A Transformation of Business Process Models
into Software-Executable Models Using MDA*

Nuno Santos!, Francisco J. Duarte?,
Ricardo J. Machado?, and Jodao M. Fernandes?

1 CCG - Centro de Computacdo Grafica, Guimaraes, Portugal
2 Centro Algoritmi — Universidade do Minho, Braga/Guimaraes, Portugal

Abstract. Traditional software development projects for process-orien-
ted organizations are time consuming and do not always guarantee the
fulfillment of the functional requirements of the client organization, and
thus the quality of the resulting software product. To reduce the time
spent for developing software and improve its quality, we adopt the inclu-
sion of automation in some parts of the software development process.
Thus, in this paper, we propose a model transformation approach to
derive an executable model for the business processes of a given orga-
nization. We execute a mapping between processes (described with a
business process execution language) and software components. We also
propose a supporting software architecture based on an Enterprise Ser-
vice Bus and on Java Business Integration, and we use an already defined
methodology to execute the model transformation project.

Keywords: business process, JBI, model-driven architecture, MDA,
enterprise service bus, ESB.

1 Introduction

Business Process Management (BPM) [1] is a discipline followed by organizations
where business processes are required to exist, either by quality norms or by
internal directives. Additionally, to cope with the requirements of the business
processes, the software development process must properly support them [2,3].

In every organization, it is desirable to reduce the time and the cost to imple-
ment business processes in software systems. An aggravating factor during the
development of software to support business processes is the diversity of applica-
tions used in a real-world business context, which causes integration problems.

We base our approach on the Model-Driven Architecture (MDA) [4] initia-
tive from the OMG. We use two types of models: a Platform-Independent Model
(PIM), representing the business process, and a Platform-Specific Model (PSM),
allowing the PIM to be executed in software. With our business process-based

*

This work is financed by Fundos FEDER through Programa Operacional Fatores de
Competitividade — COMPETE e por Fundos Nacionais através da FCT — Fundagao
para a Ciéncia e Tecnologia no &mbito do Projeto: FCOMP-01-0124-FEDER-022674.

D. Winkler, S. Biffl, and J. Bergsmann (Eds.): SWQD 2013, LNBIP 133, pp. 147-167, 2013.
© Springer-Verlag Berlin Heidelberg 2013

148 N. Santos et al.

approach, the complexity to implement in software the functional requirements
derived from business processes is reduced because, among others, of the au-
tomation used in model transformations.

The effort to improve the quality of the resulting software product results
in a better fulfillment of the functional requirements expressed in the busi-
ness processes because of the diminishing gaps between business process models
and software that our approach facilitates. In projects that adopt model-driven
techniques, the model transformations are crucial for the overall success of the
project, because they allow moving features from abstract models into software-
executable ones, without loosing quality.

We use an Enterprise Service Bus (ESB), the Apache ServiceMix!, for the PSM
implementation. Typically, software solutions based on ESBs are loose-coupled,
use reliable messaging mechanisms, and integrate different software technologies.

In this paper, we present a model-driven transformation approach for imple-
menting business process models into software. The considered approach reduces
the complexity to implement the business models into software, thus improving
the overall quality of the information system. Our transformation approach is
part of the Business Implementation Methodology (BIM) [5], which adopts refer-
ence models of business processes to provide business best practices to the client
organization. However, it is important to note that the approach is sufficiently
generic to be adopted in different methodological contexts.

In section 2, we present the state of art, namely the phases and states of the
BIM, the MDA based model transformations, and the Apache ServiceMix ESB.
In section 3, we propose a quantitative method to select the most appropriate
language for modeling the business processes of a software development orga-
nization, including explicitly considering the specific staffing environment of a
project. Section 3 also describes a case study, executed at Bosch Car Multimedia
Portugal. Section 4 presents the business process model transformations, accord-
ing to the MDA principles. We claim the adequateness of this approach to move
from a business process model into a software-executable model, following BIM.
First, we establish a correlation between the four states that business process
models pass through in BIM, and the states of the PIM and the PSM defined in
MDA. A business process model at the PIM level, ready to be transformed into
software, is then established. The transformation process is completed by map-
ping platform-independent elements of the business process model into platform-
specific ones. The resulting business process model at the PSM level is presented
in section 5. In section 6, the conclusions of the work and proposals for future
work are discussed.

2 Model-Driven Implementation of Business Processes

2.1 BIM

BIM is a methodology specially targeted for implementing in software the busi-
ness processes of a given organization. This methodology proposes the use of

! http://servicemix.apache.org

Transformation of BPMs into Software-Executable Models 149

best practices in the business domains and allows the customization of a business
process according to the specific needs of the organization. It also promotes the
building of a software solution with components of different technologies. BIM is
composed of four phases (Fig. 1): the ‘Selection’ of the adequate generic business
processes; the ‘Definition’ of the business processes to use; the ‘Concretization’
of the business processes into the software system; and the ‘Implementation’ in
software of the various elements that compose the process.

R & A B

Selection Definition Concretization Implementation

Fig. 1. The four phases of the BIM ([5])

For each phase, BIM describes a corresponding state of the process frame-
work (PF) (Fig. 2). The PF is an artifact of the BIM methodology representing
the business processes at different implementation phases. Once the necessary
requirements to complete each phase are fulfilled, a new state is assigned to the
PF. The state of the PF is mainly defined by the state of the business process
model. The four states defined in the methodology are ‘Generic’, ‘Instantiated’,
‘Runnable’ and ‘Software Implemented’.

f Runnable w%(Software-lmplemented = ©
J I |

®
Instantiated

Fig. 2. The Process Framework states in BIM ([5])

The bi-directional state transformations from ’'Runnable’ and
’Software-Implemented’ are possible by having latent runnable business pro-
cesses moved into a software-implemented state and vice versa.

