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ABSTRACT

Substitution matrices have been useful for sequence alignment and protein sequence com-
parisons. The BLOSUM series of matrices, which had been derived from a database of
alignments of protein blocks, improved the accuracy of alignments previously obtained from
the PAM-type matrices estimated from only closely related sequences. Although BLOSUM
matrices are scoring matrices now widely used for protein sequence alignments, they do
not describe an evolutionary model. BLOSUM matrices do not permit the estimation of
the actual number of amino acid substitutions between sequences by correcting for multi-
ple hits. The method presented here uses the Blocks database of protein alignments, along
with the additivity of evolutionary distances, to approximate the amino acid substitution
probabilities as a function of actual evolutionary distance. The PMB (Probability Matrix
from Blocks) defines a new evolutionary model for protein evolution that can be used for
evolutionary analyses of protein sequences. Our model is directly derived from, and thus
compatible with, the BLOSUM matrices. The model has the additional advantage of being
easily implemented.

Key words: amino acid substitution, empirical probability model, Blocks database.

1. INTRODUCTION

AMODEL DESCRIBING THE PROBABILITY OF SUBSTITUTION from one amino acid to another is useful for
sequence alignment, phylogenetic analysis, the inference of ancestral protein sequences, and computer
simulation of protein evolution (see Thorne [2001] for review). Models can be obtained from the ad hoc
definition of parameters such as in the codon substitution model, for which probabilities of substitution for
the amino acids depend on the number and type of base substitution that are needed at the DNA coding
level. Parameters of the model can also be estimated using a rigorous maximum likelihood approach, but
this approach is computationally intensive, makes several restrictive assumptions about the parameters,
and assumes a known tree topology (Adachi and Hasegawa, 1996; Yang et al., 1998; Adachi et al.,
2000; Whelan and Goldman, 2001). The parameters can also be obtained in an empirical manner from
alignments of closely related proteins. The Dayhoff PAM matrices (Dayhoff et al., 1978) and related Gonnet
(Gonnet et al., 1992) and JTT (Jones et al., 1992) matrices define estimates of transition probabilities from
the frequencies of substitution observed in actual proteins. For very closely related proteins, multiple
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substitutions at a site are unlikely, so the observed frequencies of substitution accurately reflect the actual
substitution probabilities. Substitution models derived from only closely related proteins are not likely to
be accurate at higher evolutionary distances. Recently, approaches were developed to estimate an amino
acid substitution model from alignments of varying degrees of divergence. Arvestad and Bruno (1997)
developed a method applicable to smaller datasets. Muller and Vingron (2000) developed a model using
properties of the resolvents of the corresponding transition matrices and the SYSTERS database of aligned
protein sequence families (Krause et al., 2000). Devauchelle et al. (2002) used principal component analysis
to estimate a model from transition matrices.

The BLOSUM series of matrices was derived to increase the accuracy of scoring matrices for larger
sequence divergence. In the approach of Henikoff and Henikoff (1992), frequencies of substitution were
obtained from a database of Blocks. A series of scoring matrices, applicable to sequences with increasing
divergence, was then derived by clustering sequences above a given sequence identity so that their contri-
bution is down-weighed. The BLOSUM matrices give a score for each type of amino acid substitution and
were shown to produce superior alignments (as assessed by their performance in database searches) when
compared to scoring matrices obtained from PAM matrices (Henikoff and Henikoff, 1992). The advantage
of the Blocks database is that the alignments are very reliable; only the parts of protein sequences that
have been aligned without any gaps are included. Because there are no gaps in the alignments, the database
is ideal to model the process of amino acid substitution without regard for the processes of insertion and
deletion. However, the BLOSUM matrices derived from Blocks are scoring matrices and do not define a
probability model of substitution.

