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Abstract-The  reconstruction of  functions  from their  samples  at 

nonuniformly distributed locations  is  an important  task for many 

applications.  This paper  presents  a  sampling  theory  which  extends the 

uniform sampling  theory of Whittaker zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAul. [ l l ]   to  include nonuniform 

sample distributions.  This  extension zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis similar to the  analysis of  Papoulis 

[15],  who  considered  reconstructions of  fnnctions that  had  been  sampled 

at  positions deviating slightly  from a uniform sequence.  Instead of 

treating  the  sample  sequence as  deviating  from a uniform sequence,  we 

show  that  a  more  general  result can be obtained by treating.the sample 

sequence as  the result of applying  a coordinate transformation to the 

uniform sequence. It is shown that the  class  of  functions reconstructible 

in this  manner  generally  include  nonband-limited functions. 

The  two-dimensional  uniform sampling  theory of Petersen  and  Middle- 

ton [16] can be  similarly  extended as  is  shown  in  this paper. 

A practical  algorithm for performing  reconstructions of two-dimen- 

sional  functions  from  nonuniformly spaced  samples is described, as well 

as examples  illustrating  the  performance of  the  algorithm. 

I. INTRODUCTION 

I N many applications it is required that a function of one or 
more variables be reconstructed from knowledge of its 

values at nonuniformly distributed sample locations. These 
applications are found in such diverse fields as machine vision 
[5]  and [ 171, radio astronomy [9], and  computed tomography 
[ 141. Methods that have been used to perform such reconstruc- 
tions include nearest neighbour and bilinear interpolation [ 141, 
surface functional minimization by relaxation [ 171 or gradient 
descent methods [ 5 ] ,  and Gaussian smearing-resampling [9]. 

These methods, however, either do not result in a  minimum 
possible reconstruction error or they require zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa priori knowl- 
edge about the form of the function. 

Other techniques, based on nonharmonic Fourier series, 
have been proposed [3], [8], [ 181 for reconstructing band- 
limited one-dimensional functions that have been sampled at 
irregular intervals. These methods, however, are limited to 
sample sequences which have only minor deviations from a 
uniform sampling sequence. Such techniques are inapplicable 
to situations wherein the sample density varies significantly. In 
Section I1  of this paper we develop a one-dimensional 
sampling theory, which we extend to two dimensions in 
Section 111, that allows one, under certain conditions, to 
reconstruct band-limited functions exactly from arbitrarily 
distributed samples. This theory is seen to be equivalent to the 
analysis of Papoulis [ 151, who showed  how the standard 
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uniform sampling theory of Whittaker et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. [ll] could be 
extended to sample sequences that were slight deviations from 
a uniform sample sequence. In this paper we show how  a more 
general result can be obtained by treating a nonuniform sample 
sequence as resulting from a coordinate transformation of  a 
uniform sample sequence instead of being merely deviated 
from the uniform sequence. 

Section IV details how these coordinate transformations can 
be determined in the two-dimensional case. Section V de- 
scribes a heuristic algorithm, based on the theory developed in 
Section 111, for performing two-dimensional function recon- 
struction from nonuniformly distributed samples. 

Examples of one- and two-dimensional function reconstruc- 
tion can be found in Section VI. 

Proofs of theorems stated in this paper can be found in the 
Appendix. 

11. ONE-DIMENSIONAL SAMPLING THEORY 

We will first derive a nonuniform sampling theorem for the 
one-dimensional case and  then extend this result to the two- 
dimensional case in Section 111. 

The starting point for our derivation is the classical zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Whittaker-Kotel’nikov-Shannon (WKS) sampling theorem 
(Theorem 1) (see the review article by Jerri [ l l ] )  which is 
stated below as Theorem 1. 

Theorem I :  The Uniform I-D Sampling  Theorem (WKS) 

If f ( t )  is  a function of one variable having  a Fourier 
transform F(w) such that F(o)  = 0 for w zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 wo = a/ T and is 
sampled at the points t ,  = nT, thenf(t) can be reconstructed 
exactly from its samples f ( n T )  as follows: 

f @ ) =  f ( n T )  sin [wo(t- nT)l~[wo(t-nnl. (1) 

co 

n =  - m  

Let us now consider a nonuniform sample sequence { tn> 
where t , ,  the position of the nth sample, is not necessarily 
equal to nT. For example, refer to the function shown in Fig. 
l(a). This function is sampled nonunifonnly as shown at the 
locations t, . Now, suppose we apply a stretching/compressing 
transformation to f ( t ) ,  described by 7 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy (t), such that we 
end up with another function h(7) as shown in Fig. 1 (b) , with  a 
sampling period of Tunits. If the transformation, y, between t 
and 7 is such that to  + nT = y(t,), for some arbitrary to, then 
the samples of the function h(7) will be uniformly spaced [Fig. 
l(b)] and we can use Theorem 1. For the reconstruction of 
h(7) to  be exact we must have that h(7) be band limited to 00 
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t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i 

Fig. 1 .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. (a) A functionf(t) sampled at nonunifody distributed positions. @) 
The transformed function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg(T),  sampled at uniformly distributed positions. 

= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa/T .  If this is so, we can then reverse the stretching/ 
compression operation, and retrieve the reconstructed version 
of the functionf(t) by  using the relationship 

f ( t )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh (Y @>). (2) 

Substituting  this relationship into (1)  of Theorem 1, and  using zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
7 = y ( t )  yields 

n=--00 

Hence, in order to reconstruct f ( t )  from its  nonuniformly 
spaced samplesf(t,), it suffices to find the invertible and one- 
to-one function y ( t )  such that y ( t n )  = nT and  then to use (3). 

