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This study proposes a newly developed deep-learning-based method to generate turbulent
inflow conditions for spatially developing turbulent boundary layer (TBL) simulations.
A combination of a transformer and a multiscale-enhanced super-resolution generative
adversarial network is utilised to predict velocity fields of a spatially developing TBL at
various planes normal to the streamwise direction. Datasets of direct numerical simulation
(DNS) of flat plate flow spanning a momentum thickness-based Reynolds number, Reθ =
661.5–1502.0, are used to train and test the model. The model shows a remarkable ability
to predict the instantaneous velocity fields with detailed fluctuations and reproduce the
turbulence statistics as well as spatial and temporal spectra with commendable accuracy as
compared with the DNS results. The proposed model also exhibits a reasonable accuracy
for predicting velocity fields at Reynolds numbers that are not used in the training
process. With the aid of transfer learning, the computational cost of the proposed model is
considered to be effectively low. Furthermore, applying the generated turbulent inflow
conditions to an inflow–outflow simulation reveals a negligible development distance
for the TBL to reach the target statistics. The results demonstrate for the first time that
transformer-based models can be efficient in predicting the dynamics of turbulent flows.
They also show that combining these models with generative adversarial networks-based
models can be useful in tackling various turbulence-related problems, including the
development of efficient synthetic-turbulent inflow generators.
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1. Introduction

The generation of turbulent inflow conditions is essential in simulating spatially
developing turbulent boundary layers (TBLs), considering its effect on the accuracy of
the simulations and computational cost. It is also a challenging topic due to the need
for the time-dependent turbulent inflow data to be accurately described. The generated
data should satisfy the momentum and continuity equations and consequently match the
turbulent statistics and spectra of the flow. Several approaches have been proposed to
generate turbulent inflow conditions with different levels of success (Wu 2017). Adding
infinitesimal perturbations on the laminar mean velocity profile at the inlet section
of the computational domain and allowing the transition of the boundary layer is a
straightforward approach that guarantees a realistic spatially developing TBL. However,
the need for a development distance that is long enough for the flow to reach the fully
turbulent state can result in a high computational cost, making this approach not applicable
for most turbulent flow simulations, where fully turbulent inflow conditions are required.
The use of precursor (auxiliary) parallel flow (fully developed flow) simulations with
periodic boundary conditions applied to the streamwise direction is another approach that
can be used by extracting flow fields from a plane normal to the streamwise direction and
applying the data as inflow conditions to the main simulations. Although this method can
produce accurate turbulence statistics and spectra for fully developed flows, it requires a
high computational cost. Additionally, the streamwise periodicity effect, caused by the
recycling of the flow within a limited domain size, can lead to physically unrealistic
streamwise-repetitive features in the flow fields (Wu 2017). Furthermore, using parallel
flow data as inflow for a simulation of a spatially developing TBL can result in a long
development distance downstream of the domain inlet to produce the correct boundary
layer characteristics (Lund 1993).

To address this issue, a recycling–rescaling method was introduced by Lund, Wu &
Squires (1998), which is a modified version of the method by Spalart (1988). Here the
velocity fields in the auxiliary simulation are rescaled before being reintroduced at the
inlet section. Another well-known approach for generating turbulent inflow conditions is
adding random fluctuations based on known turbulence statistics. The methods that are
based on this approach are usually called synthetic turbulent inflow generation methods.
Several methods, such as the synthetic random Fourier method (Le, Moin & Kim 1997),
synthetic digital filtering method (Klein, Sadiki & Janicka 2003), synthetic coherent eddy
method (Jarrin et al. 2006), synthetic vortex method (Mathey et al. 2006; Sergent 2002;
Yousif & Lim 2021), synthetic volume-force method (Spille-Kohoff & Kaltenbach 2001;
Schlatter & Örlü 2012) and numerical counterpart of the experimental tripping methods
(Sanmiguel Vila et al. 2017) have been proposed to feature a fast generation of turbulence
with various levels of precision. However, a long-distance downstream of the domain inlet
is required to allow the boundary layer to recover from the unphysical random fluctuations
of the generated velocity fields and produce the right flow characteristics, resulting in a
high computational cost. Another approach based on proper orthogonal decomposition
(POD) and Galerkin projection has been proposed to build a reduced-order flow model
and generate turbulent inflow conditions by utilising the most energetic eddies (Johansson
& Andersson 2004). A similar approach has been applied to experimental measurements
(Druault et al. 2004; Perret et al. 2008) to reconstruct turbulent inflow velocity fields from
hot-wire anemometry and particle image velocimetry using POD and linear stochastic
estimation. This approach showed the possibility of utilising the experimental results as
turbulent inflow conditions. However, the costly experimental set-up makes this approach
not applicable as a general method to generate turbulent inflow data.
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The rapid development of deep learning algorithms and the increase in the graphic
processing unit (GPU) capability, accompanied by the enormous amounts of high-fidelity
data generated from experimental and numerical simulations, encourage exploring new
data-driven approaches that can efficiently tackle various fluid-flow problems (Kutz 2017;
Brunton, Noack & Koumoutsakos 2020; Vinuesa & Brunton 2022). Deep learning is
a subset of machine learning, where deep neural networks are used for classification,
prediction and feature extraction (LeCun, Bengio & Hinton 2015). Recently, several
models have shown great potential in solving different problems in the field of turbulence,
such as turbulence modelling (Wang, Wu & Xiao 2017; Duraisamy, Iaccarino & Xiao
2019), turbulent flow prediction (Lee & You 2019; Srinivasan et al. 2019), reduced-order
modelling (Nakamura et al. 2021; Yousif & Lim 2022), flow control (Rabault et al. 2019;
Fan et al. 2020; Park & Choi 2020; Vinuesa et al. 2022), non-intrusive sensing (Guastoni
et al. 2021; Güemes et al. 2021) and turbulent flow reconstruction (Deng et al. 2019;
Fukami, Fukagata & Taira 2019a; Kim et al. 2021; Yousif, Yu & Lim 2021, 2022b; Eivazi
et al. 2022; Yu et al. 2022) .