2.2 Model-Driven Architecture

In an MDA-guided project, after modeling the business processes, one can ob-
tain a software-executable business process model; this is basically a transforma-
tion from a PIM into a PSM. For these kinds of transformations, the commonly
accepted standard is OMG MOF Query/View/Transformation (MOF QVT) lan-
guage [6]. It allows the creation of relations between models based in transfor-
mation rules. A transformation of PIM business processes, modeled by UML 2
Activity Diagrams, into a PSM in BPEL, through Regular Expression Language
(REL) is demonstrated in [7]. The same kind of transformation is described in [8],
using the ATLAS Transformation Language (ATL) [9]. A similar transformation
is described using the Object Constraint Language (OCL) rules in [10].

150 N. Santos et al.

Another kind of approach is proposed in [11], which begins by designing a
CIM business process model in EPC, then continues by transforming the CIM
business process model into a platform-independent one in BPMN, and finally
obtains the platform-specific business process model in BPEL. Another approach
is presented in [12], which describes a transformation of a CIM modeled in BPMN
into a PIM modeled in UML, using either use case or class diagrams.

One of the characteristics of an MDA project is the clear separation between
the specification of the system functionalities and the description of how the
platform resources are used. An MDA project suggests the following:

— both the environment and the requirements of the system are specified (CIM);

— the system is specified independently from the platform that supports it
(PIM);

— the platform is specified;

— a platform is chosen for the system;

— the specification of the system is transformed into specifications containing
details of a specific platform (PSM).

The PSM is obtained from the transformation process that takes the PIM as
the input. The transformation of the PIM into the PSM is accomplished by
combining the PIM with specific details of the platform (Fig. 3).

PIM Platform

Transformation

PSM

Fig. 3. Transformation from PIM into PSM [13]

Model marking (represented by the activities inside the circle of Fig. 4) is an
approach, proposed by OMG for model transformations, that is performed by
indicating the PIM elements that are transformed into PSM elements. In the
mapping task, relationships between the PIM elements and the PSM one are
established. For example, one can create a mapping that relates classes in the
model with Java classes. Mappings must comply with the characteristics of both
the business models and the programming language.

A PIM element can be related to several PSM elements, and, similarly, a PSM
element can be related to several PIM elements. Once a mapping is defined, the
execution of the transformation results in code generation.

Transformation of BPMs into Software-Executable Models 151

| L o

[
marked | e aton ||
PIM | |

o
|

S ,‘_7_,__,-—-*"""JJ-{ Mapping ¢ __:_:_< Platform
™ P p

Fig. 4. Model transformation in MDA [13]

2.3 Apache ServiceMix

After model transformations, the resulting PSM model is a software-executable
solution. This solution may require the integration with other applications. The
integration can be achieved by using hubs or brokers as a middleware between ap-
plications. There are some commonly used approaches for enterprise application
integration, like the Spring framework [14]. Spring provides a supporting software
platform to facilitate the development and execution of business processes by us-
ing, among other capabilities, the inversion of control software pattern. Spring
can support all the three common layers of a distributed application: user inter-
face, business rules and entities, and the persistence of data. Integration can also
be achieved by using ESB-based software frameworks, which allow developing
distributed software in a loose-coupled manner. ESBs suggest the usage of a bus,
instead of several brokers. Normally, ESBs contain normalized message routers
to extract orchestrations from the different software components and place them
in a central repository. Orchestrations can be edited without changing the dif-
ferent software components. ESB also include some others handy features, like
reliable message buses to guarantee message exchange, or clustering to allow scal-
ability. The core functionalities of an ESB are defined in [15] as being location
transparency, transport protocol conversion, message transformation, message
routing, message enhancement, security, monitoring, and management. A set of
usage patterns for ESBs is presented in [16].

In this work, we use the Apache ServiceMix 4, which is a widely accepted,
open source and open standards based ESB solution. ServiceMix may bring
benefits to software development projects, like low cost and high quality of the
resulting product. It is based on OSGi technology [17] and includes support to the
Java Business Integration (JBI) specification [18]. JBI defines a framework for
integrating applications, based in added components that interoperate through
a method of normalized message exchanges. This method is based in the WSDL
2.0 specification of Message Exchange Patterns (MEPs) [19]. JBI defines two
types of components: Service Engines (SEs) and Binding Components (BCs).
SEs provide business and processing logic, for instance for processing data or to

152 N. Santos et al.

implementing business rules. BCs provide communication between the ESB and
its exterior, working as a bridge between input and output data.

During compilation time, in order to deploy a component into ServiceMix, a
Service Unit (SU), which provides component instantiation to the ESB, is used.
Each SE or BC instantiation requires a SU that has the instantiated component
definition. A SU can be executed in the ESB, if Service Assemblies (SAs) are
used. A SA is a collection of one or more SUs. JBI components are unable to
interpret SUs, unless SUs are packaged inside a SA.

3 Selection of a Business Process Language

To assure the quality of the software resulting from a business processes imple-
mentation project, it is advisable to select a business process language compat-
ible with the organization where processes will run. To achieve that purpose,
we include in this section a comparison between five business process modeling
languages: BPMN [20], BPEL [21], XPDL [22|, YAWL [23], and Coloured Petri
Nets (CPNs) [24].

Several languages are reviewed in [25], namely by describing their technolog-
ical characteristics and their strengths and weaknesses. Twelve business process
languages are compared in [26], according to a representation model proposed
in [27], to establish differences to their representational capabilities in the infor-
mation system domain. The most common approach to compare the modeling
capabilities of the business process languages is the set of workflow patterns de-
fined in [28], which shows if the representation of a business process workflow is
directly supported by the language.

The process of selecting a business process language should not be restricted
to the comparison of the workflow patterns. An organization should not just be
concerned with technological issues. Thus, based in [29], we propose that the
selection process should be enlarged, being based on the three strategies of the
triangle shown in Fig. 5: information systems, organizational, business.

