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A Transformation for Ordering Multispectral Data in 
Terms of Image Quality with Implications for Noise 

Removal 
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Abstract-Although principal components transformations on re- 
motely sensed multispectral data often produce components that show 
decreasing image quality with increasing component number, there are 
numerous examples, especially among aircraft scanner data, where this 
is not the case. This has led us to define a new trans€ormation, known 
as the maximum noise fraction (MNF) transformation, which always 
produces new components ordered by image quality. It can be shown 
that this transforniation is equivalent to principal components when 
the noise variance is the same in all bands and that it reduces to a 
multiple linear regression when noise is in one band only. Noise can be 
effectively removed from multispettral data by transforming to the 
MNF space, smoothing or rejecting the most noisy components, and 
then retransforming to the original space. In this way much more in- 
tense smoothing can be applied to the MNF components with high noise 
and low signal content than could be applied to each band of the orig- 
inal data. The MNF transformation requires knowledge of both the 
signal and noise covariance mhtrices. Except whbn the noise is in one 
band only, the noise covariance matrix needs to be estimated. One pro- 
cedure for doing this is discussed and examples of cleaned images are 
presented. 

I. INTRODUCTION 

RTNCIPAL components (PC) transformations have P become a standard tool for the compression and en- 
hancement of remotely sensed multispectral data (e.g., 

[1]-[3]). It has been noted [1]-[3] that the high between- 
band correlation that often exists in multispectral data can 
lead to a compression of image information into the low- 

order principal components. This compression is mani- 
fested as a steadily decreasing signal-to-noise ratio as the 

PC number increases. Although this trend is almost al- 
ways observed with Landsat data, we and others [4] have 
found a number of cases where airborne thematic mapper 
(ATM) simulator data do not behave in this way. 

Fig. 1 shows the first, fourth, sixth, and ninth principal 
component images for (ten-band) ATM data collected over 

the Silver Bell district in Arizona. Although the first few 

principal components behave much as expected, there is 
no definite trend to increasing noise with increasing com- 
ponent number. Indeed, the ninth principal component is 

Manuscript received November 21, 1986; revised August zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10, 1987. 
A. Green and M. Craig are with the CSIRO Division of Mineral Physics 

M. Berman is with the CSIRO Division of Mathematics and Statistics, 

P. Switzer IS with the Department of Statistics, Stanford University, 

IEEE Log Number 8717523. 

and Mineralogy, P.O. Box 136, North Ryde, NSW 2113, Australia. 

P.O. Box 218, Lindfield, NSW 2070, Australia. 

Stanford, CA 94305. 

quite an acceptable image with less noise than the fourth 

or sixth principal components. In an earlier statistically 

oriented treatment of this problem [SI, Switzer and Green 
showed how to define a new transformation that ordered 

images into components of increasing spatial autocorre- 
lation. In the present paper we recast and expand the pro- 
cedure more directly in terms of signal-to-noise (S /N)  

ratios, and show how it may be used to improve standard 

methods of noise removal and image enhancement. 
First, we develop the maximum noise fraction (MNF) 

transform as a method for ordering components in terms 

of image quality. Two special cases are discussed. The 
first case shows the relationship between the MNF trans- 

form and principal component analysis, and the second 
treats the situation when noise is found in one band only. 

Then we apply the MNF transform to noise removal 

and discuss how zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAspatial information can be used to esti- 
mate the covariance structure of the signal and the noise. 
Examples are given of the application of the transform to 

images with both real and synthetic noise. 
The techniques considered in this paper are based on a 

number of mathematical results, none of which are proved 

here. Proofs can be found in an unpublished report [6], 
which will be provided on request to the authors. 

11. THE MAXIMUM NOISE FRACTION (MNF) 

TRANSFORM 

We have seen (Fig. 1) that the principal components 

transform does not always produce images that show 
steadily decreasing image quality with increasing com- 

ponent number. The question thus arises: Can we design 
a linear transformation that will always perform this func- 

tion? One of the most common measures of image quality 
is the signal-to-noise ratio. Thus, instead of choosing new 

components to maximize variance, as the principal com- 

ponents transform does, we now choose them to maxi- 
mize the signal-to-noise ratio. Our choice should then 
achieve the desired optimal ordering in terms of image 

quality. 
This transformation can be defined in several ways. It 

can be shown that the same set of eigenvectors is obtained 

by procedures that maximize either the signal-to-noise ra- 
tio or the noise fraction. This latter measure was used in 
our previous work [5] and has been retained here for com- 
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Fig. 1 .  First, fourth, sixth, and ninth principal component images for ten- 
band ATM data acquired over Silver Bell, Arizona. 

patibility. We stress that all the results described can be 

obtained from either measure. 