Furthermore, recent studies on the generation of turbulent inflow conditions using
deep learning models have shown promising results. Fukami et al. (2019b) showed
that convolutional neural networks (CNNs) could be utilised to generate turbulent
inflow conditions using turbulent channel flow data by proposing a model based on
a convolutional autoencoder (CAE) with a multilayer perceptron (MLP). Kim & Lee
(2020) proposed a generative adversarial network (GAN) and a recurrent neural network
(RNN)-based model as a representative of unsupervised deep learning to generate
turbulent inflow conditions at various Reynolds numbers using data of turbulent channel
flow at various friction Reynolds numbers. Recently, Yousif, Yu & Lim (2022a) utilised a
combination of a multiscale CAE with a subpixel convolution layer (MSCSP-AE) having
a physical constraints-based loss function and a long short-term memory (LSTM) model
to generate turbulent inflow conditions from turbulent channel flow data.

In all of those models, the prediction of the turbulent inflow conditions is based on
parallel flows, which, as mentioned earlier, is more suitable as inflow for fully developed
TBLs. Therefore, it is necessary to develop a model that considers the spatial development
of TBLs (Jiménez et al. 2010). In this context, this paper proposes a deep learning model
(DLM) consisting of a transformer and a multiscale-enhanced super-resolution generative
adversarial network (MS-ESRGAN) to generate turbulent inflow conditions for spatially
developing TBL simulations.

The remainder of this paper is organised as follows. In § 2, the methodology of
generating the turbulent inflow data using the proposed DLM is explained. The direct
numerical simulation (DNS) datasets used for training and testing the model are described
in § 3. Section 4 presents the results obtained from testing the proposed model. Finally, § 5
presents the conclusions of the study.

2. Methodology

The proposed DLM is a combination of two architectures. The first one is the transformer
(Vaswani et al. 2017) and the second one is the MS-ESRGAN (Yousif et al. 2021). The
transformer is used to predict the temporal evolution of coarse velocity fields obtained
by selecting distributed points at various planes normal to the streamwise direction of a
spatially developing TBL flow, as shown in figure 1(a). Here the flow data are obtained
through DNS. Meanwhile, the MS-ESRGAN is used to perform a super-resolution
reconstruction of the data for all the planes predicted by the transformer, leading to final
high-resolution (HR) data, i.e. velocity fields with the same resolution as the ground
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Figure 1. Schematic of (a) training procedure for the transformer, (b) training procedure for the
MS-ESRGAN and (c) turbulent inflow generation using the proposed DLM.

truth data, as shown in figure 1(b). In other words, the transformer is trained for the
data at each plane, whereas MS-ESRGAN is trained for all the planes used in the
training process. Figure 1(c) shows the schematic representation of the proposed DLM
for generating turbulent inflow conditions. As shown in the figure, the initial input to
the DLM is represented by coarse velocity data obtained from a plane normal to the
streamwise direction with time interval [t0, . . . , tn], and the output is represented by
predicted high-resolution velocity data at an instant, tn+1, where n is set to 12 in this
study. This process is repeated recursively such that the input data is advanced by one time
step at each prediction.

In this study, the open-source library TensorFlow 2.4.0 (Abadi et al. 2016) is used for
the implementation of the presented model. The source code of the model is available at
https://fluids.pusan.ac.kr/fluids/65416/subview.do.

2.1. Transformer
A LSTM (Hochreiter & Schmidhuber 1997) is an artificial neural network that can handle
sequential data and time-series modelling. A LSTM is a type of RNN (Rumelhart, Hinton
& Williams 1986). It has also played an essential role in modelling the temporal evolution
of turbulence in various problems (Srinivasan et al. 2019; Kim & Lee 2020; Eivazi
et al. 2021; Nakamura et al. 2021; Yousif & Lim 2022). Although LSTM is designed
to overcome most of the traditional RNN limitations, such as vanishing gradients and
explosion of gradients (Graves 2012), it is usually slow in terms of training due to
its architecture, which requires that the time-series data be introduced to the network
sequentially. This prevents parallelisation of the training process, which is why a GPU is
used in deep learning calculations. Furthermore, LSTM has shown a limitation in dealing
with long-range dependencies.

957 A6-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
88

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://fluids.pusan.ac.kr/fluids/65416/subview.do
https://doi.org/10.1017/jfm.2022.1088


A transformer-based turbulent-inflow generator

Multihead

attention

Masked multihead

Self-attention

Feed forward

PE + PE +

QKV

QKV

QKV

Dense(ReLU)

LayerNorm.

+

t0 tn–3

Encoder-

layer
Decoder-

layer

Encoder inputs

Outputs

MatMul

Scale

SoftMax

MatMul
+

QKV

...Scaled dot

product attention

LayerNorm.

Dense
(linear)

Q K V

MatMul

Scale

SoftMax

MatMul

Mask

Dense
(linear)

Dense
(linear)

+

LayerNorm.

