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Abstract: Attractive forces acting between particles in dispersions may cause a 
three-dimensional structure to be built up. A temporary-network model is postu- 
lated that describes the rheological behaviour of such systems. Chains of particles 
are assumed to be created and broken by thermal actions and by applied deforma- 
tion. The relation between the network structure and the. macroscopic stress tensor 
is deduced. One of the main model features is that no use is made of the common 
assumption of affinity of the motion of the chain vectors with the gradient of the 
macroscopic velocity field. Instead, the chain deformations are assumed to depend 
on the forces acting on them, i.e. their deformations depend on their stiffness and 
on the applied deformation, whereas fracture of chains may cause stress relaxation 
in the rest of the network. The chains may behave as highly non-linear springs, 
whereas the probability that the chains will break in some time interval may be an 
explicit function of the chain length itself. Integral equations are derived, from 
which the stress-tensor components can be calculated in any flow experiment, that 
obeys creeping-flow conditions. Analytical expressions are obtained for the relaxa- 
tion spectrum of such systems in terms of the microscopic parameters. 

Key words: Transient-network model, stress tensor, relaxation spectrum, concen- 
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1. Introduction 

A material containing particles of colloidal d imen-  

sions embedded in a l iquid may show viscoelastic 

properties. When the concentration of the dispersed 

phase is higher than a certain critical value, a network 

of particles may be formed that take up the total 

available space [1]. 

Much theoretical work has been carried out to explain the 
typical rheological properties of such systems. The resulting 
theories can be classified either as phenomenological or struc- 
turN. An example of the first class of theories is the approach 
of De Bruijne et al. [2], who modified the constitutive equa- 
tion according to the Maxwell model in such a way that it 
became more suitable for describing the rheological behav- 
iour of dispersions of fat crystals in oil. They observed that in 
this kind of system the shear stress mainly depends on the 
shear itself and very little on the shear rate. The modification 
was to let the relaxation time that appears in the constitutive 
equation be proportional to the inverse of the shear rate, 
starting from a constant level. In general, the parameters that 
appear in such phenomenological expressions cannot be easily 
connected with microscopic properties of the system. 

In the structural theories various approaches have been 
used. Much attention was paid to the fall of the steady-shear 
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viscostiy with increasing shear rate, and its relation to the 
number of links between particles. Chaffey [3] gave an 
extensive survey of these types of theories in all of which the 
density of particle links is calculated in relation with forma- 
tion and destruction of links between particles under the 
influence of Brownian motion or applied flow. The stationary 
link density is found by means of kinetic expressions. Subse- 
quently the steady-shear viscosity is derived by using expres- 
sions originating from macromolecular theories [4, 5], from 
the number of links that transverse shear planes [6], from the 
energy dissipation due to the presence of aggregates [7], or 
from the Mooney equation for the viscosity of a suspension of 
spheres [8]. Hudson et al. [9] studied the shear-stress relaxation 
in sheared pigment suspensions after a step of the shear rate 
from the change of the effective volume fraction of dispersed 
material as a function of time. Van de Ven, Firth and Hunter 
[10, 11] investigated the effect of both structural changes and 
energy dissipation due to the flow of the liquid phase through 
and around aggregates, on the characteristic flow parameters of 
sheared coagulated sols. The equations that result from these 
theories contain information about microscopic parameters. 

Not only the particle-link density but also the link-orien- 
tation distribution function, together with the forces trans- 
mitted by these links can play a role in the rheological 
behaviour of dispersed systems. Takano [1] and Van den 
Tempel [12] explain the rheological behaviour of certain 
dispersions in terms of the stretching and breaking of so-called 
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primary and secondary bonds that are part of a particle 
network; this results in expressions for the dynamic and 
steady-state viscosity and for the creep behaviour of these 
systems, respectively. An extensive investigation of the rheo- 
logical behaviour of fat dispersions was carried out by 
Papenhuijzen [13]. In his model creation and annihilation of 
bonds between crystals which are part of a three-dimensional 
network, together with viscous effects due to liquid flow, are 
responsible for the viscoelastic properties of these materials. 
The structural effects that take place when network chains 
break and reform as well as the time effects related to the 
motion of particles in a viscous medium are taken into accout 
in his considerations. In the model a distribution of strengths 
is adopted for the available chains and all stress carrying 
chains are assumed to be oriented along the principal axis of 
elongation in simple shear. The storage modulus of disperse 
systems in which the network deviates strongly from the so- 
called single-chain network was given in a generalized form by 
Van den Tempel [14]. These types of theories show resem- 
blance to transient-network models originally proposed by 
Green and Tobolsky [15], Lodge [16], and Yamamoto [17] for 
the description of the rheological behaviour of polymer melts 
and polymer solutions. The following assumptions are fun- 
damental for these polymer network theories: 

(i) Inertial effects are ignored. 
(ii) The system is incompressible. 

(iii) Network chains may be created as well as annihilated 
during flow. 

(iv) The stress is the sum of the contributions from all chains 
that were created in the past and still exist at the present 
time. 

(v) There is no hydrodynamic interaction between chains. 
(vi) Chains are characterized by a single complexity param- 

eter ~. 

Polymer chains are generally modelled as Gaussian springs. 
All network chains of the same complexity have the same 
chance to be lost in some time interval. The chain-length 
distribution for network chains at the time of their creation is 
assumed to be identical to the equilibrium distribution of 
freely jointed polymer molecules. The junctions move as if 
they were particles of an equivalent macroscopic homogene- 
ous continuum (affine deformation assumption). 

In the present paper a transient-network model is 

introduced that contains some of  the elements of  molec- 

ular-network theories, but that is so far generalized 

that it becomes applicable to concentrated dispersions. 

It describes the rheological behaviour of  that kind of  

system in terms of  interactions between network par- 

tides. A distribution function of  particle-chain vectors 

analogous to that in molecular-network theories men- 

tioned above is introduced. The time dependence of  

this function due to creation and fracture of  particle 

links and due to the macroscopic flow is evaluated. 

However, the nature of  chains that consist of  dispersed 

material is far different from the nature of  polymer 

chains. The force law that is valid for the individual 

chains in concentrated dispersions is generally non- 

Hookean. Besides, when considering systems that dis- 

play yield phenomena, the probability for chains to 

break may depend on their lengths much more strong- 

ly than in the case of  polymer chains. In that case, it is 

not allowed to assume all chains of  the same com- 

plexity have the same probability to break in some 

interval without taking their lengths into consideration. 

The non-linearity of  the force law and effects due to 

chain fracture imply that the affine-deformation as- 

sumption is not generally valid. The deformation of  an 

individual chain may be affected by fracture occurring 

somewhere in its neighbourhood. Clearly classical 

polymer-network theories cannot be used in their 

original form for describing the rheological behaviour  

of concentrated dispersions. Assumptions ( i ) - (v i )  are 

assumed valid also for networks in concentrated disper- 

sions. The following assumption is added: 

(vii) Network-chain forces are in mutual equilibrium. 

The network topology is explained in section 2. The 

relation between the volume-averaged stress tensor and 

the forces transmitted by network chains is derived in 

the Appendix. Integral equations containing both phys- 

ical and structural parameters are found, which can be 

used to evaluate the stress tensor in rheological experi- 

ments (section 3). A simple expression for the relaxa- 

tion spectrum is obtained for some classes of  materials 

(section 4). The model is meant to be valid for various 

types of systems, such as those in which the dispersed 

phase consists of  non-deformable particles between 

which a time-independent force-distance relation pre- 

vails, like suspensions of  fat crystals in oil, and systems 

in which the dispersed phase is a continuum itself, 

transmitting forces that originate from a transient 

network on molecular scale and that are t ime-depen- 

dent themselves (f. i. denatured protein dispersions in 

water). 

