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Abstract—Over the last few decades, most quantitative measures of VLSI performance have improved by many 
orders of magnitude; this has been achieved by the unabated scaling of the sizes of MOSFETs. However, scaling also 
exacerbates noise and reliability issues, thus posing new challenges in circuit design. Reliability becomes a major 
concern due to many and often correlated factors, such as parameter variations and soft errors. Existing reliability 
evaluation tools focus on algorithmic development at the logic level that usually uses a constant error rate for gate 
failure and thus leads to approximations in the assessment of a VLSI circuit. This paper proposes a more accurate 
and scalable approach that utilizes a transistor-level stochastic analysis for digital fault modeling. It accounts for very 
detailed measures, including the probability of failure of individual transistors, the topology of logic gates, timing 
sequences and the applied input vectors. Simulation results are provided to demonstrate both the efficiency and the 
accuracy of the proposed approach. 
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I.  INTRODUCTION 

The reliable operation of integrated circuits has become a major concern as at nanometric feature sizes, manufacturing 
defects, transient faults, parameter variations and aging effects are very compelling challenges [1]. As CMOS technology 
scales down, the evaluation of the reliability of logic circuits has been pursued using various computational methodologies [2 
– 5]. While an analytical approach can handle the assessment of small circuits at no loss of accuracy, the exact and efficient 
computation of the reliability remains difficult to achieve for large circuits. Therefore, a compromise is usually made for the 
accuracy of the evaluation versus the computational complexity and memory requirements. Such compromise must consider 
signal correlation (as introduced by reconvergent fanouts in combinational circuits or feedbacks in sequential circuits). 
Simulation has also been used as an alternative when an analytical approach becomes intractable. In a simulation-based 
approach, experimental data is gathered to characterize the behavior of a circuit by randomly sampling its activity. As an 
example, Monte Carlo (MC) simulation has been widely used when an analytical approach is not available or easy to 
implement. A disadvantage of simulation is that numerous pseudo-random numbers must be generated; therefore, a large 
number of simulation runs must be executed to reach a stable output, so making the evaluation of large circuits a very time-
consuming process. Recently, some new approaches that take advantages from both analytical as well as simulation-based 
methods have been developed [6] [7]. These approaches employ random binary sequences to gather the probabilistic 
information in a circuit and provide highly accurate and efficient analyses of circuit reliability.  

As existing reliability evaluation approaches focus on algorithmic development aiming for both high accuracy and low 
computational complexity, they rely on a logic-level analysis so that a fast evaluation can be provided at the early stage of a 
logic design process. However, they exhibit a major shortcoming: a constant probability of gate failure is usually assumed in 
a gate-level analysis, which actually has no physical basis for its applicability (as faults and defects usually affect individual 
devices such as transistors [8] [9]). For example, process variations, due to random dopant fluctuation or manufacturing 
imperfections in the CMOS fabrication process, have prominently emerged to impact performance and degrade the reliability 
of electronic circuits. The physical characteristics of devices have subsequently resulted in probabilistic circuit behaviors that 
manifest as a switching error of a transistor [8]. Manufacturing defects can also result in stuck-at faults in transistors [9]. The 
error probability also depends on the topology of a logic gate as well as its input vector. Moreover, the signal sequence needs 
to be considered. For example, if both the pull-up and pull-down networks are OFF in a CMOS gate, then the gate output is 
dependent on the previous output state (assuming no leakage).  