Let us consider a multivariate data set of p-bands with 
grey levels 

Zi(X), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1, - * .  , p  

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx gives the coordinates of the sample. We shall 
assume that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Z(x) = S ( x )  + N ( x )  

where Z'(x) = {Z, (x) ,  , Z,(x)},  and S ( x )  and 
N (  x )  are the uncorrelated signal and noise components 
of Z ( x ) .  Thus 

cov { Z(x ) }  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE = Es + I;N 

such that the noise fraction for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY, ( x )  is maximum among 
all linear transformations orthogonal to 5 ( x ) ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj = 1, 

Using arguments similar to those used in the derivation 
of principal components, it can be shown that the vectors 

a, are the left-hand eigenvectors of &E-', and that p , ,  
the eigenvalue corresponding to a,, equals the noise frac- 
tion in Y, ( x ) .  Hence, from the definition of the MNF 

2 p p ,  and so the transform, we see that p,  2 p 2  2 
MNF components will show steadily increasing image 
quality (unlike the usual ordering of principal compo- 
nents). 

Throughout the rest of the paper, it will be assumed that 

the eigenvectors a, are normed so that 

I 1 .  
. . .  

- 

a$a, = 1, i = 1, * 9 P. 

where Es and EN are the covariance matrices of S ( x )  and 
N ( r ) ,  respectively. Note that, although we are assuming 

additive noise, the techniques described in this paper in 

principle can also be applied to multiplicative noise by 

first taking logarithms of the observations. 

This norming is for mathematical convenience only, and 
has no effect on the noise removal procedures discussed 

later. It will also be convenient at certain points to express 

the MNF transform in the matrix form 

Y ( x )  = A T Z ( x )  
We define the noise fraction of the i th band to be 

where Y'(x) = ( Y , ( x ) ,  . . - , Y p ( x ) )  and A = (a l ,  
* * , up). 

the ratio of the noise variance to the total variance for that 
band. The maximum noise fraction (MNF) transform 
chooses linear transformations 

An property Of the MNF transform (not 

shared by principal components) is that, because it de- 
pends on signal-to-noise ratios, it is invariant under scale 

changes to any band. Another useful property is that it 
orthogonalizes S ( x )  and N ( x ) ,  as well as Z(x) .  Y J x )  = a,rZ(x), i = 1, - * * , p 
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To obtain the MNF transform, we need to know both zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Z and EN.  In many practical situations, these covariance 
matrices are unknown and need to be estimated. Usually, 
Z is estimated using the sample covariance matrix of 

Z ( x ) ;  this approach is adopted for the examples discussed 
in this paper. 

A method that indirectly estimates zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZN is discussed in 

Section V. For the moment we ignore this estimation 
problem and illustrate some of the properties of the MNF 
transform in two familiar cases. 

A.  Case I :  Uncorrelated Noise with Equal Variance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU$ 

in All Bands 
Here the noise is spherically distributed about the data 

mean. Hence the directions with maximum noise fraction 
must be the directions of minimum overall variance. These 

directions are the same as those selected by a principal 
components analysis. This fact can be seen algebraically, 
because we have 

E N  = o i l .  

Hence, by remarks above, the matrix to be diagonalized 

will be u ~ Z - ’ .  The eigenvectors of Z and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ-’ are iden- 
tical, and, as the principal components procedure diagon- 

alizes Z, we see that the two procedures will produce the 
same set of eigenvectors. The eigenvalues of Z-’  are the 

inverses of the eigenvalues of Z. 
The equivalence of the two procedures in this special 

case probably explains the success of principal compo- 

nents analysis in ordering image quality for many re- 

motely sensed data sets. Therefore, the noise in all bands 
of these data may have been approximately equal and un- 

correlated across bands. 

