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Abstract. It is shown that right-definite S-hermitian boundary value prob
lems (im Normalfall), which were defined and thoroughly studied by Schafke and 
Schneider in [5, 6], can be reduced to canonical systems with selfadjoint boundary 
conditions in such a way that the transformed boundary conditions become a special 
case of those considered by Dijksma, Langer and de Snoo in [1-3]. 

1. In this note, the first order system of differential equations 

(1) 

on the compact interval I = [a, b] is considered. As in [5, 6] we suppose that the 
n x n-matrix functions F 1j, G 1j as well as S1j below, j = 1, 2, are continuous on I 
and that Fu(x)- AGu(x) is invertible for all x E I and A E R. The problem (1) is 
called S-hermitian (im Normalfall) with respect to the differential operator 

S1y := Suy' + S12Y 

if there exists a continuously differentiable n x n-matrix function H on I such that 
for all real A the relationship 

-In) (Fu- AGu 
0 Su 

(2) 

holds on I and H(x) is invertible and skew-hermitian for all x E I. If Y denotes 
the n x n-matrix function which is the solution of the initial value problem 
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on I, then the matrix function H satisfies the equation 

H(x) = Y(x)*- 1 H(a)Y(x)- 1 

and the relationship (2) can be written as 

(
Fn- ..\Gn 

8u 

where 

(3) 

(4) 

and W1 , L are continuous n x n-matrix functions such that W1(x), L(x) are hermi
tian and W1(x)L(x) is nilpotent for all x E [a,b], (cf. [6], p.,72). The problem (1), 
(2) is called right-definite if W1 2: 0 on I. 

It is the aim of this note to show that a right-definite 8-hermitian system can be 
reduced to a canonical system, that is to the situation where F 12 = G11 = 0, F 11 = J 
(J is ann x n-matrix, independent of x, with the properties J* = J-1 = -J) and 
G 12 = ~ (a hermitian nonnegative matrix function on I). This reduction is done in 
two steps: The first one is to reduce the system (1) to a situation where G11 = 0; 
after a suitable symmetrization, a result of [4] can be applied to this new system 
which transforms it into a canonical system. , 

In [5, 6] the system (1),(2) is considered together with 8-hermitian boundary 
conditions which depend linearly on the eigenvalue parameter..\. We show in section 
3 that, by the transformation of the system (1), (2) to a canonical system, these 8-
hermitian boundary conditions become a special case of those conditions considered 
in [1] for canonical systems. 

Similar results hold in the singular case when I = [a, b) and the right endpoint 
b is in the limit point case for (1). Then the problem (1), (2) with a boundary 
condition at the regular point b can be included in the situation studied in [3], even 
in the case of arbitrary defect numbers. This will be considered elsewhere. 

2. Proposition 1. Suppose that the 8-hermitian system (1) is right definite. If 
the function y satisfies (1), then it satisfies also the equation 

0 

Fuy' + F12Y = ..\W1812Y (5) 

0 

with 812 and wl from (4), (3), and 

0 

That is, the problem (5) is again 8-hermitian with 8 11 = 0, 8 12 = 8 12 and with 
the same function H as the original problem. 

Proof: Consider Xo E I. As wl (xo) 2: 0, there exists an orthogonal decomposition 
oren: 
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such that with respect to this decomposition we have 

With a corresponding matrix representation of L(x0 ) it follows 

W ( )£( ) _ (fi-\(xo)Lu(xo) tf\(xo)L12(xo)) 
1 xo xo - 0 0 . 

As this product is nilpotent we have a(tt\(x0 )£11 (x0 )) = {0}. For arbitrary 
square matrices A, B the eigenvalues of AB and BA coincide. It follows that 
a(R\(x0)112£ 11 (xo)lf\(xo)112) = {0}, hence Lu(xo) = 0, 

Wl (xo)L(xo) = ( ~ It\ (xo)~12(xo)) 

and W1 (x0 )L(x0 )W1 (x0 ) = 0. This relationship is independent of the choice of x0 , 

therefore 
W1(x)L(x)W1(x) = 0 for all x E J. 