2. Terminology and definitions 

The stresses that act in concentrated dispersions are 

closely connected with the state of  deformation of  the 

network. We therefore start with the introduction of  

some terms which are helpful in describing the net- 

work structure and the forces it carries (see figure 1). 

Conglomerate - an amount of dispersed material, 

closely packed together in a more  

or less spherical way and possibly 

connected with other conglomer- 

ates by chains. 

Chain -d i spe r sed  material that is distri- 

buted over the space between two 

conglomerates, being so close to- 

gether that the interactive force 

holds it together. 
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Fig. l. Network structure in concentrated disperse systems 

glomerate 

Junction point - a point in space where at least three 

chains can be thought to be con- 

nected together. Since connected 

chains move together, the points 

act as constraints on the motions 

of  the chains that come together 

in it. Every junction point  is situ- 

ated within a conglomerate.  

Chain vector (q) - a  vector that represents the direc- 

tion and length of a chain. It con- 

nects the junction po in t  at one end 

of the chain with the junction point 

at the other end of  it. 

Interactive force - t h e  force acting between units of  

dispersed material  or within the 

dispersed material  itself, in so far 

as it is not of  a hydrodynamic nature. 

Complexity (z) - a  parameter  that distinguishes all 

chains that have certain properties,  

such as the stress-strain relaton. 

Several density functions need to be introduced to de- 

scribe structural effects due to flow, i.e. structural 

breakdown and creation: 

(z, q', t' ! q, t) 
• d3q d 3 q' dt' 

(p (z, q', t' I t) d 3 q' dr' - 

~(z ,  q, t) d3q 

- -  the concentration of x-chains that 

were created in the t ime interval 

(t', t '+  dt') within the configu- 

ration range d3q ' about  q' and 

which are still present at time, 

t _>-t' within the configurat ion 

range d3q about  q. 

the concentration at t ime t ~ t' 

of  z-chains that were created in 

the t ime interval (t', t" + dt') 

within the configuration range 
d 3 q' about  q'. 

the concentration at t ime t of z- 

chains within the configurat ion 

range d3q about  q. 

n (z, t) 

i (~ ~'lt) dc 

- t h e  concentration at t ime t of  

x-chains.  

- the concentration at t ime t >- t' 

of  x-chains that were created in 

the time interval (t', t' + dt'). 

Derived definitions: 

n(t) =- ~ n(z,  t), (1) 

i ( t '  I t) =- Z if(z, t' [t). (2) 

From these equations the following equalities follow 

directly: 

i(~, t' I t) = S q~(Z, q', t ' I t )  d3q ', (3) 

n (Z, t) : i i (Z,  t' I t) dt' (4) 
- -Of)  

(o(Z, q', t'i t ) = ~. cI) (z, q', t' lq, t) d3q, (5) 

t 

7t(z, q, t) = S [.~ (Z, q', t'l q, t) d3q 'd t ' .  (6) 
--0(3 

f ( z ,  q', t ' lq,  t ) -  the force that is transmitted at t ime 

t - t' through a x-chain that  was cre- 

ated at t ime t' with chain vector q', 
the actual chain vector of  which reads 

q. It is assumed to l~oint f rom one 

junction to the other. The force vector 

is parallel to q when the force is of  a 

tensile nature and opposite when it is 

compressive. 

The subscript zero indicates that a quanti ty adopts its 

rest value. We may then omit  the t ime t, i.e. write 

no, no (z) and ~u0 (z, q) instead of the notations used in 

eqs. (1) and (6)• 

Brackets denote averaging over q with respect to ~ : 

[.4 (z, q', t ' lq  , t) (I)(z, q', t'l q, t) d3q 
( A ) (  z , q ; t ' [ t ) =  Scl)(z ,q , , t ,  lq, t) d3 q ' 

(7) 

in which A is any vector or tensor function of  one or 

more of the given variables. 

Integration involves the whole configuration space 

when not marked otherwise. The magnitudes of  vector 

functions are symbolized by writing them light face. 

3 .  T h e  t r a n s i e n t - n e t w o r k  m o d e l  

3.1 Introduction 

Our aim is to derive an equation from which the 

stress behaviour of  concentrated dispersions can be 
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predicted for a variety of deformation histories; fur- 

thermore, the parameters in this equation should pre- 

ferably be connected with microscopic parameters. 

In attempting to derive such an equation we were 

forced to introduce a number of simplifications. We 

tried, however, to do so without bypassing the compli- 

cating fact that the stress-strain relation of the chains 

may be far from linear and not the same for all chains 

either, that is, chains of all kinds of complexity may be 

present. This fact has an immediate consequence for 

the "affinity" of the motion of junction points in de- 

formation. Provided inertia is negligible, the total force 

that acts on a conglomerate is zero at any moment. This 

total force is the sum of the forces exerted on it by the 

surrounding liquid and network chains. Only when the 

chains behave like linear Gaussian springs (as they do 

in an ideal polymer network), is affine motion accom- 

panied by force equilibrium, for any topology of the 

network. This can be realized by considering a Gaussian 

network in the junctions of which there is force 

equilibrium. Simple calculations show that the equi- 

librium is preserved if all junctions move affinely with 

the applied deformation. But when the chains are no 

longer Gaussian springs, affine motion of the junction 

points does not necessarily correspond with force equi- 

librium (it will only be so for very regular networks, 

containing chains of just one complexity). This implies 

that the displacement of the individual junction points 

diverges from the displacement in accordance with the 

macroscopically imposed one. 

From energy considerations it follows that the work 

of deformation as calculated when assuming affine 

displacement of all individual junction points, when 

this violates local force equilibrium, is always larger 

than the actual work, that is the work done when local 

force equilibrium is preserved. Thus, chain-force equi- 

librium leads to a lower increase in the Helmholtz free 

energy per unit volume of the network than calculated 

on assuming affine junction motion. A similar state- 

ment holds for the stress tensor, which is closely 

connected with the Helmholtz free energy [ 18]. 

A special case arises when a force-carrying chain 

becomes detached from a junction. Then the force first 

transmitted by the chain is temporarily not compen- 

sated by forces exerted on the conglomerate by other 

chains, but by viscous forces. As a consequence, junc- 

tion-point positions change until equilibrium between 

forces of chains attached to a junction point is estab- 

lished again• During this process some of the elastic 

energy stored in the network is dissipated and the total 

elastic energy that is stored in the network decreases 

slightly. It should be noticed that this rearrangement - 

which represents a non-affine motion of junction points 

- also takes place in temporary networks of linear 

Gaussian chains. When this rearrangement is taken 

into account, a relaxation function is found that differs 

from previously proposed ones. We will return to this 

point in section 3.4. 

3.2 The stress tensor 

Knowledge of the density function ~u(~, q, t) alone 

does not generally suffice for evaluating components of 

the stress tensor, because the relation between the 

chain length and the chain force may involve time 

effects. The required information about the chain- 

deformation history is supplied by q~ (~, q, t ' !q ,  t). An 

expression for the volume-averaged stress tensor is de- 

rived in the Appendix. From eq. (A.11) it follows that 

the contribution at the present time to the macroscopic 

stress tensor from a x-chain that was created within the 

time interval (t', t' + dt') within the range d3q ' about q', 

of which the actual chain vector lies within the range 

d3q about q reads q f (~, q', t' I q, t). The number of 

these chains equals db (~, q', t' I q, t) d3 q d3 q ' dt', so 

dT~q',t ' ,q,t  

= q f ( x , q ' , t ' l q ,  t ) # ( z , q ' , t ' l q ,  t) d 3 q d 3 q ' d t  '. (8) 

The average stress tensor itself follows by summation 

of eq. (8) over all complexities and by integrating over 

configuration space and time: 

t 

T = - p l +  Z ~ ~ q f ( ~ c ,  q', t'[q, t) 
-oo 

• q) (~, q', t ' lq, t) d3q d3q 'd t ' .  (9) 

Unlike in the Appendix r is now considered as a 

quantity that follows from ensemble averaging. That is 

why no upper dash is used. 

