A TRANSFORMATION OF RIGHT-DEFINITE S-HERMITIAN SYSTEMS TO CANONICAL SYSTEMS

H. Langer
Sektion Mathematik, Technische Universität Dresden
Mommsenstr. 13, 8027 Dresden, German Democratic Republic

R. Mennicken

NWF I - Mathematik, Universität Regensburg
Universitätstr. 31, 8400 Regensburg, Federal Republic of Germany
(Submitted by: F.V. Atkinson)

Abstract

It is shown that right-definite S-hermitian boundary value problems (im Normalfall), which were defined and thoroughly studied by Schäfke and Schneider in $[5,6]$, can be reduced to canonical systems with selfadjoint boundary conditions in such a way that the transformed boundary conditions become a special case of those considered by Dijksma, Langer and de Snoo in [1-3].

1. In this note, the first order system of differential equations

$$
\begin{equation*}
F_{11} y^{\prime}+F_{12} y=\lambda\left(G_{11} y^{\prime}+G_{12} y\right) \tag{1}
\end{equation*}
$$

on the compact interval $I=[a, b]$ is considered. As in [5, 6] we suppose that the $n \times n$-matrix functions $F_{1 j}, G_{1 j}$ as well as $S_{1 j}$ below, $j=1,2$, are continuous on I and that $F_{11}(x)-\lambda G_{11}(x)$ is invertible for all $x \in I$ and $\lambda \in \mathbb{R}$. The problem (1) is called S-hermitian (im Normalfall) with respect to the differential operator

$$
S_{1} y:=S_{11} y^{\prime}+S_{12} y
$$

if there exists a continuously differentiable $n \times n$-matrix function H on I such that for all real λ the relationship

$$
\begin{aligned}
& \left(\begin{array}{cc}
F_{11}-\lambda G_{11} & F_{12}-\lambda G_{12} \\
S_{11} & S_{12}
\end{array}\right)^{*}\left(\begin{array}{cc}
0 & -I_{n} \\
I_{n} & 0
\end{array}\right)\left(\begin{array}{cc}
F_{11}-\lambda G_{11} & F_{12}-\lambda G_{12} \\
S_{11} & S_{12}
\end{array}\right) \\
= & \left(\begin{array}{cc}
0 & H \\
H & H^{\prime}
\end{array}\right)
\end{aligned}
$$

holds on I and $H(x)$ is invertible and skew-hermitian for all $x \in I$. If Y denotes the $n \times n$-matrix function which is the solution of the initial value problem

$$
F_{11} Y^{\prime}+F_{12} Y=0, \quad Y(a)=I_{n}
$$

on I, then the matrix function H satisfies the equation

$$
H(x)=Y(x)^{*-1} H(a) Y(x)^{-1}
$$

and the relationship (2) can be written as

$$
\left(\begin{array}{cc}
F_{11}-\lambda G_{11} & F_{12}-\lambda G_{12} \tag{3}\\
S_{11} & S_{12}
\end{array}\right)=\left(\begin{array}{cc}
I_{n} & -\lambda W_{1} \\
0 & I_{n}
\end{array}\right)\left(\begin{array}{cc}
I_{n} & 0 \\
L & I_{n}
\end{array}\right)\left(\begin{array}{cc}
F_{11} & F_{12} \\
0 & \stackrel{\circ}{S_{12}}
\end{array}\right)
$$

where

$$
\begin{equation*}
\stackrel{\circ}{S}_{12}=-F_{11}^{*-1} H \tag{4}
\end{equation*}
$$

and W_{1}, L are continuous $n \times n$-matrix functions such that $W_{1}(x), L(x)$ are hermitian and $W_{1}(x) L(x)$ is nilpotent for all $x \in[a, b]$, (cf. [6], p.,72). The problem (1), (2) is called right-definite if $W_{1} \geq 0$ on I.