The reconstruction formula (3) is equivalent to the one 
derived by Papoulis [15], who treated the case of sample 
positions that were deviated slightly from a uniform sample 
distribution. However, his analysis indicated that  this recon- 
struction would never be exact, but  would always be subject to 
an aliasing error which  became smaller as the sample deviation 
became smaller. This conclusion is too pessimistic, however, 
and it can  be  shown  that there are cases for which the samples 
are not uniformly distributed and  yet the reconstruction can be 
exact. The conditions under which an exact reconstruction can 
be  obtained are discussed below. 

In order for (3) to hold, the function h(7) must  be  band 
limited to wo. Thus h(7) is a member of the set Baa, which is 
defined as the set of all functions whose Fourier transforms 
vanish for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIwI > w,. Let us define the set C, to be the set of all 
functions which are the image of a function in B,, under the 
transformation y - I .  It can be seen  that C, is the set of all 
functions that can be reconstructed exactly  with (3),  for a 
given y. 

The set C ,  is clearly nonempty, and  thus Papoulis’ assertion 
that (3) is only approximately true for all functions is 
incorrect. Equation (3) is approximate only for those functions 
that are not members of Cy. 

An interesting point to be  noted  is  that  the functions in C ,  
are generally not  band limited. That this is so can be seen by 
examination of the relationship between the spectra of h(7) and 

f ( t ) .  It is possible to show that 

F @ ) =  IWo P(h,  w ) H ( w )  dw zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4) 

where the function P ,  which can be thought of as a frequency- 
variant blurring function, is defined by 

- WO 

w 

p(h, @)= @dwr-’(7))e-~2A7 d7. ( 5 )  
--m 

That is P(h,  w) is the Fourier transform of the angle 
modulated signal 

p (7) = e j 2 ~ ~  - * (o. (6) 

Thus, if pw(t)  is not  band limited, as is usually the case for 
angle modulated signals, then generallyf(t) will  not be either. 

One can show that there exists a transformation y such that 
the FM signal defined by 

f ( t )=e- ’ ! ;nods (7) 

is a member of C,  when Q(s) is a positive, continuous 
function. Hence, such a function can always be reconstructed 
exactly, when sampled at  the  times t ,  = y - (n T ) ,  even when 
it is not strictly band limited. 

Let us summarize the details of the above analysis in the 
form of a theorem. 

Theorem 2: The Nonuniform I-D Sampling  Theorem 

Let a functionf(t) of one variable be sampled at the points t 
= t,, where t ,  is not necessarily a sequence of  uniformly 
spaced numbers. If a one-to-one continuous mapping y( t )  
exists such that nT = ?(in), and  if h(7) = f (y - (7)) is band 
limited to 00 = a / T ,  then the following equation holds 

co 

fW = 2 f ( t n )  sin [wo(”/(t) - nr)l/bJo(y(t) - nq1 .  (8) 
n =  - m  

The reconstruction method described here can  be  thought  of 
in a different manner. Consider a “burst” type signal  such as 
that shown in Fig. 2. Intuitively, we  would  expect  that a 
uniform sampling of f ( t )  that allows an exact reconstruction 
would  not  be  the  most efficient sampling scheme. It seems 
reasonable to require a higher sample density  in  the center 
region where there are high frequency components than  in the 
outer regions where there are lower frequency components. 
Suppose that, at every point of the function f ( t ) ,  we  make a 
local estimate of its bandwidth-B(t). Then, it would  follow 
that we would have a sample at a rate of 2B(t) sampleslunit 
time in order to allow an exact reconstruction of the signal. 
This conclusion has been reached (albeit from a different 
direction) by Horiuchi [lo] who derived the reconstruction 
formula (10) for a signal  with a time varying bandwidth B(t) 
that is sampled at the points t, given  implicitly by 

t, = n/(2B(t,)) (9) 

m 

f ( t ) =  f( tn) sin [n(2B(t)t-n)]/[a(2B(t)t-n)]. 
n= -m  

(10) 
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y(n)  points. The only constraint on this interpolation is that it 
must  yield  a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy that is one-to-one and invertible (monotonic). 

Let us now examine the extension of the above one- 
dimensional sampling theory to the case of two dimensions. 

III. TWO-DIMENSIONAL SAMPLING THEORY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Fig. 2. A “burst” type of signal,  with  time-varying  bandwidth. 

As in the one-dimensional case, the development of  a two- 
dimensional nonuniform sampling theory begins with the 

The derivative of the mapping  function dy(t)/dt can be 
thought of as the instantaneous sampling rate and hence we 
have that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

dy(t) /dt= (2?r/w0)B(t) or y ( t ) = k +  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1‘ (27r/oo)B(r)  dr. 
0 

(1  1) 

If the bandwidth B(t) is a constant (or approximately so over a 
given interval) then we can say 

y( t )  = (2,?r/wo)B(t)t. (1 2) 

With this equation for y(t)  we  can see that (3) and (10) are 
equivalent. If the bandwidth is not approximately constant then 
our equation (3) and Horiuchi’s equation (10) are not 
equivalent. 

Equations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(9) and (1 1) tells us (implicitly) how to optimally 
sample a signal, that is, how to sample a  signal with the 
smallest number of sample points while still allowing  an exact 
reconstruction of the signal. Equation (10) suggests that  we 
could interpret the reconstructed f ( t )  as the response of  a time 
varying (or adaptive) low-pass filter, with  bandwidth B(t) ,  to 
the signal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC ,”= -J( t )b( t  - t,). Thus one can envisage the 
following process. Given an arbitrary function f ( t )  we 
estimate its bandwidth as a function of time. We then integrate 
this bandwidth function, as in ( l l ) ,  to yield the warping 
function y(t).  When this ,warping function crosses an integer 
value-n, we samplef(t). We then store or transmit the sample 
f ( t , )  along with the time at which the sample was taken, t,. 
We can then, knowing all of the f ( t , )  and t, values, 
reconstruct f ( t )  using (8). 