The triangle relates the business strategy with the information system (IS)
strategy and the organizational strategy. The selection process for the adopted
business process language took into account the information systems strategic
triangle. Since IS strategy is related to the definition of the implementation
of the business processes in the IS solution, we base our comparison analysis
on the workflows that each language supports. Regarding the organizational
strategy, we base the comparison on the preferences of the development team.
In what concerns the business strategy, our comparison takes into account a set
of important aspects related with the alignment of the business process and the
business strategy.

3.1 Information Systems Strategy

To compare the business process modeling languages by their added-value in the
design and execution of the business processes, a study was performed based

Transformation of BPMs into Software-Executable Models 153

Business Strategy

Organizational Strategy IS Strategy

Fig. 5. The information systems strategic triangle (adapted from [29])

in the language functionality, using the workflow patterns defined in [28|. The
results of this comparison are described in Table 1. The table derives from a
collection of previous comparisons, which can be seen in [30,23,31,32]. If the
language supports directly the pattern, it is represented in the table by a “+”. If
it is supported indirectly, it is represented by a “0”. Finally, if it is not supported
at all, it is represented by a “-”. The workflow patterns descriptions are not
detailed in this paper.

Table 1. Workflow Patterns based Comparison

[Nr.[Workflow Patterns [BPML[BPEL[XPDL[YAWL[CPN]
+ [+

1 |Sequence
Parallel split
Syncronization
Exclusive choice
Simple merge
Multi-choice -
Syncronizing merge -
Multi-merge
Discriminator - -
Arbitrary cycles -
Implicit termination +
12 [Multiple instance without syncronization =+
13 [Multiple instances with a priori design time knowledge| +
14 [Multiple instances with a priori runtime knowledge - - -
15 [Multiple instances without a priori runtime knowledge -
16 |Deferred choice +
17 |Interleaved parallel routing -
18 |Milestone - - -
19 |Cancel activity +
20 |Cancel case +

++++ +
e
e B
R

+

OO0 1 O U= W N

—_
o

H
=
o

4+
|+

o+ v
oS+ |+

e B I e B e T R A A
+

++

3.2 Organizational Strategy

The need for this comparison lies in the fact that the organization’s software
development team members will be the users of the chosen business process
language. It is then necessary to conclude which business process language is the
best identified with the profile and skills of its users.

154 N. Santos et al.

Surveys were performed at Bosch Car Multimedia Portugal to assess the tech-
nological skills of the development team, concerning the business process im-
plementation. The aim was to establish a language comparison which can be
considered as the most subjective part of our work. In our case, we have based
the structure of the survey on a collection of key characteristics of the business
process language. We have questioned the development team on their confi-
dence on the following characteristics: workflow modeling, graph-based mod-
eling, XML, Petri nets, pi-calculus, business process modeling languages and
notations, service-oriented architecture (SOA), web services, protocols, brokers,
ESBs, and threading. Additionally, the team was questioned about BPM issues.
This complementary study was helpful to characterize the team regarding its
knowledge on the business process to be implemented. Thus, the survey has
included questions related to the knowledge and confidence of the team on:

— business processes, activities, key performance indicators, and strategic goals;

— BPM-based tools (e.g., BPM systems, EAI, ERP, CRM);

— business quality management (Total Quality Management, Six Sigma, Bal-
anced ScoreCards);

The answers were given with a level of knowledge about the presented standards,
valued from a minimum knowledge of 1 and ending with a maximum of 5. The
presented values are relative results obtained by each of the languages in each
of the surveys, resulting then the addition of all the surveys classification for
each language. The results of the surveys are represented in Table 2 and allow to
represent the confidence of the user on using each language (for instance, survey
#1 is 76% confident on using BPML, 76% on using BPEL, etc.).

Table 2. Results of the conducted surveys

|Survey[BPML|BPEL|[XPDL|YAWL|CPN]

#1 0.76 | 0.76 | 0.76 | 0.65 |0.84
#2 | 0.70 | 0.80 | 0.79 | 0.94 [0.99
#3 | 064 | 0.74 | 0.79 | 0.83 |0.78
#4 | 0.59 | 0.60 | 0.79 | 0.57 [0.59
#5 | 0.62 | 0.72 | 0.79 | 0.70 |0.76
#6 | 0.67 | 0.88 | 0.87 | 0.90 [0.95
#7] 0.15 | 0.38 | 0.35 | 0.34 |0.30
#8 | 0.34 | 0.63 | 0.59 | 0.49 |0.48
#9 | 0.78 | 0.79 | 0.92 | 0.69 |0.75

| Total| 5.26 | 6.20 | 6.65 | 6.11 [6.43]

3.3 Business Strategy

The last comparison relates to the specific aspects of the business environment,
in this case referring to the software development industry. Some of these aspects
were suggested by [33] as a basis for language supporting tools comparison. Other

Transformation of BPMs into Software-Executable Models 155

aspects are generally relevant concepts for using a language in a business pro-
cess implementation projects (e.g., language maturity and implementation costs)
with the goal of determining the added-value in using one of these languages in
the organization. In Table 3 it is represented a set of characteristics, namely:
language maturity, usability, existing language implementation tools, online tu-
torials available, if the language is translatable to another one, the language
learning effort, transformability in object-oriented code, implementation costs,
portability, interoperability, security, efficiency and data management, and the
integration of the language in a ERP (e.g., SAP). In Table 3, for each language a
set of business aspects was graded in a scale from 1 to 5. The value for each busi-
ness aspect was given based on technical specifications and discussion forums.
The classification was totally based on our subjective judgement after analyzing
the information for each language.