An ambient pressure term - p  1 has been added 

since both phases are assumed incompressible (see 

eq. (A. 11)). 

For x-chains created at the same time t' with chain 

vector q', one may assume that their deformation 

histories will not differ too much from each other; this 

implies that the chain forces that are transmitted 

through them are about the same for all of them. The 

narrowness of the distributions of the q-vectors of these 

chains justifies the following approximation: 

(,q f )  (~ q', r I t) ~- (q )  (~, q', r lt) ( f )  (x, q', t'lt ) . (10) 

From now on we use the notations: 

q (z, q', t'l t) = (q )  (~c, q', t'[ t), (11) 

f (~,  q', t ' l t  ) = ( f ) ( x ,  q', t ' l t  ). (12) 
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Expression (9) for the average stress tensor can then be 

written as: 
t 

T ( t ) ~ - p l  + ~ ~ ~ q ( z , q ' , t ' l t ) f ( z , q ' , t ' l t  ) 
- 0 0  

• ~o(z,q',t 'it) d3q'dt  '. (13) 

The following aim is to evaluate the functions q and f 

that appear in eq. (13). We first consider the equi- 

librium of forces acting in the chains. 

3.3 Equilibrium of  chain forces 

The magnitude of any specific chain force depends 

on the chain's deformation history following from the 

time of its creation and on the force it transmitted at 

the time of its creation. We now consider the displace- 

ments of junction points in more detail. Conglomerates 

in which chains with different stiffnesses come together 

will move in such a way that the stiffest chains are 

elongated least. The ratio of the magnitudes of the 

forces that are transmitted by chains with low and high 

moduli, respectively, is always closer to unity than it 

would be in the case of affine junction motion. The 

preceding considerations suggest that the averaged forces 

carried by z-chains at time t depend mainly on the 

interval t - t' and the chain vector q' at the time of cre- 

ation rather than on the chain complexity; therefore, 

we adopt the following approximation which is as- 

sumed to be valid for any specific flow: 

f (1 ,  q', t ' l t  ) =f (2 ,  q', f i t )  = ... =-f(q', t ' l t  ). (14) 

Though not explicitly indicated, the deformation his- 

tory of individual chains may also affect the actual 

value of f However when the nature of the network 

chains is purely elastic, the chain force depends only on 

the actual chain length. We assume the average chain 

force then to depend on the average chain vector: 

f(q' ,  t'[t) =f(~ ,  q(~, q', t ' l t )) ,  (15) 

which is the same for every z. The average stretching 

of the various types of chains can be found by 

inverting eq. (15). 

Eqs. (14) and (15) state that not the forces trans- 

mitted by the individual chains, but only their aver- 

ages, defined by eq. (7), are equal. In addition they 

express the force that appears in eq. (13) in terms of 

the chain elongations. 

The force transmitted by the chains may be given by 

some time-independent particle-interaction potential, 

e.g. by the Lennard-Jones potential in the case of non- 

polar and non-deformable particles. On the other hand, 

in the case of continuous structures, the dispersed 

K= 1 K 7 2 ~  / 

t' < t 
Fig. 2. Chain stretching in a network undergoing shear 

phase may be a non-permanent molecular network in 

which bonds are created and annihilated on a molec- 

ular scale, thus causing the chain itself to behave as a 

viscoelastic material. In this case the chain-force mag- 

nitudes depend on the chain-deformation histories. 

This dependence can be evaluated as a function of time 

by means of a constitutive equation that is valid for the 

dispersed material itself and allows for both elastic and 

dissipative behaviour. 

Figure 2 illustrates the microscopic-flow processes 

described by eqs. (14) and (15). Attention is focussed 

on two chains, being of different stiffnesses, but which 

were both created at time t' with orientation vector q'. 

At time t both chains are stretched, but the amount of 

stretching will depend on the chains' moduli. 

3. 4 Average junction f low 

We now closely investigate the consequence of non- 

affine junction motion, in particular in so far as it is 

caused by chain fracture. In order to specify the non- 

affinity of the motion of chains that were created at 

time t' with chain vector q' we define a vector: 

z(q', t' t) =- Fc(t) "q'. (16) 

In this definition Fc(t) is the relative deformation 

gradient that corresponds with the macroscopic defor- 

mation. The vector z does not generally coincide with 

the average chain vectors of chains that were created at 

time t' with chain vector q'. This is due to the fact that 

the stretching of chains depends on the chain stiffness 

and the network configuration. In addition, conglom- 

erates may drift apart after fracture of the chain that 

previously interconnected them. This will affect the 

amount of stretching of the neighbouring chains. It is a 

special case of non-affine motion, generally accom- 

panied by some relaxation of the stress in the remain- 

ing network, see figure 3. 

A vector function is introduced, as a measure for the 

average state of deformation at time t of chains present 
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t' < t 
Fig. 3. Network contraction due to chain fracture 

at time t" with chain vector q', that still exist at time t: 

~__, q(x,  q', t ']t)  ~u(~, q', t') 

qav (q', t ' l t )  - ~ ~ tt'(z, q', t') (17) 

In the case when the network structure is not disturbed 

too much and the fraction of  n-chains is about  the 

same for every q' we approximate: 

q(x,  q', t ' I t  ) no (~) 

qa~(q', t ' l t  ) - ~ (18) 
no 

We now introduce the vector function Z, defined as: 

z(q ' ,  t '[t) = z(q ' ,  t '[t)  - q ~ ( q ' ,  t ' l t  ) .  (19) 

The physical significance of  this function can be clari- 

fied by considering a simple one-dimensional network. 

From the equilibrium of  forces it can be shown that 

z and qa~ are equal in the case of  sets of  interconnected 

permanent q'-chains of  different moduli  that are ar- 

ranged along straight lines. When chains break Z will de- 

viate from zero, so Z is a measure for the non-affinity of  

the junction flow in so far as resulting from chain frac- 

ture. Though not necessarily correct, we assign the same 

physical meaning to ~ in the case of  flow of  a three- 

dimensional network. A non-zero value of  Z can thus 

only be caused by chain fracture. To be exact, Z is a 

measure of the network rearrangement which is likely 

to follow chain fracture. It is not so that Z being equal to 

zero implies that the junctions move affinely with the 

macroscopic flow. Condition (14) or (15) implies that 

chains with the highest moduli deform less than the 

others, which produces non-affine junction flow even 

when the network is permanent. According to eqs. (18) 

and (19) the elongation of  the remaining part of  the 

network will become somewhat less when Z differs 

from zero due to fracture of  some chains, provided that 

the magnitude and direction of  Z are such that q,,  

shows some decrease. The stress in the network may 

relax as a result of  this effect. Since fracture o f  chains 

may be caused by the stress in the network, it is very 

well thinkable that the process of  breakdown of  the 

network is delayed when the stress relaxes. It is thus 

seen that fracture processes occurring in different parts 

of the network are coupled, the stronger the higher the 

value of  Z. This interplay is generally not taken into 

account in molecular-network theories. 

The deformation of the network chains in relation to 

the macroscopic flow can in principle be determined 

from eqs. (14) or (15), (16), (18) and (19), provided 

that function Z is known. What  follows now is an 

attempt to quantify this function. 

We wish to express Z in terms of  microscopic system 

parameters and flow properties. Primarily, if fracture 

occurs, Z must be of  the order of  z in the case of  very 

large deformations. However, we now focus our atten- 

tion on small deformations when the network originally 

present in the system still exists for the major  part. 

First of  all microscopic fracture mechanisms need to be 

considered in more detail. What  happens to the net- 

work when a chain breaks, followed by a drifting apart 

of  the j unctions ? 

