldl f x ys =
foldl (foldl f ) x (split p ys). ¿e remainder of this section shows the proof using a
mathematical reformulating of foldl.

De�nition 6. Mathematically, z = foldl f x ys is de�ned as: z = x ⋆ ys
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De�nition 7. ⋆ is recursively de�ned as:

x ⋆ ∥∥ = x
x ⋆ (y ∶ ys) = (x ⋆ y) ⋆ ys

Lemma 8.

x ⋆ (ys ++ zs) = (x ⋆ ys) ⋆ zs

Proof. By induction on the list ys:

First, let ys = ∥∥:
x ⋆ (∥∥ ++ zs) = x ⋆ zs

(x ⋆ ∥∥) ⋆ zs = x ⋆ zs

then, by using the induction hypothesis:

x ⋆ ((y ∶ ys) ++ zs) = x ⋆ (y ∶ (ys ++ zs))
de f ⋆
= (x ⋆ y) ⋆ (ys ++ zs)

IH
= ((x ⋆ y) ⋆ ys) ⋆ zs

de f ⋆
= (x ⋆ (y ∶ ys)) ⋆ zs

Lemma 9.

x ⋆ yss = x ⋆ (concat yss)

Proof. By induction on the list yss:

First, let yss = ∥∥:

x ⋆ ∥∥ de f= x
de f ⋆
= x ⋆ ∥∥ = x ⋆ (concat ∥∥)

then, by using the induction hypothesis:

x ⋆ (ys ∶ yss) = (x ⋆ ys) ⋆ yss

IH
= (x ⋆ ys) ⋆ (concat yss)
L8
= x ⋆ (ys ++ concat yss)
= x ⋆ (concat(ys ∶ yss))

¿eorem 10.

x ⋆ (splitP ys) = x ⋆ ys



59

4
.3
ś
E
m
b
e
d
d
e
d
L
a
n
g
u
a
g
e
f
o
r
t
y
p
e
-s
a
f
e
c
o
m
p
o
si
t
io
n

Proof. Using the fact that

concat (splitP ys) = ys
it follows that:

x ⋆ (splitP ys) = x ⋆ (concat(splitP ys)) = x ⋆ ys

4.3 Embedded Language for type-safe composition

To model applications to which these trade-o� rules can be applied, a small em-
bedded language has been developed. Both time and space types are introduced
to express which operations are mapped to space or time. During composition,
these types help the designer to prevent making erroneous compositions, i.e., com-
posing time and space directly. A shallow embedded language is implemented
using Haskell purely for modelling. To design actual hardware, a CλaSH library
is developed where higher-order function components can be parameterized with
functions and composed using data�ow.

4.3.1 Embedded language with space and time types

As shown in section 4.1, the transformation rules use split to distribute data over
space and time. Similarly, higher-order functions are executed over time or space.
¿erefore, space and time types are introduced to prevent erroneous composition
of these functions.

When a list is mapped completely over time, all elements arrive sequentially. To
express this in the type of the list, a new type LstTime is de�ned. ¿e de�nition and
use of LstTime is shown in listing 4.3.

1 type LstTime a = [a]

2

3 xs_t :: LstTime Int

4 xs_t = [1,2,3]

Listing 4.3 ś Type for mapping list over time

As shown in �gure 4.15, all elements in the list are represented as separate data�ow
tokens. ¿ese tokens arrive in the ordering as is present in the list, e.g., 1 before 2,
and 2 before 3.

In contrast to processing all elements in a list purely sequential, they can also be
processed completely in parallel by sending them all at once. For this completely
spatial distribution, the type LstSpace is introduced. In terms of hardware, all el-
ements can be found as distinct components on an FPGA. Listing 4.4 shows the
de�nition of LstSpace in Haskell and how it can be used in a de�nition of a list.
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1

2

3

Figure 4.15 ś Visualization of LstTime

1 type LstSpace a = [a]

2

3 xs_s :: LstSpace Int

4 xs_s = [1,2,3]

Listing 4.4 ś Type for mapping list over space

As shown in �gure 4.16, all elements in the list are represented as a single token. In
this token, all elements are present in parallel. ¿e node receiving this token can
therefore also process all elements in parallel.

[1, 2, 3]

Figure 4.16 ś Visualization of LstSpace

¿e types are particularly useful when using data that is distributed over space and
time. By nesting the types LstTime and LstSpace, the ordering in time and in space
of lists can be expressed. Using the function splitp, a list is split into P sublists.
Depending on the variant of splitp, data is partially mapped over time and partially
over space. Listing 4.5 shows the type of a list distributed over space and time.

1 xs = [1,2,3,4,5,6]

2

3  xs_st = [[1,2], [3,4], [5,6]]

4 xs_st :: LstTime (LstSpace Int)

5 xs_st = split 2 xs

Listing 4.5 ś Types of list distributed over space and time

¿e code from listing 4.5 is shown visually in �gure 4.17. ¿e whole list ∥1 . . . 6∥ is
split into sections of two elements. ¿ese sections are tokens, thereby forming a
stream of three tokens each containing two elements in parallel. ¿e data�ow node
consuming these tokens therefore can process two elements in parallel.
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[1, 2]

[3, 4]

[5, 6]

Figure 4.17 ś Combing types LstSpace and LstTime

¿e types for the aforementioned list examples also apply to the data arguments
of higher-order functions like map. All computations in map can be either fully
sequential, fully parallel or a combination of the two using a transformation rule.
¿e input data should be ordered in the same way which can be performed using
annotations with the same types. Listing 4.6 shows the types of map distributed
over either space or time.

1 map_s :: (a > b) > LstSpace a > LstSpace b

2 map_s = map

3

4 map_t :: (a > b) > LstTime a > LstTime b

5 map_t = map

Listing 4.6 ś Types ofmap distributed over either space or time

In �gure 4.18, a fully parallel and a fully sequential instantiation ofmap are shown.
Let f = +1, then all additions are either processed in parallel (as shown on the le ),
or all sequential (the right example).

f . . . f

t = 0

[1, 2]

f . . . f

t = 1

[2, 3]

f

t = 0

2
1

f

t = 2

3
2

Figure 4.18 ś Types ofmap over space or time

Whenmap is transformed using a transformation rule and assuming that the input
list is already mapped over space and time, the type of the input list should re�ect
this mapping. Since the input list is distributed over space and time and no accu-
mulation of tokens is performed, the output of map_st has the same type as the
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input (LstTime (LstSpace a)). ¿e example ofmap distributed over both space and
time is shown in listing 4.7.

1 map_st :: (a > b) > LstTime (LstSpace a) > LstTime (LstSpace b)

2 map_st f xss = yss

3 where

4 yss = map_t (map_s f) xss

Listing 4.7 ś Types ofmap distributed over both space and time

Figure 4.19, shows the visualization of the tokens as expressed using type in list-
ing 4.7. When assuming f = +1, every token contains two elements which are
processed in parallel (type LstSpace). All tokens, however, are sent sequentially
(LstTime). Combing these results in the composed type LstTime (LstSpace Int).

f . . . f

t = 0

[3, 4]

[1, 2]

f . . . f

t = 2

[4, 5]

[2, 3]

Figure 4.19 ś Types ofmap distributed over space and time

To recap, the types LstSpace and LstTime are introduced in a shallow embedded
language to prevent the erroneous composition of components. LstTime represents
a list type where all elements are processed sequentially while LstSpace represents
the fully parallel processing of elements. A combination of theses two list types can
be used to represent data and computations that are distributed over both space
and time. Implementation details of this shallow embedded language can be found
in appendix A.

4.3.2 CλaSH library with space and time types

To be able to use the trade-o� rules for actual hardware, a CλaSH library has been
developed. In this library, several higher-order functions can be found to which
the corresponding trade-o� rules have been applied. ¿ese higher-order functions
can be instantiated as hardware components and parameterized as a normal higher-
order function. For composition and synchronization, data�ow principles are in-
cluded. A complete application is implemented by instantiating the higher-order
functions and composing them using FIFOs. Listing 4.8 shows the implementation
of the zipWith component.
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1 zipWith_st :: (a > b > c) >

2 (Bool, Bool, Bool, VecTime (VecSpace n a), VecTime (VecSpace

n b))

3 > (Bool, Bool, Bool, VecTime (VecSpace n c))

4 zipWith_st f (xs_empty, ys_empty, zs_full, xs_data, ys_data) = (xs_read,

ys_read, zs_write, zs_data)

5 where

6 canfire = not zs_full && not xs_empty && not ys_empty

7 (xs_read, ys_read, zs_write) = (canfire, canfire, canfire)

8 zs_data = vzipWith f xs_data ys_data

Listing 4.8 ś zipWith component

Similar to zipWith from the Haskell Prelude, the space time version accepts a bi-
nary function f and two lists xs_data and ys_data. ¿e data of xs_data, ys_data
and zs_data are distributed over space and time, denoted by the type VecTime (Vec-
Space n a). Since zipWith_st is a data�ow component, execution is triggered by a
�ring rule. ¿e �ring rule states that execution can start when all inputs have data
available and the FIFOs on the outputs are not full. ¿e �rst two lines in the where-
clause show the �ring rule and the reading and writing values. For reading from
and writing to the FIFOs some additional signals are introduced (empty, full, read
and write). ¿e actual calculation is shown on the last line, here the actual compu-
tation is performed using a instantiation of zipWith mapped completely in space
(vzipWith). ¿emapping over time is implemented by sequentially processing data.