Table 3. Relevant Business Aspects Considered for Comparison

|Nr[Business Aspects |[BPML|BPEL|XPDL|YAWL|CPN]|

1 |Maturity 4 4 4 5
Usability

Existing Tools

Online Tutorials
Translatability

Learning Effort
Transformation to OO-code

O[T O T | W N

Implementation costs

9 |Portability

10 {Interoperability

11 [Security

12 |Efficiency

13|Data Management

14 |Integration in ERP SAP

o OOt O Ot O W k= Wi W w

U O O W T DD = O O i
Gt s O O O O O O i O O O b
W UL N[W = W W Wk WWw Wk
W UL UW W TN Wk OOt Ww

After the comparisons of the three dimensions of the information system
strategic triangle, the final results were collected in Table 4, where it shows
the ordered level of suitability obtained by the languages, and the final result of
each language is an overall value of all the executed comparisons.

The language with the best overall result was BPEL, because it was considered
the most adequate in the business strategy and also with good classifications in
information systems and organization strategies. For the #1 ranking of BPEL
should be kept in mind the good result obtained for the particular software
development team answering the survey. With different software development
teams, the order of business strategies may vary.

156 N. Santos et al.

Table 4. Final Comparison of the Business Process Languages

[Strategy |BPML[BPEL[XPDL[YAWL|CPN]
Information System| 4 2 5 1 2
Organization 5 3 1 4 2
Business 2 1 5 4 3
Final 4 1 4 3 2

4 Transformation of Business Process Models

4.1 Correlation between BIM States and MDA Models

During a BIM-based business implementation project, it is possible to establish
a correlation between the four states of BIM and the states of the PIM and the
PSM models. The main characteristics of a business process model that is in the
‘Generic’, ‘Instantiated’ or ‘Runnable’ state are similar to the characteristics of a
PIM, because the PF in these states do not include any reference to any platform.
During the first three BIM phases (‘Selection’, ‘Definition’ and ‘Concretisation’),
it is not yet decided if the process will be software-executed or not. In fact,
BIM suggests that, at the end of the ‘Concretisation’ phase, a process should
be defined to be software implemented in the next phase of the methodology.
However, it is also advisable to consider other alternatives, and at least one of the
business processes may not require any software implementation. The ‘Software-
implemented’ state corresponds to the PSM, since the process is executed using
software, so it must obey specifications of the technological platform.

4.2 Business Process Model at the PIM Level

The third phase of BIM, ‘Concretisation’, defines a set of requirements the PF
must respond in order to conclude that phase. The state of the PF at the end of
the ‘Concretisation’ phase assures that the modeled PIM is ready to be trans-
formed into a PSM. To reach that final state, we first adopt a business process
reference model, as proposed in the ’Selection’ phase. The use of process ref-
erence models in organizations assures adequately modeled business process,
responding this way to concerns about business improvement and the quality of
the resulting software system.

To exemplify the transformations across the BIM phases, we adopted a busi-
ness process at the lowest representation level contained in UBK-RM (Un-
ternehmensbereich Kraftfahrzeugausriistung - Reference Model). UBK-RM is
a reference model of the automotive divisions of the Bosch Group. One of the
several second-level business processes that are part of the supply-chain process
is chosen for the example. This second level process is decomposed hierarchically
into some third-level business processes, before the representation at a more de-
tailed level containing activities. We choose the product stock quantities record
business process to exemplify our transformation technique due to its simplicity.

Transformation of BPMs into Software-Executable Models 157

= main

& | receivelnput

= Assign

& sap &

<bpel:import namespace="http://Sap” location="SapArtifacts.wsdl"
importType="http://schemas. xnlsoap.org/wsdl /=< /bpel:import:
<bpel:import nemespace="http://Ed" location="Bdirtifacts.wsdl"
importType="http://schemas.xmlsoap.org/wsdl/"></bpel:imports>

<bpel:flow name="Flow">
<hbpel:invoke neme="SAP" partnerLink="sap" operation="process"
inputVarishle="sapRequsest" outputVariable="sapResponss"
portType="nsJ3:5ap">
</hpel:invoke>
<bpel:invoke name="0racie” partnerLink="hd" operatinn="process"
inputVarisbhle="bdRequest" outputVariable="hdResponsa"
2| rephyOutput portType="nrsl:Bd">
</hpel:invoke>
= </bpeliflows

®

= Assignl

Fig. 6. The runnable Process Framework in BPEL

UBK-RM describes this process with the task that updates the product quanti-
ties in stock.

In the ‘Definition’ phase of BIM, the client describes his/her requirements
for this process that has to update the stock of the new product and the stock
of the consumed materials for the production of the new product. Thus, the
business process has two activities. In the ‘Concretisation’ phase, the business
process model is designed to fit in the information system of the organization.
In this particular case, the business process inserts data into an ERP and into a
Database Management System (DBMS). The business process was modeled in
BPEL, as represented in Fig. 6.

The platform-independent business process illustrated in Fig 6 already em-
bodies the characteristics described in BIM to allow their transformation into
a PSM. In our modeled business process, the data received from the client is
sent to two components of the information system in a parallel flow: to the ERP
system and to the DBMS. The BPEL representation of the business process
requires a corresponding WSDL code (Fig. 7) in order to execute correctly.

For this kind of approach, the relevant parts from the WSDL code are the data
referring to the service (“lancQuantService”), the port (“LancQuantPort”), the
port type (“LancQuant”), the operations (“process”), the input elements (“Lanc-
QuantRequest”), and the output elements (“LancQuantResponse”).

158 N. Santos et al.

L5 lancQuantService (0] 3 LancQuant
[lancQuantPart 98 process
hibbp: 10,000, 0:8050 ode. . Erdinput [payload | [] LancQuantRequest
<11 output; 7 payload [2] LancQuantResponse

Fig. 7. WSDL representation of the business process

SAP Service WSDL BD Service WSDL

L4 SapService 24 BdService

& SapPort = bdrort
hittp:i/0.0,0.0:8080/odef ., http:{f0.0.0.0:8080/ode...