...
Masked

Scaled dot
product attention

QKV

Dense(linear)

Dense(linear) Dense(linear)

Dense(linear)

tn

Decoder inputs

tn–3

. . .tn–2 tn+1

Dense
(linear)

Q K V

Dense
(linear)

Dense
(linear)

Multihead

Self-attention

Figure 2. Architecture of the transformer. The dashed line box represents the scaled dot-product attention.

The transformer (Vaswani et al. 2017) was introduced to deal with these limitations by
applying the self-attention concept to compute the representations of its input and output
data without feeding the data sequentially. In this study, a transformer is used to model the
temporal evolution of the velocity fields that represent the turbulent inflow data.

Figure 2 shows the architecture of the transformer used in this study. Similar to the
original transformer proposed by Vaswani et al. (2017), it has two main components:
encoder and decoder. The inputs of both components are passed through a positional
encoder using sine and cosine functions, which can encode the order information of the
input data into a vector and add it directly to the input vector. The encoder consists of
six stacked encoder layers. Each layer contains a multihead self-attention sublayer and
a feed-forward sublayer. The input of the multihead self-attention sublayer consists of
queries (Q), keys (K ) and values (V ). Note that attention is a function that can map a
query and set of key-value pairs to output, where the queries, keys, values and output are
all vectors. The output can be calculated as the weighted sum of the values. The attention
function is represented by scaled dot-product attention, which is an attention mechanism
where the dot products are scaled down by

√
dk. In addition, dk is the dimension of Q, K

and it is equal to the dimension of V , i.e. dv .
The scaled dot-product attention is calculated simultaneously for Q, K , V by packing

them into the matrices Q, K , V :

Attention (Q, K , V ) = softmax
(

QKT

√
dk

)
V , (2.1)

where softmax is a function that takes an input vector and normalises it to a probability
distribution so that the output vector has values that sum to 1 (Goodfellow et al. 2014). In
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the multihead self-attention sublayer, dv = dmodel/h, where dmodel and h are the dimension
of the input data to the model and number of heads, respectively.

The multihead attention allows the model to jointly attend to information from different
representation subspaces at different positions such that

Multihead (Q, K , V ) = Concat (head1, . . . , headh) W o, (2.2)

headi = Attention
(
QW Q

i , KW K
i , VW V

i
)
, (2.3)

where W Q
i , W K

i and W V
i are the weights corresponding to Q, K , V at every head,

respectively; W o represents the weights of the concatenated heads. W Q
i ∈ R

dmodel×dk ,
W K

i ∈ R
dmodel×dk , W V

i ∈ R
dmodel×dv and W o ∈ R

hdv×dmodel .
The multihead self-attention sublayer contains six heads of scaled dot-product attention.

A residual connection (He et al. 2016) is applied around the multihead attention, followed
by layer normalisation (Ba, Kiros & Hinton 2016).

The second part of the encoder layer, i.e. the feed-forward sublayer, contains two dense
layers with linear and rectified linear unit (ReLU) activation functions. This layer projects
the vector to a larger space, where it is easier to extract the required information and then
projects it back to the original space. As in the multihead self-attention sublayer, a residual
connection is employed before applying layer normalisation.

Similar to the encoder, the decoder contains six decoder layers. In addition to the
multihead self-attention and feed-forward sublayers, the decoder layer has a third sublayer
that performs multihead attention over the output of the encoder stack. Furthermore, the
multihead self-attention sublayer is changed to a masked multihead self-attention sublayer,
as shown in figure 2, which is similar to the multihead self-attention sublayer with the
difference that the scaled dot-product attention is changed to a masked scaled dot-product
attention (Vaswani et al. 2017). The masking operation ensures that the prediction can only
depend on the known outputs, a fact that prevents later information leakage. In this study,
the dropout technique is applied to every sublayer before the residual connection and the
rate of dropout is set to 0.1.

The square of the L2 norm error is chosen as a loss function for the transformer such
that

Ltransformer = 1
M

M∑
m=1

∥∥Outputm − Targetm
∥∥2

2 , (2.4)

where Output and Target represent the output from the transformer and ground truth
data, respectively, at a specific time step, m. Here M represents the size of the training
mini-batch, which is set to 64. The adaptive moment estimation (Adam) optimisation
algorithm (Kingma & Ba 2017) is used to update the weights of the model.

2.2. MS-ESRGAN
Generative adversarial networks (Goodfellow et al. 2014) have shown great success in
image transformation and super-resolution problems (Mirza & Osindero 2014; Ledig et al.
2017; Zhu et al. 2017; Wang et al. 2018). Generative adversarial network-based models
have also shown promising results in reconstructing HR turbulent flow fields from coarse
data (Fukami et al. 2019a; Fukami, Fukagata & Taira 2021; Güemes et al. 2021; Kim
et al. 2021; Yousif et al. 2021, 2022b; Yu et al. 2022). In a GAN model that is used
for image generation, two adversarial neural networks called the generator (G) and the
discriminator (D) compete with each other. The G tries to generate artificial images with
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Figure 3. Architecture of MS-ESRGAN. (a) The generator, where γ is the residual scaling parameter which
is set to 0.2 in this study, and (b) the discriminator.

the same statistical properties as those of the real ones, whereas D tries to distinguish the
artificial images from the real ones. After successful training, G should be able to generate
artificial images that are difficult to distinguish by D. This process can be expressed as a
min–max two-player game with a value function V(D, G) such that

min
G

max
D V(D, G) = Eχ r∼Pdata(χ r)[log D(χ r)] + Eξ∼Pξ (ξ)[log(1 − D(G(ξ)))], (2.5)

where χ r is the image from the ground truth data (real image) and Pdata(χ r) is the real
image distribution. Here E represents the operation of calculating the average of all the
data in the training mini-batch. In the second right-hand term of (2.5), ξ is a random vector
used as an input to G and D(χ r) represents the probability that the image is real and not
generated by the generator. The output from G, i.e. G(ξ), is expected to generate an image
that is similar to the real one, such that the value of D(G(ξ)) is close to 1. Meanwhile,
D(χ r) returns a value close to 1, whereas D(G(ξ)) returns a value close to 0. Thus, in the
training process, G is trained in a direction that minimises V(D, G), whereas D is trained
in a direction that maximises V(D, G).