4.4 Example: Dot Product

To show the transformation based approach using types, a dotproduct operation is
implemented. ¿e dotproduct operation combines two vectors by pairwise multi-
plication of the elements and summing the results. Mathematically, this is denoted
in equation 4.3.

z =
N−1

∑
i=0

x i × y i (4.3)

Reformulating equation equation 4.3 in Haskell is done using the higher-order
functions zipWith and foldl:

1 dotpr xs ys = z

2 where

3 ws = zipWith (*) xs ys

4 z = foldl (+) 0 ws

Listing 4.9 ś Dotproduct in Haskell

In order to implement the dotproduct from listing 4.9 in CλaSH, components from
the aforementioned library have to be used and instantiated by hand. ¿e trans-
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formation rule is already performed on the components in the library which can
be instantiated directly. A zipWith_st and foldl_st are instantiated and parame-
terized with a multiplication and addition. Depending on the size of the sublists
that are processed by these components, more parallelism can be achieved. ¿ese
components are then composed with each other and two data sources using FIFO
bu�ers. Listing 4.10 shows how the higher-order components are parameterized
and instantiated for the dotproduct.

xs

ys

src1

src2

�fo1L

�fo2L
×

�fo3L

ws

+

�fo4L

snk z

Figure 4.20 ś Data�ow graph of dotproduct with FIFOs

Figure 4.20 shows the graph with FIFOs of the dotproduct. All components are
interspersed with FIFOs for bu�ering of tokens. ¿e sources src1 and src2 send xs
and ys respectively in smaller parts to themultiplierwhere these parts aremultiplied.
¿e results of the multiplication are forwarded to the adder which determines the
sum of all parts and forwards this to the sink snk. snk forwards the �nal result
to the output. Note that only the direction of �ow is shown using the arrows in
�gure 4.20. As shown in listing 4.10, for each FIFO the status signals full and empty
and modi�cation signals read and write are required as well.

1 multiplierL = (zipWith_st (*)) <^> L

2

3 adderL = (foldl_st 4 (+) 0) <^> (0, 0)

4

5 arch _ = (valid, z)

6 where

7 (xs_write, xs_data) = src1L xs_full

8 (ys_write, ys_data) = src2L ys_full

9 (xs_full, f1_empty, f1_data) = fifo1L (xs_data, xs_write, f1_read)

10 (ys_full, f2_empty, f2_data) = fifo2L (ys_data, ys_write, f2_read)

11 (f1_read, f2_read, zs_write, zs_data)

12 = multiplierL (f1_empty, f2_empty,

13 zs_full, f1_data, f2_data)

14 (zs_full, f3_empty, f3_data) = fifo3L (zs_data, zs_write, f3_read)

15 (f3_read, qs_write, qs_data) = adderL (f3_empty, f4_full, f3_data)

16 (f4_full, f4_empty, f4_data) = fifo4L (qs_data, qs_write, f4_read)

17 (f4_read, valid, z) = sinkL (f4_empty, f4_data)

Listing 4.10 ś Dotproduct using CλaSH higher-order data�ow library

Listing 4.10 shows the implementation of the dotproduct using the CλaSH library.
As shown in the �rst and third line, the higher-order components are parameterized
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with a binary function ((∗) and (+)) speci�cally for the dotproduct. In this example,
every lists is split into 4 tokens which is given as a parameter to the adder adderL.
adderL therefore produces a token with the sum for every four tokens it receives.
¿e last part of the �rst and third line is the li ing of the components with an initial
state using the <^> operator. ¿e dummy state multiplier component is initialized
with the bit low (L) since no counters are needed in the internal state. On line 3,
the foldl_st component is parameterized with an adder and starting value 0. ¿e
initial state is a tuple containing two zeroes: one for the token counter and one for
the intermediate result. arch describes the whole CλaSH implementation of the
dotproduct. In the where-clause, two sources (src1L and src2L) are instantiated and
connected to the multiplier (multiplierL) using FIFOs (�foL). Data produced by the
pairwise multiplications (zs_data) is forwarded to the summation step (adderL)
using yet an other FIFO. Finally, all resulting data is consumed by a sink (sinkL)
that presents the data on the output z.

Using the CλaSH compiler, the code from listing 4.10 has been translated to VHDL.
¿is VHDL code is synthesized for an Altera Cyclone II 2C20F484C6 FPGA using
the Quartus tool. Figure 4.21 shows the resulting register-transfer level (RTL) view.

Source 1 FIFO Multiplier Adder Sink

Source 2 FIFO FIFO FIFO

Figure 4.21 ś RTL view of dotproduct

Comparing the RTL view from �gure 4.21 with the code from listing 4.10 shows the
direct correspondence between the CλaSH de�nition and the resulting hardware.
When the size of the sublists is de�ned as four, four multipliers should be instanti-
ated. Figure 4.22 shows the four multipliers and the �ring rule ofmultiplierL.

Firing rule

zipWithS

Figure 4.22 ś RTL view ofmultiplierL component
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4.5 Conclusions

In this chapter, the principle of trade-o� rules based on the transformation of higher-
order functions has been proposed. Using these transformation rules, a trade-
o� between parallelism and execution time can be made. To facilitate the use
of these transformation rules and to model applications, an embedded language
is developed for Haskell where space and time can be modeled using types. A
CλaSH library has been developed containing higher-order components in which
the aforementioned trade-o� rules have been already applied. By parameterizing
these components with application speci�c functions and composing these using
FIFOs, actual hardware is implemented. Results of this method are presented using
the implementation of a dotproduct.

Currently, the transformation rules map computations on both time and space.
However, the spatial dimension can be split up into di�erent parts. ¿e transfor-
mation rules could therefore be extended for mapping to chips, boards and racks.
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Abstract ś In this chapter, the transformation rules to facilitate the trade-o�

between execution time and area usage on FPGAs are applied to the particle

�lter as a case study. All higher-order functions are transformed, resulting

in parameterized nodes where the amount of parallelism and thereby perfor-

mance and resource consumption can be controlled. For composition and

scheduling of operations, data�ow principles are used. ¿e resulting architec-

ture is much more feasible in area compared to a fully parallel approach as the

clock frequency in increased by a factor 25 while the area in LUTs is reduced

by a factor 5.7.

I n chapter 3, a fully parallel design method for a particle �lter has been explored.
Although a fully parallel particle �lter is feasible theoretically, some components

require a lot of FPGA resources. ¿erefore, a more scalable approach is required
and should include a trade-o� between time and space. Transformation rules to
derive this trade-o� have been developed and elaborated in chapter 4. Using these
new transformation rules the particle �lter has been implemented once more.

¿e Haskell formulation of the particle �lter presented in chapter 3 is again taken
as reference. Most of the steps in the particle �lter are described using higher-order
functions. Using the transformation rules presented in chapter 4 the computations
are distributed over space and time thereby limiting the amount of parallelism. ¿is
also limits the amount of resource usage resulting in a more feasible implementa-
tion. ¿e resulting components are composed using data�ow principles to schedule
operations and synchronize data.

¿e rest of this chapter is structured as follows. First, related design methodologies
are discussed in Section 5.1 a er which the application of the design methodology
is presented in section 5.2. ¿e results are presented in section 5.3 including a
comparison with the parallel approach of chapter 3 and related work. Finally, in
section 5.4 conclusions are drawn and directions for future work are discussed.

Large parts of this chapter have been published in [RW:5].
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5.1 Related design methodologies

Design methodologies related to the particle �lter design approach presented in
this chapter can be divided in three categories: data�ow, transformations and the
use of higher-order functions. In [59], data�ow principles have been used to design
a particle �lter using similar methods as presented in this chapter. Transformation
based approaches are covered in [75, 96] while the use of higher-order functions
for hardware design are extensively covered in [47, 104].

In [59], a particle �lter is designed using data�owmechanisms. All functions of the
particle �lter are wrapped into data�ow nodes and are connected using bu�ers. An
example is presented containing two types of particle �lters in a single architecture
allowing it to be easily recon�gured. Compared to the design methodology pre-
sented in this thesis, there is a major di�erence: the parallelization of the data�ow
nodes. ¿e parallelization in [59] has to be performed by manually changing the
data�ow graph while the approach advocated in this thesis generates nodes with
parallelization parameters that can be chosen by the designer.

Hardware design using transformations has drawn a lot of attention in recent years.
Two designmethods related to the approach presented in this chapter are discussed.
¿e �rst method is the rewriting mathematical formulas used in the Spiral project
[96]. ¿is method starts with a formula for discrete Fourier transform (DFT)-like
computations which are iteratively rewritten until only a small set of Fourier trans-
forms are le . ¿ese are then used to generate so ware or hardware. Although the
method is very similar to rewriting higher-order functions, only DFT-like opera-
tions are supported. ¿e second relevant method is a hardware design technique
based on utility directed transformations (UDT). Utility directed transformations
are transformations that are parameterized di�erently based on performance mea-
sures. In [75], a matrix-matrix multiplication is used as a test case where a better
performing FPGA implementation is derived compared to related work. Although
UDT has the same goal, increase performance by means of maximizing parallelism,
the input model is very di�erent compared to using higher-order functions. In [75],
the input model is based on aHandel-C [25] like language while all transformations
in this thesis are applied to higher-order functions only where data dependencies
are known.

Using higher-order functions for hardware design is far from new since many ideas
have been developed already in the eighties [104]. Higher-order functions turn
out to be an adequate way in describing more or less regular structures in hard-
ware. Especially DSP applications can be described concisely using higher-order
functions. In [47], higher-order functions are used in CλaSH to design a reducer
circuit for a �oating point pipeline. ¿ese papers use higher-order functions to
describe the combinatorial structure of hardware and essentially describes the be-
havior of the circuit for a single clock cycle. I contrast to previous approaches,
the transformation-based approach of this thesis allows higher-order functions to
be used to represent computations over multiple clock cycles. Time is therefore
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included in the approach.

5.2 Design methodology

As already elaborated in chapter 3, the whole Haskell description of the particle
�lter can be divided into two groups, higher-order functions and �rst-order func-
tions. Higher-order functions are used to express structure and repetition with
other functions as argument. First-order functions (functions that do not accept
function-arguments) on the other hand are used as discrete components and corre-
spond to combinatorial circuits like an adder for example. On hardware, �rst-order
functions correspond to combinatorial circuits. By using transformations to reduce
the amount of parallelism, computations of the particle �lter are distributed over
space and time. ¿is methodology is summarized in �gure 5.1.