It is the aim of this note to show that a right-definite S-hermitian system can be reduced to a canonical system, that is to the situation where $F_{12}=G_{11}=0, F_{11}=J$ (J is an $n \times n$-matrix, independent of x, with the properties $J^{*}=J^{-1}=-J$) and $G_{12}=\Delta($ a hermitian nonnegative matrix function on $I)$. This reduction is done in two steps: The first one is to reduce the system (1) to a situation where $G_{11}=0$; after a suitable symmetrization, a result of [4] can be applied to this new system which transforms it into a canonical system.
In [5, 6] the system (1),(2) is considered together with S-hermitian boundary conditions which depend linearly on the eigenvalue parameter λ. We show in section 3 that, by the transformation of the system (1), (2) to a canonical system, these S hermitian boundary conditions become a special case of those conditions considered in [1] for canonical systems.
Similar results hold in the singular case when $I=[a, b)$ and the right endpoint b is in the limit point case for (1). Then the problem (1), (2) with a boundary condition at the regular point b can be included in the situation studied in [3], even in the case of arbitrary defect numbers. This will be considered elsewhere.
2. Proposition 1. Suppose that the S-hermitian system (1) is right definite. If the function y satisfies (1), then it satisfies also the equation

$$
\begin{equation*}
F_{11} y^{\prime}+F_{12} y=\lambda W_{1} \stackrel{\circ}{S}_{12} y \tag{5}
\end{equation*}
$$

with $\stackrel{\circ}{S}_{12}$ and W_{1} from (4), (3), and

$$
\left(\begin{array}{cc}
F_{11} & F_{12}-\lambda W_{1} \stackrel{\circ}{S}_{12} \tag{6}\\
0 & \stackrel{\circ}{S}_{12}
\end{array}\right)^{*}\left(\begin{array}{cc}
0 & -I_{n} \\
I_{n} & 0
\end{array}\right)\left(\begin{array}{cc}
F_{11} & F_{12}-\lambda W_{1} \stackrel{\circ}{S}_{12} \\
0 & \stackrel{\circ}{S}_{12}
\end{array}\right)=\left(\begin{array}{cc}
0 & H \\
H & H^{\prime}
\end{array}\right) .
$$

That is, the problem (5) is again S-hermitian with $S_{11}=0, S_{12}=\stackrel{\circ}{S}_{12}$ and with the same function H as the original problem.
Proof: Consider $x_{0} \in I$. As $W_{1}\left(x_{0}\right) \geq 0$, there exists an orthogonal decomposition of \mathbf{C}^{n} :

$$
\mathbf{C}^{n}=\mathcal{L}_{1} \oplus \mathcal{L}_{2},
$$

such that with respect to this decomposition we have

$$
W_{1}\left(x_{0}\right)=\left(\begin{array}{cc}
\widehat{W}_{1}\left(x_{0}\right) & 0 \\
0 & 0
\end{array}\right) \quad \text { with } \widehat{W}_{1}\left(x_{0}\right)>0 \text { if } \mathcal{L}_{1} \neq\{0\}
$$

With a corresponding matrix representation of $L\left(x_{0}\right)$ it follows

$$
W_{1}\left(x_{0}\right) L\left(x_{0}\right)=\left(\begin{array}{cc}
\widehat{W}_{1}\left(x_{0}\right) L_{11}\left(x_{0}\right) & \widehat{W}_{1}\left(x_{0}\right) L_{12}\left(x_{0}\right) \\
0 & 0
\end{array}\right)
$$

As this product is nilpotent we have $\sigma\left(\widehat{W}_{1}\left(x_{0}\right) L_{11}\left(x_{0}\right)\right)=\{0\}$. For arbitrary square matrices A, B the eigenvalues of $A B$ and $B A$ coincide. It follows that $\sigma\left(\widehat{W}_{1}\left(x_{0}\right)^{1 / 2} L_{11}\left(x_{0}\right) \widehat{W}_{1}\left(x_{0}\right)^{1 / 2}\right)=\{0\}$, hence $L_{11}\left(x_{0}\right)=0$,

$$
W_{1}\left(x_{0}\right) L\left(x_{0}\right)=\left(\begin{array}{cc}
0 & \widehat{W}_{1}\left(x_{0}\right) L_{12}\left(x_{0}\right) \\
0 & 0
\end{array}\right)
$$

and $W_{1}\left(x_{0}\right) L\left(x_{0}\right) W_{1}\left(x_{0}\right)=0$. This relationship is independent of the choice of x_{0}, therefore

$$
\begin{equation*}
W_{1}(x) L(x) W_{1}(x)=0 \quad \text { for all } x \in I \tag{7}
\end{equation*}
$$