Bsw B [}

@ process ¢ process
Diros | 7 pavioad (6] Saphequest Direw | 7 oalosd | [€] ockequent
Gloso | P omioed | [shercree | el

Fig. 8. WSDL representation of the invoked services

The model is completed with the WSDL files of the invoked services, namely
the data insertion in the ERP system and in the DBMS (Fig. 8).

4.3 Description of the Platform

One of the required elements for a model transformation is the description of the
platform. To define the required functionalities of the platform, BIM proposes
the use of Orchestrated Business Objects (OBOs) [5]. For our business process,
four OBOs are identified:

— the client component, which gives the command to initiate the process through
its invocation;

— the BPEL component, with the process orchestration role, which defines the
sequence of service invocations;

— the ERP component, which interfaces with the ERP to execute transactions;

— the DBMS component, which executes the record of the stock quantities.

Based on the ServiceMix JBI-based behavior, three BCs and three SEs are
needed to execute the considered business process (Fig. 9). The need for the
BCs is justified in order to have connections to the ERP system, to the DBMS,
and the request from and the response to the client.

An adequate BC is one that allows the use of Web Services, because the char-
acteristics of the SOAP protocol are more appropriate to send requests to and
receive responses from a client. Regarding the connections to the ERP system
and the DBMS, the implementation choice is based on the nonexistence of a
SE with ERP functions and providing Java Database Connectivity (JDBC) [34].
For the latter two, the execution of the Web Service is made through SEs, a

Transformation of BPMs into Software-Executable Models 159

Fig. 9. Platform components to execute the process

“SAP SE” and a “DB SE”. It is also required a BPEL execution engine SE. For
that, we use the Apache Orchestration Director Engine (ODE) to execute the
process workflow and to orchestrate the services. Apache ODE can be used as a
SE inside ServiceMix.

4.4 PIM-to-PSM Mapping

In this subsection, we present the required mappings to achieve the PSM in the
case study presented in the previous section. We show a set of simple transfor-
mation mappings, which can be implemented using a transformation language
(e.g., MOF QVT or ATL) or a general-purpose language (e.g., Java or XSLT).
For the composition of the transformation mappings, we use elements from the
BPEL and the WSDL, the identified OBOs, and the typical JBI-based behavior
of the ESB.

In what concerns the required transformations, the WSDL file that composes
the PIM is the most used for the transformation, because in the BPEL file only
few elements are marked for being transformed. In the BPEL file, the invoked
activities, the imported namespaces, and the WSDL files are the elements to
be transformed. Regarding the WSDL file, the elements to be transformed are
the namespaces, portType, services, and ports. These elements, both from the
BPEL and the WSDL files, derive the elements required by the JBI-based model,
i.e., they are mapped into elements related to BCs, SEs, BPEL engine (Apache
ODE), POJO classes, Java and BPEL and WSDL files.

The invoked BPEL activities expect the response of a service to a request.
Therefore, the ESB component that provides this characteristic is the Service
Engine. The namespaces, as well as the service data from the WSDL code -
portType, service and port -, correspond to the identification data of the created
SUs. The PIM-to-PSM mapping is accomplished by relating (SAP) invocations
with the “SAP SE” OBO, and “BD” invocations with “BD SE” OBO. For better
understanding, the relations are shown and described in Table 5, where each
element of the PIM, related with the BPEL and the WSDL files, gives origin to
at least one PSM element. In this architecture, PSM elements are a set of JBI-
based ESB files (e.g., Java, XML, BPEL, WSDL). The marking of the elements
is made from the relationships identified in the mapping (Fig. 10). Its purpose
is to assist in the transformation task.

160 N. Santos et al.

Table 5. Relations of the PIM to PSM Mapping

[PIM Elements

[PSM Elements

WSDL - Elements from the Request type

Entry parameters of the POJO class of the
SU (CXF SEs)

WSDL - Service name (“LancQuantSer-
vice”, “SapService” e “BdService”)

Name of the Web Service in the Java file
belonging to the SU (CXF SEs)

targetService of the SU (CXF BCs)

Name of the service of the respective part-
nerLink in the SU (BPEL SE “ODE”)

WSDL - Port type of the service (“Lanc-
Quant”’ “Sa,p” e LLBd”)

targetInterface of the SU (CXF BCs)

WSDL - Port name of the service (“Lanc-
QuantPort”, “SapPort” e “BdPort”)

targetEndpoint of the SU (CXF BCs)

Port name of the service of the respective
partnerLink in the SU (BPEL SE “ODE”)

BPEL - namespaces of the imported ser-
vices

namespaces in the xbean.xml files and tar-
getNamespace in the JAVA file of the SU
(CXF SEs)

namespaces of the WSDL files which are
PartnerLinks in the BPEL file

BPEL - Imported WSDL files

wsdl of the SU (CXF BC), generated by
the CXF SE

BPEL - “input” variable and WSDL - Re-
quest element

Entry parameters of the client Web Service

“input” element from the Request of the
WSDL

“input” variable of the BPEL

BPEL - Invoke activity “SAP”

BPEL invoke activity “SAP SE”

BPEL - WSDL file which is “Sap” Partner-
Link

Generated WSDL file from the CXF SE

BPEL - Invoke activity “BD”

BPEL invoke activity “BD SE”

BPEL - WSDL file which is “Bd” Partner-
Link

Generated WSDL file from the CXF SE

BPEL - “output” variable and WSDL - Re-
sponse element

Return parameters of the client Web Ser-
vice

“output” element from the Response of the
WSDL

“output” variable of the BPEL

Transformation of BPMs into Software-Executable Models 161

PIM

BPEL

T main
<bpel:import nemespace="http://Sap” location="SapArtifacts.wsdl”
| receivalnput iwportType="http://schewas. xulsoap.orgfwsdl/"></bpel:inport>
<hbpel:import nemespace="http://Bd" location="Bdartifacts.wsdl”

