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Abstract— In this paper, a Multiple Depot, Multiple Traveling
Salesman Problem is transformed into a Single, Asymmetric
Traveling Salesman Problem if the cost of the edges satisfy
the triangle inequality. This improves on the previously known
transformation for a 2-Depot, Multiple Traveling Salesman
Problem in the literature. To test the effectiveness of the
transformation, some computational results are presented by
applying the well known LKH heuristic on the transformed
problem for instances involving Dubins vehicles. Results show
that the transformation is effective and high quality solutions
can be found for large instances in a relatively short time.

Index Terms— Traveling salesman, Unmanned Aerial Vehicle,
Multiple Depot Routing.

I. INTRODUCTION

A Multiple Depot, Multiple Traveling Salesman Problem

is an important problem that arises in robotic applications

involving ground and aerial vehicles having fuel constraints.

This problem can be stated as follows: Let there be n targets

and m salesmen located at distinct depots. Let V be the

set of vertices that correspond to the initial locations of the

salesmen and the targets, with the first m vertices V1, . . . , Vm

representing the salesmen (i.e., the vertex Vi corresponds

to the ith salesman) and Vm+1, . . . , Vm+n representing the

targets. Let E = V × V denote the set of all edges (pairs of

vertices) and let C : E → ℜ+ denote the cost function with

C(a, b) representing the cost of traveling from vertex a to

vertex b. We consider costs that are asymmetric, and satisfy

the triangle inequality, namely, C(a, b) + C(b, c) ≥ C(a, c)
for all a, b, c ∈ V . A tour of salesman Vi, TOURi, is empty

and its corresponding tour cost, C(TOURi), is zero if the

ith salesman does not visit any target. If the ith salesman

visits at least one target, then his tour is an ordered set,

TOURi, of at least ri + 2, ri ≥ 1 elements of the form

{Vi, Vi1 , . . . , Viri
, Vi}, where Vil

, l = 1, . . . , ri corresponds

to ri distinct targets being visited in that sequence by the

ith salesman. In this case, there is a cost, C(TOURi),
associated with a tour for the ith salesman and is defined

as C(TOURi) = C(Vi, Vi1) +
∑ri−1

k=1
C(Vik

, Vik+1
) +

C(Viri
, Vi). This paper addresses the following Multiple

Depot, Multiple Traveling Salesmen Problem (MDMTSP):

Given the graph, G = (V, E), find tours for the salesmen so

that

• each target is visited by at least one salesman, and,
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• the overall cost defined by
∑

i∈V C(TOURi) is mini-

mized.

We are motivated to address the MDMTSP, as it occurs

as a subproblem in some of the basic routing problems that

arises in applications involving Unmanned Aerial Vehicles

(UAVs) with motion and fuel constraints. A fixed wing UAV

is typically modeled as a vehicle traveling at a constant

speed subject to constraints on its minimum turning radius.

Given two points A = (x1, y1) and B = (x2, y2) with

their visiting angles as θ1 and θ2 respectively, the minimum

distance required for an UAV to travel from A to B may

not be equal to the minimum distance to travel from B to

A (please refer to Fig. 1 for an illustration). As a result, the

cost of traveling between any two points for a fixed wing

UAV can be asymmetric but satisfy the triangle inequality.

A fundamental routing problem that arises in some sur-

veillance applications require a team of multiple UAVs to

visit a group of targets such that the total travel distance is

minimized. This routing problem is a challenging optimiza-

tion problem because it involves two difficult subproblems,

namely 1) the combinatorial problem that requires assigning

a sequence of targets for each vehicle such that each target is

visited by some vehicle, and 2) the motion planning problem

where the path of the each vehicle must be determined

subject to the turning radius constraints of the vehicles.

Currently, there are no approaches available in the literature

that can find an optimal solution for this routing problem.