In some previous molecular-network theories the 

network deformation is assumed to deviate from affine 

deformation only in so far as the symmetrical part o f  

the velocity gradient tensor that describes network flow 

is concerned. The angular velocity of  the motion of  

molecular chains is then assumed to be given by the 

vorticity of the velocity field in the macroscopic 

continuum [19]. In our case we assume that the direc- 

tions of the q- and z-vectors are the same. So for 

every z: 

z (q', t '[t) q (~, q', t'l t) = e (q', t'l t). (20) 

z ( q ' , t ' l t  ) q ( ~ , q ' , t ' l t  ) 

From eq. (18) it then follows that qa~ and z have the 

same direction as well. Therefore: 

(i) ~ (q', t' ] t) is a vector that parallels e (q', t' l t ). 

It seems plausible that the fracture of  chains will cause 

network contraction to an amount  that is related to the 

initial chain lengths. We assume proportionality: 

(ii) Z (q', t ' l t )  ~ q'. 

We first consider the case of  very small deformations. 

It is assumed that both the number  of  fractures and the 

excess force that is transmitted by a q', f -chain  at time 

t >- t" linearly affect the deformation of  the network in 

the case of  an infinitesimal stepwise deformation at 

time t = t": 
I" 

no -- ~ d ( t ' " l t  ) d t ' "  

(iii) Oz(q', t ' i t  ) -o~ 
no 

O---~ [f~ (q', t" It)] (z (q ' ,  t ' l t )  - q ' ) ,  

excess chain  force 
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where t' _-< t" _-< t and f~ denotes the chain force in this 

type of  experiment. 

Statements ( i ) -  (iii) can be combined for the type of  

flow that can be considered as a superposition of  

equivalent stepwise deformations each of  which lead- 

ing to an extra force f~ (see eq. (iii)). The above ex- 

pression thus needs to be integrated over time: 

t rr 

t no - .~ rT(r"l t) dt'" 

)~(q' , t ' l t)=2q' ~ -~  (21) 
t' no 

O 0 
~z If, (q ', r ' l t-  t ' ) ]  ~,,T z(q ', t'[t") dt" e(q', t ' i t),  

excess chain force 

wherefs is the same function as the one that was used 

in (iii), i.e. the chain force after an infinitesimal 

deformation, and 2 is a proportionality factor 

[kg- lm-ls2] .  It is seen that the rearrangement of  

q', f-chains due to an applied deformation Oz at time t" 

depends not on the total number  of  fractures between t' 

and t but, instead, only on the number  of  fractures 

between t" and t. The underlying thought is that chains 

are being created as quickly as they are broken down. 

In the case when the applied deformation is much more 

intense, we expect chain fracture to affect the state of  

deformation of the network more. This can be achieved 

by letting Z be proportional to the total number  of  

broken chains. For such a flow starting at time t = t" 

we assume: 
t H 

no-  ~ ~(t" ' l t)  dt"' 

z(q,,t,  l t )=2q ,  -~  
no 

• (f(q',  r ' l t )  - f ( q ' ,  t" I t")) e(q', r i o  

if t' --< t" _-__ t, 

and 

z(q, , t ,  l t )= 2q , . f f ( t ' l t ' ) -  ff(t'l t) 
i f ( f i t ' )  

• (f(q',  Fit  ) - f ( q ' ,  t'lt')) e(q', t ' l t  ) (22) 

if t" < t' =< t. 

As a chain fracture causes a decrease of  the elastic 

energy content of  the rest of  the network, ;t is taken 

positive. Its magnitude is a measure of  the mutual  

interference of  kinetic processes taking place in dif- 

ferent parts of  the network. 

3.5 Network kinetics 

Expressions for network-chain creation and fracture 

functions are very specific for the nature of  the 

dispersed system considered and need to be based on 

physical system properties, such as the nature of  the 

interactive forces, and on flow characteristics, such as 

the shear rate in simple-shear flow. 

a) Creation of  chains 

When created, the chains are assumed to be iso- 

tropically distributed over orientation space and may 

carry a chain force, while the chance of  chain creation 

is assumed to depend on the probability that con- 

glomerates collide and interconnect• For  the creation 

function we write: 

~o(~, q', t'[ r) =- g (~, q', r ) ,  (23) 

where 9 may depend on the individual chain variables 

and q' and on global flow variables as well. Generally 

9 will contain terms based on collisions induced by 

diffusion and by applied flow [1]. It will thus depend 

on the conglomerate density, on properties of  the 

deformation history and on the actual rate of  deforma- 

tion. The latter may introduce a dependence on the 

principal invariants IIo(t,) and IIIo(t,) of  the rate-of- 

strain tensor of  the macroscopic deformation. The first 

invariant is excluded, since only isochoric flows are 

considered. Function g generally adopts its min imum 

value after a long period of  rest, when the network 

connectivity has often reached its maximum value. 

b) Network fracture 

In order to describe the network breakdown, the 

annihilation function h (z, q', t'It ) is introduced to give 

the relative decrease of  the density of  z-chains created 

at time t' with orientation q': 

O 
~-~{o(z ,q ' , t ' l t )=-h(~,q ' , t ' i t )q) (z ,q ' , t ' l t ) ,  (24) 

where we have again only indicated the chain variables• 

Also the annihilation function needs to be specified 

for any dispersed system one wishes to describe with 

the model. It may be so formulated that the chain 

breaks when some critical length or transmitted force is 

exceeded. When the chains break by thermal and 

mechanical actions, an Arrhenius-type equation may be 

used [1, 12]. It is advantageous that one can let the 

annihilation function adop t  different values when 

considering chains of  different age and thus, in general, 

chains that transmit different forces. 

In most molecular theories the fracture function is 

assumed to depend on some invariant flow property, 

which is the same in every chain of  the same complex- 

ity, irrespective of  its elongation. This approach seems 

reasonable when fracture is induced mainly by thermal 
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actions. However, in the more general situation, one 

needs to take into account that the chance of  a chain 

breaking also depends on its deformat ion history, and 

thus on the original orientation q' and the t ime that  has 

passed since the moment  of  creation. 

By integrating eq. (24) and substituting eq. (23) we 

get: 

~o (~, q', t' i t) = g (z, q', t') exp - h (x, q', t'] t") dt" . 

(25) 

Instead of eq. (13), eqs. (14) and (25) allow us to write: 

T(t) = - p 1 + ~ } 5 q (z, q', t'lt) f(q',  t'lt) g (~, q', t') 

• 

3. 6 Some final remarks 

It should be noted that the use of  eq. (15) can lead to 

erroneous results in the case of  a part  of  the network 

chains having very low moduli.  It is not realistic to 

expect that these chains will be stretched to such an 

extent as is predicted by this equation. Chains that  are 

connected to those with low moduli  will prevent  this 

from happening. The analysis presented in this pape r  

enables us to take into account a distribution of  chain 

moduli. However, these chains having modul i  that  

differ considerably from the average chain modulus  

should be disregarded. It should also be noted that  the 

value of the vector function q in eq. (26) cannot be 

determined when all chains of  a certain complexi ty  

have been annihilated (see eq. (7)). Whenever  this is 

the case, junction displacements cannot be expressed 

by a function of the type (19)• Then one has to look for 

other ways to take chain fracture into account. 

where Tb (t) is the contribution at t ime t to the stress 

from chains that were present at t ime t = 0. It seems 

reasonable to postulate that all chains present at t = 0 

will contribute to the actual stresses independent  of  the 

time of their creation (in so far as they have not been 

broken). This means that q (z, q', f l  t) and f(q',  t'lt) do 

not depend on t' if  t '_-  < 0-< t. Accordingly we may  

replace t' by zero and write for Ta (t): 

0 

Tb(t) = Z Sq (x, q', 0 I t)f(q ', O I t) j" ~(~, q',t ' lt)dt'd3q '. 
--Of) 

(28) 

The density of  z, q'-chains that were created at t imes 

t' -< 0 is given by: 

0 0 

~o(z,q',t ' l t)dt'= ~ ~o(z,q',t ' lO)dt'  
--00 --CO 

{ I • exp - ~ h (x, q', O It") dt" . (29) 
0 

4.2 Linear viscoelasticity 

We consider a network of chains which may  be 

treated as springs with properties that do not depend 

on time. The force law for the individual chain is then 

written as eq. (15). We assume that the average force 

that is transmitted by z-chains of  any initial length q' is 

given in first order by: 

f(z,  q', t'lt ) (30) 

= ( f ( q ' ) + c ( z , q ' ) q ( z ' q " t ' l t ) - q ' ) q ,  • e(q' , t '[t) .  