HOF HOFST

CλaSH

FOF

Transformation

rule
Data�ow

composition

Data�ow

composition

Figure 5.1 ś Hardware design method

As shown in �gure 5.1 a Haskell description of an application using a set of higher-
order and �rst-order functions acts as starting point before transformation. Each
higher-order function is distributed over time and space where possible and the
resulting components are composed using data�ow nodes and FIFOs using the
CλaSH library mentioned in section 4.3.2. First-order functions (functions accept-
ing plain data as argument) are also wrapped in data�ow components such that
these can be composed in the same way. ¿e CλaSH code describing this composi-
tion is translated to VHDL and synthesized for FPGA.

5.2.1 Transformation of higher-order functions

All components of the particle �lter in Haskell are de�ned by either higher-order
functions or �rst-order functions. For components constructed using higher-order
functions, a transformation rule can be applied. Figure 5.2 shows a graph containing
all components of the particle �lter with corresponding higher-order function.

As shown in �gure 5.2 most components of the particle �lter are constructed using
a higher-order function. ¿e componentsNoise, Update andNorm are constructed
usingmap while Predict is constructed using zipWith andWs2Rs using scanl. ¿e
reciprocal in Recipr is not an operation that processes data in some form of a list
but accepts only a single value and produces one value for each input value. ¿ere-
fore, no transformation rule can be applied and the function is kept in its original
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Noise

map

Predict

zipWith

Update

map

Sum

foldl

Recipr

none

Norm

map

Ws2Rs

scanl

Replicate

none

Measurement

Figure 5.2 ś Particle �lter components an their higher-order functions

form. Although the component that replicates particles based on replication factors
(Replicate) is constructed using the higher-order function zipWith, the resulting
lists containing replicated particles have di�erent lengths depending on the repli-
cation factor. ¿is length changes at runtime which can not be be translated to
hardware with CλaSH using a higher-order functions. ¿erefore no transformation
rule is applied and a special implementation has to be selected when implement-
ing this component using CλaSH. ¿is special implementation is not based on the
transformation of a higher-order function but sequentially replication particles and
bu�ering until a set of particles can be sent out in parallel in the form of a token.

Taking into account the constraints that arise when designing for an FPGA, some
components of the particle �lter require a more e�cient implementation. ¿is is
the case for the Update and Replicate. Although the computations of Update can
be distributed over space and time, the size of a measurement should be taken
into account as well during a transformation. A measurement is a complete image
and therefore too large to be replicated. ¿erefore, the amount of parallelization
is kept at 1 and the image is fed pixel by pixel to the update component where the
particle are updated sequentially. As shown in section 3.3.2, the resampling step
(Replicate andWs2Rs in �gure 5.2) can be implemented completely in parallel but
this requires a lot of area and limits the clock frequency substantially. ¿erefore,
the replication step is implemented sequentially (particle by particle) and particles
are bu�ered such that tokens containing several particles can be generated.

Transformation of Predict component

To show the transformation based method, the process is shown for the prediction
step. Since the the prediction step is based on the higher-order function zipWith,
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the corresponding transformation rule is used. Recall from section 4.1 that zipWith
can be rewritten as follows:

zss = zipWith
T
(zipWith

S
f ) xss yss

where xss an yss are lists with elements distributed over both space and time. ¿e el-
ements of these distributed lists arrive sequentially in the form of tokens containing
several elements. In terms of hardware architecture, zipWithS consists of instanti-
ations of the system dynamics function f while zipWithT is implemented using a
�ring rule for handling the sequential execution. Figure 5.3 shows the hardware
architecture for the prediction component.

f

⋮

f

FIFOps

FIFOus

FIFOps′

�ring

rule

zipWith
S

Predict component

Figure 5.3 ś Data�ow composition of Predict component

As shown in �gure 5.3, the prediction component is connected to three FIFOs, two
at the inputs and one at the output. Every instantiation of f accepts a particle from
FIFOps and a deviation from FIFOus. All results are combined in a single token
and sent to the FIFO on the output (FIFOps′) which is connected to the update
component. ¿e status signals connecting FIFOs with �ring rule are the empty and
full signals while the read and write signals are connected in reverse. ¿e node can
only �re if both input FIFOs have data available and the FIFO to which the result is
sent is not full. Equation 5.1 expresses this mathematically.

�re = empty(FIFOps) ∧ empty(FIFOus) ∧ full(FIFOps′) (5.1)

All other components shown in �gure 5.2 are transformed using their correspond-
ing trade-o� rules as well. ¿ough some components require a slightly altered
approach during the implemented using CλaSH to be able to derive e�cient hard-
ware.
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5.2.2 Implementation using CλaSH

A er transforming each component using the corresponding higher-order func-
tion, the resulting components are composed using FIFOs forming a data�ow graph.
Most components of the particle �lter can be implemented by instantiating higher-
order components from the CλaSH library as presented in section 4.3.2. For exam-
ple, the prediction step is based on zipWith and is therefore implemented using the
zipWith component from the CλaSH library by parameterizing it with the system
dynamics function. However, two components require a special implementation
for e�ciency reasons: the update and replication components.

Although parallelism for the update component is easily achieved using the trans-
formation rule for zipWith, it does not take into account the hardware costs of the
measurement argument. ¿is is because a measurement is a single frame and there-
fore contains a lot of pixels. Representing these using wires and registers requires
a lot of hardware which is why we chose to store measurements in block RAMs
(BRAMs). Every particle represents a position in the measurement. ¿e address
of the corresponding pixel can be calculated based on this position. Using the
grayscale value of this pixel, a weight is calculated which is forwarded to the next
step. Figure 5.4 shows the architecture of the update component.

Particles arrive at the input from a FIFO at the top. ¿ese particles arrive in the
form of tokens each containing P particles (in this case 4). Each particle is selected
sequentially using a multiplexer controlled by contrl in a round-robin ordering.
When all P particles in the token are processed, the FIFO is instructed to drop this
token and forward the next using the read signal.

Since each particle represents a position, it can be used directly as an address for
selecting a pixel from the measurement. ¿is address is forwarded to the BRAM
containing the image. Based on this address, a pixel is returned fromwhich aweight
is calculated using themeasurement function g. Since the amount of parallelization
at the output is the same as the input, P weights have to be calculated before a token
can be formed and forwarded to the output FIFO. ¿ese P weights are stored in a
shi register forming a complete token a er P cycles. ¿is makes the output com-
patible with the data�ow-based communication. ¿e �ring rule is implemented in
the contrl component taking into account the bu�ering of weights as well.

As shown in chapter 3, fully parallel replication requires a lot of area and introduces
a very long combinatorial path. Although circuits where several particle could be
replicated in parallel have been designed, the resulting hardware became to complex
to gain performance from the parallelization. ¿erefore, a completely sequential
implementation is chosen to minimize area usage. ¿is sequential implementa-
tion uses only a single counter and can therefore run on a high clock frequency.
Figure 5.5 shows the architecture for the replication of particles.

¿e replication component has two input FIFOs and one output FIFO. ¿e �rst
input contains tokens of particles while the second FIFO contains the replication
factor. Similar to the update step, the particles are processed using a multiplexer
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Figure 5.4 ś Architecture of update step

that selects the particle in the token in a round-robin ordering. ¿is ordering
is generated by contrl which also takes into account the �ring rule of the whole
component. Replication of particles is achieved by sequentially copying particles
into the shi register depending on the replication factor. When P particles are
produced this way, a complete token is formed and can be written into the output
FIFO. Once a particle is replicated as many times as indicated by the replication
factor, the next particle and replication factor are selected from the input FIFOs.

A er applying the transformation rules and implementing the update and repli-
cation components as presented before, the whole system can be composed using
FIFOs. No central control is required since all computations are data-triggered.
Since the resulting graph contains a cycle, some initial tokens have to be present on
this cycle for the graph to be able to start. ¿is initial set of tokens are present in
the FIFO between the replication and prediction component and contain the initial
particle cloud. Note that the total amount of particles remains constant over all
iterations. As shown in �gure 5.6, in the �rst few cycles the noise generating compo-
nent Noise creates tokens containing deviations used in the prediction component.
¿e prediction component then sends particles to both the update and replication
component. Based on the positions represented by a particles, the update step cre-
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Figure 5.5 ś Architecture of replication component

ates weights which are forwarded to sum and Norm. Norm uses the weights from
the update component and the reciprocal of the sum of weights to normalize each
weight. ¿ese normalized weights are forwarded to the componentWs2Rs where
they are converted to replication factors. Finally, inReplicate particles are replicated
according to their replication factor. ¿e resulting particles are forwarded to the
prediction components again, completing the cycle.

¿is data�ow graph of the whole particle �lter as shown in �gure 5.6 is implemented
using the CλaSH library as presented before. Using the the CλaSH compiler, this
design is translated to VHDL such that actual hardware metrics can be derived.

5.3 Results

To simplify veri�cation, a small simulation framework has been built where a ref-
erence particle �lter in plain Haskell is compared to a simulation of the data�ow
particle �lter implemented using CλaSH. Since CλaSH code is also valid Haskell
code, no additional simulation tools are required and the simulation results can
be directly compared in a single Haskell environment. During simulation, this
framework produces a single set of images (256×256 pixels) for both particle �lters
to track. For each image, both particle �lters generate a set of particles which are
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Figure 5.6 ś Complete design of data�ow based particle �lter



76

C
h
a
p
t
e
r
5
ś
C
a
se

st
u
d
y
:
pa
r
t
ic
l
e
f
ilt

e
r

averaged to produce an estimate of the location of the square that is being tracked.
¿e resulting tracks are displayed in �gure 5.7 and �gure 5.8.
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CλaSH Haskell Real

Figure 5.7 ś Tracking of a Lissajous curve

As shown in �gure 5.7, the path taken by the simulation of the data�ow particle
�lter (blue) is very similar to the reference implementation in plain Haskell (red).
Both �lters are able to track the square on the Lissajous path (shaped like the in-
�nity symbol) within a few pixels. However, the data�ow particle �lter deviates
sometimes a few pixels more from the path than the Haskell reference. ¿e main
di�erence in the paths is caused by the stochastic nature of a particle �lter. Other
deviations are caused by the �xed-point implementation of the arithmetic opera-
tions since the data�ow particle �lter uses 18 bits to represent particle weight while
the plain Haskell implementation uses double precision �oating point operations.
Figure 5.8 shows the absolute error during tracking of both particle �lters. Both
�lters deviate, on average, around 3 pixels from the actual path. ¿erefore the use
of �xed-point operations on hardware has only a marginal e�ect on the tracking
quality for this particular particle �lter.