Here we have used a very simple approach, based on the original clustering approach of Henikoff and
Henikoff (1992), to generate BLOSUM matrices from an updated version of the Blocks database. From
these BLOSUM matrices, we derived mutability matrices. The mathematical property that evolutionary
distances are additive was used to estimate the relationship between the actual substitution frequency and
the average observed substitution frequency. The mutability matrices could then be expressed as a function
of actual evolutionary distance thus defining an evolutionary model for protein evolution that is consis-
tent with the BLOSUM scoring matrices and that is applicable over the complete range of evolutionary
divergence.

2. METHODS

2.1. Blocks and BLOSUM

We obtained the Blocks databases (Henikoff et al., 1999) from the NCBI ftp site.! The databases we
analyzed excluded blocks that are biased in their composition (usually because of repeats in the sequences
when available (the minus.dat files). The most recent Blocks database was Blocks+v13AugO1 (Henikoff
et al., 1999). Also from the NCBI ftp site,> we obtained the program BLOSUM (Henikoff and Henikoff,
1992) to find the observed frequency of each type of amino acid substitution (the frequency matrices). The
program was run for clustering percentages ranging from 30% to 100% in increments of 2%, and for no
clustering, yielding a series of frequency matrices, one for each clustering percentage.

2.2. Mutability matrices

Here we define mutability matrices and present some important properties. For the present subsection,
subscripts are used to indicate matrix and vector elements. Let F be any substitution frequency count
matrix obtained from BLOSUM. Since F is symmetric (i.e., the order of replacement of amino acids is
not known) and forward and backward substitutions are combined in a single count, we assume throughout
that the diagonal values of F' have been doubled. The vector w of observed frequencies for each amino

1 ftp://mcbi.nlm.nih.goviepositoryblocks/
2ftp://ncbi.nlm.nih.gov;fepository/'[)locks/unix/BLOSUM/
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acid is obtained by summing each row of F and dividing by the sum of all entries in the matrix:
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Each row of the frequency matrix is then divided by the sum of the corresponding row resulting in
mutability matrix M:

@

Mutability matrices describe the frequency of any amino acid being substituted by any other (including
itself). Because each element of a mutability matrix falls between 0 and 1 and the sum of the elements in
each row is equal to 1, mutability matrices are stochastic matrices. The mutability matrices derived from
the frequency matrices are reversible and thus fulfill the detailed balance equation:

7T,'M,'j :n'ij,'. (3)

The average substitution frequency can be calculated from the mutability matrices and the frequency of
the amino acids using the formula

20
DWM)=1-) mMj. @
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The mutability matrices describe the observed frequencies of substitution (observed distance) expected
after an unknown actual evolutionary distance P. Therefore, in addition to the definition given above, a
mutability matrix can also be considered a function of P. To reflect the dependence of a mutability matrix
upon the (unknown) evolutionary distance of the sequences from which M was derived, we let M (P)
denote the mutability matrix M as a function of some evolutionary distance P. The value of P is unknown
since sequences ancestral to those in the alignment are unknown and because multiple substitutions may
have actually occurred at any site. Since actual evolutionary distance is an additive metric, taking the
square (square root) of a mutability matrix will double (halve) the actual evolutionary distance. In general,
for any mutability matrix M and any number 7,

M(P)" = M(nP). (@)

Equation 5 is a special form of the Chapman-Kolmogorov equation for Markov chains. It was this property
that allowed the derivation of the PAM series of matrices from 1 PAM (Dayhoff et al., 1978).

As stated in Section 2.1, our method makes use of data obtained from Blocks+ and BLOSUM at a series
of clustering percentages. Unless otherwise stated, for the rest of this paper we use subscripts to indicate
a clustering percentage; e.g., the matrix M, is the mutability matrix corresponding to some clustering
percentage ¢ € {0, 30,32, 34, ..., 96, 98, 100}.