In this equation c(x, q') is a constant with unit 

[kg m s -2] and f (q ' )  is the force that is transmitted by 

the chains at the t ime of their creation (figure 4). All 

network chains are assumed to be of  equal length q6 

4. Mode l  stress predict ions  

4.1 Flow starting at t = 0 

In this section we present model  predictions for some 

classes of flow and some types of  materials. In the case 

of flow experiments starting at t ime t = 0 after a long 

period of rest, eq. (26) can be simplified by carrying 

out the integration from t ' = - o ~  to t '= 0 and f rom 

t' = 0 to t' = t separately: 
t 

T(t) = - p l +  Tb(t ) + ~ S S q(x, q', t'lt ) 
× 0 

" f ( q ' ,  t ' l t )  g(~, q', t') 

" exp { - i h(×' q'' t'lt'') dt'' } ;  d3q' dt" (27) 

r 

[ 

ql 

Fig. 4. Force law for an individual z-chain 

, q  
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and isotropically distributed over orientation space at 

time t =  0 when the system is at rest. The density 

function is normalized such that eq. (4) is satisfied: 

0 no (z) 
~o(z,q',t'lO)dt' 4~q,o2 6(q'-q6).  (31) 

Later on, the results are generalized for distributions of  

initial chain lengths. The relaxation spectrum of  the 

dispersion is found by calculating the shear-stress re- 

laxation following an infinitesimal shearing displace- 

ment 70 at time t = 0. This is effected by substitution in 

The unit vector e has been introduced in eq. (20). 

Combination of eqs. (18), (19), (34) and (35) gives: 

( q (z, q6, c I t) = (I ~V,, (t). q61 - z (q6, c [ t)) no (z) 

_ x~ [[q6_~ c(z,  q 6 ) ( q ( z , q ; , t ' , t )  ''~ n°(z ') l l  &kk c (z~--, q6~) - q°) ] n---~) ) ) 

• e (q6, f i t ) .  (36) 

After substitution of eqs. (22) for t' =< t" --< t and (30), 

one finally obtains: 

F 
q (z, q6, t'] t) = [q6 + 

[ 
Eq. (30) then reads: 

f(q6, t'] t) = Jo (q6) 4 

2 c (z, q6) 

I E , ( t ) ' q 6 l - q 6  
ltl  

- ~  c (x,  q6) no (z') 
1 -  + 

no no .," c @', q6) 

I F,'(O ~ !6 i -  qo' ~0 (~ ' ) ]  if, . . . . . . . . .  

~r~(t'"]t) d t ' )  + q6 Z 

no / no z, c (z', q6) 3 

- -  ] e(q°'t ' l t)" (37) 

e (qo', f i t )  • (38) 

eq. (16) of: 

1 

E,(t) = o 

and k 0 

1 

F,,(t) = 0 
0 

~o 0 

1 0 

0 1 

0 0 7 

1 0 

0 1 

if t' _-< 0 < t 

if t' <=t<=O 
(32) 

a n d i f  O < t' <= t. 

In the case of linearity, the value of  the chain annihila- 

tion function does not differ from its value at rest. It 

depends only on z and q'. Therefore,  the density of  

z, q'-chains that were present at rest follows from: 

0 

S ~9 (z, q', t 'lt ) dr'- no (z) - ~  4~zq62 6(q'-q6)e -th°(~'q~). (33) 

Since eq. (15) is valid for all complexities we may 

express the elongation of  chains of complexity z' in 

terms of the elongation of  chains of  complexity z: 

c (z, q6) 
q ( z ' , q 6 , t ' l t ) = q 6 + - - ( q ( z ,  q6,t ' l t )-q6),  (34) 

c (z', q;) 

where z may be equal to z' or be different (see eq. (30))• 

We shall now derive the chain vectors from the 

preceding expressions. We start by writing: 

/ Z q (~', q6, c I 0 ,~o (~') J 
q (z, q6, c l t) = / ~ '  (35) 

no (z) 

q (z', q;, t ' lt ) no (z')~ 
-- g¢z ) e (q6, t ' l t ) .  

no (z) 

Note that the use of eq. (21) instead of  eq. (22) in 

deriving q and f leads to the same expressions. Ex- 

pressions (37) and (38) can be simplified for t '=  t" = 0: 

q (z,  q~, 0 I t) = 

and 

I t ) =  f (q6, 0 

lim z (q;, 0 I t) - q6 
\ 

t $ 0  

J q6 + A (t) 
c (z, q;) 

• e (q6, 0 It)  (39)  

(fo lim z (q;' O ] t) - q6 ) 
, t+o A(t) 

(qo) + q6 

• e (q6, 0 I t ) ,  (40) 

where 
B 

A (t) - (41) 
ZB 

1 -  ~ n0(z) e -th°(~'qO 
nO × 

with 
1 

B - (42) 
~ + 1  Z n0(z) 

no ~ e (z, q6) 

The density function was found by integrating eq. (33) 

over configuration space. Further we made use of eq. 

(16). 

The vector functions can be expressed in terms of  

polar coordinates (Fig. 1): 

[ sin00 sin (;0\ 

q6=q6~  cos0o ] ,  (43) 

\ s in  0o cos ~oo/ 
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sin00sin + cos00\ ~00 ?0 

z (q6, 0 I t) = q6 ~ cos 00 ] .  
! 

\ sin 00 cos q~0 / 

For small deformations we find: 

(44) 

q (z, q6, 0 I t) (45) 

~ q6 (1 + c ( x , ? ~ °  c°S0°q6) sinO°sin~°A(t)) e(q;'Olt)' 

f(q6, 0 It) (46) 

(fo (q6) + 70 cos 00 sin 0o sin ~o0A (t)) e (q6, 0 I t ) ,  

which are in fact first-order approximations of  eqs. 

(39) and (40). On substituting eqs. (33), (45) and (46) 

in eq. (28) and carrying out the integration over 

configuration space, the relaxation function can be 

shown to read: 

Tb, xy(t) q6 Jv [3 fo(q6) G(/) = 
~0 15 

( f0(q6) ~ . . . \  _ , ' }  + 1+ ~_~,lA(t) lno(z)e tho(~qo) (47) 
c (z, qo)]. ] 

We can write A (t) as a series: 

( A(t)=B 1+ ~no(z) e -th°(~'q6) 
FiO × 

+(2---B-B~no(z) e-Zh°(~'e~))2+... ) • (48) 

\ no 

Eq. (47) can thus be written as a sum: 

G(t) -= ~ Gi e -t/~ , (49) 
i 

where Gi is the strength of the mechanism with relaxa- 

tion time r i. In case all chains have the same corn- 

plexity, it follows that 

1 
vi = 

i h0 (1, q;) 

and 

a i = 

(50) 

c (1,q6) ] I 15, 3f0(qo)+ 1~ B 

( fo(q;) ) ] noqo 1 ~ B (2B) i-1 
I 15 c (1, q6) 

if i = 1 ,  

(51) 

if i > 1 .  