= assian importType="http://schewas. xmlsoap. orgfuwsdl /" ></bpelimports

<hpel:flow name="Fiow">

<hpel:invoke name="SAR" partnerlink="sap” operation="procsss"
inputVariahle="saepRaquest” oubputVarishle="sapResponss"
portType="ns3:Sap">

</hpel:invoke>

<hpel:invoke neme="@racle" partnerLink="bd" aperation="process"
inputvarishle="hdRequest" outputVarishle="hdResponse”
portType="nsi:Bd">

</hpel:invoke>

</hpel:flow>

& sep & oracle

= Assignl

4] replyOutput

®

LancQuant Service WSDL

4 LancQuantService

= LancQuantPort
http: /00,0, 005080 ode ..

S4P Service WSDL

BD Service WSDL

&5 SapService

> SapPort

http:4/0.0,0,0:8080fcde/. ..

L Bdservice

@ bdport
http://0.0.0.0:8080/odef ..

O Lo N T || ——on
| @ o B weocees
: | 7 puwoad | [E] LancQuansiaquest [[7 poriosd |1 sopeauest Qiros | 7 oaosd (6] amequest
i B el Mo | 7 porond | (sl SapResponso Goutpes | i parkood | (5] BeResporee

Fig. 10. Representation of the marked PIM elements to be transformed

5 Software-Executable Models at PSM Level

This section presents the technological implementation in the ServiceMix ESB
of the model mapping described in the Section 4. We now detail the component
deployment to assure that the ESB executes correctly.

5.1 Service Engines

The first step is to define SUs that, after being deployed into ServiceMix, are
responsible for creating SEs. The choosen SE type is Apache CXF [35]. It is
worthwhile to mention that this choice is related with the absence of a SE directly
supporting the ERP functions. Our choice to overcome the absence is to use an
interface based on Web Services as a solution. The behavior of the SU is described
in a file, called 'xbean.xml’, generated from a Maven? specific archetype for
ServiceMix. The definition of the SU as a SE component is made in the first
line of the file, where the namespace is defined (xmlns:cxfse=...), while the rest

2 http://maven.apache.org

162 N. Santos et al.

<hean cless="pt.bosch.com.teste cxfse su.SapService" />

<hean class="pi.bosch.com. teste cxfse su.BdService™ />

Fig. 11. Excerpts of the CXF SE (SAP and DB) SU code

of the file contents describe the necessary elements for the body of the SU. The
content of the file is straightforward because it just indicates the location of the
Plain Old Java Object (POJO) [36] class relevant for the Service Engine.

In our example, the POJO class ’SapService’ (Fig. 11) is exposed via Web
Service by the CXF SE.

The SU also contains a Java file, in this case ’SapService.java’, which is the
Web Service executed by the CXF SE. The ’SapService.java’ file uses the SAP
Java Connector (JCo) [37] to be able to execute the insertion and the reception
of data between the CXF-exposed Web Service and the ERP SAP, obeying
correctly to the requirements of a connection to an ERP.

After building the project with Maven 2, the Java class ’SapService’ will create
a new WSDL file, in our case renamed to ’SapArtifacts’ (just to facilitate a
simple use by the Eclipse BPEL Design tool). The ’SapArtifacts’” WSDL file will
be the one who will be invoked in the future by the BPEL PSM file (presented
in Fig. 13). Inside that BPEL file, the chosen namespace will be the same as
provided by the mapping.

Similarly to the implementation of the interface to the ERP recurring to a
CXF SE with a Web Services, the definition of the SU containing the interface
to the DB is accomplished in the same manner. The main difference of this
SU to the ERP SU is just the definition of the POJO class, which will refer
now to the 'BdService’ class, the Web Service exposed by the CXF SE. The
file 'BdService.java’ will contain the code for the JDBC connection, and thus
allowing the communication with the database. Also, in this case the WSDL file
is generated by a Maven 2 build.

5.2 Binding Components

The configuration of a SU, originating a BC, is similar to the one originating
an SE (see Section 5.1). The type of component is defined in the first line of
the file 'xbean.xml’ (xmlns:cfxbc=...). In this case, the component is a CXF
BC, which communicates with the CXF SE, sending and receiving values from
a Web Service. The element data that defines the BC must be filled in with the
data from the PIMs BPEL and WSDL files, according to Table 5. This correct
identification of the component endpoints required by the ESB is then the basis

Transformation of BPMs into Software-Executable Models 163

<beans xmlns:cxfbo="hitp: /fservicemix. apachs. org/cxfbe/1.0"
xmlns: lo="hitp://Tancouant”

<cxfbe:consuwer wsdl="Lancouantdriifacts.wsdi™
targetEndpoint="1q:LancguantPort"
targetService="1g: DancQuantSarvica™
targetInterface="lg:Lancouant />
</beans>

<beans xmlns:cxfbe="http:fservicemix.apache. org/cxfbe/1. 0"
xmlns isap="http: //Sap"

<exfhe:consumer wsdl="classpath:SapArtifacts.wsdi"
targetEndpoint="sap:SapPort™
targetService="sap:SapService"
targetInterface="sap:Sap™/ >
</beans>

<beans xwlnsicxfhe="hiip://ssrvicemix.apachs. org/cxfbcs/l. 0"
xwlns:hd="hitp://Bd"

<exfherconsumer wodl="classpathrBdArtifacts.wsdl"™
targetEndpoint="bd:BdBort"
targetService="bd:EdService”
targetInterface="hd:Bd"/>
</beans>

Fig. 12. Excerpts of the CXF BC (Client, ERP, and DB) SU code

for a proper data routing inside the ESB. In Fig. 12 excerpts of the SU code for
the client and the ERP BCs are presented.