As comprehensive circuit analysis (dealing with electrical and timing information such as in Monte Carlo SPICE 
simulation) is thought to increase the computational complexity, thus further complicating the reliability assessment problem, 
a transistor-level analysis could circumvent these disadvantages and therefore provide the basis for a more accurate analysis. 
A design automation tool that considers reliability at the transistor level has recently been proposed for estimating the 
reliability of CMOS logic gates, as well as that of some small circuits such as full adders [10]. However, it has not been 



 

applied to the analysis of large circuits since it still incurs an excessive complexity in computation. In this paper, a transistor-
level stochastic analysis is proposed for the accurate and efficient reliability evaluation of digital circuits. Stochastic models 
are initially developed for transistors by extending the probabilistic analysis of gate-level SCMs. Logic gates are then 
modeled by considering sequential as well as combinational effects, such as timing sequences, gate topology and inputs to 
transistor operations. Since the probability is encoded into stochastic binary streams and signal correlation is carried on the 
bit-wise dependencies of the streams, the proposed approach is scalable for use in the analysis of large circuits. 

This paper is organized as follows. Section II reviews stochastic computation and its application on gate-level analysis. 
Section III presents the stochastic modeling for a transistor-level analysis and Section IV presents the logic gate models. 
Section V outlines the circuit analysis approach and Section VI reports simulation results. Section VII concludes the paper. 

II. STOCHASTIC COMPUTATION FOR GATE-LEVEL RELIABILITY ANALYSIS  

In stochastic computation, real numbers are represented by random binary bit streams and information is carried on the 
statistics of the binary streams [11]. Stochastic computation offers advantages such as computational simplicity, fault 
tolerance and high speed [12-16]. Its effectiveness has been shown in several applications including stochastic decoding [17], 
neural computation [12] and fault-tolerant computing [13, 14]. In stochastic logic, signal probabilities are encoded into binary bit 
streams, i.e., serially in the time domain. A specific probability is usually represented by the proportion of the mean number of 1’s in 
a uniformly distributed random bit streams. Figure 1 shows an inverter and an XOR gate performing encoded stochastic 
computation. As Boolean operations can be mapped to arithmetic operations, the inverter probabilistically implements the 
complement operation of  𝑃(Y = 1) = 1 − 𝑃(X = 1) and the XOR implements the function shown in Figure 1(b). Note that in 
Figure 1, a sequence length of 10 bits is used for illustration purposes, a larger sequence length is usually needed in practice.  

Figure 1. Stochastic computation by (a) an inverter and (b) an XOR gate. 

Recently, a stochastic approach has been proposed for the reliability analysis of logic circuits [7]. A stochastic computational 
model (SCM) is used to evaluate an unreliable logic gate with a constant gate error rate. For example, a gate affected by a bit-
flipping error can be modeled using the stochastic XOR as 

𝑃(𝑜𝑢𝑡𝑝𝑢𝑡 = 1) = XORsto(p, ε) = p(1 −  ε) + (1 − p)ε,                                                            (1) 

where ε = P(gate faulty) and p = P(output = 1|gate not faulty). Therefore, an unreliable AND gate affected by a flipping 
error has an output probability given by  

     𝑃(Z = 1) = �1 − 𝑃(X1 = 1) ∙ 𝑃(X2 = 1)� ∙  ε + 𝑃(X1 = 1) ∙ 𝑃(X2 = 1) ∙ (1 −  ε).                                             (2)  

 

 

 

 

Figure 2. (a) An unreliable AND gate and (b) its SCM implementation for flipping errors [7]. 

As shown in Figure 2, an unreliable AND gate (Figure 2(a)) is implemented by an SCM using an XOR gate (Figure 2(c)) 
[7]. When applied to replace unreliable gates in a circuit, the SCMs provide an accurate and efficient approach for evaluating 
the reliability of logic circuits. Since signal dependencies are inherently maintained in the distribution patterns of the random 
binary bit streams, the SCM approach efficiently handles signal correlation introduced by reconvergent fanouts; therefore, the 
computational complexity is significantly reduced. Moreover, although precision is limited by the inherent randomness of the 
binary bit streams used in stochastic computation, the evaluation results are highly accurate and the approach is scalable for 
use in the analysis of large circuits [7]. 

