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Abstract: In this paper we propose a translation-invariant scalar model on the Moyal
space. We prove that this model does not suffer from the UV/IR mixing and we establish
its renormalizability to all orders in perturbation theory.

1. Introduction and Motivation

Space-time coordinates should no longer commute at the Planck scale where
gravity should be quantized. This observation is a strong physical motivation for non-
commutative geometry, a general mathematical framework developed by A. Connes and
others [1]. Non-commutative field theory is the reformulation of ordinary quantum field
theory on such a non-commutative background. It may represent a bridge between the
current standard model of quantum fields on ordinary commutative R

4 and a future for-
malism including quantum gravity which hopefully should be background independent.

Initially there was hope that non-commutative field theory would behave better in
the ultraviolet regime [2]. Later motivation came from string theory, because field the-
ory on simple non-commutative spaces (such as flat space with Moyal-Weyl product)
appear as special effective regimes of the string [3,4]. Finally another very important
motivation comes from the study of ordinary physics in strong external field (such as
the quantum Hall effect) [5–7]. Such situations which have not been solved analytically
with the ordinary commutative techniques may probably be studied more fruitfully with
non-commutative techniques.

Renormalization is the soul of ordinary field theory and one would certainly want
to extend it to the non-commutative setting. But the simplest non-commutative model,
namely φ�4

4 , whose action is given by (2.1) below, was found to be not renormalizable
because of a surprising phenomenon called UV/IR mixing [8]. This mixing also occurs
in non-commutative Yang-Mills theories. Roughly speaking the non-commutative the-
ory still has infinitely many ultraviolet divergent graphs but fewer than the ordinary one.



276 R. Gurau, J. Magnen, V. Rivasseau, A. Tanasa

However some ultraviolet convergent two point graphs, such as the “non-planar tadpole”
generate infrared divergences which are not of the renormalizable type 1.

The first path out of this riddle came when H. Grosse and R. Wulkenhaar introduced a
modified φ�4

4 model which is renormalizable [10,11]. They added to the usual propagator
a marginal harmonic potential, which a posteriori appears required by Langmann-Szabo
duality x̃µ = 2θµνxν ↔ pµ [12].

The initial papers were improved and confirmed over the years through several inde-
pendent methods [13,14]. The main property of the Grosse-Wulkenhaar model is that its
β-function vanishes at all orders at the self-duality point � = 1 [15–17]. The exciting
conclusion is that this model is asymptotically safe, hence free of any Landau ghost, and
should be a fully consistent theory at the constructive level. This is because wave func-
tion renormalization exactly compensates the renormalization of the four-point function,
so that the flow between the bare and the renormalized coupling is bounded.

Essentially most of the standard tools of field theory such as parametric [18,19] and
Mellin representations, [20] dimensional regularization and renormalization [21] and
the Connes-Kreimer Hopf algebra formulation of renormalization [22] have now been
generalized to renormalizable non-commutative quantum field theory. Other renorm-
alizable models have been also developed such as the orientable Gross-Neveu model
[23].

For a general recent review on non-commutative physics including these new devel-
opments on non-commutative field theory, see [24].

However there are two shortcomings of the Grosse-Wulkenhaar (GW) model. Firstly
it breaks translation invariance so that its relevance to physics beyond the standard model
would be indirect at best; one should either use more complicated “covariant” models
with harmonic potentials which are invariant under “magnetic translations”, such as
the Langmann-Szabo-Zarembo model [25] or one should understand how many short
distance localized GW models may glue into a translation-invariant effective model.
Secondly it is not easy to generalize the GW method to gauge theories, which do present
ultraviolet/infrared mixing. Trying to maintain both gauge invariance and Langmann-
Szabo duality one is lead to theories with non-trivial vacua [26–29], in which perturbation
theory is difficult and renormalizability to all orders is therefore unclear up to now.