When the noise variances are known, but unequal, it is 
simple to rescale the data so that all bands have equal 
noise variance. Principal components analysis can then be 

used to obtain an optimal ordering of image quality. 
In the even more special case where there is also perfect 

between-band signal correlation, the same variable is 

being measured p times (apart possibly from scale fac- 
tors). In this situation the transformation produces new 

components where, in the MNF space, only the pth com- 

ponent has any signal. 

B. Case 11: Noise in One Band Only 
Not surprisingly, in this case the noise is best isolated 

by choosing a new component Yl(x) that is composed of 
the noisy band minus that linear combination of the noise- 

free bands that best estimates the signal component of the 
noisy band (in the sense of minimizing the variance of 

their difference). If a high correlation exists between the 
signal component of the noisy band and the noise-free 

bands, then a good estimate can be obtained and the re- 
sulting image will be mostly noise. Let 

z-l = ( U i j ) ,  1 5  i , j  I p  

and assume that noise is all in the first band. Then, if U; 

is the noise variance in band 1 ,  it can be shown that 

PI = 4 V l l  

9P p i=( ) ,  i = 2 ,  e . .  

and 

U T  = U;”*( V l l ,  2112, * * , VI,). 

Hence, all the noise is retained in the first MNF compo- 
nent and the remaining MNF components are all linear 
combinations of the noise-free bands. It can further be 

shown that, if Si ( x )  is the signal component of band i ,  
then the values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp2 ,  - - - , p, minimizing 

are proportional to vI2, , ulP, respectively (as given 

in U :  above). It should also be noted that, in this case, it 
is not necessary to know U; in order to define the MNF 
transform. 

111. NOISE REMOVAL 

Once data have been transformed into components with 

decreasing noise fraction (increasing S /N  ratio), it is 
logical to spatially filter the noisiest components and sub- 
sequently to transform back to the original coordinate sys- 

tem. As the transformed components filtered by this pro- 

cedure contain a reduced signal component, the resulting 

signal degradation will be much less than if the same 
smoothing were performed on the untransformed data. 
This procedure should allow much more intense smooth- 

ing to be applied without serious signal degradation. 

Noise reduction is achieved by using the high between- 
band correlation that often exists in the signal components 

of remotely sensed data. A multivariate signal can be con- 

sidered to lie between two extremes: perfect between-band 
correlation and zero between-band correlation. In the for- 
mer case, we would expect to be able to achieve a maxi- 

mal noise reduction (viz. var ( S ) /var ( N  ) improved by 
a factor of p if the S /N  ratio is constant). In the latter 

case no improvement can be made by the procedures dis- 

cussed here. The amount of noise reduction achieved in 
each situation depends on the degree of between-band 
correlation, the relative powers of the noise in each input 

band, and the type of smoothing performed on the trans- 
formed components. 

In general, although the low-order MNF components 

contain more noise, they still have a signal constituent. If 
these signals need to be retained, each MNF component 
must be filtered before retransformation to obtain a 

cleaned image. Under these conditions it is difficult to es- 
timate the losses in both signal and noise, as they are de- 

pendent upon the nature of the filtering process. How- 
ever, when the signal content of a MNF component is so 

low that it can be neglected, it is easy to estimate the sig- 
nal and noise losses in such a process. 

In the next section we investigate the consequences of 
a constraining process that sets the noisiest component to 

a constant value (namely the component mean) before 
transformation back to the original space. This constrain- 
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ing process may be considered as an ultimate smoothing 
operation. The generalization to the case where more than 

one component is constrained is straightforward, but is 
not discussed here. 

A. The Effect of Constraining the First MNF Component 

The constraining process outlined above can be consid- 

ered to be premultiplication by a matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR whose com- 
ponents are unity in the last p - 1 diagonal elements and 
zero elsewhere. Thus, we have 

Y * ( x )  = R Y ( x )  

and the vector of filtered values is 

Z*(x) = Y * ( x ) .  

In addition, the whole process of noise removal can be 

condensed into a single linear transformation 

Z*(x)  = R A T Z ( x ) .  

For notational convenience we let bf  denote the first row 
of A-'. 

Then it can be shown that 

cov  {Z* (x ) }  = C - blbT 

cov zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ S * ( x ) )  = & - ( 1  - p 1 ) b &  

and the noise and signal components of Z * ( x )  have co- 
variance matrices 

cov  { N * ( x ) )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC N  - p lb lb f .  