(a) (b) 

(a) (b) 



 

III. STOCHASTIC MODELING OF TRANSISTORS 

The CMOS transistor is a voltage-controlled current source. In digital design, the transistor is usually considered to 
operate as a switch (Figure 3). As a switch, the transistor gets its source and drain conducted, if the gate voltage is “high” (for 
NMOS) or “low” (for PMOS). Thus, the ON/OFF state of a transistor is determined by the applied gate voltage. When 
transistors are used in a gate and the gate voltage falls off the noise margins, the transistor operates in an indefinite manner, 
so its state is referred to as “indefinite” or “IND.” Hence, there are three operational states in the transistor model used in this 
paper: ON, OFF and IND (Figure 3(a)). These states are determined by three different gate inputs, i.e., voltage as high, low 
and outside of the noise margins (corresponding to g as logic “1,” logic “0,” and “X,” respectively, in Figure 3). Mapping 
between the gate input and the operation of the NMOS and PMOS transistors is summarized in Figure 3(b) and it is given as 
follows: 

• For the NMOS transistor, the input 0 results in OFF; the input 1 results in ON; and the input X results in IND. 
• For the PMOS transistor, the input 0 results in ON; the input 1 results in OFF; and the input X results in IND. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.     (a) Transistor model as a probabilistic switch. g : gate terminal; d: drain terminal; s: source terminal; St: state (ON/OFF/IND) of the transistor. 
(b) Mapping between the gate input and the transistor operations. 

Since a transistor may be affected by a transient error, its state could be erroneous. A transistor can therefore be modeled 
as a probabilistic switch such that the probability distribution of the state (ON, OFF and IND) of the transistor is determined 
by the input signal probability. Here, this probabilistic switching of the transistor is modeled using the stochastic 
computational models (SCMs) presented in the previous section. As shown in Figure 4, the gate input is represented by a 
random bit stream, and so is the switching error probability of the transistor. If the transistor is affected by a flipping error 
with an error rate ε = P(transistor faulty), then the gate input can be considered to be changed by a stochastic XOR as  

𝑔′ = XORsto(g, ε) = g ∙ (1 −  ε) + (1 − g) ∙ ε.                                  (3)            

The newly-generated gate input is then used to determine the state of the transistor (considered now as reliable). This results 
in a stochastic model for an unreliable NMOS or PMOS transistor as shown in Figure 4. A similar stochastic model can be 
used to estimate the transistor’s behavior when affected by a different type of error. For example, the stuck-ON/OFF fault can 
be modeled using the following equations:  

𝑔′𝑆𝑡𝑢𝑐𝑘−𝑂𝑁 = ORsto(g, ε) = g + ε− g ∙  ε = ε + g ∙ (1 − ε)                                (4) 

     𝑔′𝑆𝑡𝑢𝑐𝑘−𝑂𝐹𝐹 = ANDsto(g, ε̅) = g ∙ (1 − ε)                                                            (5) 

So, a stochastic transistor model can be constructed as follows:      

• If the transistor is affected by a flipping error, then the stochastic XOR is used; 
• If the transistor is affected by a stuck-ON error, the stochastic OR is used; 
• If the transistor is affected by a stuck-OFF error, the stochastic inverter and AND is used.  

Transistor 
type 

 
Gate input 

NMOS 
State (St) 

PMOS 
State (St) 

𝑔 = 0 OFF ON 

𝑔 = 1 ON OFF 

𝑔 = 𝑋 IND IND 

(a) (b) 



 

In (3), (4) and (5), an input X is considered to always produce the same output (i.e., X), regardless of the stochastic logic 
being performed. Due to space limitation, only the model of the flipping error is presented in this paper. 

Differently from the logic-level SCM approach in [7], in which the random bits in the binary streams are considered 
equivalent and with no order, the stochastic sequences used in this paper match the operation of the transistor in multiple 
clock cycles. This allows to account for errors that occur within a single and multiple clock cycles. Additionally, the temporal 
sequences in the binary bits ensure the correct modeling of the floating state that could result from the pull-up and pull-down 
operations of the transistors, as explained in more detail in the next section.  