The relationship (3) is equivalent to 

0 

Gu = W1LFu, G12 = W1LF12 + W1812, 
0 

5u = LFu, 812 = LF12 + 812, 

and it follows that 

(7) 

(8) 

(9) 

(10) 

Now the system (1) can be written as 

and it follows from (8) and (7) that 

Fuy' =(In- ..\GuFil_1)-1(..\G12Y- F12y) =(In- ..\W1L)- 1(..\G12y- F12Y) 

= (In+ ..\W1£)(..\G12Y- F12y). 

Further, (7) and (8) imply 

0 

Vl71LG12 = W1L(W1LF12 + W1812) = 0, 

and we find 

0 

Fuy' = ..\G12Y- ..\W1LF12Y- F12Y = ..\W1812Y- F12Y, 
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that is (5). It remains to show that also (6) holds, which is equivalent to the 
relations 

0 0 

H' = Si2F12 - F{2S 12. 

The relationship (11) coincides with (4), and (2) yields 

(11) 

(12) 

With the second relationship in (9) and L = L* this implies (12). The proposition 
is proved. 

Remark. Recall that the (complex) symplectic group r(2n) is the set of all 2n x 2n
matrices ::0 such that 

::0* ( 0 In -In)::o=(O 
0 In 

or, equivalently, 

-In) ::0* = ( 0 
0 In -In) 0 . 

The relationships we have shown in the proof of Proposition 1 imply that 

·- (In+ AW1(x)L(x) 0 ) 
2l(x) .- -L(x) In- AL(x)W1(x) E f(2n) 

(this is an immediate consequence of (7)), and that the relationship 

2l ( Fu - AGu 
Su 

F12- AG12) = (F11 

s12 0 
(13) 

holds (this is a consequence of (7), (8), (9) and (10)). Thus the equivalence of 

(2) and (6) also follows if in (2) we replace ( 1 -~n) by 2(* ( z -~n) 2l and 

observe (13). 
0 

Now we symmetrize the equation (5) by multiplying it from the left with Si2 : 

0 0 0 0 

S'i_ 2Fuy' + S'i_ 2F12Y = AS'i_2 W1S12Y· (14) 

In the relation (6), this corresponds to a transformation with the matrix 

::O(x) = ( Si20(x) o 0 ) E r(2n), 
S]}(x) 

that is, the matrix 

( 0 -In) In 0 
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on the left hand side of (6) is replaced by 

-In) f) 
0 ' 

and we obtain 

(15) 

We introduce the matrix functions 

0 0 0 

Q := -iH, A:= S~2W1S12, B := Re(S~2F12). (16) 

Then Q has a continuous derivative, A and B are continuous on I. The values of Q 
and B are hermitian matrices, the values of Q are invertible and A is nonnegative as 
the problem (1) was supposed to be right definite: W1 2: 0. With these functions, 
the equation ( 14) becomes 

~{(Qy)' + Qy'} = AAy +By. (17) 

Now, as in [4] we represent Q(x) as 

iQ(x) = q(x)* Jq(x) (18) 

where J is an n x n-matrix with the properties J* = -J = J- 1 . From the con
struction of the n x n-matrix function q in [4] it follows that this function is again 
continuously differentiable. With the matrix solution Z of the initial value problem 

and 

S(x) := q(x)- 1 Z(x), y(x) = S(x)- 1y(x) (x E I) (20) 

the equation (17) becomes 

Jy' = AD.y (21) 

where J is given by (18), and 

D.(x) := Z(x)*q(x)*- 1 A(x)q(x)- 1 Z(x) 2: 0 (x E I). 

Thus we have proved: 
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Proposition 2. Suppose that the S-hermitian system (1) is right-definite. If the 
function y is a solution of (1), then the function f), defined by (20), is a solution of 
the canonical differential equation (21). The canonical differential equation (21) is 
again S-hermitian, and the relationship (2) becomes now 

Below we shall use the following relation: 

S(x)* H(x)S(x) = J (x E J). 