2.3. Derivation of the formula for the actual evolutionary distance

Without knowledge of ancestral sequences, the actual number of substitutions is unknown and will
always be larger that the observed substitution frequency. To determine the relationship between observed
evolutionary distance and actual evolutionary distance, we can use the additivity of mutability matrices
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(see Equation 5). This property allows us to consider the behavior of the observed distance as we linearly
increase the actual distance (by taking powers of the mutability matrices) without knowing the value of
the actual distance. Our approach is to consider for each clustering the derivative of the observed distance
with respect to the actual distance. The derivatives can be estimated numerically by considering small
fractional changes of the actual distance P. Because of the additivity property (Equation 5), making small
fractional changes to P corresponds to taking powers of the mutability matrices close to 1.

To estimate the derivatives, we used the five-point formula for numerical differentiation (Burden and
Faires, 1985):

df (xo) 1
] = — (f(x0 —2h) = 8f(xo — h) + 8f (xo + h) — f(x0+2h)). (6)
X 12h

The derivative of the function f is thus estimated by considering values of f at several points separated
by a small interval 4. For our purpose, we substituted xo = P, f(xo) = D(M(P)), and h = 0.01P into
Equation 6. The resulting formula,

dDMP) _ L pom(p - 0.02P)) — SD(M(P — 0.01P))
P 12001P)! ' ' 7

+8D(M (P +0.01P)) — D(M(P + 0.02P))],

describes the derivative of the observed distance with respect to the actual distance. Defining the small
interval & as a constant function of P allows us to use the additivity property defined in Equation 5. We
now have

0.12P% = D(M(P)"%®) — 8D(M(P)**) + 8D(M(P)"*") — D(M(P)"?). ®)

We can find the appropriate powers (i.e., 0.98, 0.99, 1.01, and 1.02) of the mutability matrices using
MATLAB 6 (release 12) (Mathworks, Natick, Massachusetts). The expected observed distance for M, and
its powers are calculated using Equation 4. The right-hand side of Equation 7 can then be calculated and
plotted against the D(M (P)) for each clustering percentage (Fig. 1). For notational convenience, we define

D = D(M(P)) )

as the expected observed distance for an actual average distance P. The expression on the right side of
Equation 8 can be estimated by a polynomial function f in D which will yield a differential equation:

dD n n—1
E:f(D):a,,D +a,_1D" + ... +ao. (10)

We also know initial conditions since at sufficiently low distance there are no overlapping substitutions
and the number of actual substitutions is equal to the number of observed substitutions. Thus,

. . dD
lim D=0and lim — = 1. (1D
P—0 P—0 dP

If the degree of the polynomial approximation is low enough, Equation 10 can be solved to give the

correction formula C for an estimate of the actual evolutionary distance P as a function of the observed
evolutionary distance D:

P =C(D). (12)
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FIG. 1. Plot of the estimate of PdD/dP as a function of the expected distance (D) for each M. matrix. The fitted
line corresponds to the cubic approximation.

2.4. Approximation of the instantaneous rate matrix

After deriving the correction formula for evolutionary distance, for each clustering percentage ¢, we
know the appropriate average level of evolutionary distance P.. Another form of the Chapman—-Kolmogorov
equation for Markov chains allows us to formulate the mutability matrix M as the exponential of some
instantaneous rate matrix A multiplied by a divergence time P. Therefore, for each clustering percentage
¢, there exists an instantaneous rate matrix A., such that

M. = exp(AcPc)~ (13)
The mutability matrix M. and the estimated evolutionary distance P. can provide an estimate of the
corresponding instantaneous rate matrix A, using

In M,
Ae = —=<, (14)
P,

but only when the logarithm exists (Devauchelle et al., 2002). The logarithm of a mutability matrix
may not exist when the number of substitutions is high. Additionally, to calculate the logarithm of the
matrix, a numerical procedure by Parlett (described in Golub and Van Loan (1983)) may break down
when there are repeated eigenvalues and requires the matrices to be close to unity. The accuracy of the
estimated logarithm can be verified by checking that the exponential of the resulting matrix is close to
the original matrix. The difference in the norm (largest singular value) between the exponential of the
estimated log of the matrix and the original matrix is evaluated. We used the criteria® (built into Matlab)