 
 

 

 

 

 

Figure 4. Stochastic transistor models for the flipping error: (a) NMOS and (b) PMOS. 

IV. TRANSISTOR-LEVEL STOCHASTIC MODELING OF LOGIC GATES 

Faults and defects are likely to affect the correct operation of individual transistors in the logic gates of a combinational 
circuit; so for an accurate and realistic reliability analysis, the gate error rate should be derived in terms of the transistor error 
probability, while considering also the gate topology as well as the input vectors. 

Similar to the logic-level SCM approach in [7], the transistor-level stochastic approach uses stochastic random sequences 
to represent both signal and error probabilities. However, the traditional SCM approach is static in the sense that circuit 
reliability is evaluated without considering signal sequences and timing information, thus it may not always be directly 
applicable to the temporal operation of the transistors and of the sequential elements such as the flip-flops. Therefore the 
stochastic streams in the new model are defined differently to account for signal sequencing. Initially, consider the CMOS 
inverter as an example (Figure 5(a)). Given an input sequence 𝑁𝑖𝑛  and the switching error rate sequences εp and εn, the 
ON/OFF states of the PMOSFET P and the NMOSFET N are obtained via functional bit-parallel simulation of the input 
sequences. Then the output node sequence 𝑁𝑜𝑢𝑡 is found as a function of the state of each transistor, i.e., 𝑁𝑜𝑢𝑡 = 𝑓(𝑆𝑡𝑃, 𝑆𝑡𝑁); 
this can generally be estimated according to the functionality of the gate. For the inverter it is given as follows: (1) when P 
(pull-up network) is ON and N (pull-down network) is OFF, the output is logic 1; (2) when P (pull-up network) is OFF and N 
(pull-down network) is ON, the output is logic 0; (3) when P and N are simultaneously OFF, the output is floating, or Z (i.e., 
it depends on its previous value); and (4) when P and N are simultaneously ON or any of P and N is indefinite or IND, the 
output is defined as unknown, or X. This is also shown in the table of Figure 5(b). 

 

  
 

Figure 5.（a）Proposed stochastic model for the inverter, and （b）The gate output as determined by the pull-up and pull-down networks. 

Since random binary bit streams are used for each circuit node in a functional/fault simulation (i.e., serially in the time 
domain), the sequencing property of the bits are defined in such a way that each bit in the sequences represents a logic value 
at a certain node in one clock cycle. Therefore, it is possible to define and calculate the floating output Z as the previous bit 

              Pull-up/down 
network 
operation 

Gate output 𝑁𝑜𝑢𝑡 

Pull-up 
Network 

 P 

Pull-down 
Network 

 N 
0 OFF ON 
1 ON OFF 
𝑍 OFF OFF 

 
 X 

ON ON 
IND Don’t care 

Don’t care IND 
(a) (b) 

(b) (a) 



 

(a) (b) 

value in a sequence. This is based on the assumptions that the node leakage is negligible and that the node charge will remain 
at the same level until a refresh operation occurs. Since the unknown (leakage) output X usually falls into the undefined 
voltage region, it is assumed that as the worst case, it is a faulty output (it usually cannot be immediately restored by the 
gates). The proposed method is amenable to a parallel-bit simulation for combinational circuits, while for sequential elements 
(such as flip-flops), sequential simulation may still be required. 

To better understand the proposed approach, more general cases can be illustrated using NAND2 and NOR2, where the 
pull-down and pull-up networks consist of more than one transistor. Let the input sequences Nin1 and Nin2 have a length of L 
and each bit represents the signal value during one clock cycle; therefore, a sequence represents the sequential states in L 
clock cycles. The error rate of each transistor is then encoded into the stochastic sequences.  

 
 

 

 

 

 

 

 

 

 

 

 

Figure 6. Transistor-level stochastic models for logic gates: (a) NAND2 and (b) NOR2.  