The relationship (3) is equivalent to

$$
\begin{array}{ll}
G_{11}=W_{1} L F_{11}, & G_{12}=W_{1} L F_{12}+W_{1} \stackrel{\circ}{S}_{12} \\
S_{11}=L F_{11}, & S_{12}=L F_{12}+\stackrel{\circ}{S}_{12} \tag{9}
\end{array}
$$

and it follows that

$$
\begin{equation*}
G_{11}=W_{1} S_{11}, \quad G_{12}=W_{1} S_{12} \tag{10}
\end{equation*}
$$

Now the system (1) can be written as

$$
\left(I_{n}-\lambda G_{11} F_{11}^{-1}\right) F_{11} y^{\prime}=\lambda G_{12} y-F_{12} y
$$

and it follows from (8) and (7) that

$$
\begin{aligned}
F_{11} y^{\prime} & =\left(I_{n}-\lambda G_{11} F_{11}^{-1}\right)^{-1}\left(\lambda G_{12} y-F_{12} y\right)=\left(I_{n}-\lambda W_{1} L\right)^{-1}\left(\lambda G_{12} y-F_{12} y\right) \\
& =\left(I_{n}+\lambda W_{1} L\right)\left(\lambda G_{12} y-F_{12} y\right)
\end{aligned}
$$

Further, (7) and (8) imply

$$
W_{1} L G_{12}=W_{1} L\left(W_{1} L F_{12}+W_{1} \stackrel{\circ}{S}_{12}\right)=0
$$

and we find

$$
F_{11} y^{\prime}=\lambda G_{12} y-\lambda W_{1} L F_{12} y-F_{12} y=\lambda W_{1} \stackrel{\circ}{S}_{12} y-F_{12} y
$$

that is (5). It remains to show that also (6) holds, which is equivalent to the relations

$$
\begin{align*}
H & =-F_{11}^{*} \stackrel{\circ}{S}_{12} \tag{11}\\
H^{\prime} & =\stackrel{\circ}{S}_{12}^{*} F_{12}-F_{12}^{*} \stackrel{\circ}{S}_{12} \tag{12}
\end{align*}
$$

The relationship (11) coincides with (4), and (2) yields

$$
-F_{12}^{*} S_{12}+S_{12}^{*} F_{12}=H^{\prime}
$$

With the second relationship in (9) and $L=L^{*}$ this implies (12). The proposition is proved.

Remark. Recall that the (complex) symplectic group $\Gamma(2 n)$ is the set of all $2 n \times 2 n$ matrices \mathfrak{D} such that

$$
\mathfrak{D}^{*}\left(\begin{array}{cc}
0 & -I_{n} \\
I_{n} & 0
\end{array}\right) \mathfrak{D}=\left(\begin{array}{cc}
0 & -I_{n} \\
I_{n} & 0
\end{array}\right)
$$

or, equivalently,

$$
\mathfrak{D}\left(\begin{array}{cc}
0 & -I_{n} \\
I_{n} & 0
\end{array}\right) \mathfrak{D}^{*}=\left(\begin{array}{cc}
0 & -I_{n} \\
I_{n} & 0
\end{array}\right)
$$

The relationships we have shown in the proof of Proposition 1 imply that

$$
\mathfrak{A}(x):=\left(\begin{array}{cc}
I_{n}+\lambda W_{1}(x) L(x) & 0 \\
-L(x) & I_{n}-\lambda L(x) W_{1}(x)
\end{array}\right) \in \Gamma(2 n)
$$

(this is an immediate consequence of (7)), and that the relationship

$$
\mathfrak{A}\left(\begin{array}{cc}
F_{11}-\lambda G_{11} & F_{12}-\lambda G_{12} \tag{13}\\
S_{11} & S_{12}
\end{array}\right)=\left(\begin{array}{cc}
F_{11} & F_{12}-\lambda W_{1} \stackrel{\circ}{S}_{12} \\
0 & \stackrel{\circ}{S}_{12}
\end{array}\right)
$$

holds (this is a consequence of (7), (8), (9) and (10)). Thus the equivalence of (2) and (6) also follows if in (2) we replace $\left(\begin{array}{cc}0 & -I_{n} \\ I_{n} & 0\end{array}\right)$ by $\mathfrak{A}^{*}\left(\begin{array}{cc}0 & -I_{n} \\ I_{n} & 0\end{array}\right) \mathfrak{A}$ and observe (13).