To determine the throughput of the data�ow-based particle �lter, the token �ow
between nodes is monitored. Since the particle �lter behaves periodic, a new state
estimate is produced for every new measurement. ¿erefore, the average time to
produce a set of particles with a new position estimate determines the throughput.
By looking at the write signal of the FIFO between the replicator and the predictor,
a graph can be produced showing when a token is written into the FIFO. Based on
the average time between two sets of resampled particles, the performance of the
complete �lter can be calculated.

In �gure 5.9, the communication activity between the resampling and prediction
step with parallelization factor P = 4 (when active, a value is written into the FIFO)
is shown. ¿e resampled particles are sent in groups of 8 tokens to the predictor
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Figure 5.8 ś Di�erence between actual path and predicted paths
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Figure 5.9 ś Activity between Replicate and Predict

since the total numbers of particles is 32. Since P = 4, each token sent to the
predictor contains 4 particles. By determining the arrival time of the �rst token for
each group of 8, the average throughput of the whole particle �lter can be derived.
Averaging over the di�erences between arrival times of each �rst token results in
an average cycle time as shown in table 5.1.

Increasing the parallelization P increases the throughput of the particle �lter. ¿e
throughput is only marginally increased by parallelization due to the fact that some
steps are implemented sequentially (the update and replication step). For P = 8

a higher throughput than P = 4 is expected. However, due to automated schedul-
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Table 5.1 ś ¿roughput of particle �lter

P = 2 P = 4 P = 8

Avg. nr. of clock cycles 77.1 69.5 70.9

Particles per clock cycle 0.42 0.46 0.45

ing of the data�ow components the throughput happens to be slightly lower. ¿e
maximum performance is therefore achieved for P = 4.

5.3.1 Hardware results

A er successfully simulating both particle �lters, the data�ow-based �lter inCλaSH
been translated to VHDL by the CλaSH compiler. ¿e resulting VHDL code has
been synthesized for a Virtex 6 XC6VLX240T FPGA available on the ML605 devel-
opment board [1]. Using the transformation rules of chapter 4, three instantiations
of the data�ow-based particle �lter have been derived, having a sublist width of
P = 2, 4 and 8 respectively. All instantiations are able run at a clock frequency of ap-
proximately 25MHz currently limited by the reciprocal operation. ¿e reciprocal
operation, found in the normalization step, determines the reciprocal of the sum of
all weights and contains the longest combinatorial path of the whole circuit. ¿is
combinatorial path can be reduced by pipelining the reciprocal function since it
is now implemented purely combinatorially. Table 5.2 shows the amount of LUTs
used for the data�ow based particle �lter. ¿e number of hardware multipliers,
used in the normalization step, is directly determined by the parallelization factor
P. ¿erefore, the instantiations with P = 2, 4, 8 require 2, 4, 8 18-bits hardware
multipliers respectively.

P = 2 P = 4 P = 8

Component LUTs FFs LUTs FFs LUTs FFs

Noisegen 70 64 138 128 274 256

Predict 37 - 69 - 133 -

Update 44 28 44 50 61 94

Sum 81 22 116 21 187 20

Recipr 923 - 923 - 923 -

Norm 20 4 29 3 48 2

Ws2Rs 204 30 333 29 592 28

Replicate 70 42 126 76 214 142

FIFOs 5210 4021 4650 3707 4435 3538

Total: 6659 4211 6428 4014 6867 4080

Table 5.2 ś Resource usage of data�ow based particle �lter

Figure 5.10 shows a graphical representation of the numbers in table 5.2. ¿e �gure
shows that, for components based on a higher-order function, the number of LUTs
required scales more or less linear with P. Similarly, Figure 5.11 shows the amount
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of FlipFlops graphically. Again, most of he components scale linear in �ip �op
consumption with P. Most LUTs and �ip �ops (FFs) are currently used by the
FIFOs. ¿erefore, to have a better view on the e�ect of changing the parallelization
P, the results of the FIFOs are le out of the graphs. Note that the costs of the
reciprocal component in �gure 5.10 do not change since it is not a�ected by a
transformation rule.
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Figure 5.10 ś LUTs used by components of particle �lter

Since all instantiations are able to run at 25MHz and the throughput for P = 4 is
the highest (table 5.1), the actual throughput of the data�ow-based particle �lter
can be calculated. ¿e throughput now becomes 0.46∗25∗106 = 11.5∗106 particles
per second.

5.3.2 Comparison to related work

By comparing the synthesis of the data�ow based particle �lter with other work,
some indication on relative performance can be given. Table 5.3 shows the synthesis
results from a similar, but fully parallel particle �lter from chapter 3. Comparing
table 5.2 and table 5.3 shows that the data�ow approach is 39038/6867 ≈ 5.7 times
as small as a fully parallel �lter in terms of LUTs for P = 8. ¿e clock frequency
is also improved by a large amount, 1MHz for the parallel implementation versus
25MHz for the data�ow-based implementation. Additionally, most of the LUTs
of the data�ow particle �lter are used by FIFOs since these are implemented using
logic and not (yet) by BRAMs. Due to quadratic scaling, the most area consuming
part of the parallel particle �lter was the resampling step. With the sequentialization
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Figure 5.11 ś FlipFlops used by components of particle �lter

using the data�ow approach, the resampling step is much more balanced in size
compared to the other steps.

Component Fully parallel PF Data�ow-based PF P = 8

Prediction 704 407

Update 954 61

Normalization 1402 1158

Resampling 35978 806

FIFOs - 4435

Total 39038 6867

Table 5.3 ś LUTs usage of particle �lters

Currently, the bandwidth to the BRAM limits the update rate of the particle �lter
and not the algorithm itself. ¿e implementation is therefore now bandwidth lim-
ited similar to results found in [29] where a particle �lter based video tracker is
implemented.

5.4 Conclusion

¿e design method based on the transformation of higher-order functions as pro-
posed in chapter 4 has been applied to a particle �lter application. ¿e transforma-
tion rules produce data�ow nodes with a parallelization parameter. By choosing
a proper value for this parameter, a trade-o� between execution time and FPGA
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area is made. When applied to the particle �lter example, the design method pro-
duces scalable hardware in terms of throughput and FPGA area consumption. Since
transformations work on the level of higher-order functions, low-level details like
�xed-point implementation of arithmetic operations remains unchanged. All math-
ematical dependencies are preserved, only the way of execution is changed. Higher-
order functions are therefore an adequate abstraction level to express mathematical
dependencies as it facilitates the trade-o� between time and space.

All transformations and implementations of data�ow nodes have now been per-
formed by hand. A possible direction for future work is to automate this process in
the form of an embedded language for example. ¿is embedded language would
allow the designer to easily express designs using higher-order functions and the
tooling processing this language then applies the transformation rules to generate
optimized hardware that �ts within the limitations of the FPGA.

Currently, both the update step and replicator process at most one particle per
clock cycle and have therefore great in�uence on the total performance. By using
dual port BRAMs and replicating it, the bandwidth to read pixels from the image-
BRAM can easily be increased. ¿e throughput of the updater can therefore by
increased by a factor of four at the cost of an additional BRAM. An other possible
optimization to increase the throughput of the whole �lter is to use several clock
domains. Nodes containing a long combinatorial path can be placed in domains
with a lower clock frequency while other nodes can be placed in a faster clock
domain. Currently, the Recipr node limits the throughput of particle �lters since it
contains the longest combinatorial path. By pipelining the Recipr node, the clock
frequency can be increased such that other parts of the particle �lter can achieve a
higher throughput.
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66
Stencil computations

Abstract ś In this chapter, the set of transformation rules is extended to

incorporate stencil computations. Two transformation rules are proposed to

facilitate the trade-o� between execution time and chip area speci�cally for

stencil computations. ¿e design method for designing stencil computation

hardware using these transformation rules consists of two steps. First the trans-

formation rule is applied to the higher-order function thereby making a trade-

o� between time and space. ¿e second step is to include bu�ering to prevent

excessive communication. Using these two steps e�cient hardware is derived

with performance and resource consumption �gures that are similar to related

work.

U p to this chapter, only one-dimensionally structured higher-order functions
are considered. In this chapter, the set of transformation rules will be extended

to include stencil computations. Stencil computations are o en two-dimensional
and have overlap in data. ¿ese properties require special attention when using
transformation rules to derive FPGA hardware.

Two higher-order functions speci�cally designed for stencil computations are pro-
posed with accompanying transformation rules. ¿ese transformation rules are
applied to the higher-order functions to distribute computations over space and
time. To increase the communication e�ciency, the resulting circuit is altered such
that data is bu�ered, preventing excessive communication. ¿e result is a higher-
order component that can be parameterized with an application-speci�c kernel
function. Among others, applications of the transformation rules for heat�ow and
cellular automata are developed and evaluated.

¿e remainder of this chapter is structured as follows. First, an introduction to
stencil computations is given in section 6.1 a er which related work is discussed
in section 6.2. ¿e transformation rule for stencil computations is introduced in

Large parts of this chapter have been published in [RW:6].
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section 6.3 followed by several case studies in section 6.4. Actual hardware is de-
signed for a heat�ow case study and results are discussed in section 6.5. Finally,
in section 6.6 conclusions are drawn and possible directions for future work are
discussed.

6.1 Stencil Computations

Stencil computations are a family of algorithms in which arrays are processed using
a sliding window approach, i.e., a slice of array-elements is used to determine one
new value. Such computations can be found in many scienti�c and engineering
�elds like digital signal processing (DSP), digital image processing and computa-
tional �uid dynamics (CFD).