Motivated by these considerations we explore in this paper another solution to the
ultraviolet infrared mixing for the φ�4

4 theory. It relies on the very natural idea to incor-
porate into the propagator the infrared mixing effects. This is possible because the sign
of the mixing graphs is the right one. One can therefore modify the propagator to include
from the start a 1/p2 term besides the ordinary p2 term, and to define new renormaliza-
tion scales accordingly. Adding the interaction and expanding into the coupling constant
we prove in this paper that the model modified in this way is indeed renormalizable at
all orders of perturbation theory. This is because the former infrared effects now just
generate a flow (in fact a finite flow) for the corresponding 1/p2 term in the propagator.
The “ordinary” φ�4

4 is formally recovered in the case where the bare coefficient of the
1/p2 term is zero.

The advantages of this “1/p2 − φ�4
4 ” model are complementary to those of the GW

model. The main advantage is that the model does not break translation invariance. The
main inconvenience is that there is no analog of the Langmann-Szabo symmetry so that

1 This UV/IR mixing although quite generic may be avoided in some classes of “orientable models”. Remark
also that in Minkowski space if one maintains a rigorous notion of causality, there are strong indications that
ultraviolet/infrared mixing does not occur [9]. However the Minkowski theory has complications of its own
which make it harder to study.
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one should not expect this φ�4
4 model to make sense non-perturbatively. However the

real interest of this work is perhaps to offer an alternative road to the solution of ultravi-
olet/infrared mixing in the case of gauge theories. It may lead to gauge and translation
invariant models with trivial vacua. Remark that since ordinary non-Abelian gauge the-
ories are asymptotically free, there is no real need for the non-commutative version to
behave better than the commutative case. This removes some of the motivation to imple-
ment Langmann-Szabo duality in that case. Therefore we hope the model studied here
may be a step towards a better global proposal for a non-commutative generalization of
the standard model. This proposal may perhaps have to combine different solutions of
the ultraviolet/infrared mixing in the Higgs and gauge sectors of the theory.

This model has already been used in [30]. Conjecturing that it would be renormal-
izable, the associated propagator (corresponding to Coulomb’s law in a gauge theory)
was proven to decay exponentially over a distance

√
θ .

Let us finally comment on the physics of this model. The propagator we use deviates
significantly from the usual commutative one in the infrared2. It is legitimate to ask
whether commutative physics can be recovered as an effective limit of our model. If we
couple the infrared and θ → 0 limits in a certain way, the singular part of the two point
function becomes a mass counterterm. So letting the counterterms of the theory depend
on θ we may reach a smooth commutative limit.

The paper is organized as follows. Section 2 recalls useful facts about Feynman graphs
and defines our model. The main result of the paper, Theorem 2.1 below is stated at the
end of that section. The proof is through the usual renormalization group multiscale
analysis. The definition of the renormalization group slices and the power counting is
given in Sect. 3 and the proof of the theorem is completed in Sect. 4 using the momen-
tum representation. Finally some low order renormalized amplitudes for this theory are
computed in Appendix A.

2. Model and Main Result

2.1. The “naive” φ�4 model. It is obtained by replacing the ordinary commutative action
by the Moyal-Weyl �-product

S[φ] =
∫

d4x(
1

2
∂µφ � ∂µφ +

1

2
µ2φ � φ +

λ

4!φ � φ � φ � φ), (2.1)

with Euclidean metric. The commutator of two coordinates is

[xµ, xν]� = ı	µν, (2.2)

where

	 =
⎛
⎜⎝

0 θ 0 0
−θ 0 0 0
0 0 0 θ

0 0 −θ 0

⎞
⎟⎠ . (2.3)

In momentum space the action (2.1) becomes

S[φ] =
∫

d4 p(
1

2
pµφpµφ +

1

2
µ2φφ +

λ

4!φ � φ � φ � φ). (2.4)

2 This is also the case of the Grosse-Wulkenhaar propagator.
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The propagator is the same as in the commutative case

1

p2 + µ2 . (2.5)

2.2. Feynman graphs: planarity and non-planarity, rosettes. In this subsection we give
some useful conventions and definitions. Consider a φ�4 graph with n vertices, L internal
lines and F faces. One has

2 − 2g = n − L + F, (2.6)

where g ∈ N is the genus of the graph. If g = 0 the graph is planar, if g > 0 it is
non-planar. Furthermore, we call a planar graph regular if it has a single face broken
by external lines. We call B the number of such faces broken by external lines.