Now we symmetrize the equation (5) by multiplying it from the left with $\stackrel{\circ}{S}_{12}^{*}$:

$$
\begin{equation*}
\stackrel{\circ}{S}_{12}^{*} F_{11} y^{\prime}+\stackrel{\circ}{S}_{12}^{*} F_{12} y=\lambda \stackrel{\circ}{S}_{12}^{*} W_{1} \stackrel{\circ}{S}_{12} y . \tag{14}
\end{equation*}
$$

In the relation (6), this corresponds to a transformation with the matrix

$$
\mathfrak{D}(x)=\left(\begin{array}{cc}
\stackrel{\circ}{S_{12}^{*}}(x) & 0 \\
0 & \stackrel{\circ}{S_{12}^{-1}(x)}
\end{array}\right) \in \Gamma(2 n),
$$

that is, the matrix

$$
\left(\begin{array}{cc}
0 & -I_{n} \\
I_{n} & 0
\end{array}\right)
$$

on the left hand side of (6) is replaced by

$$
\mathfrak{D}^{*}\left(\begin{array}{cc}
0 & -I_{n} \\
I_{n} & 0
\end{array}\right) \mathfrak{D}
$$

and we obtain

$$
\begin{align*}
& \left(\begin{array}{cc}
\stackrel{\circ}{S}_{12}^{*} F_{11} & \stackrel{\circ}{S} \\
0 & { }_{12} F_{12}-\lambda \\
I_{n}
\end{array} \stackrel{\circ}{*}_{W_{1}} \stackrel{\circ}{S}_{12}\right) *\left(\begin{array}{cc}
0 & -I_{n} \\
I_{n} & 0
\end{array}\right)\left(\begin{array}{cc}
\stackrel{\circ}{S}_{12}^{*} F_{11} & \stackrel{\circ}{S}{ }_{12}^{*} F_{12}-\lambda \stackrel{\circ}{S}_{12}^{*} W_{1} \stackrel{\circ}{S}_{12} \\
I_{n}
\end{array}\right) \\
& =\left(\begin{array}{cc}
0 & H \\
H & H^{\prime}
\end{array}\right) \text {. } \tag{15}
\end{align*}
$$

We introduce the matrix functions

$$
\begin{equation*}
Q:=-i H, \quad A:=\stackrel{\circ}{S}_{12}^{*} W_{1} \stackrel{\circ}{S}_{12}, \quad B:=\operatorname{Re}\left(\stackrel{\circ}{S}_{12}^{*} F_{12}\right) \tag{16}
\end{equation*}
$$

Then Q has a continuous derivative, A and B are continuous on I. The values of Q and B are hermitian matrices, the values of Q are invertible and A is nonnegative as the problem (1) was supposed to be right definite: $W_{1} \geq 0$. With these functions, the equation (14) becomes

$$
\begin{equation*}
\frac{i}{2}\left\{(Q y)^{\prime}+Q y^{\prime}\right\}=\lambda A y+B y \tag{17}
\end{equation*}
$$

Now, as in [4] we represent $Q(x)$ as

$$
\begin{equation*}
i Q(x)=q(x)^{*} J q(x) \tag{18}
\end{equation*}
$$

where J is an $n \times n$-matrix with the properties $J^{*}=-J=J^{-1}$. From the construction of the $n \times n$-matrix function q in [4] it follows that this function is again continuously differentiable. With the matrix solution Z of the initial value problem

$$
\begin{equation*}
J Z^{\prime}=q^{*-1}\left\{B+\frac{1}{2}\left(q^{*} J q^{\prime}-q^{\prime *} J q\right)\right\} q^{-1} Z, \quad Z(a)=I_{n} \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
S(x):=q(x)^{-1} Z(x), \quad \tilde{y}(x)=S(x)^{-1} y(x) \quad(x \in I) \tag{20}
\end{equation*}
$$

the equation (17) becomes

$$
\begin{equation*}
J \tilde{y}^{\prime}=\lambda \Delta \tilde{y} \tag{21}
\end{equation*}
$$

where J is given by (18), and

$$
\Delta(x):=Z(x)^{*} q(x)^{*-1} A(x) q(x)^{-1} Z(x) \geq 0 \quad(x \in I)
$$

Thus we have proved:

Proposition 2. Suppose that the S-hermitian system (1) is right-definite. If the function y is a solution of (1), then the function \tilde{y}, defined by (20), is a solution of the canonical differential equation (21). The canonical differential equation (21) is again S-hermitian, and the relationship (2) becomes now

$$
\left(\begin{array}{cc}
J & -\lambda \Delta \tag{22}\\
0 & I_{n}
\end{array}\right)^{*}\left(\begin{array}{cc}
0 & -I_{n} \\
I_{n} & 0
\end{array}\right)\left(\begin{array}{cc}
J & -\lambda \Delta \\
0 & I_{n}
\end{array}\right)=\left(\begin{array}{cc}
0 & J \\
J & 0
\end{array}\right) .
$$

Below we shall use the following relation:

$$
\begin{equation*}
S(x)^{*} H(x) S(x)=J \quad(x \in I) \tag{23}
\end{equation*}
$$

Indeed, from (16), (18), (20), we obtain

$$
\begin{align*}
S(x)^{*} H(x) S(x) & =i S(x)^{*} Q(x) S(x)=S(x)^{*} q(x)^{*} J q(x) S(x) \\
& =Z(x)^{*} J Z(x)=J \tag{24}
\end{align*}
$$

where the last equality is a well-known property of the solution Z of the initial value problem (19). The relation (24) is equivalent to

$$
\begin{equation*}
S(x) J S(x)^{*}=-H(x)^{-1} \quad(x \in I) \tag{25}
\end{equation*}
$$

3. Now we consider boundary conditions of the form

$$
\begin{equation*}
\left(F_{21}-\lambda G_{21}\right) y(a)+\left(F_{22}-\lambda G_{22}\right) y(b)=0 \tag{26}
\end{equation*}
$$

with $n \times n$-matrices $F_{2 j}, G_{2 j}, j=1,2$. Recall that the boundary condition (26) for the system (1),(2) is called S-hermitian if there exist $n \times n$-matrices S_{21}, S_{22} such that the relationship

$$
\begin{align*}
& \left(\begin{array}{cc}
F_{21}-\lambda G_{21} & F_{22}-\lambda G_{22} \\
S_{21} & S_{22}
\end{array}\right)^{*}\left(\begin{array}{cc}
0 & -I_{n} \\
I_{n} & 0
\end{array}\right)\left(\begin{array}{cc}
F_{21}-\lambda G_{21} & F_{22}-\lambda G_{22} \\
S_{21} & S_{22}
\end{array}\right) \\
= & \left(\begin{array}{cc}
H(a) & 0 \\
0 & -H(b)
\end{array}\right) \tag{27}
\end{align*}
$$

holds for all real λ. Then there exists a hermitian $n \times n$-matrix W_{2} such that

$$
\begin{equation*}
G_{21}=W_{2} S_{21}, \quad G_{22}=W_{2} S_{22} \tag{28}
\end{equation*}
$$

(see [6], p. 72). If we introduce the function $\tilde{y}=S^{-1} y$ according to (20), the boundary condition for the canonical system (21) becomes

$$
\begin{equation*}
\left(\widetilde{F}_{21}-\lambda \widetilde{G}_{21}\right) \tilde{y}(a)+\left(\widetilde{F}_{22}-\lambda \widetilde{G}_{22}\right) \tilde{y}(b)=0 \tag{29}
\end{equation*}
$$

with

$$
\begin{equation*}
\widetilde{F}_{21}=F_{21} S(a), \quad \widetilde{F}_{22}=F_{22} S(b), \quad \widetilde{G}_{21}=G_{21} S(a), \quad \widetilde{G}_{22}=G_{22} S(b) \tag{30}
\end{equation*}
$$