During a stencil computation, a function (also known as kernel) is applied to all
elements in the array to �nd values of a new array. For each application of the
kernel, surrounding elements of the center point in the array are used. ¿e pattern
of surrounding elements used by the kernel is called a stencil and is application de-
pendent. However, at runtime, this pattern does not change. ¿is can be exploited
when designing hardware for it.

¿e kernel is usually described using a single function. ¿is function depends on
a sequence of elements from the array surrounding the center element. Assuming
that the stencil is symmetrical, stencil computations on one-dimensional arrays
can be de�ned as shown in equation 6.1 in which X i are the elements of the input
array.

Yi = f (∥X i−M . . . X i . . . X i+M∥) (6.1)

As shown in equation 6.1, the ith element in Y is computed based on the sequence
X i−M . . . X i+M . ¿e width of such a stencil is therefore 2M + 1 elements. Figure 6.1
shows equation 6.1 graphically for three subsequent elements of the resulting ar-
ray Y Note that only mathematical dependencies are shown and not the order of
execution.

X i−M−1 X i−M X i−M+1
. . . X i−1 X i X i+1

. . . X i+M−1 X i+M X i+M+1

f f f

Yi−1 Yi Yi+1

Figure 6.1 ś Structure of one-dimensional stencil computation



85

6
.2
ś
R
e
l
a
t
e
d
w
o
r
k

A small example of a one-dimensional stencil computation is a sliding average.
Equation 6.2 shows the formula for a sliding average stencil with a width of 3 ele-
ments.

Yi =
1

3

1

∑
n=−1

X i+n (6.2)

Similar to a one-dimensional stencil computation, higher-dimensional stencil com-
putations also depend on surrounding values. ¿e general formulation of a two-
dimensional computation is stated in equation 6.3 where X i refers to the center
point of window.

Yi , j = f

⎛⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X i−M , j+N . . . X i+M , j+N

⋮ X i , j ⋮

X i−M , j−N . . . X i+M , j−N

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎠
(6.3)

As shown in equation 6.3, a two-dimensional stencil computation uses elements
from both horizontal and vertical dimensions. All elements are selected from a
square with (2M + 1)× (2N + 1) elements. ¿e structure of dependencies between
elements and computations of equation 6.3 is shown in �gure 6.2.

An example of a two-dimensional stencil computation is the Gaussian-blur �l-
ter [107]. A Gaussian-blur �lter determines a new pixel based on a weighted set
of surrounding pixels. ¿e larger this set of surrounding pixels, the more blurry
the resulting image becomes. Equation 6.4 shows the mathematical de�nition of a
Gaussian �ler withM = N = 2, µ = 0 and σ = 1.

Yi , j =

2

∑
n=−2

2

∑
m=−2

1

2π
e−

x2+y2

2 × X i+n , j+m (6.4)

¿ere exist a plethora of applications that �t the stencil computation pattern. For
one-dimensional stencil computations examples are elementary cellular automata,
�nite impulse response (FIR) �lters and one-dimensional heat�ow algorithms. Ex-
amples of two-dimensional stencil computations are theConways’s game of life, two-
dimensional convolution, many image processing algorithms and two-dimensional
heat�ow algorithms.

6.2 Related work

¿euse of higher-order functions to describe stencil computations inHaskell is well
developed in the PASTHA framework [72]. ¿is framework contains a paralleliza-
tion tool for stencil computations on multicore machines. Similar to the VHDL
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X i−M , j+M X i−M+1, j+M

X i−M , j+M+1 X i−M+1, j+M+1

X i+M , j+M X i+M+1, j+M

X i+M , j+M+1 X i+M+1, j+M+1

X i , j X i+1, j

X i , j+1 X i+1, j+1

. . .

. . .

⋮ ⋮

X i−M , j−M X i−M+1, j−M

X i−M , j−M+1 X i−M+1, j−M+1

X i+M , j−M X i+M+1, j−M

X i+M , j−M+1 X i+M+1, j−M+1

f f

f f

Yi , j Yi+1, j

Yi , j+1 Yi+1, j+1

Figure 6.2 ś Structure of two-dimensional stencil computation

hardware template of [102], the hardware resulting from the transformations pre-
sented in this chapter is parameterizable in the amount of parallelism taking into
account memory-structure and communication like in [39] and [121]. Memory and
communication aspects impose constraints on the FPGA implementation as shown
in [54], [40] and [63]. Especially in designs with multiple FPGAs, communication
patterns become a very important factor to achieve high performance [100].

Most design methods for stencil computation use, at some stage, an imperative
description (in C for example) of the operations. Listing 6.1 shows the pseudocode
of such an imperative description. For every point at x , y in a frame v at time t,
the new value v(t + 1, x , y) is calculated using the stencil function F. Although
this description is very similar to the formal de�nition in equation 6.3, the code
is inherently sequential. ¿erefore, a lot of analysis is required to determine the
dependencies between loop iterations before parallelization can be performed. Also
details of intermediate stages are o en hidden or hard to modify. ¿erefore, the
description of the generated hardware looks very di�erent compared to the initial
de�nition. By using the methodology proposed in this chapter, the intermediate
results following the transformation retain their structure.

Another approach to implementing stencil computations on FPGAs is the use of
a domain speci�c language (DSL) [76]. A compiler takes care of parallelization
and scheduling. For parallelization of stencil computations the approach taken in
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1 for(x=0; x<WIDTH; x++) {

2 for(y=0; y<HEIGHT; y++) {

3 v(t+1,x,y) = F(w in stencil(v,x,y));

4 }

5 }

Listing 6.1 ś Imperative code for stencil computations

this chapter is similar to the parallelization of FIR �lters in [88, 90] but requires
no array index computations. Since the methodology makes use of higher-order
functions, it is convenient to use a hardware description languagewith higher-order
function support built in. ¿erefore, the CλaSH language [16] is used. Other work
on translating Haskell to hardware is Lava [19] and the more recent Kansas Lava
[50]. As discussion in section 2.1, the main di�erence between Lava and CλaSH is
that Lava is a language embedded in Haskell while the CλaSH compiler takes plain
Haskell code as input and thereby supporting more language features.

6.3 Transformations for Stencil Computations

Similar to the transformation rules in chapter 4, the derivation of hardware from
a higher-order stencil function is performed in two steps. First, a transformation
rule distributes the stencil computations over two domains; a part over space by
parallelization and a part over time by sequential execution of partial stencil compu-
tations. Adding synchronization a er the �rst transformation results in a descrip-
tion that can directly be translated to hardware. However, this results in a lot of
communication overhead which is why a second step is needed to derive e�cient
hardware. ¿is second step consists of transforming the description to increase
data reuse.

¿e transformations proposed in this section distribute the stencil computations
over space and time in a fully parameterizable way. A generic higher-order func-
tion for stencil computations is parameterized using an application-speci�c kernel
function. An application is therefore implemented by specifying a kernel function
and passing this to the higher-order function for stencil computations.

6.3.1 Space/Time Transformation

¿e starting point is a de�nition of the stencil computations in Haskell. Stencil
computations are performed by the stencil function which takes three arguments;
an application-speci�c kernel function f , a window width w and a list of inputs
xs. ¿e �rst three lines of listing 6.2 show the de�nition and implementation of
a one-dimensional moving average �lter being applied to xs. As shown on the
�rst line, stencil is supplied the application-speci�c function avg to de�ne a sliding
average �lter. ¿e remainder of listing 6.2 gives the Haskell implementation of
stencil. stencil is expressed recursively, where the stencil kernel function f is applied
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1 res = stencil avg 3 xs

2 where

3 avg xs = 1 / 3 * sum xs

4

5 stencil f w xs

6 | length xs >= w = (f (take w xs)) : (stencil f w (tail xs))

7 | otherwise = []

Listing 6.2 ś De�nition of average �lter and stencil higher-order function

to the beginning of the list. ¿en, stencil is again applied to the list excluding the
�rst element. ¿is process continues until the number of elements le becomes
smaller than the window width. In the remainder of this chapter, stencil should be
considered a native function.

Performing all operations in the stencil computation in a single clock cycle would
require a lot of area on an FPGA when synthesized directly. ¿erefore, a trade-o�
between area and execution time is required. ¿is trade-o� is found by applying a
transformation rule to stencil. As shown in the visualization of a one-dimensional
stencil computations (�gure 6.1), the function f is applied to every sublist of xs
with N elements including overlap. Note, that the resulting list is smaller such that
corner conditions do not occur (i.e., the result has 2M fewer elements: the size of
the overlap isM elements).

In order to save FPGA resources, the kernel functions f are distributed over space
S and time T by applying the transformation of stencil as shown in listing 6.3. Af-
ter this transformation, stencilSTaccepts four parameters: a parallelization factor p,
kernel function f , stencil width w and the list of inputs xs. ¿e input data is split
into smaller lists using the splitt function taking into account the overlap between
them. ¿is is visualized in �gure 6.3. ¿ese sublists are then processed sequentially
(mapped over time), by the mapTfunction. ¿is function applies the stencil func-
tion to a complete sublist in one clock cycle using a single (native) combinatorial
component stencilS. ¿e amount of parallelism is therefore determined by the size
of each sublist which is a parameter for split (p). ¿is transformation-basedmethod
therefore does not need loop unrolling or dependency analysis of for loops.

Figure 6.3 ś Splitting of one-dimensional data

A similar trade-o� between time and space can be derived for two-dimensional
stencil computations. Again, the trade-o� rule ensures that all input data is divided
into smaller blocks which are processed sequentially. As shown in �gure 6.4, two-
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1 stencilst p f w xs = concat_t ress

2 where

3 xss = splitt w p xs

4 ress = mapt (stencils f w) xss

Listing 6.3 ś Trade-o� rule for stencil

1 stencil2dst (hp, vp) f (w, h) img = concat2dt img’

2 where

3 imgss = split2dt (w, h) (hp, vp) img

4 ress = map2dt (stencil2ds (w, h) f) imgss

Listing 6.4 ś Trade-o� rule for stencil2d

dimensional data is split into blocks with additional borders to ensure that the
overlap between data is maintained. Listing 6.4 shows the trade-o� rule for two-
dimensional higher-order stencil function stencil2d. Note the introduction of an
additional parallelization parameter vp (vertical parallelism) due to the additional
spatial dimension. Similar to stencilST, stencil2dST accepts four arguments as well:
a tuple with the horizontal and vertical parallelization factors (hp, vp), the stencil
function f , a tuple with stencil width and height (w , h) and the two-dimensional
input data img.