The differences between the raw and filtered data are 

We can write 

interesting. 

Z(x) - Z*(x) = b la ;z (x )  

= bl Y d x )  
where Y , ( x )  is the MNF component corresponding to the 

largest eigenvalue p Hence, all p difference images are 
scalar multiples of Y l ( x ) .  It is also interesting to consider 

the effects of this filtering process in the special cases 

noted in the previous section. In some instances, we shall 
use the traces of the covariance matrices of S ( x ) ,  N ( x ) ,  
S * ( x ) ,  and N *  ( x )  as simple measures of the total vari- 

ation due to signal and noise in the original and filtered 
processes. 

When all bands have noise, with equal variances U;, 

which is uncorrelated across bands (Case I), let p1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 p 2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 , * which has 
trace t. It can be shown that 

2 p p  denote the eigenvalues of 

t; = tr[Cov { ~ * ( x ) } ]  = ( p  - 

t: = tr[cov { s * ( x ) } ]  

= t - p p  - ( p  - 1 ) U i .  

Then if we usef* = tG/(t: + t;) as a measure of the 
noise fraction in the filtered images and let f = p a i / t  

denote the analogous noise fraction in the original im- 

ages, we can see that 

f*/f= t ( P  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO / ( t  - PJP. 

As pp is often very small, the noise removal procedure 

will reduce the noise fraction by a factor of about p-I. 

When noise occurs in one band only (Case 11), we have 

seen that the first MNF component contains both noise 
and signal, while the other MNF components are noise- 

free. If, as previously, the noise is in the first band, it can 
be shown for the constraining and inversion process that 

bf  = ( u p 2 ,  0, 0,  - * , 0 )  

and using this one obtains 

zqx) = s * ( ~ )  = [el - cq=2vli(zi(~) - di), 

N * ( x )  = 0 
T 

Z,(x), * * * 3 Z p ( x , ]  9 

where Oi, i = 1, - - , p ,  is the mean for band i. The 

results above show us that all the noise in band 1 has been 
removed, the pure signal in bands 2 to p has been re- 

tained, and band 1 has been replaced by a linear combi- 
nation of the other bands. Indeed, it follows from earlier 

comments that, in this case, the above MNF-constrained 
estimator of the signal component of band 1 is the best 
linear combination of the signals in bands 2 top  in a mean- 
squared-error sense. In fact, if I; is estimated using the 

sample covariance matrix, this estimator can be shown to 

be equivalent to that obtained from ordinary least squares 
regression of band 1 on bands 2 t o p .  The signal loss in 

the constraining procedure above can be estimated from 

tr[Cov { S ( x )  - S * ( x ) } ]  and is found to be v;' - 
UN. 

In all the discussion thus far, we have assumed that we 
know I; and CN.  In general, this will not be so, and al- 

though the method for estimating C is apparent, the 
method for estimating I;, is not. In the special case where 

noise occurs in one band only (Case 11) this does not cause 
a problem and this case is treated in the next section. The 
subsequent section then treats one possible solution to the 

more complex case when the noise is in more than one 

band. 

IV. EXAMPLES OF NOISE REMOVAL WHEN NOISE IS IN 

2 

ONE BAND ONLY 

There are many examples of remotely sensed multi- 
spectral data where one band of a set will have consider- 

ably more noise than others that are highly correlated with 

it. If the spatial characteristics of the noise are such that 
it cannot be removed without degrading real picture de- 
tail, the procedures above can be used with great effect. 
The example of the Silver Bell data shown in Fig. 1 serves 

to illustrate this point. 

The ten-band original data for this scene are composed 

of six relatively clean images and four that have varying 
types of noise. 

The band 1 image is badly degraded by salt-and-pepper 

noise, the band 4 image has a strong periodic horizontal 
striping pattern, and the two shortwave infrared bands, 
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9(  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1.6 pm) and 10( -2.2 pm), have approximately pe- 
riodic striping at a low angle to the scan line direction 
(probably caused by microphonics). 

Because the noise characteristics vary from band to 
band, the principal components transform provides a non- 

optimal ordering of image quality. Also, because the var- 
ious types of noise have such different spatial character- 
istics, it is very difficult to devise a procedure to estimate 
the overall noise covariance matrix. 