The preceding analysis is complicated by the fact that an 
exact “local” bandwidth measure does not exist as bandwidth 
is defined globally, being a frequency domain measure. Thus, 
we  can  only obtain local bandwidth “estimates,” which  may 
cause concern as to the validity of (9)-(11).  In practice, 
however, the reconstruction formulas that are used are defined 
only over a finite area (truncation of the reconstruction series), 
and so one loses nothing  by  assuming the local bandwidth over 
this finite area to be the actual bandwidth. 

In practice, the  use of the above reconstruction theorem 
requires the knowledge of the function y( t )  at all points t for 
which we desire a reconstruction. If an analytical expression 
for the sampling sequence t ,  is known [e.g., t, = s(n)] then 
we can simply extend this analytical expression to include 
noninteger values [e.g. , y(t)  = s(t)] . If no  such analytical 
expression is available (as is usually the case) or if the 
analytical expression cannot be extended to noninteger values, 
then y ( t )  must  be found by interpolation between the known 

consideration of the uniform sampling theory. The theory 
behind the reconstruction of functions of two variables from 
uniformly distributed samples of these functions was devel- 
oped by Petersen and Middleton [16]. Mersereau zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[12] and 
Mersereau and Speake [13] have studied the more general 
problem of processing multidimensional signals that have been 
sampled on uniform lattices, especially hexagonal lattices 
which have added importance in this paper. We are concerned 
here only  with signal reconstruction but it is evident that the 
type of signal processing techniques described by Mersereau 
and Speake can be extended, using the results of this paper, to 
the case of nonuniform sampling. 

The essentials of the work of Petersen and Middleton [16] is 
summarized in Theorem 3. This theorem describes the 
conditions under which a function of two variables, f ( 2 ) ,  can 
be reconstructed exactly from its samples taken at points on a 
uniform lattice. This theorem basically extends the one- 
dimensional uniform sampling theorem (Theorem 1) to two 
dimensions. 

Theorem 3: The Uniform Two-Dimensional  Sampling 
Theorem 

~. 

Suppose that  a function of two variables f ( 2 )  is sampled at 
points  in the infinite sampling set {A?,} defined by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
f s = { 2 :  2=11L71+’12Vz,  11, 12=0, + l ,  * 2 ,  t 3  * . a , ,  

* 61 #/ti&,}. (13) 

The vectors 6, and V2 form the basis for the sampling lattice 
defined  by  the points in {Xs). Such a sampling lattice is shown 
in Fig. 3 for GI = ( 2 / K l  and V2 = ( l / q ) .  Furthermore, 
let the support of the Fourier transform F(B) of f ( 2 )  be 
bounded  by the region R in B space. The spectrum of the 
sampled function, f@) = C {,}6(2 - X s ) f ( 2 ) ,  is made up 
of  an infinite number of repetitions of the spectrum F(G) and 
is given  by‘F,(W) = X {Gj,lF(G + G,), where the set {Bs}  is 
defined by 

Bs={G: G=l1t11+12zi2, 11, 12=0,  *1, t 2 ,  + 3  . . a ,  

. zilfkziz} (14) 

and where the frequency domain basis vectors t i 1  and zi2 are 
related to the spatial domain basis vectors 171 and V 2  by 

T -  T- T- T -  
~ l v l = z i 2 u ~ = 2 ? r ,  and t 1 1 v 2 = i i 2 u 1 = 0 .  (15) 

If F(G) = 0 when F(B + 6,) # 0 (for every 0, # 0), then 
the spectral repetitions do not overlap, and the following 
equation holds 

f(@ = f(%) g (2 - 3s) (16) 
( 5 )  
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continuous mapping zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 such that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[=r(X) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(,=r(X,) (21) 

and  if the function defined by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
h ( D  =f(r - ( 8 )  (22) 

"1 

Fig. 3 .  Th;. hexagonal  sampling lattice for  functions  with  isotropic  spectra. 

where g(X)  is the inverse Fourier transform of  the  low-pass 
filter function G(W) defined by 

= Q  W E R  

G(W)=arbitrary zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW €E R,  W-W, €E R 

= O  W - W s  E R. (1 7) 

Q is a constant that is equal to the area of each of the  sampling 
lattice cells and  is  the inverse of the sample density. In terms 
of the sampling lattice basis vectors, V I  and f i 2 ,  Q is  given by 

Q=JIV1121fi2/2-(UT~2)2 . (1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 )  

Now, following the lead of the analysis performed in 
Section I1 for the one-dimensional case, let us introduce a 
second  function  of  two variables, h(X), that  is  the image of 
f ( X )  under  :he coordinate transformation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

f = 7 (X) (19) 
i.e., 

f ( X )  = h(( )  = h(y(X)). (20) 

Let the coordinate transformation, y ( X ) ,  be such  that the set of 
nonuniformly  spaced  samples {Xs}, is transformed into a 
uniformly  spaced  set of samples { f,} [such as the set defined 
by (13)]. Since if,} contains points that lie on a regular 
lattice, the function h ( f )  can be reconstructed under the 
conditions of Theorem 3. If h( ( )  is  suitably  band limited then 
this reconstruction will  be exact. Once h( ( )  has  been 
reconstructed, f ( X )  can be  obtained by reversing the coordi- 
nate transformation (1 9). This is the basis of our nonuniform 
two-dimensional sampling theorem which is stated  below as 
Theorem 4. 