Figure 6.4 ś Splitting of two-dimensional data

stencilSTcan be translated directly to hardware by adding data�ow logic to stencilS
for easy synchronization. However, due to overlap between sublists, additional
bandwidth is required to keep the stencilS component utilized. ¿erefore, the next
step is to rewrite stencilST to an architecture that bu�ers data for reuse, thereby
minimizing communication.

6.3.2 Deriving the Architecture

In order to reduce communication overhead, data must be kept as close to the
computation as possible. ¿is is usually implemented by bu�ering data from pre-
vious cycles [39, 76, 121]. ¿e architecture derived in the second step of the design
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1 stencilarch :: ([a] > b) > [a] > [a] > ([a], [b])

2 stencilarch f xs inp = (xs’, outp)

3 where

4 xs’ = inp +>>> xs

5 outp = stencils f

Listing 6.5 ś One-dimensional stencil architecture.

methodology should therefore take this bu�ering into account as well. Deriving
the architecture is performed by wrapping stencilS of listing 6.3 into an architecture
to handle communication and synchronization.

Figure 6.5 shows a stencil computation architecture with parallelization p = 2.
Elements of p samples are accepted each clock cycle and processed by stencilS. ¿ese
elements are shi ed into a shi register such that they can be used in subsequent
clock cycles. ¿e actual stencil computation is implemented combinatorially by
stencilS.

xs x0 x1 x2 x3 x4 x5 . . .

f f

y0 y1

stencilS

inp

outp

shi register

combinatorial function

Figure 6.5 ś Architecture for one-dimensional stencil computation (P = 2)

Listing 6.5 shows the code for the one-dimensional stencil computation architecture
of �gure 6.5 in the form of a function named stencilarch. stencilarch accepts three
arguments: the kernel function f , the current state of the shi register xs and
the new input sample(s) inp (shown on line 2 while line 1 gives the type). ¿e
result tuple consists of two parts: the new state of the shi register xs′ and the
computed output outp. xs′ is found by shi ing the input list inp (with p samples)
completely into xs such that the last p samples are dropped o�. Finally, the output
outp is found by applying the kernel function f to all bu�ered input samples xs.
Depending on stencilS, P incarnations of the function f are performed in parallel.
Also, the type of outp is a list containing p elements. stencilarch is a higher-order
function since it can be parameterized with a speci�c kernel function f . However,
it now represents an actual architecture in the form of a Mealy machine instead of
an abstract mathematical function.
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1 stencilarch2d :: (Img a > b) > (Img a, Img a) > Img a > ((Img a, Img a),

Img b)

2 stencilarch2d f (ws, ss) inp = ((ws’, ss’), outp)

3 where

4 outp = stencil2ds f ws

5 ws’ = mergeh (droph 2 ws) (mergev (takeh 2 ss) inp)

6 ss’ = mergeh (droph 2 ss) (takeh 2 (dropv 1 ws))

Listing 6.6 ś Two-dimensional stencil architecture.

A similar architecture is derived for two-dimensional stencil computations. ¿e
architecture consists of three parts: a window bu�er for holding data to which the
kernel function f is applied, line bu�ers for storing complete lines of the input and
a part where the actual output is calculated. Two-dimensional stencil computations
can be parallelized by processing several elements at once. Given a parallelization
of p = 2, an architecture as shown in �gure 6.6 is derived.

ws

x0,0 x1,0 x2,0 x3,0

x0,1 x1,1 x2,1 x3,1

x0,2 x1,2 x2,2 x3,2

ss

x4,0 x5,0 . . .

x4,1 x5,1 . . .

x4,2 x5,2

f f

y0,0 y1,0

stencil2dS

inp

outp

Figure 6.6 ś Architecture for two-dimensional stencil computation (P = 2)

As shown in �gure 6.6 the stencil2dS is the only part in the architecture where
computations are performed. All other parts are used for bu�ering. Since p = 2,
two elements of the input data are sent to the architecture every cycle. ¿is also
means that all bu�ers forward the data in packets of two. Also stencil2dS processes
two stencils at once resulting in two output samples (y0,0 and y1,0) being produced
at the same time. ¿e code to implement and simulate this architecture is shown
in listing 6.6.

Listing 6.6 shows the Haskell implementation of the two-dimensional stencil com-
putation architecture. As shown by the type, the �rst argument f is a function that
takes an image of type a and produces an element of type b. ¿e second argument
represents the state consisting of two bu�ers while the third argument is part of the
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input image with type Img a. For completion of the Mealy machine structure, the
result consists of the new state of the bu�ers and the actual result. ¿e �rst line of
the where-clause implements the parallel processing of the window bu�er ws. ¿e
new state of the window and line bu�ers (ws′ and ss′) are found by shi ing in and
out pairs of elements using the functions for merging and slicing images (mergeh,
mergev, droph, dropv and takev).

In order to generate actual hardware, the Haskell descriptions of stencilarch and
stencilarch2d have to be altered slightly such that it is accepted by the CλaSH com-
piler. Lists are not supported by the CλaSH compiler which is why they are replaced
by vectors. A small library with higher-order functions speci�cally for vectors has
been developed such that the code can be compiled by the CλaSH compiler more
or less unchanged. More details on altering code using lists to vectors can be found
in [RW:1].

6.4 Case Studies

To show the generality of using the stencil and stencil2d, several case studies have
been implemented. Convolution, cellular automata and heat�ow have been im-
plemented in the form of an application speci�c function that can be given as
parameter to either stencil or stencil2d.

6.4.1 Convolution

Convolution is a commonly used operation in digital signal processing and image
processing and �ts the stencil computation pattern quite well [94]. As shown in
equation 6.5, during convolution, two signals, f and g, are shi ed along each other,
multiplied and added for every position i. In practice, signals are o en �nite which
is why the summation is limited between −N and N .

y i = ( f ∗ g)i def
=

∞

∑
n=−∞

fn g i−n ≈
N

∑
n=−N

fn g i−n (6.5)

For a two-dimensional convolution, the mathematical formulation is very similar.
As shown in equation 6.6, an additional summation is introduced to iterate over
elements of the second dimension. ¿is second summation is limited in range as
well (−M . . .M).

y i , j = ( f ∗ g)i , j def=
∞

∑
n=−∞

∞

∑
m=−∞

fn ,m g i−n , j−m ≈
N

∑
n=−N

M

∑
m=−M

fn ,m g i−n , j−m (6.6)

Using the de�nitions of convolution from equation 6.5 and equation 6.6, the ap-
plication speci�c parameter function for stencil and stencil2d can be formulated
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in Haskell. For a one-dimensional convolution, this function accepts an array of
2M + 1 elements while the two-dimensional function accepts a two-dimensional
array of 2M+1 by 2N+1 elements. Listing 6.7 and listing 6.8 show theHaskell imple-
mentations of a convolution with a Gaussian window in one and two dimensions
respectively.

1 gauss xs = dotpr xs cs

2 where

3 cs = map (\x > 1 / sqrt (2 * pi) * exp (0.5 * x^2)) [2,1,0,1,2]

4 dotpr ps qs = foldl (+) 0 (zipWith (*) ps qs)

5

6 res = stencil 5 gauss inplist

Listing 6.7 ś One-dimensional Gaussian function Haskell

As shown in listing 6.7, the one-dimensional Gaussian function gauss is imple-
mented using a dotproduct of input elements xs and coe�cients cs. ¿e coe�cients
cs are calculated by applying the Gaussian window function to a range of indices
∥−2,−1, 0, 1, 2∥. On the last line is shown how the function gauss can be used as
parameter to stencil �ltering a list inplist.

1 gauss2d xss = dotpr2d xss css

2 where

3 css = chunksOf 5 [1/(2*pi)*exp (0.5*(x^2+y^2)) | x < [2.0..2.0], y <

[2.0..2.0]]

4 dotpr2d pss qss = foldl (foldl (+)) 0 (zipWith (zipWith (*)) pss qss)

5

6 res = stencil2d (5,5) gauss2d inpimage

Listing 6.8 ś One-dimensional Gaussian function Haskell

Similar to the one-dimensional Gaussian function shown in listing 6.7, the two-
dimensional Gaussian function is implemented using a two-dimensional dotprod-
uct. ¿is dotproduct combines the input matrix xss with the Gaussian window css.
On the last line of listing 6.8, the use of the function gauss2d is shown by supplying
it as parameter to the function stencil2d.

6.4.2 Cellular Automata

Cellular automata work on a grid of elements by executing simple rules to alter the
state. All the new states of the cell are found by applying a function to a cell and a
set of neighbours. It therefore matches the stencil computation pattern as shown
by two implementations: the one-dimensional elementary cellular automaton rule
110 [4] and game of life [45].

Rule 110 is a elementary cellular automaton where the new state of a cell is deter-
mined based on the current state of the cell and the state of the adjacent cells. A cell

can only be in one of two states: 1 or 0. ¿ere exist 22
3

= 256 elementary cellular
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automata since there exist 23 = 8 possible input patterns. For each of those patterns
the state can be either 1 or 0. Rule 110 states that the new state of the cell is 1 if the
current pattern is in {110, 101, 011, 010, 001} and 0 otherwise. ¿e Haskell code is
shown in listing 6.9 while the result of a simulation is shown in �gure 6.7.

1 rule110 xs = if xs ‘elem‘ [[1,1,0], [1,0,1], [0,1,1], [0,1,0], [0,0,1]]

2 then 1

3 else 0

Listing 6.9 ś Rule 110

Figure 6.7 ś Simulation of rule 110

Game of life

Game of life is a stencil computation applied to a grid with cells as well. Each cell
can be either dead or alive. ¿e new state of the cell is determined based on all
direct neighbours using the following rules:

» a cell dies when it has four or more neighbours due to overcrowding

» a cell dies when it has one or zero neighbours due to loneliness

» a cell is born or stays alive when it has three or two neighbours

In listing 6.10, the Haskell implementation of game of life is shown.