The φ4 graphs also obey the relation

L = 1

2
(4n − N ), (2.7)

where N is the number of external legs of the graph.
In [31], T. Filk defined “contractions moves” on a Feynman graph. The first such

move consists in reducing a tree line and gluing together the two vertices at its ends into
a bigger one. Repeating this operation for the n − 1 lines of a tree, one obtains a single
final vertex with all the loop lines hooked to it - a rosette (see Fig. 1).

Note that the number of faces and the genus of the graph do not change under this
operation. Furthermore, the external legs will break the same faces on the rosette. When
one deals with a planar graph, there will be no crossing between the loop lines on the
rosette. The example of Fig. 1 corresponds thus to a non-planar graph (one has crossings
between e.g. the loop lines 3 and 5). Following [31] the rosette amplitude is

Ṽ (external momenta) e
ı
2

∑
i j Ii j 	µνkµ

i kν
j , (2.8)

Fig. 1. An example of a rosette
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Fig. 2. The non-planar tadpole

where the intersection matrix Ii j is given by

Ii j =

⎧⎪⎨
⎪⎩

1, if line j crosses line i from right,
−1 if line j crosses line i from left,
0 if lines i and j do not cross,

(2.9)

where i and j correspond to an (arbitrary) numeration of the lines, independent of
them being external or internal lines of the Feynman graph. An orientation is given by
the sign convention chosen for the momenta in the conservation conditions. 	 is the
non-commutativity matrix (see Eq. (2.3)). Furthermore the overall phase factor corre-
sponding to the external momenta is

Ṽ (k1, . . . , kN ) = δ(k1 + . . . + kN )e
ı
2

∑N
i< j kµ

i kν
j 	µν , (2.10)

which has exactly the form of a Moyal kernel.

2.3. UV/IR Mixing. The non-locality of the �-product leads to a new type of divergence,
the UV/IR mixing [8]. This can be seen already in the non-planar tadpole (see Fig. 2).
Although this graph has zero genus, since it has two faces broken by external lines, it
will lead to non-planarity when inserted into larger graphs.

The amplitude of this non-planar tadpole with internal momentum higher than the
external momentum is up to a constant

T =
∫ k−2

0
dα

∫
d4 peık	pe−α(p2+µ2). (2.11)

Integrating the Gaussian (and setting θ = 1) holds

T =
∫ k−2

0

dα

α2 e− k2
α e−αµ2

. (2.12)

If k > 1 then

|T | <

∫ ∞

0

dα

α2 e− 1
α = 1 . (2.13)

Let k < 1. We have

T =
∫ k2

0

dα

α2 e− k2
α e−αµ2

+
∫ k−2

k2

dα

α2 e− k2
α e−αµ2

. (2.14)
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Rescaling α = k2β we have for the first integral

1

k2

∫ 1

0

dβ

β2 e−β−1
e−βk2m2 = F(k)

k2 , (2.15)

with F an analytic function of k.
We separate again the second integral as

∫ µ−2

k2

dα

α2 e− k2
α e−αµ2

+
∫ k−2

µ−2

dα

α2 e− k2
α e−αµ2

. (2.16)

The second integral is bounded by a constant uniformly in k. In the first integral we
Taylor-expand e−αµ2

to get

∫ µ−2

k2

dα

α2 e− k2
α −

∫ µ−2

k2

dα

α2 e− k2
α αµ2 +

∫ µ−2

k2

dα

α2 e− k2
α O(α2). (2.17)

The first term integrates to k−2 F ′(k) with F ′ analytic, the second computes to µ2lnk2 +
F ′′(k) with F ′′ analytic and the third is uniformly bounded. Thus the tadpole is

T = c

k2 + c′ln(k2) + F(k) (2.18)

with c and c′ constants and F an analytic function at k = 0.
We note that for a non-massive model the second term vanishes. One can include the

contribution of the non-planar tadpole in the complete two-point function to obtain a
dressed propagator. This motivates a modification of the kinetic part of the action (2.4)
which leads to