Theorem 4: The Nonuniform. Two-Dimensional  Sampling 
Theorem 

Suppose that a function of two variablesf(%) is sampled  at 
points  in the infinite set {Xs.}. Now, if there exists a one-to-one 

satisfies the conditions of Theorem 3 then the following is 
true: 

NO = 2 h ( [ M F -  L) (23) 
{ a  

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg( [ )  is as defined by (17). Hence 

f ( X )  = f(%) g (7 (3) - r (X,)). (24) 
{a1 

Let us  assume  that h(4) is an isotropic function, where we 
have here taken the term isotropic, as in [ 161, to mean  that  the 
support of the Fourier transform of the function is a disk 
shaped region in the frequency plane, centred about the origin. 
If this is the case, we can define the region R ,  mentioned in 
Theorem 3,  as R = {x: lx\  5 T } .  It can  then  be shown that 
([16], (74), with B = 112): 

g('9 = (T/J3)Jl(TlEl)/(TlEl) (25) 

where J1 is the first-order Bessel  function  of the first kind. 
Combining  (24)  and (25) yields the following result: 

f (x l=x  ~ @ A ( ~ / J ~ ) J I ( ~ I T ( X )  -r(G)l) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
{a 

4~lr(- f ) - r ( - fs) l ) .  (26) 

It can  be  shown  [16]  that the most efficient sampling lattice (in 
( space) for such an isotropic process is a hexagonal lattice 
with a characteristic spacing of 2 / 4 .  This sampling lattice is 
the one shown  in Fig. 3. The values of 5, are fixed by this 
lattice and, by (25), the values of r(Xs) are also fixed. 

IV. DETERMINATION OF 7 (X) 

If  we are to use (24) as our reconstruction formula, we 
must, as in the one-dimensional case, know the mapping 
function r(X) at all sample points and at all other points at 
which to obtain a reconstruction. As in the one-dimensional 
case  we can, once we  know the values  of r(X) at  the  sample 
points { Xs} , interpolate to find 7 (X) for any X. Unlike the one- 
dimensional case, however, it is  not a trivial matter to obtain a 
mapping, r : { X,} - > { [,} , between the sample sets in X and 
( space, that yields a one-to-one and continuous mapping 
function y. In the one-dimensional case one and  only one such 
mapping exists (restricting the  sign of the derivative of y to be 
positive), given by interpolation of y ( tn )  = nT, but  in  two 
dimensions there may be, in general, any  number of such 
mappings. The difficulty lies in the fact that there is  no general 
scheme for ordering arbitrarily distributed points  in two 
dimensions analogous to the sequential ordering available in 
one dimension, such  that adjacency properties are preserved. 

For the purpose of the  following discussion let us  make the 
following definitions. 
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Definition:. Partition-A partition of  a planar region zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR is a 
set of line segments, called links, that divide R into  a number 
of distinct, possibly overlapping subregions. The endpoints of 
these links are called the vertices of the partition. There can be 
no free vertices (i.e., those vertices belonging to only one link) 
in  a partition except at the boundary of R. 

Definition: Tessellation-A tessellation is a partition 
whose regions do not overlap. 

Definition: Voronoi Tessellation-The Voronoi tessella- 
tion  of the plane with respect to the point set { E , }  is the 
tessellation  whose links consist of points equidistant from any 
two points zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAti, E j  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE { zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf , }  and  no closer to any other points zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEk 
E { E , } .  The vertices of the Voronoi tessellation are those 
points equidistant from three or more points  in { Es} and  no 
closer to any other point in { E , } .  The subregions created by 
the Voronoi tessellation contain all points E closer to a  given 
point in { E,} than  any other point in { E , } .  

Definition: Dirichlet Tessellation-The Dirichlet tessella- 
tion (sometimes referred to as the Delaunay triangulation) is 
the dual of the Voronoi tesselation. The Dirichlet tessellation 
can be thought of as the set of line segments connecting the 
points in { E , }  whose subregions in the Voronoi tessellation of 
E with respect to {Es} share a  common link. 

An example of Voronoi and Dirichlet tessellations are 
shown in Fig. 4. Further discussion of Dirichlet and Voronoi 
tessellations can be found in Ahuja and Schacter [2]. 

It can be seen that the partition created by  connecting the 
points in the hexagonal sampling lattice to their nearest 
neighbours is a Dirichlet tessellation and as such, the regions 
created by the partition are nonoverlapping triangles. We will 
denote this particular tessellation by Dh. 

Definition: P-Adjacency-Two points are defined to be P- 
adjacent if  they are vertices of  a partition P and share a 
common link. 

Definition: Adjacency  Conserving Partition  Mapping 
(ACPM)-A mapping, I': {X,} - > { E , } ,  is termed an 
ACPM  if it takes a partition having vertex set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{Xs} into a 
partition having vertex set { E , }  such  that  the points in { X,} 
have the same P-adjacency as their images in { E , } .  

As  a result of the preservation of adjacency properties, a 
region  in  a partition has the same number of links as the 
corresponding region in its image under an ACPM. Also, each 
vertex has the same number of links as its image under  an 
ACPM. Hence, since Dh has triangular regions, the regions of 

any ACPM, P,, of Dh are also trialigular (although  possibly 
overlapping). Note also that the inverse of an ACPM  is  itself 
an ACPM. 

Definition: Generalized  Hexagonal  Tessellation 
(GHT)- A tessellation created by applying an ACPM to the 
tessellation Dh is called a generalized hexagonal tessellation, 
or GHT. All vertices of  a GHT  are the junction of  six links. 

As  we  said at the beginning of  this section, once we have a 
mapping, r, between the points in { Xs} and the points  in { E , } ,  
we can determine the mapping function, T(X), for X not 
necessarily  a member of {X,}, by interpolation of the I' 
values. 

The fact that the regions of P, are triangular suggests that, 
given  a point X in the interior of one of these regions, we 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. The Voronoi and Dirichlet tessellations for a set of points. 

should let = ?(X) be some linear combination of the 
(known) values of T(2) at the vertices of this region. Such  a 
linear combination can be written as 

?(X)= r(Xi)l(f, X(t)3, X(i+1)3,  2((i+2)3) (27) 
f ,  E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAUfJ 

where V(2) = (XI, X2, X,) is the vertex set of the region of P, 
containing X and where ( i ) 3  denotes ( i )  modulo (3) + 1. The 
function I ( 2 ,  X ( i ) 3 ,   X ( i + l ) 3 ,   X ( i + 2 ) 3 )  is some interpolation 
function which results in an invertible 7. 