3The constant 2.22 x 10~13 corresponds to the tol variable in the 10gm Matlab function, which is equal to
1000xePs. The value of €PS is equal to the distance from 1.0 to the next floating point number.
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that for any clustering percentage c,

|l exp(AcPe) — M|

<222x 107", (15)
| Ml

The instantaneous rate matrix A, can then be estimated from mutability matrix M, and evolutionary
distance P, (obtained as described in Section 2.3) as long as the condition given in Equation 15 is satisfied.
Each clustering percentage leads to a slightly different estimate of a rate matrix. The corresponding P,
evolutionary distances for each M, matrix are approximated using the derivatives of the observed distances
D, so as to make the series of matrices “colinear” in that they satisfy the additivity property of a single
Markov process as described in Equation 3. Under the assumption that a mutability matrix M, reflects
the result of the substitution process after evolutionary distance P, there should be a single, “universal”
instantaneous rate matrix U such that for any clustering percentage c,

M. = exp(UP,), (16)

The universal instantaneous rate matrix U can be obtained from the individual instantaneous rate matrices
by finding appropriate weights w., (0 < w. < 1), and defining

U= weAc (17)

where,
Y we=1. (18)
c

The quality of the universal instantaneous rate matrix U, and equivalently the weights w,, is based on the
sum of the relative differences

UP,) — M,
Z | exp(UP,) II’ (19)

M|l

which we seek to minimize.

3. RESULTS

We obtained the BLOSUM clusterings from the latest version of the database Blocks+v.13Aug01 and
calculated the mutability matrix M. for each clustering percentage ¢. We also calculated each correspond-
ing average observed distance D(M.(P)) using Equation 4. We derived the correction formula for the
evolutionary distance in order to determine the degree of actual evolutionary divergence P, corresponding
to each of these observed distances (Table 1). The estimated derivatives using Equation 8 are plotted
in Fig. 1. Using least-squares, we were able to fit the resulting curve to a quadratic polynomial (with
correlation coefficient RZ = 0.9978) such that

Pdb _ 0.571D> —0.423D + 1 (20)
DdP '
(Fig. 1). Equation 20 is a separable differential equation and thus easily solved. With the initial conditions
described above in Equation 11, we obtain the correction formula
1.228D

P = (1744 1 D)0 (1,004 — D)0-65 for D < 0.8813. 201

Equation 21 describes ﬁ, the estimated frequency of actual substitutions, as a function of D, the observed
frequency. The condition D < 0.8813 is given because our approximation does not apply above the high-
est range of divergence values we considered (corresponding to the clustering of 30%, see Table 1) and



PROBABILITY MATRIX FROM BLOCKS 1003

TABLE 1. THE AVERAGE OBSERVED DISTANCE, AND AVERAGE ACTUAL DISTANCE DERIVED
FROM THE OBSERVED FREQUENCY DISTRIBUTION OF AMINO ACID PAIRS FOR EACH
CLUSTERING PERCENTAGE IN THE BLOCKSH+AUGO1 (MINUS.DAT) DATABASE

Average observed

distance PMB distance Relative residual
Cluster % (D) (P) with U = Agg
30 0.8813 2.8835 0.0890
32 0.8747 2.7712 0.0790
34 0.8678 2.6619 0.0733
36 0.8632 2.5950 0.0824
38 0.8572 2.5120 0.0768
40 0.8494 24112 0.0727
42 0.8422 2.3247 0.0619
44 0.8348 2.2420 0.0813
46 0.8288 2.1786 0.0708
48 0.8202 2.0940 0.0903
50 0.8099 2.0007 0.0917
52 0.8049 1.9575 0.0794
54 0.7959 1.8849 0.0706
56 0.7890 1.8320 0.0552
58 0.7810 1.7739 0.0522
60 0.7711 1.7061 0.0299
62 0.7629 1.6529 0.0245
64 0.7545 1.6019 0.0160
66 0.7458 1.5509 0.0133
68 0.7384 1.5098 0.0000
70 0.7297 1.4638 0.0069
72 0.7224 1.4270 0.0101
74 0.7145 1.3882 0.0109
76 0.7060 1.3483 0.0236
78 0.6986 1.3150 0.0253
80 0.6888 1.2727 0.0276
82 0.6818 1.2436 0.0290
84 0.6727 1.2074 0.0442
86 0.6637 1.1726 0.0481
88 0.6552 1.1412 0.0548
90 0.6440 1.1012 0.0491
92 0.6327 1.0628 0.0620
94 0.6185 1.0166 0.0702
96 0.5987 0.9561 0.0838
98 0.5692 0.8734 0.1061
100 0.4671 0.6373 0.1411
n 0.3385 0.4119 0.1553