2.4. The 1/p2 φ�4
4 Model. This model is defined by the following action:

S[φ] =
∫

d4 p(
1

2
pµφpµφ +

1

2
µ2φφ +

1

2
a

1

θ2 p2 φφ +
λ

4!φ � φ � φ � φ), (2.19)

with a some dimensionless parameter. The propagator is

1

p2 + µ2 + a
θ2 p2

, (2.20)

and we choose a ≥ 0 so that this propagator is well-defined and positive.
Using (2.8) and (2.20) the amplitude of a N -point graph is written

A(G) = δ(
∑

i=1...N

ki )e
ı
2

∑N
i< j ki 	k j

∫ L∏
i=1

d4 pi
1

p2
i + a

θ2 p2
i

+ µ2

×
∏
v �=v̄

δ(qv
1 + qv

2 + qv
3 + qv

3 )e
ı
2

∑
i j Ii j qv

i 	qv
j , (2.21)

with k the external momenta, p the internal momenta, qv a generic notation for internal
and external momenta at vertex v, and v̄ an external vertex of the graph chosen as root
(to extract the global δ conservation on external momenta).

The main result of this paper is
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Theorem 2.1 (Main Result). The model defined by the action (2.19) is perturbatively
renormalizable to all orders.

The proof is given in the next two sections. We proceed now to the usual RG analysis
by defining slices and establishing power counting.

3. Slices and Power counting

In this section we establish the power counting of our model. For that purpose we shall
use the very powerful tool of multiscale analysis. Power counting and the renormaliza-
tion theory rely on some scale decomposition and the renormalization group is oriented:
it integrates “fluctuating scales” (which we call here “high” scales) and computes an
effective action for background scales (here called “low” scales). There are several tech-
nical different ways to define the RG scales, but in perturbation theory the best way is
certainly to define the high scales as the locus where the denominator D of the prop-
agator is big and the low scales as the locus where it is small, cutting the slices into a
geometric progression. This certainly works well for the very different RGs of ordinary
statistical mechanics (D = p2), of condensed matter (D = i p0 + ( p)2 − 1) and of the
Grosse-Wulkenhaar model (D = p2 + �2x2). We use the same idea here again with
D = p2 + a/p2.

Power counting then evaluates contributions of connected subgraphs, also called
“quasi local components” for which all internal scales are “higher” than all external
scales in the sense above. We shall not rederive this basic principle here and shall use
directly the particular version and notations of [32], in which these quasi-local compo-
nents are labeled as G j

r .
Before going into the detailed analysis of these contributions we first note a very

important feature of our model: the term ap−2 changes the UV and IR regions. For the
rest of this paper we set θ = 1. We employ the Schwinger trick and write:

1

p2 + ap−2 + µ2 =
∫ ∞

0
e−α(p2+ap−2+µ2)dα . (3.1)

Let M > 1. Slice the propagators as

C(p) =
∞∑

i=0

Ci (p),

Ci (p) =
∫ M−2(i−1)

M−2i
dαe−α(p2+ap−2+µ2) ≤ K e−cM−2i (p2+ap−2+µ2), i ≥ 1,

C0(p) =
∫ ∞

1
dαe−α(p2+ap−2+µ2) ≤ K e−cp2

, (3.2)

with K and c some constants which, for simplicity, will be omitted from now on. To the
i th slice corresponds either a momentum p ≈ Mi or a momentum p ≈ M−i . Conversely,
a momentum k ≈ Me for e ∈ Z has a scale α = M−2|e|.

We have the following lemma:
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Lemma 3.1. The superficial degree of convergence ω(G) of a Feynman graph G cor-
responding to the action (2.19) obeys

ω(G) ≥
{

N (G) − 4, if g(G) = 0
N (G) + 4 if g(G) > 0

, (3.3)

where N (G) is the number of external legs of G, and g(G) its genus.

Proof. The first line is easy. It is enough to take absolute values in (2.21), and apply
the momentum routing. We briefly recall this procedure. We fix a scale attribution for
all propagators. As the sum over the scales is easy to perform (along the same lines as
in [32]) we concentrate on the problem of summing the internal momenta at fixed scale
attribution ν.