In this study, MS-ESRGAN (Yousif et al. 2021) is used to perform super-resolution
reconstruction of the velocity fields predicted by the transformer. The MS-ESRGAN is
based on the enhanced super-resolution GAN (ESRGAN) (Wang et al. 2018). Figure 3
shows the architecture of MS-ESRGAN. As shown in figure 3(a), G consists of a deep
CNN represented by residual in residual dense blocks (RRDBs) and multiscale parts
(MSP). Note that the input to G is low-resolution data, which are first passed through a
convolutional layer and then through a series of RRDBs. The MSP, consisting of three
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parallel convolutional submodels with different kernel sizes, is applied to the data features
extracted by RRDBs. More details for MSP can be found in Yousif et al. (2021, 2022b).
The outputs of the three submodels are summed and passed through a final convolutional
layer to generate HR artificial data (χa). Figure 3(b) shows that the artificial and real
data are fed to D and passed through a series of convolutional, batch normalisation
and leaky ReLU layers. As a final step, the data are crossed over a convolutional
layer. The non-transformed discriminator outputs using the real and artificial data, i.e.
C(χ r) and C(χa), are used to calculate the relativistic average discriminator value DRa
(Jolicoeur-Martineau 2018):

DRa(χ r, χa) = σ(C
(
χ r)

) − Eχa

[
C(χa)

]
, (2.6)

DRa(χa, χ r) = σ(C
(
χa)

) − Eχ r

[
C(χ r)

]
, (2.7)

where σ is the sigmoid function. In (2.6) and (2.7), DRa represents the probability that the
output from D using the real image is relatively more realistic than the output using the
artificial image.

Then, the discriminator loss function is defined as follows:

�Ra
D = −Eχ r

[
log(DRa(χ r, χa))

] − Eχa

[
log(1 − DRa(χa, χ r))

]
. (2.8)

The adversarial loss function of the generator can be expressed in a symmetrical form
as follows:

�Ra
G = −Eχ r

[
log(1 − DRa(χ r, χa))

] − Eχa

[
log(DRa(χa, χ r))

]
. (2.9)

The total loss function of the generator is defined as

LG = �Ra
G + β�pixel + �perceptual, (2.10)

where �pixel is the error calculated based on the pixel difference of the generated and
ground truth data; �perceptual represents the difference between features that are extracted
from the real and the artificial data. The pretrained CNN VGG-19 (Simonyan & Zisserman
2014) is used to extract the features using the output of three different layers (Yousif et al.
2021). Here, β is a weight coefficient and its value is set to be 5000. The square of the
L2 norm error is used to calculate �pixel and �perceptual. The size of the mini-batch is set to
32. As in the transformer model, the Adam optimisation algorithm is used to update the
weights of the model.

3. Data description and preprocessing

The transitional boundary layer database (Lee & Zaki 2018) available at the Johns Hopkins
turbulence databases (JHTDB) is considered in this study for the training and testing of
the DLM. The database was obtained via DNS of incompressible flow over a flat plate
with an elliptical leading edge. In the simulation, the half-thickness of the plate L and the
free stream velocity U∞ are used as a reference length and velocity. In addition, x, y and
z are defined as the streamwise, wall-normal and spanwise coordinates, respectively, with
the corresponding velocity components u, v and w. Note that the same definitions of the
coordinates and velocity components are used in this study.

In the simulation, the length of the plate, Lx = 1050L measured from the leading edge
(x = 0), the domain height, Ly = 40L and the width of the plate, Lz = 240L. The stored
database in JHTDB is in the range x ∈ [30.2185, 1000.065]L, y ∈ [0.0036, 26.488]L and
z ∈ [0, 240]L. The corresponding number of grid points is Nx × Ny × Nz = 3320 × 224 ×
957 A6-8
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2048 ≈ 1.5 × 109. The database time step is �t = 0.25L/U∞. The stored database spans
the following range in momentum-thickness-based Reynolds number, Reθ = U∞θ/ν ∈
[105.5, 1502.0], where θ represents the momentum thickness and ν is the kinematic
viscosity. More details for the simulation and database can be found in Lee & Zaki (2018)
and on the website of JHTDB.