The simplest such interpolation that we can do between 
three noncollinear points is  a trilinear interpolation which fits a 
planar (vector valued) surface to these three points. The 
interpolation function for this method is given in (28). This 
equation describes a plane passing through the points (x i ,   x : ,  
11, (x i ,  x:, O), and (xi, xi, 0). 

I(X, XI, 2 2 ,  X3)=[xl(x2-X3)+x2(x:-x2) 
2 2  1 

+ ($x: - x;x:) ] /A (28) 

where 

and 2 = (x1, x2). 
We can now state the following theorem which supplies the 

conditions under which  a given one-to-one point  set  mapping 
will yield the one-to-one and continuous mapping (transforma- 
tion) function that is required for (24) to be valid. 

Theorem 5: Invertibility of a Mapping 

Given the Dirichlet tessellation Dh on as defined above, 
and the trilinear interpolation defined by (28), then, if there is 
an ACPM, r - I ,  such that the image of Dh - P, is  a GHT and 
the points  in the set V(X) are not collinear, the mapping T(X) 
defined by (27) is one-to-one and continuous. 

The key condition in Theorem 5 is  that r be  an ACPM, 
or conversely, that P,, the image of Dh,  is a GHT. Thus, in 
order to perform the reconstruction of  a function for a  given 
sample set { ZS}, we  need to first find the tessellation P,, 
whose image under the mapping r is the hexagonal lattice 
tessellation D h .  The regions of P, all must have three sides 
and the vertices of P, must be the junction of six links. 

It is suspected that it is not possible to create a GHT from all 
sets of points {Xs}. The authors have no proof  of this 
conjecture, but it can be seen that algorithms for creating 
GHT's run into trouble trying to order large numbers of points 
in  some cases. For example, consider the set of points shown 
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. (a)  A  set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{Xs} made  up of points  along  twelve  radial  lines. (b) An 
attempt to create  a GHT made  up of the  points in {%}. The attempt  fails 
after  mapping  a  certain number of points. (c) Some  local GHT's of the 
point  set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof 5(a). 

in Fig.  5(a). This set  made up of points  that lie along twelve 
radial lines. This type of sample set  is  found  in X-ray 
tomography (e.g.,  see  Fig. 3 of [14]). We try to create a GHT 
from this set by trying to map points in it to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADh by following 
the ordering of points in { [,} given in Fig. 3. The result of this 
process is shown in Fig.  5@). As we proceed the regions of the 
tessellation become thinner and less regular. It turns out that, 
using our construction, beyond a certain point  no points can be 
mapped  without creating an overlapping region or a region 
with collinear vertices. This, of course, does not constitute a 
valid proof of our conjecture as there are a number of other 
ways  of trying to construct a GHT from this set of points, one 

of which may work. However, this  example does point  out  the 
problems involved  in performing the mapping operation. Even 
if a GHT  could be found the thinness  of the regions of the 
GHT so found  would cause problems with the interpolation 
process. 

However, if  we truncate the reconstruction formula (24) to 
only take into account those samples in a finite region about X, 
then it would  not  be necessary for 7 to be  one-to-one  and 
continuous everywhere. The mapping function need  be  one-to- 
one and continuous only over this restricted region. This 
would  mean  that  we  would  need  only to find a mapping 
function  that created a partition that was  only  locally a GHT. 
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In this way it is expected that a mapping could be  found for any 3) The density of the set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX,}o must  be the maximum 
set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{X,}. For example, Fig. 5(c) shows a few of these local possible subject to the above two constraints. 
GHT’s defined on the sample set of Fig. 5(a). The price we In general, finding the optimal mapping  that jointly mini- 
pay for this  weakening of Theorem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 is that the reconstruction mizes the aliasing and truncation errors is very difficult. In the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
i s  no longer exact, even if h(g )  is suitably  band limited. In next  section  we  will present a heuristic algorithm which is near 
practice such a truncation of the reconstruction equation is optimal for homogenous sample distributions. This algorithm 
unavoidable as one can only process a finite number of guarantees finding a mapping which locally satisfies the 
samples in a finite time. conditions of Theorem 5. 

be {X,} , E { X,} . Note that for different reconstruction points V. A RECONSTRUCTION ALGORITHM 

fiwe may  have different sets {X,)O. When  only a finite number Based  on the discussions in Sections I11 and IV we propose 
of terms are used  in (24) the resulting value off(Xo) Will not the following reconstruction algorithm. This algorithm finds, 
be exact but  will be subject to a “truncation” error term. This for a given point 2 and sample set { X,}, a subset { X,} of {a,} 
truncation error is defined in (30) and can be bounded as that  locally satisfies the conditions of Theorem 5. It will  be 
shown  in (31). seen that this algorithm is generally suboptimal, in  that the 

e:(%) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvw -fR(x)I truncation and aliasing errors may  not  be the minimum 
possible value. For homogenous sample distributions, how- 

{XJ - { G o  The motivation behind the algorithm is as follows. In the 

E 1/(27rlE- L 1 2 > .  (31) were nonuniform but homogenous. This is the case in  many 
(€2 - m o  applications. Thus the sample points {X,} could be thought of 

Let the finite set of sample points used to reconstruct f ( X )  

l 2  = I  E f(X,)g(l7(X)-7(X,)l)/(~l7(Z) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-y(xS)l) (30) ever, this algorithm will  be optimal. 

application that initiated this study, the sample distributions 

where g(x)  is as in (25) and  in finding this bound we have  used arising from the perturbation of a regular sample set, such as 
the Triangle Inequality and the fact that I J,(x)l I l/J2 [l]. the hexagonal lattice. Our algorithm assumes that this pertur- 

The above bound suggests that  we  make the distances bation  is  small enough SO that a given point on the original 
between  and all points not  in { I,}, as large as possible for hexagonal lattice will remain somewhere in a 60” sector about 
€ { I,},. In other words, {[,}o should consist of the N,points its original position. See Fig. 6 for an example of such a 
closest to E .  perturbation. 