At any scale i the graph Gi made of lines with scales higher or equal to i splits into
ρ connected components Gi

r , r = 1, . . . , ρ. We choose a spanning tree T compatible
with the scale attribution, that is each T i

r = T ∩ Gi
r is a tree in the connected component

Gi
r . We define the branch b(l) associated to the tree line l as the set of all vertices such

that the unique path of lines connecting them to the root contains l. We can then solve
the delta functions for the tree momenta as

pl = −
∑

l ′∈b(l)

ql ′ , (3.4)

where l ′ ∈ b(l) denotes all loops or external momenta touching a vertex in the branch
b(l). After integrating internal momenta we get the bound

Aν ≤
∏

l

M−2il
∏
l∈L

M4il , (3.5)

where L denotes the set of loop lines. The first factor comes from the prefactors of the
propagators while the second comes from the integration of the loop momenta. We can
reorganize the above product according to the scale attribution as

Aν ≤
∏
i,k

M−2L(Gi
r )M4[L(Gi

r )−n(Gi
r )+1] =

∏
i,k

M−[N (Gi
r )−4] , (3.6)

where we have used (2.7).
The second line of (3.3) is obtained using an argument similar to the one used in [14].

In fact if the graph is non-planar there will be two internal loop momenta p and q such
that, after integrating all tree momenta with the delta functions, the amplitude contains
a factor

I =
∫

d4 p d4q e−α1 p2−α1ap−2−α2q2−α2aq−2+ı p∧q . (3.7)

A naive bound would be to bound the integral by M4i1 M4i2 . Instead we use

1

(1 + M2i1q2)m

⎛
⎝1 + M2i1

∑
j

d2

dp2
j

⎞
⎠

m

eıp∧q = eıp∧q . (3.8)
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Integrating by parts we get

|I | ≤
∫

d4 pd4q

(1 + M2i1q2)m
e−M−2i2 q2−M−2i2 q−2

×
⎛
⎝1 + M2i1

∑
j

d2

dp2
j

⎞
⎠

m

e−M−2i1 p2−M−2i1 p−2
. (3.9)

The derivative acting on the exponential gives factors of order at most O(1). If we chose
m = 3 we have a bound

I ≤ K
∫

d4 pd4q

(1 + M2i1q2)3 e−M−2i1 p2 ≤ K ′. (3.10)

We have thus gained both factors M4i1 and M4i2 with respect to the naive bound. �

4. Renormalization

We have established that all possible divergences come from planar 2 or 4 point graphs.
Note that they may have more that one broken face3. We will prove that all divergences
can be reabsorbed in a redefinition of the parameters in the action (2.19).

4.1. Two-point function. The single-broken-face 2-point graphs are ultraviolet diver-
gent and as such give nontrivial mass and wave function renormalizations. By contrast
the 2-point graphs with two broken faces are ultraviolet convergent. Nevertheless we
will prove that they give a finite renormalization of the 1/p2 term.

4.1.1. 2-point function with a single broken face. From the standard multiscale analysis
we know that power counting has to be computed only for connected components of the
G j

r type. Consider the case of such a planar, one particle irreducible, 2-point subgraph
S which is a component G j

r for j for a certain range of slices e < j ≤ i between e, its
highest external scale and i , its lowest internal scale (and a particular value of r ),

A(G j
r ) = δ(k1 + k2)

∫ L∏
l=1

d4 pl

∫ M−2(il −1)

M−2il
dαl e−αl [p2

l +ap−2
l +µ2]

×
∏
v �=v̄

δ(qv
1 + qv

2 + qv
3 + qv

3 ), (4.1)

where we consider that all eventual subrenormalizations have been performed. We per-
form the momentum routing for the subtree T j

r . Let k1 enter into the root vertex of S.
We define

T 1 = {l ∈ T | k2 ∈ b(l)} , T 2 = T − T 1 . (4.2)

3 This stands in contrast with the Grosse-Wulkenhaar theory in which only graphs with a single broken
face diverge.
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The amplitude is written, dropping the index on k2 and forgetting the overall δ function,

A(G) =
∫ |L|∏

l=1

d4 pl

L∏
l=1

∫ M−2(il −1)

M−2il
dαl

∏
l∈L

e−αl [p2
l +ap−2

l +µ2]