As shown in Figure 6, the operation of each transistor is characterized by an error rate ε and a gate input as two sequences 
of length L. Assuming that the transistors are independent, the newly-generated input sequences by the XOR gates determine 
the ON/OFF state of each transistor. The output of the pull-up/down network can be computed based on the states of the 
individual transistors. For a pull-up/down network with multiple transistors, its operational status is determined by the 
topology of the pull-up/down network as follows:  

• For the transistors connected in series in a pull-up/down network, the network is “ON” when all transistors are ON; 
this is equivalent to applying a stochastic AND gate to the states of the transistors. As shown in Figure 6(a) for 
example, Stpull−down = AND(Stn1, Stn2) . The detailed mapping relationships for two transistors connected in series 
are shown in Table 1(a), and they can readily be extended to any number of transistors connected in series. 

• For the transistors connected in parallel in a pull-up/down network, the network is “ON” when any of the transistors 
is ON; this is equivalent to applying a stochastic OR gate to the states of the transistors. As shown in Figure 6(a) for 
example, Stpull−up = OR(Stp1, Stp2). The detailed mapping relationships for two transistors connected in parallel are 
shown in Table 1(b), and they can similarly be extended to any number of transistors connected in parallel. 

Table 1. Mappings between transistors and networks:  (a) series network; and (b) parallel network. 

       

 

 

      

 

 

 

              Transistor         
Network           state 
state 

Transistor 
#1 

Transistor 
#2 

ON ON Don’t care 
Don’t care ON 

OFF OFF OFF 

IND 
IND OFF 
OFF IND 
IND IND 

              Transistor         
Network           state 
state 

Transistor 
#1 

Transistor 
#2 

ON ON ON 

OFF OFF Don’t care 
Don’t care OFF 

IND 
IND ON 
ON IND 
IND IND 

(b) (a) 



 

The output of the gate Nout is established by considering the states of the pull-up and pull-down networks as follows (also 
shown in Figure 5(b)): 

• If the pull-up network is ON and the pull-down network is OFF, then the output is 1. 
• If the pull-up network is OFF and the pull-down network is ON, then the output is 0. 
• If the pull-up network is OFF and the pull-down network is OFF, then the output is Z, which depends on the 

previous value. 
• If the pull-up network is ON and the pull-down network is ON, or any of the networks is IND, then the output is X. 

  The gate error rate/reliability can then be calculated by comparing the faulty and fault-free output sequences. Hence, the 
proposed approach to modeling a logic gate consists of three types of mapping: 1) mappings from the gate inputs to the 
operations of the transistors, as illustrated in Figure 3; 2) mappings from the transistors to a pull up/down network, as shown 
in Table 1; and 3) mappings from the pull up and pull down networks to the gate outputs, as shown in Figure 5(b).   

V. CIRCUIT-LEVEL EVALUATION APPROACH 

For a circuit made of unreliable transistors, its reliability can be estimated by evaluating the stochastic bit streams 
following propagation from the primary inputs to the primary outputs. Practically, this can be done by comparing the 
obtained output sequences for the unreliable and reliable circuit case; such a procedure can be implemented for the 
benchmark circuit C17 as follows. Initially, the stochastic (unreliable) circuit is obtained by adding an XOR gate to each of 
the transistors in C17. Then, the input signals as well as the transistor error probability (that is now an input to the XOR gate) 
are initialized by generating random bit streams. The streams are propagated through the stochastic circuit and the original 
fault-free circuit, as shown in Figure 7. Subsequently, XOR gates are used to detect the mismatch of the stochastic sequences 
from the unreliable and the reliable circuits. Since the C17 has more than one primary output, the joint circuit error 
probability can be obtained by using a stochastic OR gate to detect any error present in the multiple stochastic output 
sequences. The final structure is shown in Figure 7.  