Now that the transformation is completed, we present the implemented PSM.
Fig. 13 shows the PSM representation in BPEL. In terms of visual notation, it
does not suffer modifications related with the PIM represented in Fig. 6, due to
the fact that the mapping 'SAP” to 'SAP SE’ and 'BD’ to '"BD SE’ does not
require any addition or removal of BPEL activities. An excerpt of the BPEL
code containing the transformations suggested in Table 5 is also presented in
Fig. 13.

The BPEL business process, to be interpreted by ODE, requires a XML file
that describes the connections to the process 'PartnerLinks’ so the process can
be executable after deployment. In opposition to what happens with the other
SUs, in which the 'xbean.xml’ file defines its execution, the behavior of ODE is
configured by a ’deploy.xml’ file. After being correctly defined, the ODE SU is
ready to be implemented in the framework. When all SUs are created, they are
ready to be packaged in a SA and deployed into the ESB. Each SUs must be
compiled and each one originates a compiled file. The definition of the SUs that
are part of an SA is described in a 'pom.xml’ file. The POM file, generated by
a Maven 2 archetype, contains the general information of the project, like its
name and location, as well as the identification of the components which will be
used in the ESB. After being deployed into ServiceMix, the SUs contained in the

164 N. Santos et al.

I main

@] receivelnput

= Assign

<hpel:process name="LancQuant”
targetNamespace="http: //Lancouant”
& sapsE & ese xmlns:insl="http://Sap"” xmlns:nsZ="http://Bd">

<bpel:import namespace="http://Sap" location="SapArtifacts.wsdl”
importType="http://schemas.xmlsoap.org/usdl/"></bpel: imports>
<hbpel:import namespace="http://Ed" location="EdArtifacts.wsdl"”
importType="http://schemas.xmlsoap.org/usdl/"></bpel:imports>

= assignt

<bpel:invoke name="SAP SE" partnerLink="sap" operation="process"

—n

ly Oubput
8] ropiyOutpu <hpel:imvoke name="BD SE" partnerlink="hd" operstion="process” ...

(C]

Fig. 13. Platform-specific business process in BPEL

ODE Service CXF Service Engine CXF Service Engine
Engine

CXF Binding . CXF Binding CXF Binding

Component Companent Companent
{Client) _ (ERP) (DB)

Client Database

Fig. 14. PSM Final Model in ServiceMix according to JBI

SA will be used as JBI components. Depending of each 'xbean.xml’ file, each
SU originates either a SE or a BC. ServiceMix ESB is capable of identifying,
by using the 'xbean.xml’ files, what kind of component is defined in the SU. So,
after their deployment, ODE SU becomes ODE SE, CXFSE SU becomes CXF
SE and CXFBC SU becomes CXF BC.

The whole PSM, correctly deployed in ServiceMix, is presented in Fig. 14.

Transformation of BPMs into Software-Executable Models 165

6 Conclusions and Future Work

In this paper we showed a set of techniques to use the OMG Model Driven Ar-
chitecture approach in order to map business process descriptions into software
systems. We proposed a mapping between the MDA platform-independent and
platform-specific models, and business process models expressed by BPEL. The
MDA Service Engines and Binding Components data are effectively obtained
from the model transformation.

BPEL is directly executable in software, and can be used during all phases of
a software development process for process-oriented organizations. These char-
acteristics can reduce the time to implement a project, as well as the value that
an organization receives from using BPEL due to the reduction of functional
requirements misunderstandings and losses occurring during normal software
development projects. We used a case study to better clarify these perceptions.

We also proposed an holistic technique to properly choose a business process
modeling language supporting technology, business, and information systems
strategies of an organization. As a result from our work, we defined also a map-
ping of the business process model states in order to define a correct passage
from the third to the last phase of BIM.

The implementation of business process models recurring to ESBs software
architectures provides an easy and sound composition of business process that
require applications external to the ESB, in a standardized way.

A limitation of BPEL is that it only allows designing fully automatic business
processes, i.e., business processes where all activity is executed in the computing
domain. In many organizations, most of the business processes - eventually some
core business processes - are not fully automatic, requiring human intervention
to proceed with its flow of activities. BPEL4People [38], yet with little tool sup-
port, allows the addition of the representation of human tasks in BPEL process
providing a basis to further develop the proposed techniques, now also interfacing
humans. Additionally, we intend to further use the technique to choose an ade-
quate business process modeling language in different organizations and project
contexts in order to have a broader quantitative evaluation of the adequateness of
each business process modeling language to the current organizations developing
software.

References

1. Smith, H., Fingar, P.: Business Process Management — The Third Wave. Meghan-
Kiffer Press (2002)

2. Fernandes, J., Duarte, F.: A reference framework for process-oriented software
development organizations. Software and Systems Modeling 4(1), 94-105 (2005),
doi:10.1007/s10270-004-0063-0

3. Fernandes, J.M., Duarte, F.J.: Using RUP for Process-Oriented Organisations.
In: Bomarius, F., Iida, H. (eds.) PROFES 2004. LNCS, vol. 3009, pp. 348-362.
Springer, Heidelberg (2004)

4. Kleppe, A., Warmer, J., Bast, W.: MDA Explained: The Model Driven Architecture
— Practice and Promise. Addison-Wesley (2003)

166

5.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

N. Santos et al.

Duarte, F.J., Machado, R.J., Fernandes, J.M.: BIM: A Methodology to Transform
Business Processes into Software Systems. In: Biffl, S., Winkler, D., Bergsmann, J.
(eds.) SWQD 2012. LNBIP, vol. 94, pp. 39-58. Springer, Heidelberg (2012)
OMG, Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification,
version 1.1. OMG Document Number, formal/2011-01-01 (2011)