×
∏

l∈T 2

e
−αl

[
(
∑

l′∈b(l) pl′ )2+a(
∑

l′∈b(l) pl′ )−2+µ2
]

×
∏

l∈T 1

e
−αl

[
(k+

∑
l′∈b(l) pl′ )2+a(k+

∑
l′∈b(l) pl′ )−2+µ2

]
. (4.3)

We can now divide all integrals over pl ′’s in regions for each l ∈ T1, according
to whether (

∑
l ′∈b(l) pl ′)2 < a1/2 or (

∑
l ′∈b(l) pl ′)2 ≥ a1/2. The regions with at least

one condition (
∑

l ′∈b(l) pl ′)2 < a1/2 will count for O(1) instead of M4i and using
directly the power counting argument we bound such a contribution to (4.3) by M−2i

per slice, for all k. In the following we will neglect all boundary terms on the sphere
of radius a1/2 as they are easy to bound uniformly in k. We conclude that only the
case with all (

∑
l ′∈b(l) pl ′)2 ≥ a1/2 have to be renormalized. In that case the factors

e−αa(k+
∑

l′∈b(l) pl′ )−2
give rise to an analytic behavior in k, and can be expanded around

k = 0.
We Taylor-expand the last line in (4.3) in that case. The odd terms in p are zero after

integration, as the branch momenta are linearly independent. For each term we have a
development of the form

e
−αl

[
(
∑

l′∈b(l) pl′ )2+a(
∑

l′∈b(l) pl′ )−2+µ2
](

1 − αl k
2 + α2

l k4
∫ 1

0
dt (1 − t)e−tαl k2)

. (4.4)

Using the multiscale bound (3.2), we see that collecting the first terms we get a bound
like (3.6), thus a quadratic mass divergence. If we have at least one factor in αl we gain at
least M−2il ≤ M−2i and we pay a factor k2 which is of order M2e because the external
momenta is of scale e. Thus for all scales j between i and e we have gained a factor
M−2 and the power counting factor associated to the corresponding connected compo-

nent G j
r , which was previously M−(N (G j

r )−4) = M2, has become M−(N (G j
r )−2) = 1.

We get therefore a constant per slice as power counting for that connected component.
As usual we recognize here the logarithmically divergent wave function renormalization
associated to S. All other terms give convergent contributions, because a factor at least
M−4 per slice between e and i is gained.

4.1.2. 2-point function with two broken faces. The amplitude of a one-particle irreduc-
ible 2-point graph with two broken faces is

A(G j
r ) = δ(k1 + k2)

∫ L∏
l=1

d4 pl

∫ M−2(il −1)

M−2il
dαl e−αl [p2

l +ap−2
l +µ2]

×
∏
v �=v̄

δ(qv
1 + qv

2 + qv
3 + qv

3 )eık2∧(
∑

l∈S pl ) , (4.5)
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with S ∈ L the set of loop lines crossed by the second external line. Performing again
the momentum routing, dropping the index in k2 and the global δ function yields

A(G j
r ) =

∫ |L|∏
l=1

d4 pl

∫ M−2(il −1)

M−2il
dαl

∏
l∈L

e−αl [p2
l +ap−2

l +µ2]

×
∏

l∈T 2

e
−αl

[
(
∑

l′∈b(l) pl′ )2+a(
∑

l′∈b(l) pl′ )−2+µ2
]

×
∏

l∈T 1

e
−αl

[
(k+

∑
l′∈b(l) pl′ )2+a(k+

∑
l′∈b(l) pl′ )−2+µ2

]
eık∧(

∑
l∈S pl ) . (4.6)

We use the same decomposition as before according to whether (
∑

l ′∈b(l) pl ′)2 < a1/2

or (
∑

l ′∈b(l) pl ′)2 ≥ a1/2. Again only the case with all (
∑

l ′∈b(l) pl ′)2 ≥ a1/2 is poten-
tially divergent and could give rise to a non-analytic behavior in k.