However, there are few approximation algorithms, heuristics

[3],[4] available to find feasible solutions. In any of these

approaches, the combinatorial problem is solved as a first

step by assuming an initial angle to visit at each of the

targets. For the second step, the path planning problem is

solved for each of the vehicles using the target sequences

obtained from the first step. This two-step approach can also

be iterated multiple times if it can improve the quality of the

feasible solutions. In essence, the combinatorial subproblem

in these routing problems involving UAVs is essentially

the MDMTSP. This is our primary motivation for studying

MDMTSPs. The focus of this paper is on developing fast

algorithms for the MDMTSP. As we are not dealing with

the path planning problem in this paper, we assume that the

angle at which each target must be visited is given apriori.

MDMTSP is a generalization of the single, Traveling

Salesman Problem (TSP) and is NP-Hard [1]. The TSP and

its variants have received significant attention in the area of

combinatorial optimization [1]. There are several approaches

including exact methods [1],[2], approximation algorithms

[5] and heuristics [1],[2] that can be used to address TSPs.
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A B

Fig. 1. An example illustrating that the minimum distance to travel from
A to B and B to A for an UAV can be asymmetric.

Variants of the multiple TSPs have also been transformed to

single TSPs in the literature. By doing so, one can make use

of the algorithms available for the single TSPs to solve the

multiple TSPs.

In this paper, we present a transformation that can convert

the MDMTSP to a single, Asymmetric Traveling Salesman

Problem (ATSP). This improves on the result in Rao [8]

where, a transformation is given for a 2-Depot, Multiple TSP.

To show the effectiveness of the transformation, we also

present computational results by applying the well known

LKH heuristic available for the single TSP to the trans-

formed problem. The results show that high quality, feasible

solutions are found very quickly (less than 20 seconds) for

instances involving 50 UAVs and 500 targets. Also, the cost

of the feasible solution is, on an average, 3% away from its

optimum.

A. Literature Review

Multiple Traveling Salesman Problems can be classified

based on whether all the salesmen start from a single depot

or from multiple depots. There are several transformations

currently available for the variants of a Single Depot,

Multiple Traveling Salesman Problem (SDMTSP) in the

literature. In [6], Bellmore and Hong consider a SDMTSP

where each salesman is available for service at a specific

cost and the edge costs need not satisfy triangle inequality.

Since the objective is to reduce the total cost travelled by

the salesmen, there could be situations when the optimal

solution will not necessitate using all the salesmen. Bellmore

and Hong provide a way of transforming this single depot

MTSP to a standard TSP for the asymmetric case. Hong and

Padberg present a more elegant transformation for the same

problem in [10]. Rao discusses the symmetric version of the

SDMTSP in [8]. Jonker and Volgenant [9] give an improved

transformation for a variant of the symmetric, SDMTSP

where each salesman has to visit at least one target.

For the multiple depot case, Rao [8] gives a transformation

where salesmen start from 2 depots. For the variant of the

multiple depot TSP where each salesman need not return to

his initial depot and must visit at least one target, GuoXing

[7] provides a transformation to a single ATSP. Currently,

there is no transformation available for the MDMTSP when

each salesman must return to his initial depot for more than

depot
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Fig. 2. Given feasible solution for a MDMTSP: 4 depots.

2 depots. In the next section, we present a transformation of

the MDMTSP to a single ATSP.

II. TRANSFORMATION TO A SINGLE ATSP

The MDMTSP is transformed by adding a set of copy

nodes, where each copy corresponds to a depot vertex. Let

the set of copy nodes be denoted by V ′

1 , . . . , V ′

m. For each

i ∈ {1, . . . ,m}, V ′

i is the copy corresponding to the depot

Vi. The new transformed graph is represented by (VT , ET )
where VT = V

⋃
{V ′

1 , . . . , V ′

m} and ET is the set of all the

directed edges joining any two vertices in VT . Let Iv =
{1, . . . ,m} and It = {m + 1, . . . ,m + n}. The cost of the

edges in ET is defined as follows:

CT (Vi, V
′

j ) = C(Vi, Vj), for all i ∈ It, j ∈ Iv,

CT (Vi, Vj) = C(Vi, Vj), for all i, j ∈ It,

CT (Vi, Vj) = C(Vi, Vj), for all i ∈ Iv, j ∈ It,

CT (Vi, V
′

i ) = 0, for all i ∈ Iv,

CT (V ′

i , Vi+1) = 0, for all i ∈ {1, . . . , m − 1},

CT (V ′

m, V1) = 0,

CT (u, v) = M, for all other edges (u, v) ∈ ET .

(1)

In the above equations, M is a large positive constant and

is chosen to be equal to (m+n)maxi,j=1,...,m+n C(Vi, Vj).
The main result of this paper is the following theorem:

Theorem 2.1: Let the optimal cost of the single ATSP

on the transformed graph (VT , ET ) be C
opt
atsp. Also, let the

optimal cost of the MDMTSP on the original graph (V,E)
be C

opt
mdmtsp. Then, C

opt
atsp = C

opt
mdmtsp. Moreover, given an

optimal solution for the ATSP on the transformed graph,

a corresponding optimal solution can be obtained for the

MDMTSP in n + 3m steps.

To prove theorem 2.1, we first prove the following lemma:

Lemma 2.1: If there is a feasible solution for the

MDMTSP on the original graph (V, E), then there exists

a corresponding feasible solution for the single ATSP on
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Fig. 3. Corresponding feasible solution for the ATSP on the transformed
graph.

the transformed graph (VT , ET ) with the same cost. Hence,

C
opt
atsp ≤ C

opt
mdmtsp.

Proof: Without loss of generality, we assume that the

given feasible solution for the MDMTSP consists of p (p <=
m) nonempty tours, i.e., Tour1, ..., T ourp. The remaining

tours, Tourp+1, ..., T ourm, corresponding to vehicles at

{Vp+1, . . . , Vm} are all empty. If Touri is not empty, recall

that it is an ordered set represented as {Vi, Vi1 , . . . , Viri
, Vi}.

On the transformed graph, construct the following sequence

of vertices for vehicle Vi to visit based on TOURi:

PATHi = {Vi, Vi1 , . . . , Viri
, V ′

i } ∀i = 1, . . . , p.

For the remaining (m − p) vehicles that do not visit any

targets, construct the following sequence of nodes:

PATHi = {Vi, V
′

i } ∀i = p + 1, . . . ,m.

Now, consider the following ordered sequence of nodes

on the transformed graph:

TOURT = {PATH1, PATH2, . . . , PATHm, V1}.

TOURT visits all the vertices in VT exactly once and

returns to V1. Therefore, TOURT is a feasible solution for

the single ATSP on the transformed graph. Refer to Fig.2

and Fig.3 illustrating the construction of a tour for a 4 depot

example. To prove that the costs are the same, first consider

the case when p < m − 1.

CT (TOURT ) =
∑

i=1..p

[CT (Vi, Vi1) +

ri−1∑

k=1

CT (Vik
, Vik+1

)

+CT (Viri
, V

′

i ) + CT (V ′

i , Vi+1)]

+

m∑

i=p+1

CT (Vi, V
′

i ) +

m−1∑

i=p+1

CT (V ′

i , Vi+1) + CT (V ′

m, V1)

(2)
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Fig. 4. A given optimal solution for the ATSP on the transformed graph.

Substituting for costs as given in equation (1), we get,

CT (TOURT ) =
∑

i=1..p

[C(Vi, Vi1) +

ri−1∑

k=1

C(Vik
, Vik+1

) +

C(Viri
, Vi)]

=
∑

i=1..p

C(TOURi).

(3)

The above argument can also be shown for p = m−1 and

p = m. Therefore, the cost of the constructed ATSP tour on

the transformed graph is the same as the cost of the feasible

solution for the MDMTSP.