 
The evaluation procedure using the transistor-level stochastic approach as proposed in this paper is given as follows: 

1. Construct the stochastic circuit by adding an XOR gate to each of the transistors in the circuit (for flipping errors);  
2. Generate the initial random bit streams for the signal probabilities of the primary inputs and the error probabilities 

for the transistors; 
3. Propagate the stochastic streams from the primary inputs to the primary outputs in both the reliable and unreliable 

circuits;  
4. Use XOR and OR gates to decode the joint error probability of the circuit from the obtained stochastic bit streams. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Computational structure for the reliability evaluation of C17. Sub-circuit1: the stochastic circuit, implemented using the NAND gate of Figure 6(a); 
Sub-circuit2: the original fault-free circuit, implemented using regular NAND gates; Sub-circuit3: XOR and OR gates for obtaining the joint error 

probability from the output stochastic sequences. 



 

VI. SIMULATION RESULTS 

For validating the applicability and the accuracy of the transistor-level stochastic models, the proposed approach is 
compared with the transistor-level Monte Carlo (MC) simulation and the gate-level SCM approach for the ISCAS-85 
benchmarks [18]. Simulations were performed on a 2.00-GHz AMD microprocessor with 2 GB memory. In the MC 
simulation, random input vectors are applied and faults are randomly injected into the circuits. The circuit reliability is then 
obtained by the statistical outcomes using a large number of simulation runs. Compared to the MC simulation, the proposed 
stochastic approach is more efficient as it requires a significantly smaller number of pseudo-random generations in the 
stochastic computing process. This is confirmed by the simulation results shown in Table 2. In the MC simulation, a total 
number of one million simulations were run for each circuit to ensure a relatively stable output reliability, while in the 
stochastic approach, a sequence length of 10,000 bits were used and produced a relatively stable output reliability. It can be 
seen that while both approaches provide an accurate evaluation of circuit reliability, the proposed approach requires a 
significantly smaller runtime compared to the MC simulation.  

In the gate-level SCM approach, it is assumed that the correct functioning of a gate requires the correct functioning of all 
its transistors. Thus, a simple equation is used to relate the reliability of the transistors to that of a gate, i.e.,  𝜀𝑔𝑎𝑡𝑒 = 1 −
(1 − 𝜀𝑡𝑟𝑎𝑛𝑠𝑖𝑠𝑡𝑜𝑟)𝑛, where 𝑛 is the number of transistors in the gate. The proposed transistor-level approach considers the gate 
topology and the applied input vectors, so it produces different error rates for different types of gates. Therefore, in Table 1 
the gate-level approach results in a difference as large as 400% compared to the transistor-level approach. Due to the use of a 
conservative gate error rate in the gate-level approach, a lower circuit reliability is generated. The bit-parallel nature of the 
proposed approach can be further explored to reduce its computational complexity through the potential parallelization of the 
stochastic simulation.  

Table 2. Simulation results for ISCAS-85 benchmarks by Monte Carlo simulation, the gate-level SCM approach and the proposed transistor-level approach. 

 

VII. CONCLUSION 

Accurate and efficient reliability evaluation techniques are very important as CMOS technology continues to move in the 
nanometric regimes. A transistor-level analysis accounts for features such as temporal signal sequences, logic gate topology 
and different input vectors to determine the reliable operation of circuits; hence, it is more accurate than existing gate-level 
evaluation methodologies. This paper presents such an approach using stochastic transistor models for the evaluation of 
nanometric CMOS circuits. Simulation results have shown the accuracy and efficiency of the proposed approach. It is 
scalable to the evaluation of large circuits and can be further improved by considering more accurate physical models of the 
transistor as basic element of digital circuit design. 