extrapolation to larger values of D will most likely not be accurate. Since the limit of applicability corre-
sponds to a very large degree of sequence divergence in the range where alignments become questionable,
extrapolation should not be necessary in most applications. The condition should therefore not restrict the
applicability of the formula for actual protein alignments. The correction formula for multiple hits was
compared to the Jukes and Cantor (1969) formula for amino acids,

19 20

P:—ln(l——D), (22)
20 19

which assumes an equal rate of substitution between amino acids, each with the same frequency. We also
compared this correction with that of the original PAM matrices (Dayhoff et al., 1978) as shown in Fig. 2.
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FIG. 2. Plot of the actual substitution frequency versus the observed substitution frequency. Shown are the estimates
using the Dayhoff PAM matrix (long dashes), the Jukes and Cantor formula (short dashes), The VT matrix (dots) and
our new approximation (solid line).

We see that the correction is more severe than that by Jukes and Cantor (1969) but not as severe as the
Dayhoff et al. (1978) PAM approximation. We also calculated the observed expected distance for powers
of the exponential of the (Muller and Vingron, 2000) VT rate matrix (Fig. 2) divergence. Surprisingly, the
curve for our correction formula is extremely close to that of the VT matrix, which was obtained with a
different method and with a different database.

The mutability matrices M, we derived from the Blocks database all had positive eigenvalues, and all
gave accurate logarithms that could be used for the approximation of a rate matrix. The relative error of
the estimate of the log matrix could be estimated (Equation 15). This error was extremely small for all
clusterings, well within tolerance, even for matrices with the highest levels of sequence divergence which
are far from unity.

Figure 3 shows the relative residual between specified U matrices and each of the A, matrices. We call
these the cluster residuals. We found that the matrix with the smallest average cluster residual is given by
the rate matrix Aeg, which is given in Fig. 4. It defines the matrix for PMB(P) (Probability Matrix from
Blocks) such that

PMB(P) = exp(0.01PU), (23)

where P is the evolutionary distance in PAM units. We implemented the PMB matrix into the PROML
and PROTDIST v3.6 programs of the PHYLIP package (Felsenstein, 2002). We named those versions of
the programs PMBML, PMBMLK, and PMBDIST. They are available for download from the web site
www.uhnres.utoronto.catillier/pmb/pmb.html. We compared lod scoring matrices obtained from the PMB
matrix with those for the VT matrix (Muller and Vingron, 2000). We found that they are quite similar,
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FIG. 3. Relative difference between Universal rate matrix and rate matrices from the mutability matrices. U = A¢
for ¢ € {30, 40, 50, 60, 72, 80, 90, 100, n} or U taken as the average, and as the weighted average of all mutability
matrices.

and an example is shown in Fig. 5 for the 250 PAM level. This is not surprising because although the VT
matrix was obtained from a different database and with a much more complicated and computationally
intensive approach, it was also found to give scoring matrices very similar to the BLOSUM matrices. This
shows the strong influence of the matrix used to align protein sequences because the BLOSUM matrix
was used to obtain the alignments upon which the VT matrix was derived (Muller and Vingron, 2000).