The relaxation spectrum is visualized in figure 5. It is 

seen that, by introducing the effect of  network contrac- 

tion due to chain fracture by means of assigning a non- 

zero value to the parameter 2 in eq. (51), the single 

relaxation mechanism with characteristic time 

1/ho(1,q6) is replaced by a whole set of  relaxation 
mechanisms. The shear stress following an instantane- 

i 
i ~noq~ 

5 

x 

XBX 

i I '"f × I I ' r i  
. . . . . . . .  r 3 r2 r 1 

Fig. 5. Relaxation moduli according to the network model for 
a structure that consists of one type of chain only; 

noq6(1 + fo(q6) ]B 
x =  15 \ c(1, q;)] 

ous shearing displacement at the beginning approaches 

zero faster than it would do if chain fracture would not 

be followed by some network relaxation, i.e./l = 0. The 

distribution of relaxation strengths over the relaxation 

mechanism strongly depends on 2. However, the sum 

of the strengths does not, as can be seen from eq. (51). 

The important thing to note is that the model 

predicts linear viscoelastic behaviour that is described 

by  an infinite number of relaxation mechanisms, even 

for a simple network consisting of identical chains 

throughout the whole sample. If one sets 2 = 0, the 

relaxation spectrum of a system of  identical chains 

contains one relaxation time only. This corresponds to 

the simplest case of  elementary transient-network 

theories [18], i.e. in which the number of  relaxation 

mechanisms is set equal to one. Most systems, however, 

display a rheological behaviour that is much more 

complicated and that can only be described by a set of  

relaxation mechanisms. One way to do so is to assign 

different properties, i.e. probability of  breaking to 

chains of different complexities, each of which being 

responsible for one independent relaxation mechanism 

[20]. Physical interpretation of  data obtained from this 

method becomes difficult when there are plausible 

grounds for believing that all chains have the same 

physical properties. This may be so when the system is 

monodisperse. The model proposed in this paper  

enables one to relate the possibly complicated relaxa- 

tion spectrum of such homogeneous systems to indi- 

vidual and collective properties of network elements, 

which may be identical or may have only a few 

complexities. The physical significance of the relaxa- 
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tion function is clarified in terms of bond stiffnesses, 

lifetimes, etc., by means of eqs. (50) and (51), in the 

case of one chain complexity. The relaxation spectrum 

that results when more than one chain complexity is 

assumed to exist is found from eqs. (47) and (48) in a 

similar way. The complex shear modulus is related to 

the relaxation function (49) in the following way: 

oo 

G*(jco) = ~ e -j** G(z) dr, (52) 
- - 0 0  

where j is the imaginary number, co the angular fre- 

quency, and G (z) the time derivative of the relaxation 

function. The complex shear modulus of a system that 

consists of one type of chains only can be expressed in 

terms of the relaxation times and moduli introduced in 

eqs. (50) and (51): 

~ jcoziGi 
G* (j co) = (53) 

i=1 1 + j  co zi 

4. 3. Distributions of initial chain lengths 

At rest the chains need not all be of the same initial 

length q6; instead, an isotropic distribution of chain 

vectors may be expected. We consider such a network 

in a state of rest and write for the initial number of 

x-chains of length q;: 

0 

N (x, q6) = ~ ~o (~, q', t' I O) dt' 3 (q' - q6) d3q '. (54) 
--OO 

The relaxation function of systems in which the chains 

assume distinct initial end-to-end distances is found 

simply by integrating eq. (47) over the initial chain 

lengths: 

G(t)= ~-~q6(3fo(q6)+(1-¢o c~z,--~o)]f°(q6) 'A"  'tq°'t)) 

• N (z, q6) e-th°(×'q6) dq6, (55) 

where: B (q;) 
A (q;, t) = ~ . (56) 

1 2B(q0) ~ ~N(z,  q6) e_tho(~,q,o)dq 6 
n o z 0 

Take h0 = 0 for any z, i.e. the network behaves as a 

permanent one. We assume chain force equilibrium to 

hold below some angular frequency col. The elastic 

modulus then equals lira G (t), so: 
t $ 0  1 (3 

G' (ol) = ~ ~ ~ q; f0 (q6) (57) 
× 0 

+ 1+ .7-,.., " N(z ,  q6) dq6. 

c (x, q ; ) /  

This expression does not show any frequency depen- 

dence, because the effects of inertia and liquid phase 

displacement are not taken into account. However, at 

an angular frequency 092 >> col, for which liquid drag 

forces constrain the conglomerates to move affinely 

with applied shear, the chain vectors read: 

q (z, q6, t'l t) = Ft, (t) '  q; .  (58) 

The chain force equilibrium given by eq. (15) can then 

no longer be satisfied. This implies that the chain 

forces depend on the chain moduli. From eqs. (28), 

(30), (32), and (58) it follows: 

G' (co2) = ~ ~ ~q6(4fo(q~)+c(x,q~)) 

0 . N (~, q6) dq6. 
(59) 

The difference between the elastic moduli of per- 

manent networks as calculated on the basis of different 

assumptions with respect to the conglomerate flow, eqs. 

(57) and (59) reads: 

1 ~ ( f0(q;) ] 
G' (co2) - a '  (~o,) = ~ -  2 I q; 1 + 

0 c (~, q ; ) /  

) (60) 
no N (z, q6) dq6, 

• c (~, q;)  n 0 ( ~ )  

~c (z, q;)/ 

which equals zero when all chains have the same force 

constant. It is an estimate of the frequency dependence 

of the elastic modulus of a permanent network, the 

chains of which having different complexities. Next 

consider a permanent network of identical polymer 

molecules modelled as linear springs which adopt an 

isotropic Gaussian chain-vector distribution at rest: 

N (z, q6) = 4 ~ q02 no [ 
3 ]3/2 (61) 

2~Z (V -- 1) L 2 e-3q6V2(v-1)L2' 

where q6 is the end-to-end vector of a freely jointed 

chain with (v - 1) links of length L [21]. At temperature 

T the forces transmitted by the chains equal: 

3kT  
f(q6, t ' lt) = (v -  1) L 2 q (q6, t' t) ,  (62) 

where k is Boltzmann's constant. On inserting 

3kT  
c = f 0 -  ( v -  1) L: q; it follows from either eqs. (57) or 

(59) and (61) that the storage modulus G' (co)= nokT, 
a well-known result from the rubber-elasticity theory. 

It is noted that all results derived so far that assume 
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chain force equilibrium are valid under creep condi- 

tions only. At chain fracture the network remaining 

adopts a new configuration within a t ime scale that  is 

small compared to time scales connected to network- 

fracture processes themselves. However,  when the pro- 

duct 2B is in the order of  unity, the fastest relaxation 

processes may occur within t ime scales that  are in the 

order of network-contraction characteristic times (fig- 

ure 5). This interferes with one of the main assumptions 

underlying the model, namely that network-chain 

forces are in mutual equil ibrium at any time. Thus, 

one has to restrict the interpretation of  relaxation 

h-functions, this can be true only if the value of  h does 

not depend on z. Further we assume that h does not 

depend on global network and flow properties, i.e. its 

value depends only on individual chain properties,  

such as the length of the chain under consideration. It 

then follows from eqs. (19) and (22) that all chains 

with the same z and q' undergo the same average 

deformation during flow irrespective of  the t ime of  

their creation t' _-> 0, so: 

q (x, q', t' I t) f (q', t' I t) 

= q (z, q', 0 [ t - t') f (q', 0 i t - t ' ) ,  (64) 

for any t --> t', while the ratio: 

~o(~,q ' , t ' l t  ) 
o 

~o (~, q', t"  l t - t ') d t "  

{' } g (z, q', t') exp - ~ h (x, q', t'l t ' )  dt"  
t '  

0 { ti" } 
g (z, q', exp {h0 (z, q')  dt"  exp - h (z, q', 0 I t")  dr" 

- - 0 0  

(65) 

spectra in terms of model constants to the relaxation- 

time interval that coincides with this condition. 