How are we to determine which  points { 2,) map  into The algorithm begins by trying to find the centre point  of the 
{ E,},? Theorem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 provides one constraint on { X,}, by “original” hexagonal lattice. Such a point is denoted by f o  in 
requiring that the partition Pxo be a tessellation and  map Fig. 7. We take as the perturbed value of  this point, the  point 
continuously into the Dirichlet tessellation DhO, where Pxo and X, in { X,} closest to X, the point at which we  wish to obtain a 
DhO are the partitions formed from the points  in { x,}, and reconstruction. This point will then be mapped to go. In the 
{I,} respectively. particular algorithm described here we use N, equal to 7. 

In order for the interpolation of 7 [equation (27)] to be valid Algorithms for higher N, values can be devised but  they 
we  must stipulate that X be contained in one of the regions of become increasingly more difficult. Once we have the point Zo 
P,,. This also means  that 5 lies in one of  the regions of { which  maps into 50, we must find the other N, - 1 points of 

Theorem 4 requires that H( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx) = 0 when H( + x,) # 0 { X,} . Because  we have assumed that the points  in { X,} result 
for every i;, # 0. If this condition is not satisfied the value of from the slight perturbations of the points in { E , }  within 60” 
f(X) obtained  with (24) will  be  in error. This error is referred sectors, and because we  want { to consist of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN, points 
to as aliasing error.  It can be shown that  if the aliasing errors closest to [, we can use the following heuristic procedure for 
due to two different sample distributions are compared, the determining { X,}o. Divide the space in X about the point X. 
distribution with the higher density will have the lower into six regions, each consisting of a 60” sector, as shown  in 
aliasing error. Now, it can shown that, for a givenf(X), the Fig. 6 .  Find  the point in each of these sectors closest to X,. 
localized aliasing error of the reconstruction (24) decreases as These points will then be the 6 other points in {X,],. These 
the density of { X,}, increases. This suggests that  we  should  points are mapped to { as shown in Fig. 7. 
select { X,} 0 that has, in addition to the above mentioned 
conditions, a maximum possible density. This will ensure that, This algorithm is described procedurally in a pseudo high 
for a givenf(X), we will obtain a minimum possible aliasing level language below: 
error,  or, alternatively, will give us the maximum allowable procedure RECONSTRUCT({X,}, {f(Z,)}, X, f ( X ) ) .  
band  limit that a function can possess  while still yielding an ( *  To reconstruct the value of a function f(X) at a point X 
exact reconstruction. given an arbitrary set of function samples {X,}. It is 

We can summarize the conditions on {X,} as follows: assumed that N, = 7 and that {X,} is homogenous. *) 
1) The set { X,} 0 must be such that there exists a tessellation begin 

P,o that can be continously mapped into the Dirichlet IF X = X i € { X , }  THEN 
tessellation D ~ o .  f(X) = f ( X i )  

must lie within one of the regions of Pxo. Startsearch = X 
2) The point 2 at which the function is to be reconstructed ELSE 



1158 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL. ASSP-33, NO. 4, OCTOBER zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1985 

+=( 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 .  The operation of the  mapping heuristic for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7. 

x Space 

6 1 8  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
t-x 

Fig. 7. The sample  locations in for N, = 7. 

( *  Start the spiral search at x *) 
FindNearestNeighbor(Xo, { X,}, X,, 
Startsearch) 
(*  Look for the centre point of { X,}o *) 
FindMapping(X0, {X,}, {X,}O, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{.$,}o) 
(*  Find the mapping between { X,} and 
{ E S I O  *) 
InterpolateMapping(Z0, E O ,  {X,} o , { E,} zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 )  

(*  Interpolate to find  the  mapping of X into 
(e.g., using equations (27) and  28)) *) 

FOR i = 1 TO zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN, DO 
BEGIN 

f(X) = 0 

( *Compute the reconstruction sum *) 
f ( ~  = f(~) + g ( t  - E i ) f ( X i )  

ENDFOR 

ENDELSE 

endproc. 

The  nearest  neighbor  finding  procedure  "Find- 
NearestNeighbor" can be done in a number of ways. For 
example, the efficient spiral search technique of [6], modified 
to search over monotonically increasing distances [4] was  used 
in the examples described later in  this paper. 

The mapping procedures "FindMapping" determines the 
mapping between ( X , } O  and { zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf ,>o given the sample set { X,}. 
This procedure is detailed in the following pseudo  high level 
program. 

procedure FindMapping(Xo, {X,}, {X,}o, { f,>,) 
Eo = (0, 0)  
Startsearch = X. 
(* Map X. to Eo, the centroid of { .*) 

while Foundl = false or Found2 = false or Found3 = false 
or Found4 = false or  Found 5 = false or Found6 = false do 
(* While the N, points in { E,} 0 have  not all been assigned, 

begin 
FindNearestNeighbor(X,, {X,}, Xo, Startsearch) 
(* Perform a spiral search, starting from Startsearch to 
find X,, closest to X. but  no nearer than Startsearch. *) 
If ( - 30" 5 Angle(X, X,) < 3O0)and(Foundl  =false) 
then 

(*  Determine whether or not X, is in the El 
sector. If so assign X,, to E z .  *) 
E l  = (2, 2 / d q  
2 - -  

Foundl =true 
1 -x, 

endif 
If(30"  sAngle(X,  .fo)and(Found2 = false) 
then 

E 2  = ( l / r n )  
x2 = X,, 
Found2 =true 

endif 
If(90" I Angle(X, X,) < 15O0)and(Found3 = false) 
then 

[ 3 = ( -  1 / a )  
Found3 =true 
X3 =zn 

endif 
If(15Oo1Angle(X, X;o)<2lO0)and(Found4=false) 

then 
= ( - 2 / D )  

Found4 =true 
X - -  

4 - X ,  
endif 
If (210" 5 Angle(X, X,) < 270")and(Found5 = false) 
then 

= ( - l/J3>) 
Found5 =true 
Xs = 2" 

endif 
If (270" r Angle(X, 20) < 330")and(Found6 = false) 
then 

= ( l /d3,  -1) 
Found6 = true 
X, X,, 

endif 
Startsearch = X, 
(*  Start search for the next sample at X,, not X, *) 

endwhile 
endproc. 