Replacement Amino Acid

AAfrea. A R N D € Q@ E G H I L K M F P S T W Y V
7.56% A - 444 216 218 249 380 544 1292 164 375 766 505 380 236 502 2196 759 45 210 1499
538% R 624 - 530 311 84 1053 831 452 357 250 559 2675 201 135 274 733 637 118 264 354
3.77% N 434 757 - 1468 124 726 735 1092 656 266 336 961 178 211 342 1570 946 51 296 418
447%D 368 374 1237 - 87 545 1914 737 230 130 276 574 43 132 310 992 496 46 166 228
285% C 660 158 164 136 - 110 92 284 150 297 476 168 132 307 112 545 366 48 184 540

O 339%Q 846 1670 807 718 92 - 2250 673 508 211 739 1782 515 183 391 1155 914 135 335 505
2 5.35% E 769 835 518 1600 49 1426 - 433 312 237 398 1222 130 117 525 799 650 72 190 448
o 7.80% G 1251 311 527 422 104 293 296 - 161 109 291 325 89 189 261 886 291 55 126 201
€ 3.00%H 412 639 823 343 142 573 555 418 - 164 337 551 112 240 184 614 618 93 703 272
E 5.99% I 473 224 167 97 141 120 212 142 82 - 3432 258 804 609 143 288 590 69 239 5186
< 958%L 604 314 132 129 142 261 222 237 106 2145 - 257 1206 1015 184 242 418 192 271 1403
= 520% K 734 2766 697 493 92 1162 1257 488 319 298 473 - 218 133 424 846 724 77 232 388
g 219% M 1309 494 306 89 172 797 317 317 154 2197 5271 518 - 941 195 593 852 127 366 1509
oy 450% F 396 161 177 131 194 138 139 327 160 810 2160 153 458 - 214 447 327 354 1859 658
‘= 420%P 903 350 307 329 76 316 667 485 131 203 419 525 101 229 - 940 589 87 193 489
O 682%S 2432 578 868 650 228 574 626 1013 271 253 340 645 191 295 579 - 2750 99 253 462

564% T 1016 608 632 393 185 549 616 402 329 626 710 667 331 261 439 3325 - 137 238 1416

157% W 215 404 123 131 87 292 243 272 177 263 1167 256 177 1012 233 430 49 - 1381 445

3.60% Y 441 394 311 207 146 316 282 274 587 398 722 336 223 2326 226 479 373 604 - 435

715% V 1585 267 221 143 215 240 335 220 114 4345 1881 282 463 415 287 441 1118 98 219 -

FIG. 4. The instantaneous rate matrix for PMB. The first column gives the frequencies for each of the amino acids.
Entries are multiplied by 10,000. Diagonal elements are such that the rows of the matrix add up to zero.
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Difference in lod scores of VT(120) and PMB(120)
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FIG. 5. Comparison of log odds (lod) score tables for the PMB matrix. The upper triangular matrix shows the
difference between the 101log 10 scoring matrix for VT(120) minus the 10log 10 scoring matrix for PMB(120). The
lower triangular matrix shows the difference between the 101log 10 scoring matrix for BLOSUMG62 minus the 10log 10
scoring matrix for PMB(120) matrix. Absolute differences > 2 are shaded.

We used bootstrap resampling (Efron, 1979) to assess the variability in our estimate of the PMB matrix.
The bootstrap samples were created by randomly sampling blocks with replacement from the database.
The overall size of the resulting database was unchanged from that of the original, but some blocks
were represented more than once and some blocks not at all. For each of these samples, an estimated
instantaneous rate matrix was obtained with the procedure described above, and its relative norm residual
with PMB was calculated.