Both results (57) and (59) differ from expressions for 

the elastic moduli of a permanent  network used in 

literature, as derived from special chain arrangements  

by Nederveen [22] on applying Poisson's rule. 

4.4. Inception o f  steady f low 

Eq. (27) together with eqs. (15) and (36) and the 

kinetic equation (25) can, in principle, be solved 

numerically for the inception of  any steady flow. Not  

only chains that are present at the t ime the flow starts 

but also chains that are created during flow will, sooner 

or later, contribute to the macroscopic stress. Under  

certain conditions it is possible to express the stress 

contribution of these chains in terms of  the chain 

creation function and the stress Tb (t) that is carried by 

these chains that were present at the beginning. It is an 

important consideration that Tb (t) is proport ional  to 

the number of  chains that were present at the inception 

of flow, say t = 0, provided the ratio no (z) /no is kept  

constant. This is so, because only ratios of  chain 

densities are taken into account in eqs. (18-22) .  

We consider the special case that the distribution of  

chain vectors of  chains created at t ime t ' =  0 is the 

same as the initial one, apart from a constant factor, i.e.: 
0 

~ ( z , q ' , t ' l O )  dt' 
g (z, q', t ') _09 

- 0 ( 6 3 )  

~g(z,q',t')~ ~ ~ ~o(z ,q ' , t ' lO)  dt' 
--09 

for any value of z, q' and t'. Since the values of  the 

density functions follow from the ratio of  the g- and 

~ (~, q', t') 
0 

S 9 (z, q', t") exp {h0 (z ,q ' )  t"} dt" 
- - 0 9  

does not depend on x,q '  and t (see eq. (63)). We may  

then write for (27): 

T(t) = - p l +  Tb(t) 
t 

+ ~ Tb(t - -  t' ) 
o 

= - p l +  Tb(t) 

¢o (z, q', t' I t) 
o 

(a (z, q', t" l t -  t') dt"  
--09 

dt' 

where 

t p 

n (t') = Z ~ f¢  (z, q', t"] t') d3q ' dt" (67) 
- 0 9  

,, Z ~ g (,~, q', t") d~q ' 

= n b (t') + ~ nb (t' -- t") ~ dt;' 
0 170 

{i0 ,f. 0 
nb (t') = ~ 9 (z, q', t") (68) 

• e x p { - S h ( z , q ' , t " ] t " ' ) d t " ' ]  d 3 q ' d F  , 

:' if  t ' - 0 .  
The functions Tb (t) and nb (t) are found from eqs. (28) 

and (68) on substituting the proper  annihilation func- 

~ g (z, q', t') d3q" t 

+ ~ Tb (t - t') ~ d t ' .  (66) 
o no 

Use was made of eqs. (63) and (65) in the second step, 

while integration was carried out over q'. The chain- 

density function which may appear  in the expression 

for g in eq. (66) can be deduced in an analogous way: 
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tion. Subsequently, the stress-tensor components,  when 

taking the creation of  chains during flow into account, 

are found from eqs. (66) and (67). 

4. 5. An illustrative stress calculation 

As an illustration the stress response to the inception 

of steady simple-shear flow (vx = ) y )  is calculated for a 

certain choice of  the chain stiffness and chain-anni-  

hilation function that is typical for a dispersed-part icle 

network. All chains have the same length q; and are 

isotropically distributed over orientation space at the 

beginning (eq. (33)). All chains have the same com- 

plexity. When the chain end-to-end distance is less 

than the initial length q6, the transmitted force equals 

zero: 

f(1, q;,t'! t)={ 0 
c (1, q;) 

if q (1, q;, t ' l t)  ~ qO, 

q (1, q6, t ' l t ) -  q6 (69) 
e (q6, t ' l t)  

q6 
if q (1, q6, t ' l t )  >-- q6. 

When the chains deform, the potential energy stored in 

the bonds inside the chains increases with a total 

amount: 

l0 AE(q(q; , t ' l t ) )  = q (1, q;, t ' l t  ) - q ;  2 

c (1, q~) q6 q~ 

if q (1, q~, t 'l t) ~ q6. 

The annihilation function is approximated  by an Ar- 

rhenius-type expression: 

{ AE(q ( l ' q~ ' t ' l t ) )  } (71) 
h (1,q6,t'[ t )=ho(T)exp  k T " 

The factor h0 (T) denotes the rest value of  the annihila- 

tion function. It depends on the total potential  energy 

available in particle bonds within the chain that  must  

be overcome before chain fracture occurs, k is Boltz- 

mann's constant and T the absolute temperature.  

Structural build-up by means of peri- and ortho- 

kinetic coagulation is assumed to be negligible since 

model calculations are carried out for high rates of  

shear only (i ho 1 ~- 10) and because the shear itself is 

taken to be so small that network breakdown and hence 

the number of  freely diffusing conglomerates are 

limited. Under these assumptions the components  of  

Tb (t) in eq. (27) are approximately  equal to the com- 

ponents of  the stress tensor itself. 

The relative deformation gradient reads: 

F< (t) = 1 , (72) 

0 

in which 

7 (t', t) = 0 

? ( t ' , t ) = ~ t  

(t ' ,  0 = ~' ( t  - t ')  

The shear stress and first normal-stress difference that  

follow upon the inception of steady s imple-shear  flow 

are calculated from Tb (t) (eqs. (28), (29) and (31)): 

if t ' ~ t  < O ,  

if t '<=O<t , 

if O<=t'<--t. 

n____L_0 
Tb(t) 4 ~ r q ~ 2 S q ( l ' q ° ' 0 1 t ) f ( q 6 ' 0 1 t ) 0 ( q ' - - q 0 )  

I' I • exp - ~ h (1, q', 0 ] t') dt' d3q ' . (73) 
0 

The chain vector follows from eq. (37): 

q (1, q;, 0 1 t) (74) 

= 0 ( t "  
n It) dt'" 

1 + 2c  (1, q~) 1 -o~ 
no  

"e(q~,O]t) ,  

where )~= 0 and )~ = ;l in the case of  chain bending and 

chain stretching, respectively, and 

0 

n (t" I t )  d t "  - n~° 
4 ~z q~2 ~ 6 (q' - q6) 

/' / • exp - ~ h ( 1 ,  q ' , 0 ] t '  d3q ' .  (75) 
0 

These equations are solved numerically on substituting 

eqs. (69-72),  see figures 6 - 8 .  Parameter  values used 

for calculations are listed in table 1. 

The elastic response at the beginning of  the experi- 

ment is seen to correspond to an elastic modulus  that  is 

half the one that follows from eq. (49) on substituting 

f0 = 0 and the parameter  values listed in table 1. This is 

due to the fact that, according to eq. (69) the chains 

bend when they are compressed. The non-zero value of  

h0 causes the responses to diverge somewhat  at low 

shears• At larger shears the curves are seen to diverge 

further as a result of  chain fracture, as predicted by eq. 

(71). The shear at which the stress components  reach 

their maximum is determined mainly by cq(~ and h0, i.e. 

by the maximum elongation that the individual chains 

are able to stand. The divergence of the curves is 

governed by the steepness of  the fracture function (71). 