In this study, the datasets within the range of Reθ ∈ [661.5, 1502.0] are considered for
training and testing the DLM. This range of Reθ in the database represents the fully
turbulent part of the flow (Lee & Zaki 2018). Datasets of the velocity components are
collected from various y–z planes along the streamwise direction, with a number of
snapshots = 4700 for every plane. To reduce the computational cost, the original size of
each plane, Ny × Nz = 224 × 2048 is reduced to 112 × 1024. Furthermore, to increase
the amount of training and testing data, every selected plane is divided into four identical
sections (y–z planes) along the spanwise direction, resulting in Ny × Nz = 112 × 256
for each section. To obtain the coarse data, the size of the data is further reduced to
Ny × Nz = 14 × 32, which is obtained by selecting distributed points in the fields. The
distribution of the points is obtained in a stretching manner such that more points can be
selected near the wall. A time series of 4000 snapshots for each section are used to train
the DLM, resulting in a total number of training snapshots = 4000 × 4 × 3 = 48 000.
The fluctuations of the velocity fields are used in the training and prediction processes.
The input data to the DLM are normalised using the min–max normalisation function to
produce values between 0 and 1.

4. Results and discussion

4.1. Results from the DLM trained at various Reθ

This section examines the capability of the proposed DLM to generate turbulent inflow
data at three different Reynolds numbers for which the network has already been trained,
Reθ = 661.5, 905.7 and 1362.0. Figures 4–6 show the instantaneous streamwise velocity
(u+) and vorticity (ω+

x ) fields of the DNS and the predicted data for three different time
steps, where the superscript ‘+’ denotes normalisation by viscous inner scale; in the
figures, δ represents the boundary layer thickness. The figures show that the instantaneous
flow fields can be predicted using the model with a commendable agreement with the DNS
data. Note that the model has shown a capacity to predict the instantaneous flow fields for
a long period of time, more than the one required for the flow data to reach a statistically
stationary state (reaching fixed first and second-order statistics over time), i.e. for a number
of time steps = 10 000.

The shape factor (ratio of displacement to momentum thickness of the TBL) values of
the DNS and predicted velocity fields are shown in table 1. A slight under-prediction can
be seen in all the predicted values with the highest deviation of 2.95 % at Reθ = 661.5.

Figure 7 shows the probability density functions (p.d.f.s) of the velocity components
(u+, v+ and w+) plotted against the wall-normal distance (y+). The figure reveals that
the p.d.f. plots of the generated velocity components are in agreement with the p.d.f.
plots obtained from the DNS data, indicating the capability of the model in predicting
the velocity fields with distributions of the velocity components that are consistent with
those of the DNS data.

Figures 8–10 compare the turbulence statistics of the generated velocity fields with the
turbulence statistics of the DNS data. As shown in the figures, the mean streamwise
velocity profile (U+) for all the three Reynolds numbers shows excellent agreement
with the results obtained from the DNS. The comparison of root mean square (r.m.s.)
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Figure 4. Instantaneous streamwise (a) velocity and (b) vorticity fields at Reθ = 661.5, for three different
instants. Reference (DNS) and predicted (DLM) data are shown.
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Figure 5. Instantaneous streamwise (a) velocity and (b) vorticity fields at Reθ = 905.7, for three different
instants. Reference (DNS) and predicted (DLM) data are shown.
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Figure 6. Instantaneous streamwise (a) velocity and (b) vorticity fields at Reθ = 1362.0, for three different
instants. Reference (DNS) and predicted (DLM) data are shown.

Reθ 661.5 905.7 1362.0

DNS 1.458 1.457 1.453
DLM 1.415 1.423 1.429

Table 1. Shape factor values of the reference (DNS) and predicted (DLM) data.

profiles of the velocity components (u+
rms, v+

rms and w+
rms) reveals good agreement with

the DNS results. However, the profile of the Reynolds shear stress (u′v′+) shows a slight
under-prediction in the region between near the wall and the maximum Reynolds shear
stress, and the profile values in this region improve as the Reynolds number increases.
This might be attributed to the fact that with the increase in the boundary-layer thickness,
the effect of zero padding in the convolution processes is decreased in MS-ESRGAN,
resulting in a better prediction of the velocity fields in this region of the boundary layer.
These results are consistent with the results from table 1.

The capability of the proposed DLM to produce realistic spatial spectra of the velocity
fields is investigated by employing the premultiplied spanwise wavenumber spectrum,
kzΦαα , where Φαα represents the spanwise wavenumber spectrum, α represents the
velocity component and kz is the spanwise wavenumber. Figure 11 shows the contour
plots of k+

z Φ+
αα as a function of y+ and the spanwise wavelength, λ+z . The figure shows

that the spectra of the velocity components are generally consistent with those obtained
from the DNS data with a slight deviation at the high wavenumbers. This indicates that
the two-point correlations of the generated velocity components are consistent with those
obtained from the DNS data, further supporting the excellent performance of the proposed
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Figure 7. Probability density functions of the velocity components as a function of the wall-normal distance.
The shaded contours represent the results from the DNS data and the dashed ones represent the results from
the predicted data. The contour levels are in the range of 20 %–80 % of the maximum p.d.f. with an increment
of 20 %: (a–c) Reθ = 661.5; (d–f ) Reθ = 905.7; (g–i) Reθ = 1362.0.
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Figure 8. Turbulence statistics of the flow at Reθ = 661.5: (a) mean streamwise velocity profile; (b) r.m.s.
profiles of the velocity components; (c) Reynolds shear stress profile.

DLM to properly represent the spatial distribution of the velocity fields. It is worth noting
that the ability of the model to reproduce accurate spectra is essential in generating
the turbulent inflow conditions to guarantee that the turbulence will be sustained after
introducing the synthetic-inflow conditions; otherwise, the generated inflow would require
very long distances to reach ‘well-behaved’ turbulent conditions, and these fluctuations
could also dissipate.