We can, however, treat the noisy bands one at a time 
and use their correlation structure with the six other good 

bands, which are assumed noise free, to clean them. Fig. 
2 shows the original noisy band 1 image (Fig. 2(a)) and 
the first MNF component (out of seven) when the analysis 

is applied to band 1 (Fig. 2(b)). Virtually no signal re- 

mains in the MNF image and the constraining procedure 
outlined in the previous section is applicable. 

It is now clear that if we are prepared to throw away 
the residuals shown in Fig. 2(b), we are really saying that 

band 1 contains no information that could not be obtained 
from the other “noise-free’’ bands. This is because our 

reconstituted cleaned band 1 will be formed merely from 

a linear combination of the “noise-free’’ bands. Thus, 
unless we need to see a clean image with the reflectance 
characteristics of band 1, we may as well ignore it com- 
pletely and proceed with our data analysis using only the 
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“noise-free” bands. Fig. 2 .  (a) Band 1 ATM image for the Silver Bell data. Notice the random 
noise pattern. (b) First zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMNF component computed assuming only band 
1 contains noise and using the remaining six “noise free bands. ” A realistic application of the method is to consider 

the noise in bands 4 and 10. (The case of band 9 is similar 
to that for band 10 and will not be discussed further.) 

Fig. 3(a)-(b) illustrates the original band 4 image and 
the first MNF component. Again the noise is concentrated 

into the MNF band although some signal has also been 

included. Filtering of Fig. 3(b) and subsequent inverse 

transformation results in a cleaned band 4 image. In this 

case, because of the specific spatial pattern of the noise, 
a simple notch filter in the Fourier domain produces im- 

proved image quality, whether it is applied to the MNF 

image as described above or to the original noisy band 4 
image. 

There is much less correlation between the shortwave 

infrared ( -2.2 pm) band 10 (Fig. 4(a)), and the noise- 
free bands at shorter wavelengths. As a result, the first 
MNF component (Fig. 4(b)) has significant signal con- 

tent. 
In keeping with the idea of spatially filtering the noisy 

MNF component before transforming back to the original 

coordinate system, the image in Fig. 4(b) was low-pass 
filtered using a symmetric Gaussian taper in the frequency 
domain. After application of the inverse of the MNF 

transformation, a cleaned band 10 image resulted. To il- 
lustrate the change made to the original band 10 image, 

the cleaned image was subtracted from the original. The 

result is shown in Fin. 5(b). 
The original band-10 image was also low-pass filtered 

with the Same filter as was applied to the MNF image. 

The result was also subtracted from the original to pro- 

(b) 
Fig. 3. (a) Band 4 ATM image for the Silver Bell data. (b) First MNF 

component calculated assuming only band 4 contains noise and using the 
remainine six “noise free” bands. Some Dicture detail remains with a 

duce Fig. 5(a). Although the same low-pass filter was used greatly eihanced noise pattern. 
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(b) 

Fig. 4 .  (a) Band I O  shortwave infrared ATM image for the Silver Bell 
data. (b) First MNF component using image in 4(a) and the noise free 
bands as in Figs. 2 and 3. 

in both cases, considerably more signal was removed 

when it was used directly than in combination with the 
MNF transformation. Just how much signal has been lost 
unnecessarily is shown in Fig. 6, which is the difference 
between the two images shown in Fig. 5(a) and 5(b). 

V. NOISE IN MORE THAN ONE BAND 

When there is noise in more than one band and its co- 

variance structure is not known, we must find some way 
of estimating it from the data. In general, this will involve 
computing the covariance matrix of new variables result- 

ing from some type of spatial filtering of each input band. 
The selection of the appropriate filter must be determined 

by the spatial characteristics of the noise that it is de- 

signed to isolate, and on the spatial characteristics of the 
signal in which it is buried. No filter will extract noise 

completely. Hence, careful analysis will be required to 
establish the conditions under which the covariance ma- 
trix so generated approximates &. 