We also investigated how the estimate of the rate matrix varied with the growth of the Blocks database.
Universal rate matrices were derived from several earlier versions (Blocks v5.0, v8.0, v9.0, v10.1, v11.0,
and +v12Nov00). We performed bootstrap resampling of these databases to estimate the variability in the
estimates. In Fig. 6, the mean residuals and the standard deviation over 100 bootstrap replicates are given
for each of the database versions. The bootstrap residuals are generally only slightly higher than the cluster
residuals (also shown in Fig. 6), indicating a small variability in the estimate. This variability does increase
slightly with the earlier, smaller databases, but even the earliest database was already large enough to obtain
an accurate estimate of the rate matrix. The Blocks v.5.0 database consists of 2,106 blocks and was the
smallest available, so to investigate the behavior of the matrix estimates on even smaller databases, we
took 20 random samples of this database to generate databases 50% and 25% its original size (in blocks).
Each of these was bootstrapped, and the results are shown in Fig. 6. Only for those very small databases
were the boostrap residuals significantly increased.

The relative residual between the universal matrices obtained for each version of the Blocks database
and PMB (from Blocks+v.13Aug01) was also calculated and compared to the residuals with the VT matrix
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FIG. 6. Relative residuals between matrices are shown calculated from the different versions of the Blocks database.
Grey bars indicate the mean residuals between the Universal matrix obtained for the database and of the matrices
obtained with each clustering of the database. Hashed bars indicate the residuals with the Universal matrix obtained
with that database and that obtained in a 100 bootstrap samples. Black bars indicate the residuals of PMB (the universal
matrix obtained with the Blocks+v13Aug01 database) and the Universal matrix from earlier versions of Blocks. The
dashed bars indicate the residuals of the VT matrix with the Universal matrices. Error bars indicate plus/minus one
standard deviation. The v.5%*50% and v.5%25% are databases obtained by randomly sampling one half and one quarter
of the blocks in the the v.5.0 June 1992 database; this was done 20 times, and the mean and standard deviation of the
residuals are plotted.

(Fig. 6). These comparisons show that the estimate of the universal rate matrix between the versions of
the database is much smaller than the difference with VT confirming the result of Fig. 5 showing the
differences between the lods scoring matrices obtained from PMB, BLOSUM, and VT.

4. DISCUSSION

The method of clustering sequences of given sequence identity percentages used in BLOSUM allows the
derivation of substitution matrices that are applicable at larger average distances. These matrices are useful
for determining relative weights for the different types of substitution and have been widely accepted for
sequence alignments. For the matrices to be considered as an evolutionary model, however, we need to
know the level of actual sequence divergence to which the relative weighing of substitutions correspond.
We were able to derive a function for the actual evolutionary distance that rendered the BLOSUM matrices
of observed substitution frequencies additive with respect to that overall average distance. The substitution
matrices expressed as a function of the actual evolutionary distance then describe an evolutionary model.
The database of Blocks contains an undefined mixture of sequence divergence values. The BLOSUM
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approach makes inclusive subsets of the database by clustering sequences with an increasing level of
sequence identity, and thus down-weighing the contribution from closely related sequences. The matrices
are thus derived from sequence alignments that are completely inhomogeneous with respect to evolutionary
time. From an evolutionary perspective, the clustering of the data should have a lower bound of sequence
identity as well as an upper bound. A more accurate frequency matrix and average distance could be
calculated given a more defined evolutionary period. The maximum likelihood methods and the resolvent
method attempt to get around the problem of time inhomogeneity in the datasets either by assuming the
phylogeny or by estimating evolutionary distances in pairwise sequence alignments. But all alignments are
subject to inhomogeneity due to variable rates of substitution at different sites. We kept to the clustering
method of Henikoff and Henikoff (1992) in order to derive a matrix compatible with the BLOSUM series.
Regardless of how the data is partitioned, a substitution probability matrix can be derived from each
subset. From these matrices, we can estimate the average observed distances and their derivatives in order
to determine the average level of actual evolutionary divergence for the substitution probability matrices.
Once the actual evolutionary distance corresponding to each clustering is known, then rate matrices can
be estimated from the logarithms of probability matrices. The PMB is a single universal rate matrix that
most closely describes the substitution process over all clustering of the BLOCKS database.