We choose a line l ′ ∈ S, use

eık∧(
∑

l∈S pl ) = − 1

k2 �pl′ e
ık∧(

∑
l∈S pl ) (4.7)

and integrate by parts in (4.6) to get

A(G j
r ) = − 1

k2

∫ |L|∏
l=1

d4 ple
ık∧(

∑
l∈S pl )

∫ M−2(il −1)

M−2il
dαl �pl′

( ∏
l∈L

e−αl [p2
l +ap−2

l +µ2]

×
∏

l∈T 2

e
−αl

[
(
∑

l′∈b(l) pl′ )2+a(
∑

l′∈b(l) pl′ )−2+µ2
]

×
∏

l∈T 1

e
−αl

[
(k+

∑
l′∈b(l) pl′ )2+a(k+

∑
l′∈b(l) pl′ )−2+µ2

])
. (4.8)

The derivatives acting on the Gaussian will give rise to insertions scaling like α, α2 p2,
αp−2, αp−4, α2 p−2, α2 p−4. The first two terms scale as M−2i in a slice while the rest
scale at least as M−4i . Using again the trick (4.7), and the power counting bound we
get, when summing over all slices, a behavior like

A(G j
r ) = 1

k4

∞∑
i= j

M−2i = 1

k2

M−2 j

M2e
K , (4.9)

with K some constant, if k ≈ Me (and consequently of scale |e|). As the scale j is
ultraviolet with respect to |e| we bound

M−2 j−2e ≤ M−2(|e|+e) ≤ 1 . (4.10)

We have thus proved that

A(G j
r ) = 1

k2 F(k) (4.11)
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with F(k) a function uniformly bounded by a constant for all k.4 We identify the terms
F(0) as a finite renormalization for the coefficient a in the Lagrangian. Note that using
this scale decomposition there are no logarithmic subleading divergences for this two
point function with two broken faces.

4.2. Four-points function. The amplitude of a planar regular four-points graph is given
by:

A(G j
r ) = δ(k1 + k2 + k3 + k4)e

ı
2

∑
i< j ki ∧k j

×
∫ L∏

l=1

d4 pl

∫ M−2(il −1)

M−2il
dαl e−αl [p2

l +ap−2
l +µ2] ∏

v �=v̄

δ(qv
1 + qv

2 + qv
3 + qv

3 ) .

(4.12)

The first line reproduces exactly the Moyal four-points kernel. Power counting leads
to bound the second line by a constant per slice, thus it corresponds to a logarithmic
divergence, which in turn generates a logarithmic coupling constant renormalization.

Some comments are in order for the planar four-points graphs with more than one
broken face. Using (4.7) once, we get a bound like

A(G j
r ) = 1

k2

∞∑
i= j

M−2i = M−2 j

M2e
K , (4.13)

and by (4.10) we see that the amplitude of such a graph is a function of external momenta
uniformly bounded by some constant.

5. Conclusions and Perspectives

We have thus proved in this paper that the scalar model (2.19) is renormalizable at all
orders in perturbation theory. The renormalization of the planar regular graphs goes
along the same lines as the renormalization of the Euclidean φ4 on a 4−dimensional
commutative space. The non-planar graphs remain convergent and the main difference
concerns the planar irregular graphs. The comparison with the action (2.1) (which is
non-renormalizable, with UV/IR mixing) and with the Grosse-Wulkenhaar model is
summarized in the following table:

model (2.1) GW model 1/p2 − φ�4
4 model

2-points 4-points 2-points 4-points 2-points 4-points
planar regular ren ren ren ren ren ren
planar irregular UV/IR log UV/IR conv conv finite ren conv
non-planar IR divergent IR divergent conv conv conv conv

where ren means renormalizable.and conv means convergent.

Acknowledgement. We thank A. Abdesselam for indicating the proof of analyticity of F in (4.11), and
F. Vignes-Tourneret for useful comments. Furthermore, Adrian Tanasa gratefully acknowledges the European
Science Foundation Research Networking Program “Quantum Geometry and Quantum Gravity” for the Short
Visit Grants 2219 and 2232.

4 In fact F(k) is analytic in k, as it is a sum of absolutely convergent integrals of analytic functions in α

and k, in the region where all conditions (
∑

l′∈b(l) pl′ )2 ≥ a1/2 are fulfilled.
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A. Examples of Graphs

We illustrate the general results established in the previous section by some examples
of two- and four-points graphs for which we analyze the Feynman amplitude.