To evaluate the performance of the proposed DLM to generate the velocity fields with
accurate dynamics, the frequency spectrum, φ+

αα , as a function of y+ and the frequency,
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Figure 9. Turbulence statistics of the flow at Reθ = 905.7: (a) mean streamwise velocity profile; (b) r.m.s.
profiles of the velocity components; (c) Reynolds shear stress profile.
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Figure 10. Turbulence statistics of the flow at Reθ = 1362.0: (a) mean streamwise velocity profile; (b) r.m.s.
profiles of the velocity components; (c) Reynolds shear stress profile.

f + is represented in figure 12. Note that the spectra obtained from the generated velocity
fields show a commendable agreement with those of the DNS data, indicating that the
proposed DLM can produce turbulent inflow conditions with a temporal evolution of the
velocity fields that is consistent with that of the DNS.

4.2. Interpolation and extrapolation capability of the DLM
This section investigates the performance of the proposed DLM to generate turbulent
inflow conditions at Reynolds numbers that are not used in the training process. The
velocity fields at Reθ = 763.8 and 1155.1 are used as examples of the velocity fields
that fall between the Reynolds numbers used in the training process, i.e. the interpolation
ability of the model is investigated using the flow fields at these Reynolds numbers.

Figure 13 shows the instantaneous streamwise velocity and vorticity fields for the flow
at Reθ = 763.8. It is worth noting that the transformer trained for the flow at the nearest
Reθ , i.e. Reθ = 661.5 is used to predict the temporal evolution of the velocity fields. The
figure shows that the main features of the flow fields can be obtained with relatively good
precision; however, the details of the predicted velocity fluctuations are not clearly shown.
Similar results can be observed in figure 14 for the predicted velocity fields at Reθ =
1155.1. Here, the current transformers trained for the flow at Reθ = 905.7 and 1362.0 are
used to predict the temporal evolution of the velocity fields.

The turbulence statistics of the flow at Reθ = 763.8 and 1155.1 are shown in figures 15
and 16, respectively. Although the mean streamwise velocity and the r.m.s. profiles of the
spanwise and wall-normal velocity components show an ability of the DLM to predict
reasonably well, the r.m.s. profile of the streamwise velocity component and the Reynolds
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Figure 11. Premultiplied spanwise wavenumber energy spectra of the velocity components as a function of the
wall-normal distance and the spanwise wavelength. The shaded contours represent the results from the DNS
data and the dashed ones represent the results from the predicted data. The contour levels are in the range
of 10 %–90 % of the maximum k+

z Φ+
αα with an increment of 10 %: (a–c) Reθ = 661.5; (d–f ) Reθ = 905.7;

(g–i) Reθ = 1362.0.

shear stress show an under-prediction due to the lack of detailed information on the
velocity fluctuations.

The extrapolation ability of the DLM is evaluated using the flow fields at Reθ = 1502.0,
which is higher than the maximum Reθ used to train the transformer and MS-ESRGAN,
i.e. Reθ = 1362.0. The transformer trained for the flow at Reθ = 1362.0 is used to predict
the dynamics of the velocity fields. Figure 17 shows that the generated instantaneous
streamwise velocity and vorticity fields generally have similar accuracy to the interpolated
flow fields. Meanwhile, the turbulence statistics show a deviation from the DNS statistics,
as shown in figure 18. This can be attributed to the lack of details of the velocity
fluctuations and the extrapolation process that relies on the flow information at one
Reynolds number compared with the interpolation process where the flow falls within
the range of the Reynolds numbers that the MS-ESRGAN is trained for.
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Figure 12. Frequency spectra of the velocity components as a function of the wall-normal distance and the
frequency. The shaded contours represent the results from the DNS data and the dashed ones represent the
results from the predicted data. The contour levels are in the range of 10 %–90 % of the maximum φ+

αα with an
increment of 10 %: (a–c) Reθ = 661.5; (d–f ) Reθ = 905.7; (g–i) Reθ = 1362.0.

Finally, the accuracy of the spectral content of the interpolated and extrapolated
velocity components is examined in figure 19 by employing the premultiplied spanwise
wavenumber spectrum. These results indicate that the spectra are produced with relatively
good accuracy for the low–moderate wavenumbers.

4.3. Error analysis, transfer learning and computational cost
The performance of the proposed DLM is further statistically investigated using the L2
norm error of the predicted data for all the Reynolds numbers used in this study,

ε = 1
J

J∑
j=1

∥∥∥αDNS
j − αDLM

j

∥∥∥
2∥∥∥αDNS

j

∥∥∥
2

, (4.1)
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Figure 13. Instantaneous streamwise (a) velocity and (b) vorticity fields at Reθ = 763.8, for three different
instants. Reference (DNS) and predicted (DLM) data are shown.

where αDNS
j and αDLM

j represent the ground truth (DNS) and the predicted velocity
components using the DLM, respectively, and J represents the number of the test
snapshots.

Figure 20 shows that as the Reynolds number increases, no significant differences can
be seen in the error values of the predicted velocity fields. However, as expected, the error
shows higher values for the interpolated and extrapolated velocity fields compared with
the error of the predicted velocity fields at the Reynolds numbers that the DLM is trained
for. Additionally, in contrast with the aforementioned statistical results, the error values
are relatively high for the wall-normal and spanwise velocity fields. This indicates that
the DLM has learned to model the structure of the flow with generally accurate turbulence
statistics and spatiotemporal correlations, rather than reproducing the time sequence of the
flow data. This observation is consistent with the results obtained by Fukami et al. (2019b),
Kim & Lee (2020) and Yousif et al. (2022a). Furthermore, using input data of size 7 × 16
in the training of the DLM shows a slight reduction in the model performance, indicating
the capability of the DLM to generate the turbulent inflow data even if it is trained with
extremely coarse input data.