In the derivation of the PMB, we made several approximations. First, the derivative of the expected
evolutionary distance was approximated using the five-point formula of Equation 6, and a function of the
derivative was approximated again as a polynomial in Equation 20. These two approximations allowed
us to describe the relationship between the actual substitution rate and the observed substitution rate as
a differential equation with a real-valued solution. The five-point estimate is a very good estimate and
justifiable since it is not significantly different from the three-point estimate (indicating convergence, data
not shown). The quadratic least-squares approximation was almost a perfect fit and had the advantage of
yielding a soluble differential equation for the actual evolutionary distance. The third approximation was
made to estimate the logarithms of the mutability matrices. These approximations fell well within toler-
ance, even for mutability matrices that were not close to the unit matrix (i.e., for matrices corresponding
to high evolutionary distances). The last approximation occurs when a single mutability matrix was used
to approximate the universal rate matrix. We chose the rate matrix derived from the BLOSUM clustering
percentage of 68 because it yielded the smallest deviation between estimated and actual mutability frequen-
cies over the entire range of sequence divergence. That the matrices for the lowest and highest clustering
levels were the least well estimated can be partly attributed to sampling error in these matrices due to the
fact that entries outside of the diagonal are sparse for the high clustering percentages and the entries on
the diagonal are sparse for the lower clustering percentages. The best approximation is, of course, to the
matrix from which the universal matrix was derived, and the error increases for the matrices away from
it. Overall, the average relative difference was less than 5%.

The accuracy of our model for the substitution process depends on the variability in that substitution
process and the amount of data available to estimate it. To assess the variability in PMB, we obtained
instantaneous rate estimates from bootstrap samples of the original database and those from earlier versions
of the database. We found that the variability in the bootstrap estimates was only slightly higher than the
variability of matrix estimates obtained from the different clusterings of the database. The results also
showed that the estimates of the universal instantaneous rate matrices from earlier versions of the Blocks
database were not statistically different from the PMB matrix. This explained our finding that there was
only a small difference between the Blosum 62 scoring matrix derived from Blocks 5.0 in 1992 and the
equivalent scoring matrix obtained from PMB (Fig. 5). Versions of the Blocks database pre-1992 were
not available, so by sampling 50% and 25% of the blocks from the earliest available database, we created
smaller databases from which to obtain estimates and to evaluate the relationship between the estimate
reliability and the database size. Bootstrap resampling did show increased variability with estimates from
these small databases, and the average residual with PMB was increased, but it was still smaller than the
difference between PMB and VT. The estimate of the rate matrix from Blocks has been quite robust even
though the size of the database has increased to over 20 times (in bytes) its size since 1992.

The PMB matrix was derived very simply and directly in the same manner as the BLOSUM matrix and
with the additional estimation of corrected evolutionary distances to define an evolutionary model. The
PMB model we derived is meant as an approximation that describes the average evolutionary behavior
of the average amino acid in the average protein, but few amino acids in real proteins will actually
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conform exactly to the model. Popular protein alignment applications such as Blast (Atschul et al., 1990),
Fasta (Pearson and Lipman, 1988), and Clustal W (Thompson et al., 1994) all currently use the BLOSUM
matrices. Since the alignment and the evolutionary model are closely linked (Mitchison, 1999), it makes
sense to use an evolutionary model compatible with the alignment-scoring matrix. The PMB matrix has
been derived using sequences in the complete range of sequence divergence and should be more accurate
than the PAM matrix (Dayhoff et al., 1978) or the JTT matrix (Jones et al., 1992). The PMB matrix is easily
incorporated into applications that use such matrices, including those applications in the popular Phylip
package for phylogenetic analysis (Felsenstein, 2002). The improvement for the analysis of any specific
protein family will depend on how closely the evolution of the sequences follows the average for the
proteins in the Blocks database upon which the PMB model is based. The methods that are described here
are fast and easily implemented and can be used to develop more specific substitution matrices applicable
to protein families and protein domains.
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