Proposition 2.1: The following are the properties of any

optimal solution for the ATSP on the transformed graph:

1) An optimal solution will not have any edge whose cost

is M .

2) For any i = 1, . . . ,m, if the directed edge from depot

Vi to V ′

i is not present in an optimal solution, then

there is an outgoing edge from Vi to a target and an

incoming edge from a target to V ′

i .

3) All the zero cost, directed edges in the set

{(V ′

1 , V2), (V
′

2 , V3), . . . , (V
′

m−1, Vm), (V ′

m, V1)}
must be present in any optimal solution.

Proof: The proof for properties (1) and (2) are trivial.

To prove property (3), note that for any depot vertex, the only

incoming edge whose cost is not equal to M is the zero cost

edge coming from an adjacent copy vertex. Therefore, all the

zero cost, directed edges in the set {(V ′

1 , V2), (V
′

2 , V3), . . . ,
(V ′

m−1, Vm), (V ′

m, V1)} must be present in an optimal solu-

tion.

Lemma 2.2: Given an optimal solution for the single

ATSP on the transformed graph, a corresponding feasible

solution can be found for the MDMTSP whose cost is at

most C
opt
atsp in n + 3m steps. Hence, C

opt
mdmtsp ≤ C

opt
atsp.
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Fig. 5. Remove the zero cost edges.

Proof: Let the set of edges in the optimal solution be

denoted by Eopt. Also, let the zero cost edges (refer to Fig.

4) in the optimal solution be denoted by Ezero. Now, apply

the following algorithm to the given optimal solution for

the single ATSP on the transformed graph:

1) Remove all the zero cost edges in the optimal solu-

tion (refer to Fig. 5). After removing the zero cost

edges, the incoming (outgoing) degree of all the depots

(copies) in the graph (VT , Eopt\Ezero) is equal to 0.

This follows from property (3) in Proposition 2.1.

Also, if the incoming degree of a copy vertex is equal

to 1 in (VT , Eopt\Ezero), then the outgoing degree of

its corresponding depot will also be equal to 1. This

follows from property (2) in Proposition 2.1. Also,

the incoming and the outgoing degree of each target

vertex in the graph (VT , Eopt\Ezero) is equal to 1.

2) Let E0 := Eopt\Ezero. For k = 1, . . . ,m do the

following:

If any directed edge (Vti
, V ′

i ) is incident on a copy

V ′

i , then let Ei = Ei−1\(Vti
, V ′

i )
⋃

(Vti
, Vi). This step

essentially transfers any edges incident on the copy

vertices to its corresponding depots (refer to Fig.6).

For each transferred edge, CT (Vti
, V ′

i ) = C(Vti
, Vi).

Note that the above algorithm requires at most 2m steps.

Since only zero cost edges have been pruned from Eopt in

step 1, the total cost of the edges in E0, CT (E0), is equal

to C
opt
atsp. After step 2, C(Em) = CT (E0) as the cost of the

transferred edges does not change. Now, consider the graph

(V, Em). Every target vertex in (V, Em) has an incoming

and an outgoing degree equal to 1. If a depot is connected

to any target, then it will also have an incoming degree

and an outgoing degree equal to 1. Therefore, the graph

(V, Em) consists of a collection of directed cycles and a

set of unused depots. Each cycle in (V, Em) consists of

at least one depot. If any directed cycle consists of more

than one depot, then the depots can be shortcut such that

each directed cycle consists of exactly one depot. Since the

costs satisfy the triangle inequality, short cutting some of

the depots will not increase the total cost of the directed

cycles, i.e., C(Em). After short cutting, we have a collection
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Fig. 6. Transfer any incident edges on the copies to their respective depots.

of directed cycles such that each target is visited exactly

once and there is exactly one depot in each directed cycle

(refer to Fig.7). We have now constructed a feasible solution

for the MDMTSP whose cost is at most the cost of the

optimal solution for the single ATSP on the transformed

graph. Therefore, C
opt
mdmtsp ≤ C(Em) = CT (E0) = C

opt
atsp.