Switzer and Green zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 5 ]  developed a procedure known as 

minimum/maximum autocorrelation factors (MAF), 
which in effect estimates the noise covariance matrix for 
certain kinds of noise. This procedure exploits the fact 

that, in most remotely sensed data, the signal at any point 
in the image is strongly correlated with the signal at 
neighboring pixels, while the noise shows only weak spa- 

(b) 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS. (a) Image obtained by subtracting a low-pass filtered version of 
band I O  from the original band 10 data. The filter characteristics were 
chosen so as to smooth most of the noise appearing as low-angle strip- 
ping. (b) Image obtained by subtracting a cleaned version of band IO 
from the original band IO data. The cleaning was performed by applying 
the same low-pass filter as used to produce Fig. S(a) to the first MNF 
component shown in Fig. 4(b) followed by retransformation to the orig- 
inal coordinate system. 

Fig. 6. Difference between Fig. 5(a) and (b). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAn illustration of the detail 
unnecessarily removed by filtering the raw data, instead of transforming 
to the MNF space before filtering. 

tial correlations. It is, therefore, applicable to salt-and- 

pepper noise, as well as to other forms of signal degra- 
dation such as striping. 

The MAF transform chooses zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp orthogonal linear com- 

binations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAYi ( x )  = u,?Z(x) showing increasing spatial cor- 
relation. Specifically, if A is a small spatial lag, then the 
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vectors zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, are chosen so that 

Corr(K(x), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU x  + 4) 
= Corr ( a ~ Z ( x ) ,  aTZ(x + A ) )  

is a minimum, subject to being orthogonal to previously 
defined components Y k ( x )  where k < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi. When the noise 

is weakly autocorrelated compared with the signal, the 
low-numbered factors are mostly noise and the high-num- 

bered factors are mostly signal. Typically, A = ( 1 ,  0) (a 
horizontal neighbor) or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0, 1) (a vertical neighbor) for salt- 

and-pepper noise, while A = (0, 1) is usually appropriate 
for horizontal striping noise. 

This MAF transform can be formulated in terms of the 
covariance matrices of the data and of the between-neigh- 

bor differences. Specifically, the vectors a, are the left- 

hand eigenvectors of XA E - ', where EA = Cov { Z( x ) - 
Z ( x  + A ) } .  At this point we note that EAE-' has the 
same form as ENE-', and that EA is to some extent a 

measure of the noise, as it contains little of the covariance 
structure of the strongly autocorrelated signal. 

How well does EA measure the covariance structure of 
the noise (EN)? Switzer and Green [5] considered a sim- 

ple proportional covariance model that can provide some 
answers to this question. This model assumes: 

1) Signal S(x) and noise N ( x )  are uncorrelated, with 
2) COV { s(X), s(X + A ) }  = bAEs 

COV { N ( X ) ,  N(X + A ) }  = CA& 

where bA and cA are constants when between-neighbor 
correlations are considered and bA is much larger than cA. 
Perhaps the most important consequence of the propor- 

tional covariance model is that the signal (and noise) cor- 

relation at lag A is the same in all bands, namely bA (and 
cA). Under this model it can be shown that 

1/2 EA = (1 - bA)Z + ( b A  - C A ) ~ N .  

If the signal has high spatial autocorrelation, Cov { S(x), 
S(x + A ) }  will be very similar to &, i.e., bA - 1. Also 

for salt-and-pepper noise Cov { N ( x ) ,  N ( x  + A ) }  will 
be approximately zero, implying cA - 0. Under these cir- 

cumstances we have EN - 1 /2 EA. However, even when 
bA and cA do not approach the limits above, the following 

results can be obtained under proportional covariance. 
1) The eigenvectors of ZAX-' are the same as those of 

ZNZ-' and are thus independent of bA and cA. In addition, 
the noise fraction in each new component is independent 

2) The eigenvectors of EAE-'( A , ) ,  and E N E - ' ( p , )  are 
O f  b A  and CA. 

related by 

- ( l  - b A )  
11.1 = 

bA - 

3) Because 0 I p l  I 1 it follows that 

cA I 1 - A,/2 I bA for all i. 