Multiplying the relationship (27) by

$$
\left(\begin{array}{cc}
S(a)^{*} & 0 \\
0 & S(b)^{*}
\end{array}\right)
$$

from the left and by

$$
\left(\begin{array}{cc}
S(a) & 0 \\
0 & S(b)
\end{array}\right)
$$

from the right and observing (30) it follows

$$
\begin{align*}
& \left(\begin{array}{cc}
\widetilde{F}_{21}-\lambda \widetilde{G}_{21} & \widetilde{F}_{22}-\lambda \widetilde{G}_{22} \\
\widetilde{S}_{21} & \widetilde{S}_{22}
\end{array}\right)^{*}\left(\begin{array}{cc}
0 & -I_{n} \\
I_{n} & 0
\end{array}\right)\left(\begin{array}{cc}
\widetilde{F}_{21}-\lambda \widetilde{G}_{21} & \widetilde{F}_{22}-\lambda \widetilde{G}_{22} \\
\widetilde{S}_{21} & \widetilde{S}_{22}
\end{array}\right) \\
= & \left(\begin{array}{cc}
J & 0 \\
0 & -J
\end{array}\right) \tag{31}
\end{align*}
$$

with

$$
\begin{equation*}
\widetilde{S}_{21}=S_{21} S(a), \quad \widetilde{S}_{22}=S_{22} S(b) \tag{32}
\end{equation*}
$$

Therefore, the canonical system (21) with the boundary condition (29) is S-hermitian with the companion matrix $\widetilde{H}(x) \equiv J(x \in I)$ (observe (22)). The relationships (28), (30), and (32) imply that

$$
\begin{equation*}
\widetilde{G}_{21}=W_{2} \widetilde{S}_{21}, \quad \widetilde{G}_{22}=W_{2} \widetilde{S}_{22} \tag{33}
\end{equation*}
$$

that is, the hermitian matrix W_{2} does not change under the transformation of (1) into a canonical system. Hence, if the boundary condition (26) is right-definite (that is $W_{2} \geq 0$), also the boundary condition (29) for the canonical system is right-definite.

The next proposition implies that the S-hermitian boundary condition (29) is a special case of the boundary condition considered in [1].

Proposition 3. If the boundary condition (29) is S-hermitian for the canonical system (21) (that is (31) is satisfied), then, with $\widetilde{A}(\lambda):=\widetilde{F}_{21}-\lambda \widetilde{G}_{21}, \widetilde{B}(\lambda):=$ $\widetilde{F}_{22}-\lambda \widetilde{G}_{22}$, it holds:
(i) $\quad \operatorname{rank}(\widetilde{A}(\lambda), \widetilde{B}(\lambda))=n \quad(\lambda \in \mathbf{R})$;
(ii) $\widetilde{A}(\lambda) J \widetilde{A}(\lambda)^{*}-\widetilde{B}(\lambda) J \widetilde{B}(\lambda)^{*}=0 \quad(\lambda \in \mathbf{R})$;
(iii) $\quad K_{\widetilde{A}, B}(\lambda, l):=\frac{\widetilde{A}(\bar{l}) J \widetilde{A}(\bar{\lambda})^{*}-\widetilde{B}(\bar{l}) J \widetilde{B}(\bar{\lambda})^{*}}{\lambda-\bar{l}}=-\widetilde{F}_{21} J \widetilde{G}_{21}^{*}+\widetilde{F}_{22} J \widetilde{G}_{22}$
and this expression coincides with W_{2} in (33):

$$
\begin{equation*}
W_{2}=-\widetilde{F}_{21} J \widetilde{G}_{21}^{*}+\widetilde{F}_{22} J \widetilde{G}_{22}^{*} \tag{34}
\end{equation*}
$$

Proof: With $\widetilde{\mathfrak{A}}(\lambda):=\left(\begin{array}{cc}\widetilde{F}_{21}-\lambda \widetilde{G}_{21} & \widetilde{F}_{22}-\widetilde{S}_{22} \\ \widetilde{S}_{21} & \widetilde{G}_{22}\end{array}\right)$ the equation (31) is equivalent to

$$
\widetilde{\mathfrak{A}}(\lambda)\left(\begin{array}{cc}
J & 0 \\
0 & -J
\end{array}\right) \widetilde{\mathfrak{A}}(\lambda)^{*}=\left(\begin{array}{cc}
0 & -I_{n} \\
I_{n} & 0
\end{array}\right) \quad(\lambda \in \mathbf{R})
$$

that is

$$
\begin{align*}
& \widetilde{A}(\lambda) J \widetilde{A}(\lambda)^{*}-\widetilde{B}(\lambda) J \widetilde{B}(\lambda)^{*}=0 \tag{35}\\
& \widetilde{A}(\lambda) J \widetilde{S}_{21}^{*}-\widetilde{B}(\lambda) J \widetilde{S}_{22}^{*}=-I_{n} \tag{36}\\
& \widetilde{S}_{21} J \widetilde{S}_{21}^{*}-\widetilde{S}_{22} J \widetilde{S}_{22}^{*}=0
\end{align*}
$$