Note that short cutting of depots to restrict exactly one depot

in each directed cycle could take n + m steps. Hence, given

an optimal solution for the ATSP, the total number of steps

to find a feasible solution for the MDMTSP is n + 3m.

Theorem 2.1 follows from Lemma 2.1 and Lemma 2.2.

III. COMPUTATIONAL RESULTS

The objective of this section is to show that standard

algorithms that are known to successfully address the single

ATSP can also be used to solve the MDMTSP using the

transformation given in this paper. Specifically, we apply the

modified LKH heuristic [11] which is one the best heuristics

[1] available to solve the single ATSP on the transformed

graph.

In all the simulations, the number of UAVs were fixed

to be equal to 20. The minimum turning radius (r) of all

the UAVs in the simulations was chosen to be 100 meters.

Dubins’ [12] result was used to calculate the minimum

distance to travel for an UAV between any two targets.

Dubins’ [12] result states that the path joining the two

targets (x1, y1, θ1) and (x2, y2, θ2) that has minimal length

subject to the minimum turning radius constraints, is one

of RSR, RSL, LSR, LSL, RLR and LRL. Here, any

curved segment of radius r along which the vehicle executes

a clockwise (counterclockwise) rotational motion is denoted

by R(L), and the segment along which the vehicle travels

straight is denoted by S.

Three different scenarios were considered where targets

are uniformly generated in a square of area 1 × 1 km2,

3 × 3 km2 and 5 × 5 km2. For each generated target, an

approach angle was selected uniformly in the interval [0, 2π].
The number of targets were allowed to vary from 20 to 400.

For a given number of vehicles (m) and targets (n), 100

instances were randomly generated. The upper bound on the

solution quality of an instance I is defined as
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Fig. 7. Remove all the copies; shortcut the depots such that there is exactly
one depot in each cycle.

100(
CI

LKH − CI
LB

CI
LB

),

where, CI
LKH is the cost of the solution obtained by

applying the LKH heuristic on the transformed graph and

CI
LB is the lower bound for the single ATSP on the trans-

formed graph. The LKH program by Helsgaun available

at http://www.akira.ruc.dk/ keld/research/LKH/ was used to

solve the ATSP. The program was run on a Pentium 4 CPU

with 3GHz processing power and 1.24 GB RAM.

The results regarding the mean solution quality and their

computation times are shown in Fig.8 and Fig.9 respectively.

The results show that the mean solution quality decreases

as the number of targets increases. In general, the solution

quality gets better as the size of the area decreases. As

expected, the mean computation times increased with the

number of targets. The results indicate that a multiple UAV

tour with a solution quality of approximately 0.2% can be

obtained for a 20 UAV-400 target instance by applying the

LKH heuristic on the transformed graph in approximately

20 seconds. These computational results validate that the

transformation is effective and can be successfully used for

the MDMTSP involving UAVs.

Results about the mean solution quality may not exactly

reflect the solution quality that could be obtained for a given

instance. Therefore, in Fig. 10, we also plot the maximum

solution quality computed among the 100 randomly gener-

ated instances for each (n,m) as a function of the number of

targets. These results show that the LKH heuristic performs

well on the transformed graph in the worst case also. Fig.

11 shows the comparison between the mean and maximum

solution quality when the targets are sampled in a 1 × 1

km2.

IV. CONCLUSIONS

In this paper, a transformation was presented for a Multiple

Depot, Multiple Traveling Salesman Problem. Computational

results were also presented by applying the well known LKH

heuristic to the transformed graph for instances involving

UAVs. The results show that the transformation is effective
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Fig. 8. Mean solution quality as a function of the number of targets.
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Fig. 9. Mean computation time in seconds as a function of the number of
targets.
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and standard algorithms can be used to produced high quality

solutions in a relatively short time.
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