 

Circuit 
Characteristics 

Monte Carlo Simulation 
 𝜺 = 𝟏𝟎−𝟑 

 𝒔𝒂𝒎𝒑𝒍𝒆 = 𝟏,𝟎𝟎𝟎,𝟎𝟎𝟎 

SCM 
 𝜺𝒈𝒂𝒕𝒆 = 𝟏 − (𝟏 − 𝟏𝟎−𝟑)𝒏 

𝑳 = 𝟏,𝟎𝟎𝟎 , 
 𝒊𝒏𝒑𝒖𝒕 = 𝟏,𝟎𝟎𝟎 

Proposed stochastic approach 
 𝜺 = 𝟏𝟎−𝟑 

 𝑳 = 𝟏𝟎,𝟎𝟎𝟎 

gates inputs outputs Circuit error rate Time Circuit error rate Time Circuit error rate Time 

C17 6 5 2 𝟗.𝟏 × 𝟏𝟎−𝟑 3.002m 𝟏.𝟗𝟒 × 𝟏𝟎−𝟐 0.046s 𝟖.𝟗 × 𝟏𝟎−𝟑 0.534s 

C432 250 36 7 𝟓.𝟓 × 𝟏𝟎−𝟐 109.55m 𝟐.𝟑𝟏 × 𝟏𝟎−𝟏 26.115s 𝟓.𝟔 × 𝟏𝟎−𝟐 14.645s 

C499 202 41 32 𝟔.𝟎𝟓 × 𝟏𝟎−𝟐 195.29m 𝟐.𝟗𝟖 × 𝟏𝟎−𝟏 24.723s 𝟔.𝟎𝟏 × 𝟏𝟎−𝟐 26.293s 

C880 383 60 26 𝟕.𝟎𝟏 × 𝟏𝟎−𝟐 213.35m 𝟑.𝟔𝟕 × 𝟏𝟎−𝟏 44.796s 𝟕.𝟐𝟕 × 𝟏𝟎−𝟐 34.446s 

C1355 546 41 32 𝟖.𝟒𝟕 × 𝟏𝟎−𝟐 309.60m 𝟒.𝟕𝟑 × 𝟏𝟎−𝟏 61.306s 𝟖.𝟔𝟐 × 𝟏𝟎−𝟐 51.549s 

C1908 880 33 25 𝟏.𝟒𝟒 × 𝟏𝟎−𝟏 487.55m 𝟔.𝟓𝟗 × 𝟏𝟎−𝟏 80.798s 𝟏.𝟒𝟑 × 𝟏𝟎−𝟏 78.061s 

C2670 1193 157 64 𝟏.𝟕𝟑 × 𝟏𝟎−𝟏 796.57m 𝟕.𝟔𝟗 × 𝟏𝟎−𝟏 134.16s 𝟏.𝟕𝟏 × 𝟏𝟎−𝟏 103.82s 

C3540 1669 50 22 𝟐.𝟐𝟏 × 𝟏𝟎−𝟏 1225.43m 𝟖.𝟐𝟐 × 𝟏𝟎−𝟏 172.01s 𝟐.𝟏𝟗 × 𝟏𝟎−𝟏 156.43s 

C5315 2307 178 123 𝟑.𝟎𝟓 × 𝟏𝟎−𝟏 1764.86m 𝟖.𝟖𝟗 × 𝟏𝟎−𝟏 267.22s 𝟐.𝟗𝟕 × 𝟏𝟎−𝟏 206.13s 



 

REFERENCES 

[1] International Technology Roadmap for Semiconductors (ITRS) 2009, SIA, http://www.itrs.net/reports.html 
[2] S. Krishnaswamy, G. F. Viamontes, I. L. Markov, and J. P. Hayes, “Probabilistic transfer matrices in symbolic reliability analysis of logic circuits,” 

ACM Trans. Des. Autom. Electron. Syst., vol. 13, no. 1, pp. 1–35, 2008. 
[3] J. Han, H. Chen, E. Boykin, J. Fortes, “Reliability evaluation of logic circuits using probabilistic gate models,” Microelectronics Reliability, vol. 51, 

no. 2, 2011, pp. 468-476. 
[4] T. Rejimon and S. Bhanja, “Scalable probabilistic computing models using Bayesian networks,” in Proc. Int. Midwest Symp. Circuits Syst., 2005, pp. 