It is worth mentioning that the transfer learning (TL) technique is used in this study
(Guastoni et al. 2021; Yousif et al. 2021, 2022a). The weights of the transformer are
sequentially transferred for every training y–z plane in the flow. First, the transformer is
trained for the flow at the lowest Reynolds number, i.e. Reθ = 661.5. After that, the weights
of the model are transferred for the training using the next Reθ data and so on. The results
from using TL in this study show that with the use of only 25 % of the training data for
the transformer model, the computational cost (represented by the training time) can be
reduced by 52 % without affecting the prediction accuracy. These results are consistent
with the results obtained by Guastoni et al. (2021) and Yousif et al. (2021, 2022a).
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Figure 14. Instantaneous streamwise (a) velocity and (b) vorticity fields at Reθ = 1155.1, for three different
instants. Cases 1 and 2 represent the prediction using the transformer that is trained for the flow at Reθ = 905.7
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Figure 15. Turbulence statistics of the flow at Reθ = 763.8: (a) mean streamwise velocity profile; (b) r.m.s.
profiles of the velocity components; (c) Reynolds shear stress profile.
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profiles of the velocity components; (c) Reynolds shear stress profile.
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Figure 19. Premultiplied spanwise wavenumber energy spectra of the velocity components as a function of the
wall distance and wavelength. The shaded contours represent the results from the DNS data; the dashed-black
contours represent the results from the predicted velocity data at Reθ = 763.8 and 1502.0; the dashed-brown
and grey contours represent the results from the velocity data at Reθ = 1155.1 predicted using the transformer
model trained for the flow at Reθ = 905.7 and 1362.0, respectively. The contour levels are in the range of
10 %–90 % of the maximum k+

z Φ+
αα with an increment of 10 %: (a–c) Reθ = 763.8; (d–f ) Reθ = 1155.1;

(g–i) Reθ = 1502.0.

The total number of trainable parameters of the DLM is 356.5 × 106 (305.5 × 106 for
the transformer and 51 × 106 for the MS-ESRGAN). The training of the transformer model
for all the three Reynolds numbers used in this study using a single NVIDIA TITAN RTX
GPU with the aid of TL requires approximately 23 hours. Meanwhile, the training of the
MS-ESRGAN requires approximately 32 hours. Thus, the total training time of the DLM
model is 55 hours, indicating that the computational cost of the model is relatively lower
than the cost of the DNS that is required to generate the velocity fields. Furthermore,
this computational cost is required only once, i.e. for the training of the model. Since
the prediction process is computationally inexpensive and does not need any data for
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Figure 20. The L2 norm error of the predicted velocity fields: (a) streamwise velocity; (b) wall-normal
velocity; (c) spanwise velocity. Cases 1 and 2 represent the results from the velocity data at Reθ = 1155.1
predicted using the transformer model trained for the flow at Reθ = 905.7 and 1362.0, respectively.

the prediction (except the initial instantaneous fields), the DLM can also be considered
efficient in terms of storing and transferring the inflow data.

4.4. Simulation of spatially developing TBL using the turbulent inflow data
In order to examine the feasibility of applying the DLM-based turbulent inflow conditions,
the generated data are utilised to perform an inflow–outflow large-eddy simulation (LES)
of flat plate TBL spanning Reθ = 1362–1820. The open-source computational fluid
dynamics finite-volume code OpenFOAM-5.0x is used to perform the simulation. The
dimensions of the computational domain are 20δ0, 1.8δ0 and 4δ0 in the streamwise,
wall-normal and spanwise directions, respectively, where δ0 represents the boundary
layer thickness at the inlet section of the domain. The corresponding grid size = 320 ×
90 × 150. The grid points have a uniform distribution in the streamwise and spanwise
directions while local grid refinement is applied near the wall using the stretching grid
technique in the wall-normal direction. The spatial spacing at the midpoint of the domain
is �x+ ≈ 15.4, �y+

wall ≈ 0.2 and �z+ ≈ 6.5, where y+
wall represents the spatial spacing

in the wall-normal direction near the wall. A no-slip boundary condition is applied to the
wall, while periodic boundary conditions are applied to the spanwise direction. A slip
boundary condition is assigned to the top of the domain, whereas an advection boundary
condition is applied to the outlet of the domain. The pressure implicit split operator
algorithm is employed to solve the coupled pressure momentum system. The dynamic
Smagorinsky model (Germano et al. 1991) is applied for the subgrid-scale modelling.
All the discretisation schemes used in the simulation have second-order accuracy. The
generated inflow data are linearly interpolated in time to have a simulation time step
�t = 0.0017δ0/U∞ yielding a maximum Courant number of 0.8. The statistics from the
simulation are accumulated over a period of 620 δ0/U∞ after an initial run with a period
of 60 δ0/U∞ or 3 flow through.

The formation of the instantaneous vortical structures of the flow is visualised
by utilising the Q-criterion vortex identification method (Hunt, Wray & Moin 1988)
in figure 21. Smooth development of the coherent structures represented by the
hairpin-vortex-like structures (Adrian 2007) can be observed from the figure with
no noticeable formation of artificial turbulence at the inlet section of the domain.