Hence, by considering the largest A ,  we can obtain an 
upper bound for cA, and by considering the smallest A ,  we 

(C) 
Fig. 7 .  Landsat MSS images of Adelaide, South Australia with noise added 

to bands 4(a), 5(b), and 6(c). The added noise has zero mean and vari- 
ances 20 (band 4), 5 (band 5), and 10 (band 6). 

can obtain a lower bound for bA. When bA - 1 and cA - 
0, Ai/2 becomes an approximate estimator for the pro- 
portion of Var { yi (x) } that is due to noise. However, it 
also has an exact interpretation. It is easily shown that 

1 - Aj/2 = corr { Y j ( x ) ,  y i ( x  + A ) ]  

(i.e., 1 - Ai/2 is the correlation between neighboring 
pixels in the i th MAF component ) . 
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Fig. 9. Cleaned images corresponding to Fig. 7. These images were 
tained by smoothing the images shown in Fig. 8(a) and (b), and reti 
formation back zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto the original MSS coordinate system. 

We have carried out some preliminary analyses into 
validity of the proportional covariance model, and i 

methods for estimating zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbA and cA. It would appear that 
model provides a reasonable approximation to reality 
many remotely sensed images. We hope to publish 

tailed results after further analyses. 

VI. NOISE REMOVAL BY MAF 

As the MAF procedure uses between-neighbor dif 

ences to estimate the noise covariances, it is particul: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
: ob- 

ans-  

the 

into 
the 

for 

de- 

Fer- 

irly 

Fig. 8. MAF images corresponding to the images in Fig. 7. Almost all the for salt-and-pepper noise. If the proce- 

picture information is concentrated into the last two MAF components. dure is applied to the Silver Bell data discussed above, it 
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Fig. IO .  Difference images between those shown in Fig. 9 and the raw MSS data zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbefore noise was added. Only a small amount of image detail has not 
been recovered by the cleaning procedure. (a) Cleaned-original band zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4, (b) cleaned-original band 5, (c) cleaned-original band zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 ,  (d) cleaned- 
original band 7. 

effectively extracts the noise in band 1 (which is of this 

type), but it does not isolate the low-angle striping in 

bands 9 and 10. This behavior is to be expected as there 

is no single lag A that will allow the estimation of a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAXN 
encompassing the three different types of noise present in 

the data. For this reason we applied the MNF transform 

to the noisy Silver Bell bands one at a time in Section IV. 
Having no simple examples where salt-and-pepper noise 

is strong in more than one band, we have created a syn- 

thetic example using a segment of a Landsat MSS image 
over Adelaide in South Australia. Fig. 7 shows the results 

of adding spatially uncorrelated Gaussian noise with no 
band-to-band correlations, zero means, and standard de- 
viations of 20, 5, and 10 to bands 4, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 ,  and 6, respec- 

tively. No noise was added to band 7. Principal compo- 

nents images of these data did not provide a good 
separation of the signal and noise. However, it can be 

seen that the first two MAF images (Fig. 8(a) and (b)) 
show almost no image signal information. These two im- 
ages were low-pass filtered with a symmetrical Gaussian 

taper in the frequency domain and the MAF transforma- 
tion was inverted to produce the cleaned images shown in 

Fig. 9. There is a dramatic improvement in the image 

quality over that shown in Fig. 7. Fig. 10 shows the dif- 

ference images between the cleaned images of Fig. 9 and 
the original Landsat data before noise was added. These 
differences show that only a small amount of image detail 
has not been recovered by the cleaning procedure. 

VII. CONCLUSIONS 
The MNF transform discussed in this paper has the 

ability to provide an optimal ordering of images in terms 
of image quality. It is identical with the standard principal 
components transformation when the noise variances in 

all bands are equal and is equivalent to a form of multiple 
linear regression when noise is in one band only. 

As the low order MNF components have a greatly in- 

creased noise fraction, intense filtering procedures can be 
applied to them without serious degradation to the signal 

content of the data. Subsequent retransformation results 
in cleaned images with little signal loss. 

When noise occurs in one band only, it is not necessary 

to estimate the noise covariance matrix. However, in more 
complicated cases this matrix must be estimated. The 
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MAF procedure discussed here provides one method of 

der which its results estimate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI;,,, have been determined. 
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doing so for salt-and-pepper noise, and the conditions un- 

The high between-band correlation that often exists in 

remotely sensed multispectral scanner data means that 

these systems are in some sense making multiple mea- 
surements of the same quantity, The extent of this redun- 

dancy is, of course, reflected in the magnitudes of the ei- 
genvalues Of the signa1 covariance matfices. In situations 
when these matrices have only a few significant eigen- 
values the techniques discussed here will provide a pow- 

erful tool for noise reduction. 
processing, and spatial point processes. 
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