The angle function used here computes the angle between 
the vector X - X. and some reference vector. 

The above mapping heuristic works well  when  the samples 
are distributed more or less isotropically . For example, in Fig. 
8(a), the set { X,} of maximum  density has been found. When 
the sample distribution is  markedly nonisotropic it would be 
expected that another mapping procedure could do better, as 
can be seen  in Fig. 8(b), where the optimum { X,]O has clearly 
not  been  found  by the algorithm. 

It is natural to ask how the reconstruction method described 
do the  following: *) in  this paper for one and  two dimensions can be  extended to 



CLARK zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA: RECONSTRUCTION OF FUNCTIONS FROM SAMPLES 1159 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

IO zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Anisotropic Dintrlbutlan 

(b) 

Fig. 8. The  relation of the heuristic mapping  efficiency in terms of  sample 
density to the shape of the  sample distribution. 

the reconstruction of higher dimensional functions. It is 
evident that Theorem 4, following the analysis of Petersen and 
Middleton [ 161 for the uniform case, can be directly extended 
to higher dimensionality, merely by increasing the dimension- 
ality of the functions and variables involved. The search 
procedure, outlined above, can be similarly extended, to allow 
the determination of I' for any dimension. From this I', the 
function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 can  be determined by fitting an n-dimensional 
hyperplane to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn + 1 points, where n is the dimensionality  of 

Non-Uniform  Sampling 

Fig. 9. Error magnitude  of  the  reconstructed linear FM sine wave  when 
sampled  uniformly  and  nonuniformly. 

nonuniform case, let us sample such  that [from (12)] 

y ( t ) = C  (2n/wo)B(7) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd7=2cI$(t) (34) 
0 

the sampled function. The efficiency of the mapping heuristic 
can be expected to fall as the dimension increases, however. The constant zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc is chosen so that there are 100 samples in the 

interval [0, 10001. We have, then, that 
VI. EXAMPLES 

In this section we provide examples of the application of the 
y ( t )  = ct2/20 000. 

nonuniform sampling theory developed in tl& paper to the We know  that y ( t n )  = n. Therefore we  must have that 
reconstruction of one- and  two-dimensional functions. y(lOO0) = 100. This yields a value of 2 for c. We can now see 

that the sample sequence for the nonuniform case is given by 
One  Dimension 

In this example we examine the reconstruction of a sine 
wave  with linearly changing frequency (bandwidth) from both 
uniformly  and nonuniformly distributed sample sets. 

We have that, for B(t)  = t /20 000: 

f ( t )  = sin [27rI$(t)]  (32) 

where 4(t) is the phase function, defined in terms of the 
instantaneous signal  frequency  (bandwidth) as follows: 

The function (36) was sampled at  the uniform and  nonuniform 
sample points, and  then reconstructed using (1) and (12) 
truncated to 21 'samples. The error magnitudes of the two 
reconstructions are shown in Fig. 9, along  with the signal 
bandwidth. Notice that the error for the uniform case rises as 
the signal frequency rises because of the increasing aliasing 
and truncation errors, and  that the error for the nonuniform 
case stays more or less constant, as expected. The total root 
mean square error for 10 < t < 990 is 0.0982 for the uniform 
case and 0.0706 for the nonuniform case. 

For the  bandwidth stipulated above we get that k l  = 1/40 000 Dimensions 
and  that kz = 0. The following example illustrates the use of the two- 

The uniform sampling sequence is tn = 10n, and hence, at t dimensional nonuniform sampling theory in the reconstruction 
= 1000 we are sampling at the Nyquist rate. In the of  images from data obtained from aperture synthesis radio 
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Fig. 10: The  sample  distribution in the  spatial  frequency  plane  for  the 
proposed  Canadian VLBI. 

telescopes. The theory behind these astronomical imaging 
devices can be found in [9]. Basically, the output of an 
aperture synthesis radio telescope is a set of samples of the 
complex Fourier transform of the spatial radio intensity 
distribution in the small patch of sky  that  the telescope is 
viewing. These samples are not uniformly distributed, but are 
situated at equal angular intervals on sets of ellipses, as shown 
in Fig. 10. 

To test the nonuniform reconstruction algorithm described 
in this paper on the VLBI (very long baseline interferometer) 
image reconstruction problem, we used  the  following proce- 
dure. Since there are no images available from the array at 
present, (the system is still in the planning stages) we  use an 
optical image of a galaxy, in this case the Andromeda galaxy, 

shown  in Fig. 11. We compute the Fourier transform of the 
galaxy  image (the magnitude of which  is  shown  in Fig. 12), 
and sample the real  and imaginary parts of the transformed 
image at the sample points shown in Fig. 10. Note that, in 
practice, reliable measurements may be available for only the 
magnitude of the Fourier transform, and hence, the phase must 
be estimated from the magnitude, for example with the method 
of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[7]. Since we are interested only  in the function reconstruc- 
tion, we will assume that both  magnitude  and  phase of the 
Fourier transform are available. We then reconstruct the real 
and imaginary parts of  the Fourier transform of the image 
from these samples using  the algorithm described in this 
paper, and the method, described in [9], of Gaussian smear- 
ing. The Gaussian smearing technique involves the convolu- 
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Fig. 11 .  The  Andromeda  galaxy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvisual image, used here as a test radio 
image. 

tion  of the sampled Fourier transform with a Gaussian function 
and resampling along a Cartesian lattice. 