As shown in listing 6.10, the number of neighbouring living cells nc is determined
�rst followed by the current value of themiddle cell ccv. Finally the rules are used to
determine the new state. Figure 6.8 shows the simulation results of the four stages
of a glider (an object that follows a straight line).

6.4.3 Heatflow

¿e �ow of heat through materials is described using the general heat equation
of equation 6.7. In this equation, T(t, x⃗) describes the temperature of a point x⃗
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1 golkernel inp = res

2 where

3 nc = sum (inp !! 0) + (inp !! 1 !! 0) + (inp !! 1 !! 2]) + sum (inp !! 2)

4 ccv = inp !! 1 !! 1

5 res = if ccv == 1

6 then

7 if nc == 2 || nc == 3 then 1.0 else 0.0

8 else

9 if nc == 3 then 1.0 else 0.0

Listing 6.10 ś Game of life

Figure 6.8 ś Four stages of a glider in game of life simulation

in the material with thermal di�usivity α at time t. A er discretization over both
time and space, the formulation of equation 6.8 is derived for a one dimensional
heat�ow problem and equation 6.9 for a two dimensional problem [42].

∂T(t, x⃗)
∂t

= α∇2T(t, x⃗) (6.7)

Tk+1, i = Tk , i + c × (Tk , i−1 − 2Tk , i + Tk , i+1) (6.8)

Equation 6.8 shows the discretization of equation 6.7 for a one-dimensional heat-
�ow problem. It uses two neighbouring points (Tk , i−1 and Tk , i+1) to determine
the temperature for the next time instance Tk+1, i . ¿e heat di�usivity is captured
in the constant c, the time instance is represented by k and the position in the
one-dimensional space is represented by i.

Tk+1, i , j = Tk , i , j + c × (Tk , i−1, j − 4Tk , i , j + Tk , i+1, j + Tk , i , j+1 + Tk , i , j−1) (6.9)

Similar to equation 6.8, the position in the x-dimension is represented by i and the
time by k. Since equation 6.9 describes a two-dimensional heat�ow problem, an
additional spatial dimension is required which is represented by j. ¿e new tem-
perature depends not only on the current temperature, le and right neighbouring
temperatures, but also on the upper and lower temperatures Tk , i , j+1 and Tk , i , j−1.

Formulating the one-dimensional heat�ow problem of equation 6.8 in Haskell is
relatively straightforward. As shown in listing 6.11, a stencil of three temperatures
(x0, x1 and x2) is used to determine the new temperature.
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1 heatflow [x0, x1, x2] = x1 + c * (x0  2 * x1 + x2)

Listing 6.11 ś One-dimensional heat �ow kernel

As shown in listing 6.12, the Haskell implementation for the two-dimensional case
is very similar. ¿e �rst and single argument is the stencil holding the current
and surrounding temperatures (xss). Current and neighbouring temperatures are
selected using the index operator !!. ¿e result is a linear combination of these
temperatures.

1 hfk2d xss = x11 + c * (4 * x11 + x01 + x12 + x21 + x10)

2 where

3 (x01, x21) = (xss !! 0 !! 1, xss !! 2 !! 1)

4 (x10, x11, x12) = (xss !! 1 !! 0, xss !! 1 !! 1, xss !! 1 !! 2)

Listing 6.12 ś Two-dimensional heat �ow kernel

Both the one-dimensional and two-dimensional Haskell implementation of the
heat�ow equation have been simulated to verify their functionality. Figure 6.9
shows the simulation of a one-dimensional problem like a metal rod while �g-
ure 6.10 shows the heat propagation through a metal plate.

Figure 6.9 ś One-dimensional heat�ow simulation

Figure 6.9 shows the propagation of heat through a one-dimensional medium
where the vertical direction represent the position and the horizontal time. Over
time, the hotspot in the middle evens out over the whole height due to the cold
(black) temperatures at the top and bottom.

Similarly, the function for the two-dimensional heat�owproblem is simulated using
the initial temperatures of t = 0. ¿e initial temperatures has a hot spot in the top le 
part. Over time, the heat in this spot evens out (t = 32) and eventually disappears
(t = 256). Di�erent temperatures are supplied to the borders. ¿e upper and right
border are heated while the others kept at a low temperature. Slowly, the heat from
the upper and right border propagates deeper into the material (t = 256).
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t = 0 t = 4

t = 32 t = 512

Figure 6.10 ś Two-dimensional heat�ow simulation

6.5 Hardware Results

For both the one-dimensional and two-dimensional heat�ow kernel, hardware has
been generated using the CλaSH compiler¿ese have been instantiated with di�er-
ent parallelization factors (P) to show the scaling on FPGA hardware. All designs
have been synthesized for a Xilinx XC5VLX110T FPGA and were all capable of run-
ning at 200MHz. ¿e performance is directly determined by the parallelization
factor, i.e., the number of stencil computations performed in a single clock cycle
is equal to the parallelization factor P. Table 6.1 shows the amount of resources
required for computation (LUTs and DSP48Emultipliers) and storage (REGs). ¿e
number of clock-cycles to compute a stencil computation for a list with 256 ele-
ments and an image of 256 × 256 is shown in the rightmost column.

Both the one-dimensional and two-dimensional architectures scale linearly with
parallelization factor P in terms of LUTs. ¿e amount of registers for the one-
dimensional architecture scales linearly as well but for the two-dimensional archi-
tecture the amount of registers is practically constant. ¿is is becausemost registers
are used for the line bu�ers. Compared to related work of [102], a similar 2D archi-
tecture is derived with very similar resource consumption even though a di�erent
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Table 6.1 ś Area of stencil computation architectures.

P LUTs REGs DSP48E clock-cycles

1D

1 72 72 1 256

2 143 96 2 128

4 285 144 4 64

8 569 240 8 32

16 1137 432 16 16

32 2273 816 32 8

2D

1 116 12336 1 65536

2 231 12360 2 32768

4 461 12408 4 16384

8 961 12504 8 8192

16 1921 12696 16 4096

32 3841 13080 32 2048

kernel is used. Both the amount of LUTs required and clock frequency is compara-
ble to the design in [102].

6.6 Conclusion

¿e set of transformation rules presented in chapter 4 have been extended and
generalized to include stencil computations in which two-dimensional data struc-
tures are processed with overlapping data dependencies. Using the higher-order
functions stencil and stencil2d, stencil computations can be expressed using a single
higher-order function without the use of for loops with the possible accompanying
o�-by-one errors. Using the transformation rules the amount of parallelism can be
controlled using a single parameter.

Several applications have been implemented using this approach including heat
�ow and cellular automata. ¿ese applications have been simulated to verify their
functionality. For the one-dimensional and two-dimensional heat�ow applications,
real hardware has been designed using CλaSH. ¿is hardware has shown to scale
linearly with the parallelization parameter. Also resource consumption is compa-
rable with related work.

Currently, only one and two-dimensional stencil applications have been consid-
ered. Higher-dimensional stencil computations are an interesting direction for
future work since this puts more stress on resource usage and communication.
¿e transformation rules should therefore be altered taking these constraints into
account.
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Conclusions and

Recommendations

T hemain trend that can be observed in the last thirty years of developments of
FPGA technology, is the enormous increase in the amount of programmable

resources. To be able to utilize all these resources, a lot of parallelism is required. In
this thesis, this problem is addressed by utilizing abstractions from the functional
language Haskell in the context of hardware design. Higher-order functions in
particular, are a natural abstraction to express structure and parallelism in hardware
since only mathematical dependencies are described. By starting with a structural
description of hardware and applying meaning-preserving transformations to it,
additional dependencies that prevent possible parallelization are avoided.

In chapter 2, background information on several hardware design trends and tools
is given. A popular approach to increase the abstraction level and design productiv-
ity is by using high-level synthesis. In the traditional high-level synthesis approach,
o en an imperative language is parallelized and translated to hardware. A more
formal and transformational approach can be found in the SPIRAL project where
DFT-like algorithms are implemented and optimized using iterative rewriting of
DFT formulas. In this thesis, similar to the SPIRAL project, rewrite rules are used
to derive mathematical equivalent description of circuits. However, a higher design
productivity is pursued by using abstractions from functional languages instead
of the imperative approach taken by most HLS projects. For the implementation
of actual hardware, CλaSH is used as it incorporates a lot of abstractions that are
speci�cally useful for hardware design. Especially useful is the support for higher-
order functions to express structure in hardware.

In chapter 3, the connection between discrete mathematics and the use of higher-
order functions is explored. A particle �lter is implemented by slight alterations to
the Haskell model that is derived from the mathematical de�nition. Particle �lters
are challenging applications to implement in hardware due to the available paral-
lelism, data-dependent processing and a feedback loop. ¿e amount of parallelism
is maximized by mapping every operation to hardware. Although hardware could
be derived using this approach, the scalability of this approach is limited since the
unbounded amount of parallelism in these applications require a lot of resources. A
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trade-o� between resource consumption and execution time is therefore required.

In chapter 4, a method to facilitate in the trade-o� between resource consumption
and execution time is explored. In order to distribute computations over space and
time, several transformation rules for higher-order functions have been derived.
Using these transformations, data and computations are split into smaller slices.
Computations that are performed on a slice are executed in parallel while all slices
are processed sequentially. ¿e size of the slice, a parameter introduced by the
transformation, determines the amount of parallelism and resource consumption.
Proofs are derived showing that the transformations are meaning-preserving. Ad-
ditionally, an embedded language is proposed to capture the mapping over time
and space in types to prevent erroneous composition.