The relation (36) implies (i), and (ii) is equivalent to (35). The first equality in (iii) is easy to check. Further, (31) implies

$$
\widetilde{G}_{21}^{*} \widetilde{S}_{21}-\widetilde{S}_{21}^{*} \widetilde{G}_{21}=\widetilde{G}_{22}^{*} \widetilde{S}_{21}-\widetilde{S}_{22}^{*} \widetilde{G}_{21}=\widetilde{G}_{22}^{*} \widetilde{S}_{22}-\widetilde{S}_{22}^{*} \widetilde{G}_{22}=0
$$

and (36) yields

$$
-\widetilde{F}_{21} J \widetilde{S}_{21}^{*}+\widetilde{F}_{22} J \widetilde{S}_{22}^{*}=I_{n}
$$

Therefore, we find for $j=1,2$

$$
\left(-\widetilde{F}_{21} J \widetilde{G}_{21}^{*}+\widetilde{F}_{22} J \widetilde{G}_{22}^{*}\right) \widetilde{S}_{2 j}=\left(-\widetilde{F}_{21} J \widetilde{S}_{21}^{*}+\widetilde{F}_{22} J \widetilde{S}_{22}^{*}\right) \widetilde{G}_{2 j}=\widetilde{G}_{2 j}
$$

that is, the matrix defined in the first relationship of (iii) has the properties of W_{2} in (33). As this matrix is uniquely determined, the relationship (34) follows.
Remark 1. The statement (iii) of Proposition 3 implies that the boundary condition (26) or (29) is right definite if and only if the kernel $K_{\widetilde{A}, \widetilde{B}}(\lambda, l)$ is nonegative definite, that is, the extending space in the construction of [1] is equipped with a positive definite inner product.
Remark 2. The relations (25) and (30) imply that the matrix W_{2} in (34) can be expressed in terms of the matrices in the boundary condition (26):

$$
W_{2}=F_{21} H(a)^{-1} G_{21}^{*}-F_{22} H(b)^{-1} G_{22}^{*}
$$

Remark 3. If $\widetilde{A}(\lambda), \widetilde{B}(\lambda)$ are λ-linear $n \times n$-matrix functions as in Proposition 3 with the properties (i) and (ii), there do not necessarily exist matrices $\widetilde{S}_{21}, \widetilde{S}_{22}$ such that (31) holds. According to ([5], p.245), for this it is necessary and sufficient that we have additionally

$$
\operatorname{rank}\left(\begin{array}{ll}
\widetilde{F}_{21} & \widetilde{F}_{22} \\
\widetilde{G}_{21} & \widetilde{G}_{22}
\end{array}\right)=n+\operatorname{rank}\left(\widetilde{G}_{21}, \widetilde{G}_{22}\right) .
$$

REFERENCES

[1] A. Dijksma, H. Langer, and H.S.V. de Snoo, Selfadjoint Π_{κ}-extensions of symmetric subspaces: An abstract approach to boundary problems with spectral parameter in the boundary conditions, Integral Equations Operator Theory 7 (1984), 459-515.
[2] A. Dijksma, H. Langer, and H.S.V. de Snoo, Symmetric Sturm-Liouville operators with eigenvalue-depending boundary conditions, Can. Math. Soc. Conference Proc., 8 (1987), 87116.
[3] A. Dijksma, H. Langer, and H.S.V. de Snoo, Hamiltonian systems with eigenvalue depending boundary conditions, Operator Theory: Adv. Appl., 35 (1988), 37-83.
[4] V.I. Kogan and F.S. Rofe-Beketov, On square-integrable solutions of symmetric systems of differential equations of arbitrary order, Proc. Royal Soc. Edinburgh, Sect. A, 74 (1974-75), 5-40.
[5] F.W. Schäfke and A. Schneider, S-hermitesche rand-eigenwertprobleme. II, Math. Ann., 165 (1966), 236-260.
[6] F.W. Schäfke and A. Schneider, S-hermitesche rand-eigenwertprobleme. III. Math. Ann., 177 (1968), 67-94.