The reconstructed image resulting from each of these two 
methods is displayed in Figs. 13 and 14. The total square error 
for each reconstruction technique was measured. For the 
Gaussian smearing method the total square error was 215.2 
and for the method  of  this paper the total square error was 
158.3 (note that the total error was calculated over 128 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 128 
points and the  maximum function value was 255). It appears 
that  the  method described in  this paper is superior to the 
Gaussian smearing method  in terms of  the  minimization of 
square error (a nearest neighbor technique was also tested and 
performed far worse than either Gaussian smearing or the 
nonuniform reconstruction algorithm). The Gaussian smear- 
ing method  was  much faster than the nonuniform reconstruc- 
tion algorithm, however. This may  not be so important in 
applications, such as radio astronomy, where the data collec- 
tion time is very long (on the order of hours for radio 
telescopes). Also, the bulk of the processing time for the 
algorithm described in this paper was taken up with computing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4. However, for a fixed telescope 'geometry the sample 
positions (Xs) are also fixed so that 7 need  only be calculated 
once. 

VIII. SUMMARY 

We have presented a sampling theory which, under certain 
conditions, allows the exact reconstruction of  n-dimensional 
functions from arbitrarily distributed samples. It has been 
shown that some nonband-limited functions, such as certain 
FM signals, can  be reconstructed exactly with the methods  of 
this paper. A heuristic algorithm is presented which  imple- 
ments the reconstruction process in two dimensions. Examples 
of the use of the nonuniform reconstruction methods are 
provided for the one- and two-dimensional case, showing  the 
performance of these methods against other techniques of 
function sampling and reconstruction. 

APPENDIX 

PROOF OF THEOREMS STATED IN THE TEXT 

Proof of  Theorem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1: Proofs of this theorem can be found 

Proof of  Theorem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2: Since h(r) is band limited to w o  = n, 
in many places. For a survey of these see [ 111. 

we can write (from Theorem 1): 

h(r)=  h(n)g(T-n). 
m 

(1) 
n =  -m  
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Fig. 12. The  magnitude of the 2-D Fourier  transform of Fig. 15. 

Now, since a one-to-one  continuous  mapping zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy( t )  exists such  where, gives then that 
that n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= y(f.) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 = y(t), we have that 

Because zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh(y(t)) = f ( t )  we  have that 

Proof of Theorem 3: For a proof of this theorem see [16]. 
Proof of Theorem 4: From Theorem 3 we  have that 

h(E) = h ( f M E -  f s ) .  (4) 
{ €2 

Now, since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA?(Xs) = f s  and r(X) = f ,  we  have that 

The condition that h ( [ )  = f (X), along  with the cofldition 
that the Jacobian  of the transformation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 be  nonzero  every- 

Q.E.D. 

Proof of Theorem 5: A mapping 7 (X) is one-to-one  and 
continuous  if the determinant  of its Jacobian  matrix lay(X)/ 
8x1 is nonzero  everywhere.  At the interior points of P, (those 
points that are not  vertex or link points of the partition), we 
have 7 as defined in (27), (28), and (29). We  can rewrite (27) 

as follows: 

7(X)=A-11'T[(A, B)X+a (7) 

where 
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Fig. 13. The  reconstructed  image  using  the  nonuniform  reconstruction 
method  described  in  this paper. 

The vector is of  no consequence in this proof  as it does not 
appear in the expression for the Jacobian. A is as given  in (29). 
After some algebraic manipulation we get that 

where 

( Y = ~ ~ ( x ~ - X ~ ) f X ~ ( x ~ - X g ) + X ~ ( x ~ - X ~ )  (10) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 1  1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 . 1  1 2 1  1 

It can be shown that (Y = 0 iff the points R l ,  2 2 ,  R3 are 
collinear, and that /3 = 0 iff the points rl, r2, r3 are collinear. 
Since the points r i  are not collinear, /3 # 0 and 7 will have a 
nonzero Jacobian at the interior points of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP, when the points  in 
the set V(2)  are not collinear. 

In order that 7 be one-to-one and continuous at the links of 
P, we must ensure that the value of the Jacobians on either side 
of an link of P, have the same sign. 

Consider Figs. 15 and 16, which illustrate the mapping  of 

points in R space to the hexagonal lattice in space. We have 
mapped the points X I ,  X 2 ,  R3 in R space into the points rl, r2, 
r3 in f space, creating the partition regions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPI and Dl.  

Let us assume that (Y > 0 and  that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 > 0 for this mapping. 
We  now  wish to map a sample point  in R space to the  point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr4 
of the hexagonal lattice in .f space, to create the partiton 
regions Pz, D2 that share a common link with P1 and D l .  
Imagine that r4 was  not constrained to lie on a vertex of the 
hexagonal sampling lattice, but  could lie anywhere in ( space. 
It can  be seen that  if  was to lie anywhere on the line through 
rl and r2 that 0 would  be zero (as the points rl, F2 and r4 are 
collinear). Furthermore, it can be seen that only  along this line 
can 0 be zero. Hence if r4 lies on the same side of the line 
through rl and r2 as does r3 then 0 is positive, and  if it lies on 
the opposite side then /3 is negative. Now since we  have the 
constraint that r4 must lie on the hexagonal sampling lattice, it 
can be seen that 0 for the region formed by TI, r2 and r4 is 
negative. Now for the Jacobian of 7 to have the same sign  in 
P2 as in PI ,  cy for P2 must also be negative. Hence R4 must lie 
on the side of  the line through R1 and Z2 opposite to R3.  In 
other words the region formed by points xl ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx2, and x 3  must 
not overlap the region formed by points xl ,  x2, and x4. That 
is, P, must be a tessellation for the mapping function 7 to be 
one-to-one and continuous. Q.E.D. 
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Fig.  14.  The  reconstructed  image  using  the  Gaussian  smearing  method. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

’(3 
Fi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 .  15. A portion of  the partition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPxo in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX space. 

n 
1 i 

[71 

r3 

Fig. 16. A portion of  the partition DhO in space. 
1121 
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