A.1. A two-point graph example. Let us analyze the Feynman amplitude of the tadpole
of Fig. 2. This graph has g = 0 but B = 2. Due to the new renormalization group slices
the parameter α of an internal line obeys α < min{k2, k−2}. Therefore the amplitude of
the non planar tadpole is (up to a constant)

∫ min{k2,k−2}

0
dα

∫
d4 peik∧pe−α(p2+ap−2+µ2). (A.1)

Applying (4.7) and integrating by parts holds:

− 1

k2

∫ min{k2,k−2}

0
dα

∫
d4 peik∧p�pe−α(p2+ap−2+µ2)

= 1

k2

∫ min{k2,k−2}

0
dα

∫
d4 peik∧p

×(
8α − α2(4p2 − 8ap−2 + 4a2 p−6)

)
e−α(p2+ap−2+µ2) . (A.2)

All but the first and second terms in (A.2) can be bounded by k2 when taking abso-
lute values such that the contribution to the amplitude of the tadpole is a constant. The
coefficient of the k−2 divergences is therefore

c =
∫ min{k2,k−2}

0
dα

∫
d4 peik∧p(8α + 4p2α2)e−α(p2+ap−2+µ2). (A.3)

Applying again 4.7 and integrating again by parts holds only terms like

cn = 1

k2

∫ min{k2,k−2}

0
α2dα

∫
d4 peik∧p(αp2)ne−α(p2+ap−2+µ2) , (A.4)

with n = 0, 1, 2. Taking absolute values, using (αp2)ne−αp2
< e− αp2

2 holds up to
irrelevant constants,

cn <
1

k2

∫ min{k2,k−2}

0
α2dα

1

α2 = 1

k2 min{k2, k−2} < 1. (A.5)

We conclude that

1

k2 F(k) + G(k) , (A.6)

with F and G bounded and analytic at k = 0.
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Fig. 3. An example of a four-point Feynman graph, planar but with 2 faces broken by external lines

A.2. Planar irregular four-points graphs. Take now the graph of Fig. 3. This graph has
vanishing genus (g = 0) and two faces broken by external lines (B = 2).

The Feynman amplitude is written:

λ2
∫

d4 p1e−2i p1∧(k1+k2)
1

p2
1 + µ2 + a 1

p2
1

.
1

(p1 + k3 + k4)2 + µ2 + a 1
(p1+k3+k4)2

. (A.7)

Let

K = k1 + k2 = −(k3 + k4),

p2 = p1 + K . (A.8)

We now deal with the integral (2.7) as before, that is we use the Schwinger parametric
representation and we express the oscillation factor using (4.7). Integrating by parts as
above, one has

− λ2

K 2

∫ min(K 2,K −2)

0
dα1dα2

∫
d4 p1e−2i p1∧K �p

[
e−α1(p2

1+ap−2
1 +µ2)e−α2(p2

2+ap−2
2 +µ2)

]
.

(A.9)

This further develops as:

− λ2

K 2

∫ min(K 2,K −2)

0
dα1dα2

∫
d4 p1e−2i p1∧(k1+k2)

[[
−8α1 + α2

1(4p2
1 +

4a2

p6
1

− 8a

p2
1

)

]
+

[
−8α2 + α2

2(4p2
2 +

4a2

p6
2

− 8a

p2
2

)

]

+8α1α2(p1 µ − a

p4
1

p1 µ)(pµ
2 − a

p4
2

pµ
2 )

]
e−α1(p2

1+ap−2
1 +µ2)e−α2(p2

2+ap−2
2 +µ2).

(A.10)

Note that some of the terms above are of the same type as the ones appearing in (A.2)
and can be bounded by K 2 when taking absolute values. Thus, their contribution to
the amplitude is a constant. The rest of the terms of (A.10) can then be treated along
the same lines as above. Take for example the second term of (A.10). This leads to an
integral like

∫ min(K 2,K −2)

0
dα1dα2α1

1

(α1 + α2)2 . (A.11)
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One performs first the definite integral on α2. This leads to two terms which can be easily
bounded by K 2. Finally, one concludes that the integral (A.10) leads to some constant
result.
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