In chapter 5, the transformation rules proposed in chapter 4 are applied to the par-
ticle �lter. All higher-order functions are transformed, resulting in parameterized
components where the amount of parallelism and thereby the performance and the
resource consumption can be controlled. For composition and scheduling of oper-
ations, data�ow principles are used. Using these techniques, the clock frequency
of the particle �lter has been increased to 25MHz while the area has been reduced
by a factor 5.7.

¿e set of transformation rules presented in chapter 4 has been extended and gener-
alized in chapter 6. Both one and two-dimensional stencil computations can now
be expressed using a higher-order functions as well. Using transformation rules,
speci�cally derived for stencil computations, the amount of parallelism can be con-
trolled using a single parameter. Several applications have been implemented using
this approach including heat �ow and cellular automata.

As formulated in section 1.2, the research question addressed in this thesis is:

» How can a designer make a transparent trade-o� between resource usage (chip
area) and execution time?

In this thesis, this research question is answered by investigating the use of higher-
order functions. Higher-order functions can be used e�ectively to express structure
and parallelism in DSP applications. Using transformation rules, computations ex-
pressed using higher-order functions are distributed over space and time, e�ectively
making a trade-o� between resource usage (chip area) and execution time. ¿e
amount of parallelism is controlled by a parameter that is introduced during the
application of the transformation rule giving the designer full control of resource
consumption and execution time.

7.1 Contributions

¿e three main contributions of this thesis are:

» A design methodology for hardware based on exploiting regularity of
higher-order functions. In this thesis, a design methodology is presented
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showing how hardware can be designed by using a commonly used abstrac-
tion in functional languages: higher-order functions. First, a mathematical
formulation of a DSP algorithm is expressed using higher-order functions
to capture the structure and dependencies among operations. ¿e second
step is the transformation of this expression using transformation rules such
that e�cient hardware can be derived using the CλaSH compiler.

» Transformation rules to distribute computations, expressed using higher-
order functions, over space and time. For several commonly used higher-
order functions like zipWith and foldl, transformation rules have been de-
rived. Additionally, these transformation rules have been proven to be
meaning-preserving. ¿e transformation rule distributes the computations,
expressed using a higher-order function, over space and time. ¿e amount
of parallelism and resource usage can be fully transparently controlled by
the designer using a parameter that is introduced by the transformation.

» Several case studies showing the applicability of the design methodology
to a large range of DSP applications. Among others, the design method-
ology has been applied to a FIR �lter, a particle �lter and several stencil
computation applications. ¿e connection between discrete mathematics,
higher-order function and hardware is �rst explored in a dotproduct ex-
ample a er which the methodology is applied to a particle �lter. Stencil
computations are explored to extend the set of transformation rules such
that the designmethodology can also be applied to two-dimensionally struc-
tured applications.

7.2 Recommendations

Although transformation rules for several higher-order functions have been de-
rived and shown to be su�cient for several applications, a lot more applications
can be supported by developing more higher-order functions with corresponding
transformation rules. In this thesis, the focus has been on higher-order functions
with regular structure where the dimensions are known at compile time. A pos-
sible direction for future work would be the derivation of rules for higher-order
functions where structure is data-dependent. ¿ese higher-order functions can be
supported by implementing recursion on hardware.

Currently, all higher-order functions to which the transformation rules of chap-
ter 4 have been applied can be used by instantiating CλaSH components. In the
future, an integrated approach that combines the transformation rules with the
typed embedded language can be developed bringing all steps together in a single
environment. In this environment, a design can be formulated and simulated af-
ter which the transformation rules are applied resulting in a parameterized model
where the amount of parallelism can be selected by the designer. Once the trade-o�
between time and space is performed by selecting the proper parameters, hardware
is generated. A well known method to achieve this level of integration is by devel-
oping an embedded language. In this embedded language, the applications can be
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de�ned, transformed and parameterized and simulated to determine performance
metrics.

Instead of letting the designer choose the optimal parameters of parallelism, this
process could also be automated. To achieve this, an optimization problem has to
be de�ned taking into account the scaling of resource consumption given a certain
higher-order function. ¿is does require an FPGA tool to be in the optimization
loop in order to give feedback regarding costs and constraints of the chosen FPGA.
¿e optimization process then selects a candidate value for a parameter, determines
the performance metrics by synthesizing a part of the application and uses this as
feedback to change the parameter to minimize costs.



AA
Shallow embedded language

for space and time types

In section 4.3, a shallow embedded language for space and time types has been
introduced. Using this embedded language, an applications to which the transfor-
mation rules of chapter 4 have been applied can be modeled. In this appendix, the
implementation of this embedded language is presented.

Listing A.1 shows the implementation of the embedded language including some
examples. Every type is based on the types for space and time (LstSpace and Lst-
Time) as shown on line 8 and 9. When the elements of a list are distributed over
space and time, their respective types are also composed (line 14). Furthermore,
the higher-order functionsmap, zipWith and foldl are implemented in two versions:
distributed over time and over space respectively. Finally, line 92 and further show
how the space and time speci�c functions are used in a dot product example.

1 module SpaceTime where

2

3 import Data.List

4 import Data.List.Split

5

6  The types for expressing list that are distrubuted

7  over space or time:

8 type LstSpace a = [a]

9 type LstTime a = [a]

10

11  Split list into sublists where the elements in the

12  sublists are distributed over space while the

13  sublists are distributed over time

14 split_st :: Int > [a] > LstTime (LstSpace a)

15 split_st p xs = chunksOf p xs

16

17  Split list into sublists where the elements in the

18  sublists are distributed over time while the
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19  sublists are distributed over space

20 split_ts :: Int > [a] > LstSpace (LstTime a)

21 split_ts p xs = chunksOf p xs

22

23  Merge list of list into single list over space

24 concat_s :: [[a]] > LstSpace a

25 concat_s xss = concat xss

26

27  Merge list of list into single list over time

28 concat_t :: [[a]] > LstTime a

29 concat_t xss = concat xss

30

31  Apply function f to all elements in xs over time

32 map_t :: (a > b) > LstTime a > LstTime b

33 map_t f xs = map f xs

34

35  Apply function f to all elements in xs in parallel

36 map_s :: (a > b) > LstSpace a > LstSpace b

37 map_s f xs = map f xs

38

39  Tradeoff transformation rule applied to map

40 map_st :: Int > (a > b) > [a] > [b]

41 map_st p f xs = concat_s yss

42 where

43 xss = split_st p xs

44 yss = map_t (map_s f) xss

45

46  Result of map_st and map are equal

47 resmap = map_st 2 (+1) [1..6] == map (+1) [1..6]

48

49  Fold function f over all elements in xs over time

50 foldl_t :: (a > b > a) > a > LstTime b > a

51 foldl_t f x ys = foldl f x ys

52

53  Fold function f over all elements in xs in parallel

54 foldl_s :: (a > b > a) > a > LstSpace b > a

55 foldl_s f x ys = foldl f x ys

56

57  Tradeoff transformation rule applied to foldl

58 foldl_st :: Int > (a > b > a) > a > [b] > a

59 foldl_st p f x ys = res

60 where

61 yss = split_st p ys

62 res = foldl_t (foldl_s f) x yss

63
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64  Result of foldl_st and foldl are equal

65 resfoldl = foldl_st 2 (+) 0 [1..6] == foldl (+) 0 [1..6]

66

67  ZipWith with operations executed over time

68 zipWith_t :: (a > b > c) > LstTime a > LstTime b >

LstTime c

69 zipWith_t f xs ys = zipWith f xs ys

70

71  ZipWith with operations executed in parallel

72 zipWith_s :: (a > b > c) > LstSpace a > LstSpace b >

LstSpace c

73 zipWith_s f xs ys = zipWith f xs ys

74

75  Tradeoff transformation rule applied to zipWith

76 zipWith_st :: Int > (a > b > c) > [a] > [b] > [c]

77 zipWith_st p f xs ys = concat_s zss

78 where

79 xss = split_st p xs

80 yss = split_st p ys

81 zss = zipWith_t (zipWith_s f) xss yss

82

83  Result of zipWith_st and zipWith are equal

84 reszipWith = zipWith_st 2 (+) [1..6] [2..7] == zipWith (+)

[1..6] [2..7]

85

86  Plain definition of dotproduct

87 dotpr xs ys = foldl (+) 0 ws

88 where

89 ws = zipWith (*) xs ys

90

91  Computations of dotproduct distributed over space and time

92 dotpr_st p xs ys = z

93 where

94 xss = split_st p xs

95 yss = split_st p ys

96 wss = zipWith_t (zipWith_s (*)) xss yss

97 z = foldl_t (foldl_s (+)) 0 wss

98

99  Result of dotpr_st and dotpr are equal

100 resdotpr = dotpr [1..6] [3..8] == dotpr_st 2 [1..6] [3..8]

Listing A.1 ś Space and time types with examples
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Acronyms

A ASIC application speci�c integrated circuit

B BMF Bird-Meertens formalism
BRAM block RAM

C CFD computational �uid dynamics
CLB con�gurable logic block
CPU central processing unit

D DCT discrete cosine transform
DFT discrete Fourier transform
DSL domain speci�c language
DSP digital signal processing

E EDSL embedded DSL

F FF �ip �op
FFT fast Fourier transform
FIFO �rst-in-�rst-out bu�er
FIR �nite impulse response
FOF �rst-order function
ForSyDe formal system design
FPGA �eld-programmable gate array
FPLA �eld-programmable logic array

G GHC Glasgow Haskell compiler

GHCI interactive GHC

H HDL hardware description language
HLS high-level synthesis
HOF higher-order function

I IP intellectual property
ISPL instruction set processor language

L LFSR linear feedback shi register
LUT look-up table

M MAC multiply accumulate

P PDF probability density function
PF particle �lter
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R RAM random-access memory
ROCCC Riverside optimizing compiler for con�gurable circuits
RSR residual systematic resampling
RTL register-transfer level

S SIMD single instruction multiple data
SIRF sequential importance resampling �lter

SoC system on chip
SPL signal processing language
SRAM static RAM

U UDT utility directed transformations

V VHDL very high speed integrated circuit HDL
VLIW very large instruction word

W WHT Walsh-Hadamard transform
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