Zhao, W., Hauser, R., Battacharya, K., Bryant, B., Cao, F.: Compiling business
processes: untangling unstructured loops in irreducible flow graphs. International
Journal on Web and Grid Services 2(1), 68-91 (2006),
doi:10.1504/IJWGS.2006.008880

Bezivin, J., Hammoudi, S., Lopes, D., Jouault, F.: Applying MDA approach to B2B
applications: a road map. In: Workshop on Model Driven Development (WMDD
2004), within the 18th European Conference on Object-Oriented Programming,
ECOOP 2004 (2004)

Bezivin, J., Dupe, G., Jouault, F., Pitette, G., Rougui, J.: First experiments with
the ATL model transformation language: Transforming XSLT into XQuery. In: 2nd
OOPSLA Workshop on Generative Techniques in the Context of Model Driven
Architecture (2003)

Koehler, J., Hauser, R., Sendall, S., Wahler, M.: Declarative techniques for model-
driven business process integration. IBM Systems Journal 44(1), 47-65 (2005)
Lezoche, M., Missikoff, M., Tininini, L.: Business process evolution: a rule-based
approach. In: 9th Workshop on Business Process Modeling, Development and Sup-
port, BPMDS 2008 (2008)

Rungworawut, W., Senivongse, T.: Using ontology search in the design of class dia-
gram from business process model. In: Proc. International Conference on Computer
Science (ICCS 2006), Vienna, Austria, pp. 165-170 (2006)

MDA Guide Version 1.0.1, OMG Std.

Johnson, R., Hoeller, J., Arendsen, A., Risberg, T., Sampaleanu, C.: Professional
Java Development using the Spring Framework. John Wiley & Sons (2005)
Rademakers, T., Dirksen, J.: Open-Source ESBs in Action. Manning (2008)
Schmidt, M.-T., Hutchison, B., Lambros, P., Phippen, R.: The enterprise service
bus: making service-oriented architecture real. IBM Systems Journal 44(4), 781-
797 (2005), doi:10.1147/sj.444.0781

Alliance, T.O.: OSGi Service Platform Core Specification 4.2, The OSGi Alliance
Std. 4, Rev. 4.2 (June 2009), http://www.osgi.org

Ten-Hove, R., Walker, P.: Java Business Integration (JBI) 1.0, Final release, Tech-
nical report, JSR 208 (2005)

Web Service Description Language (WSDL), W3C Std.,
http://www.w3.org/TR/wsdl

OMG, Business Process Modeling Notation (BPMN) 1.2, Object Management
Group Std. OMG Document Number: formal /2009-01-03, Rev. 1.2 (January 2009),
http://www.omg.org/spec/BPMN/1.2

Juric, M., Mathew, B., Sarang, P.: Business Process Execution Language for Web
Services, 2nd edn. Packt Publishing (2006)

Shapiro, R.: XPDL 2.0: Integrating process interchange and BPMN. In: Workflow
Handbook, pp. 183-194 (2006)

van der Aalst, W., ter Hofstede, A.: YAWL: yet another workflow language. Infor-
mation Systems 30(4), 245-275 (2005), doi:10.1016/j.is.2004.02.002

Jensen, K., Kristensen, L.: Coloured Petri Nets - Modelling and Validation of
Concurrent Systems. Springer (2009)

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.
35.

36.

37.

38.

Transformation of BPMs into Software-Executable Models 167

Ko, R., Lee, S., Lee, E.: Business process management (BPM) standards: a survey.
Business Process Management Journal 15(5), 744-791 (2009),
doi:10.1108/14637150910987937

Recker, J., Indulska, M., Rosemann, M., Green, P.: Business process modeling -
a comparative analysis. Journal of the Association of Information Systems 10(4)
(2009)

Wand, Y., Weber, R.: An ontological model of an information system. IEEE Trans-
action on Software Engineering 16(11), 1282-1292 (1990), doi:10.1109/32.60316
van der Aalst, W., ter Hofstede, A., Kiepuszewski, B., Barros, A.: Workflow pat-
terns. QUT Technical report, FIT-TR-2002-02 (2002)

Pearlson, K., Saunders, C.: Managing and Using Information Systems, 4th edn.
Wiley Publishing (2009)

van der Aalst, W., Dumas, M., ter Hofstede, A., Wohed, P.: Pattern-based analysis
of BPML (and WSCI). QUT Technical report, FIT-TR-2002-05 (2002)

van der Aalst, W.: Patterns and XPDL: A critical evaluation of the XML process
definition language. QUT Technical report FIT-TR-2003-06 (2003)

Mendling, J., Moser, M., Neumann, G.: Transformation of yEPC business process
models to YAWL. In: ACM Symposium on Applied Computing (SAC 2006), pp.
1262-1266. ACM (2006), doi:10.1145/1141277.1141572

Helkio, P., Seppéléd, A., Syd, O.: Evaluation of Intalio BPM tool. Special Course
in Information System Integration (2006)

van Haecke, B.: JDBC: Java Database Connectivity. John Wiley & Sons (1997)
A. CXF, Apache CXF: An open-source services framework (2012),
http://cxf.apache.org

Fowler, M., Parsons, R., MacKenzie, J.: Pojo, an acronym for: Plain old java object
(2000), http://www.martinfowler.com/bliki/P0J0.html

Schuessler, T.: Developing applications with the SAP Java Connector (JCo). Ara-
Soft, vol. 1 (2002), http://ARAsoft.de/

Kloppmann, M., Koenig, D., Leymann, F., Pfau, G., Rickayzen, A., von Riegen, C.,
Schmidt, P., Trickovic, I.: WS-BPEL extension for people — BPEL4people, Joint
white paper, IBM and SAP (2005)