Indeed, from (16), (18), (20), we obtain 

S(x)* H(x)S(x) = iS(x)*Q(x)S(x) = S(x)*q(x)* Jq(x)S(x) 

= Z(x)* J Z(x) = J, 

(22) 

(23) 

(24) 

where the last equality is a well-known property of the solution Z of the initial value 
problem (19). The relation (24) is equivalent to 

S(x)JS(x)* = -H(x)- 1 (x E I). (25) 

3. Now we consider boundary conditions of the form 

(26) 

with n x n-matrices F 2j,G2j, j = 1,2. Recall that the boundary condition (26) for 
the system (1),(2) is called S-hermitian if there exist n X n-matrices s21, s22 such 
that the relationship 

(27) 

holds for all real ..\. Then there exists a hermitian n x n-matrix W2 such that 

(28) 

(see [6], p. 72). If we introduce the function f) = s- 1 y according to (20), the 
boundary condition for the canonical system (21) becomes 

(29) 

with 
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Multiplying the relationship (27) by 

( S(
0
a)* o ) 

S(b)* 

from the left and by 

-( S(0a) 0 ) 
S(b) 

from the right and observing (30) it follows 

(31) 

with 
(32) 

Therefore, the canonical system (21) with the boundary condition (29) isS-hermitian 
with the companion matrix H(x) = J (x E I) (observe (22)). The relationships 
(28), (30), and (32) imply that 

..-... ........... ..._. ----
Gzl = WzSzb G22 = WzSzz, (33) 

that is, the hermitian matrix Wz does not change under the transformation of ( 1) 
into a canonical system. Hence, if the boundary condition (26) is right-definite 
(that is W2 ~ 0), also the boundary condition (29) for the canonical system is 
right-definite. 

The next proposition implies that the S-hermitian boundary condition (29) is a 
special case of the boundary condition considered in [1 J. 

Proposition 3. If the boundary condition (29) is S-hermitian for the canonical 
system (21) (that is (31) is satisfied), then, with A(.A) := F21 - .AG21 , B(.A) := - -
Fzz - .AG22, it holds: 

(i) rank(A(.A), B(.A)) = n (.A E R); 

(ii) A(A)J A( A)* - B(A)J B(A)* = 0 (.A E R); 

(iii) K- (.A l) := A(l)J Ji(X)* - B(l)J B(X)* = - Fz1Jc;1 + FzzlGzz 
A,B , A -l 

and this expression coincides with W 2 in (33): 

(34) 

Proof: With Ql(.A) := ( F21 §2~G21 Fzz §2~G22 ) the equation (31) is equivalent 

to 
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- - -A(A)J A( A)* - B(A)J B(A)* = 0, 

821J8;1- 822J8;2 = o. 

(35) 

(36) 

The relation (36) implies (i), and (ii) is equivalent to (35). The first equality in (iii) 
is easy to check. Further, (31) implies 

8;1 821 - 8;1 821 = 8;2821 - 8;2821 = 8;2822- 8;2822 = o, 
and (36) yields 

-F21J8;1 + F22J8;2 =In. 

Therefore, we find for j = 1, 2 

( -ff'21J8;1 + F'22J8;2)82j = ( -F21J8;l + F22J8;2)82j = c2j, 

that is, the matrix defined in the first relationship of (iii) has the properties of w2 
in (33). As this matrix is uniquely determined, the relationship (34) follows. 

Remark 1. The statement (iii) of Proposition 3 implies that the boundary condi
tion (26) or (29) is right definite if and only if the kernel K .A,.B(A, l) is nonegative 
definite, that is, the extending space in the construction of [1] is equipped with a 
positive definite inner product. , 

Remark 2. The relations (25) and (30) imply that the matrix W2 in (34) can be 
expressed in terms of the matrices in the boundary condition (26): 

W2 = F21H(a)- 1G;1 - F22H(b)- 1G;2. 

- -Remark 3. If A(A), B(A) are A-linear n x n-matrix functions as in Proposition - -
3 with the properties (i) and (ii), there do not necessarily exist matrices 8 21 , 8 22 
such that (31) holds. According to ([5], p.245), for this it is necessary and sufficient 
that we have additionally 
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