712–715. 
[5] M. R. Choudhury and K. Mohanram, “Reliability analysis of logic circuits,” IEEE TCAD, vol. 28, no. 3, pp. 392–405, March 2009.  
[6] S. Krishnaswamy, S. M. Plaza, I. L. Markov, and J. P. Hayes, “Signature-based SER analysis and design of logic circuits,” IEEE Trans. Comput.-

Aided Design Integr. Circuits, vol. 28, no. 1, pp. 74–86, Jan. 2009.   
[7] H. Chen, J. Han, “Stochastic Computational Models for Accurate Reliability Evaluation of Logic Circuits,” Proc. Great Lakes Symp. VLSI (GLVLSI), 

Providence, RI, USA, pp. 61-66 (2010) 
[8] W. Ibrahim, V. Beiu, “Reliability of NAND-2 CMOS gates from threshold voltage variations,” IIT ’09, pp. 135-139. 
[9] P. Zarkesh-ha, and A. A. M. Shahi, “Logic Gate Failure Characterization for Nanoelectronic EDA Tools” Proc. IEEE Int. Symp. DFT, Albuquerque, 

NM, USA, Oct. 2010, pp.16–23. 
[10] W. Ibrahim, V. Beiu, “Using Bayesian networks to accurately calculate the reliability of complementary metal oxide semiconductor gates,” IEEE 

Transactions on Reliability,  to appear, Dec. 2010. 
[11] B. R. Gaines, “Stochastic Computing,” Spring Joint Computer Conf., 1967, Vol. 30, pp. 149-156. 
[12] B. Brown and H. Card, “Stochastic neural computation I: Computational elements,” IEEE Tran. Computers, vol. 50, pp. 891–905, Sept. 2001.   
[13] X. Li, W.K. Qian, M. Riedel, K. Bazargan, D. Lilja, “A Reconfigurable Stochastic Architecture for Highly Reliable Computing,” Proc. Great Lakes 

Symp. VLSI (GLVLSI), Boston, MA, USA, pp. 315-320, 2009 
[14] W. Qian, X. Li, M. D. Riedel, K. Bazargan, and D. J. Lilja, “An architecture for fault-tolerant computation with stochastic logic,” IEEE Tran. 

Computers, vol. 60, pp. 93–105, Jan. 2011.   
[15] J. Han, J. Gao, Y. Qi, P. Jonker, J.A.B. Fortes. “Toward Hardware- Redundant, Fault-Tolerant Logic for Nanoelectronics,” IEEE Design and Test of 

Computers, July/August 2005, vol. 22, no. 4, 328-339. 
[16] S. S. Tehrani, S. Mannor, and W. J. Gross, “Survey of stochastic computation on factor graphs,” in Proc. 37th IEEE Int. Symp. Multiple-Valued Logic, 

Oslo, Norway, May 2007, pp. 54–59. 
[17] C. Winstead, V. C. Gaudet, A. Rapley, and C. B. Schlegel, “Stochastic iterative decoders,” in Proc. Intl Symp. Info. Theory, pp. 1116-1120, 2005. 
[18] M. Hansen, H. Yalcin, and J. P. Hayes, "Unveiling the ISCAS-85 Benchmarks: A Case Study in Reverse Engineering," IEEE Design and Test, vol. 16, 

no. 3, pp. 72-80, July-Sept. 1999. 

http://www.itrs.net/reports.html

	I.  Introduction
	II. Stochastic Computation for Gate-Level Reliability Analysis 
	III. Stochastic Modeling of Transistors
	IV. Transistor-level Stochastic Modeling of Logic Gates
	V. Circuit-Level Evaluation Approach
	VI. Simulation Results
	VII. Conclusion
	References