If the chain-annihilation chance would rise f rom zero 

to infinity after exceeding a certain critical length, 

there would be no ?>-dependence left at all in the stress 

overshoot curve. In figure 8 the effect of  varying 2 c on 
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Fig. 6. Model calculations; shear stress versus shear after 
inception of steady simple-shear flow for different values of 
the shear rate. See table 1; 2 c = 5 
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Fig. 8. Model calculations; shear stress versus shear after 
inception of simple-shear flow for different values of the 
contraction parameter 2 e. See table 1; ~ h~ 1 = 10 
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Fig. 7. Model calculations; first normal-stress difference versus 
shear after inception of steady simple-shear flow for different 
values of the shear rate. See table 1; 2 e = 5 

the shape of  the overshoot curve is i l lustrated. Wi th  2 c 

increasing, chain fracture occurring somewhere  in the 

sample causes an increase of  contraction of  the re- 

maining part of  the network, implying that  the process 

of network-connectivity b reakdown is delayed.  The 

first normal-stress difference is natural ly somewhat  

smaller than the shearing stress. The rat io of  m a x i m u m  

shearing stress versus max imum first normal-stress dif- 

ference depends on the value of  the pa ramete r  2 c. By 

means of  assigning the proper  values to the system 

parameters in eqs. (69-71) ,  the shear-stress overshoot  

response can be adjusted so as to have a region in 

which the material  behaves p r imar i ly  elastically with a 

slight shear-rate dependence only, and a region in 

which time effects affect the stress response more  

intensely, i.e. at the max imum shearing stress, where  

the chains carry about all the max imum force they can 

bear. The shape of  the stress-overshoot curves can thus 

Table 1. Parameter values used for model calculations 

2c(1, q6 ) 1 -  5 -  10 
c(1, q6)q6(kgm2s -2) 2" 10 -17 

T(K) 293 
h~ ] 5 - 10 - 20 
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be established to be in qualitative agreement with 

masurements on classes of  dispersed materials in 

which network-interaction forces are of  dominat ing 

importance to the system's rheological properties, such 

as dispersions of  fat crystals in oil [2, 13, 23]. 

5. Conclusions 

The transient-network model for concentrated dis- 

persed systems introduced in this paper  explains the 

relation between typical rheological properties of  these 

types of  systems and the microscopical parameters, 

both structural and physical, that are responsible for 

them. For instance, the initial slope of  the stress-shear 

curve in the case of  inception of  simple-shear flow, i.e. 

the elastic part of  the response, the shear at which the 

shear stress passes through its maximum, the influence 

of  the shear rate, and other phenomena,  can all be 

modelled by substituting the proper chain moduli ,  

kinetic functions, and structural parameters in eqs. 

(14), (19), (23) and (24). Conversely, by fitting model-  

stress curves to experimental data, information is ob- 

tained about both structural build-up of  dispersed- 

particle networks and interaction forces between the 

particles themselves. When either the three-dimen- 

sional structure of  the system or the nature of  the inter- 

action potential is known, either the interaction poten- 

tial or the structural parameters can be obtained 

separately by fitting rheological data, provided the 

kinetic functions (23) and (24) are known. The three- 

dimensional structure can sometimes be determined 

for example by Scanning Electron Microscopy. 

Once the relation between the microscopic proper- 

ties of  the system and its rheological behaviour under 

varying circumstances is known, tools are available for 

modifying the network structure and the physical 

properties of the dispersed particles in such a way that 

the rheological behaviour of  dispersed systems is al- 

tered in a predetermined way. 
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Appendix: An expression for the stress tensor 

A network consisting of conglomerates of dispersed mate- 
fal connected by chains is visualized in figure 9. The volume in 
so far as occupied by the dispersed phase is subdivided into 
small volume elements, which contain only one conglomerate 
each, supplemented by half of all the dispersed material 

ork  
:erial 

or ig in 
unit cei l  i 

E 

-R i 

Fig. 9. Network structure subdivided into unit cells 

chains that are connected with these conglomerates. The 
number of volume elements equals the number of conglom- 
erates. Each cell is identified by the index i. The value of the 
y-component of the Cartesian coordinates of the conglom- 
erates is a continuously increasing function of i. The volume 
of the cell is given by Vp, i. The total volume occupied by the 
liquid phase in a volume V of the dispersion is given by 
VF, SO: 

V= VF+ Z VP, i. (A. 1) 
i 

Summation is carried out over all conglomerates in volume V. 
The contact surface of the dispersed phase and the liquid 
phase is given by c~V~oi for each cell, while c~V~, i denotes the 
intersections of the chains at the cell walls. 

The local stress tensor reads: 

T = - p I +  T e,  (A.2) 

where p equals the ambient pressure in the liquid phase, due 
to the incompressibility of both phases, and T e the extra 
stress. Body and inertial forces are assumed to be absent, so: 

div T= 0. (A.3) 

Viscous forces are assumed to be negligible in magnitude with 
respect to the interactive forces. Then p is a uniform pressure 
anywhere in the liquid phase and TE equals zero in the liquid 
phase. 

The volume-averaged stress tensor is marked by an upper 
bar: 

t - 2 I  rdv=2 I I rdv+ 2 i rdvl 
V v V tvr ' Vp,, J 

= - p l + + ~  v,! TEdV. (A.4) 

Again the summation is carried out over all conglomerates in 
a volume V. It can be seen from eqs. (A.3) and (A.4) that the 
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contribution of the extra stress in the i-th cell to the volume- 
averaged stress tensor can be written as: 

Ti = 1  S r Te. n dS ,  (1.5) 
V avp.~ 

where r is a vector that points from the origin to the surface 
OVe, i, n the external unit normal on dS, and 

OVp, i = OVIi + c~V~. i . (A.6) 

divergence of this field equals zero in the liquid phase and it 
equals the interactive force field inside the particles. On 
imposing proper boundary conditions to T 1 the contributions 
of the chain forces to the macroscopic stress tensor can be 
shown to be given by an expression analogous to eq. (A.11). 
This prompts us to use eq. (A. 11), even if the dispersed phase 
consists of discrete particles. 

It follows from eq. (A.3) and the boundary condition 
r e • n = 0 at OVli that, instead ofeq. (A.5), we may write: 

T i = + o ~  ( r - r i )  T e ' n d S ,  (1.7) 

in which r i is a vector that points from the origin to the 
junction position in the i-th conglomerate. 

The vector r -  r i is related to the vector rij, that points from 
the junction in the i-th conglomerate to the junction in the j-th 
conglomerate. Therefore we write: 

r--  r i ~ ¢ij" ru,  rj - r ~-- (1 -- ~ij)' ru = ~ji" rij ,  (A.8) 

where {ij is a tensor. 
The force, f j, transmitted by the chain that connects the 

conglomerates i and j on omitting the liquid pressure term is 
given by: 

f~j = ~ TE'n dS,  (A.9) 

where S U is the surface area of the/ j -chain at the site where it 
is intersected by the wall between the i-th and j-th cell. If the 
i-th and the j-th cells are not interconnected by chains, Sij 

equals zero, so f j  = 0.. 
The following expression is found from eqs. (A.7-9) for the 

contribution of the i-th cell to the volume-averaged stress 
tensor: 

T/: +j.~/~ij'rijfij, (A.10) 

where the summation is carried out over all unit cells j for 
which j :# i. The force f j  equals zero for all values of j that 
represent a unit cell that is not connected with the i-th cell by 
a chain. Summation over i and taking the liquid pressure into 
account yields the total stress: 

T = - p l +  ~ 1 ~ =  - p l + - - ~  2 rijfij .  (A. 11) 
i V i . j > i  

If, however, the dispersed phase is built up of discrete particles 
rather than continuous structures, possibly not even making 
contact, the surface enclosing a unit volume may only 
involve the liquid phase at the sites where it cuts the particle 
chains. This would lead to ambiguous results when eq. (A.5) 
is used, since the local stress tensor is assumed to have only 
ambient pressure terms in the liquid phase. 

Jongschaap and Doeksen [24] have illustrated the use of a 
fictitious stress field T I describing the interactive forces. The 
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