957 A6-20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

10
88

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.1088


A transformer-based turbulent-inflow generator

x/δ0

z/δ0

y/δ0

0 0

0

1

1
2

3
4

2

4

6

8

10

12

14

16

18

20

0.50

0.75

0

1.00

0.25

u/U∞

Figure 21. Isosurfaces of instantaneous vortical structures (Q-criterion= 0.54U2∞/δ2
0) from the

inflow–outflow simulation coloured by the streamwise velocity.

(b)

–u′v′——+

y/δ

(a)

U+

y+

DLM

DNS

DLM

DNS

0

5

10

15

20

25

0

0 0.2 0.4 0.6 0.8 1.0 1.2

0.2

0.4

0.6

0.8

100 101 102 103

Figure 22. Turbulence statistics from the inflow–outflow simulation at Reθ = 1400 compared with the DNS
results: (a) mean streamwise velocity profile; (b) Reynolds shear stress profile.

This indicates that the inflow data obtained from the DLM could represent most of the
flow physics at the inlet section, resulting in a negligible developing distance upstream of
the domain.

A comparison of the mean streamwise velocity and Reynolds shear stress profiles at
Reθ = 1400 with the DNS results are provided in figure 22. The mean streamwise velocity
profile is in excellent agreement with the DNS results. Furthermore, the Reynolds shear
stress profile is consistent with the DNS results in most of the boundary layer regions.

To further evaluate the accuracy of the inflow conditions, statistics obtained from the
simulation are compared with the inflow–outflow LES results of Lund et al. (1998) and
DNS results of Spalart (1988). Figure 23 shows the profiles of the mean streamwise
velocity and Reynolds shear stress profiles at Reθ = 1530. An agreement can be observed
with Lund et al. (1998) results of the modified Spalart (recycling–rescaling) method and
the results of Spalart (1988) (Reθ = 1410) in the inner region of the boundary layer,
however, a deviation can be observed in the outer region. This might be attributed to
the fact that the original DNS data that are used to train the DLM contain free stream
turbulence (Lee & Zaki 2018).

The evolution of the shape factor H is shown in figure 24(a). Here the result from the
simulation is generally consistent with the DNS and Spalart (1988) results, and within 5 %
of the modified Spalart method from Lund et al. (1998). The result of the skin-friction
coefficient (Cf ) in figure 24(b) shows an agreement with the results from Lund et al.
(1998) and Spalart (1988) with an over-prediction of approximately 8 % compared with the
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Figure 23. Turbulence statistics from the inflow–outflow simulation at Reθ = 1530 compared with the results
of Lund et al. (1998) and Spalart (1988): (a) mean streamwise velocity profile; (b) Reynolds shear stress
profile.
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Figure 24. Evolution of the shape factor and skin-friction coefficient in the inflow–outflow simulation
compared with the results of the DNS (Lund et al. 1998; Spalart 1988): (a) shape factor; (b) skin-friction
coefficient.

DNS results. The change in the shape factor slope and the over-prediction of the
skin-friction coefficient compared with the DNS result can be attributed to the numerical
set-up of the inflow–outflow simulation. Note that in the work of Lund et al. (1998), the
inflow data were generated from precursor simulations that have the same y–z plane size
as the inlet section of the inflow-outflow simulations, and no spatial or time interpolation
was applied to the inflow data.

The above results suggest that the turbulent inflow data that are generated by the
proposed DLM can be practically used as inflow conditions for simulations that do not
necessarily have the same spatial and time resolutions as the generated data, which is the
case in the simulation described in this section.

5. Conclusions

This study proposed a deep-learning-based method to generate turbulent inflow
conditions for spatially developing TBL simulations. A combination of a transformer and
MS-ESRGAN was used to build the inflow generator. The transformer was trained to
model the temporal evolution of the velocity fields represented by various (y–z) planes of
spatially limited data. Meanwhile, MS-ESRGAN was trained to perform super-resolution
reconstruction of the predicted velocity fields.
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The generated instantaneous velocity fields showed an excellent agreement with the
DNS results for the velocity fields at Reynolds numbers that the DLM was trained for. The
model also successfully reproduced the turbulence statistics with commendable accuracy.
Furthermore, the model reproduced the spectra of the velocity components with accurate
precision, indicating accurate spatial and temporal correlations of the generated velocity
components, which further supports the ability of the model to maintain the realistic
behaviour of the velocity fields.

The performance of the proposed model was further examined using velocity fields
at Reynolds numbers that were not used in the training process. The instantaneous and
statistical results showed a reasonable accuracy for the interpolated and extrapolated
velocity fields. The spectra of the velocity components revealed a relatively good
agreement with the results from the actual velocity data, with a deviation that can be
observed at high wavenumbers. These results suggest that the model can generate the
turbulent inflow conditions for the flow at Reynolds numbers that are not necessarily used
in the training of the model.

The results obtained from the error analysis showed that the increase in the Reynolds
number has no significant effect on the error values of the predicted velocity fields,
indicating that the model is robust to the increase of the Reynolds number. The use of
TL in the training of the transformer revealed a noticeable reduction in the computational
cost of the DLM without affecting the precision of the prediction.

The inflow–outflow simulation results showed the feasibility of applying the generated
turbulent inflow conditions to turbulent flow simulations as a negligible developing
distance upstream of the domain is required for the TBL to reach the target statistics.

This study showed for the first time that a transformer-based model could be effectively
used for modelling the dynamics of turbulent flows with the ability to perform parallel
computing during the training process, which is not possible in LSTM-based models.
It also paves the way for utilising synthetic-inflow generators for large-scale turbulence
simulations using deep learning, with significant promise in terms of computational
savings.
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